scheme of teaching & examination year.pdf06 factors affecting dry weather flow. 07 flow...

121
CIVIL ENGINEERING FINAL YEAR COURSE DIARY PAGE 1 MVJCE SCHEME OF TEACHING & EXAMINATION SEMESTER: VII S. No. Subject Code Title of the Subject Teachi ng Dept/. Teaching Hrs/Week Examination Theo ry Pract ical Dura tion (Hr) Marks IA Theor y/ Practi cal Total 1 06CV71 Environmental Engineering – II Civil 04 -- 03 25 100 125 2 06CV72 Design of Steel Structures Civil 04 -- 03 25 100 125 3 06CV73 Quantity Surveying and Estimation Civil 04 -- 03 25 100 125 4 06CV74 Design of Pre Stressed Concrete Structures Civil 04 -- 03 25 100 125 5 06CV755 Highway Geometric Design Civil 04 -- 03 25 100 125 6 06CV764 Photogrammetry and Remote Sensing Civil 04 -- 03 25 100 125 7 06CVL77 Environmental Engineering Lab Civil -- 03 03 25 50 75 8 06CVL78 Concrete & Highway Materials Lab Civil -- 03 03 25 50 75 TOTAL 24 06 24 200 700 900

Upload: others

Post on 25-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 1 MVJCE

SCHEME OF TEACHING & EXAMINATION

SEMESTER: VII

S. No.

Subject Code

Title of the Subject Teachi

ng Dept/.

Teaching Hrs/Week

Examination

Theory

Practical

Duration (Hr)

Marks

IA

Theory/

Practical

Total

1 06CV71 Environmental Engineering – II

Civil 04 -- 03 25 100 125

2 06CV72 Design of Steel Structures

Civil 04 -- 03 25 100 125

3 06CV73 Quantity Surveying and Estimation

Civil 04 -- 03 25 100 125

4 06CV74 Design of Pre Stressed Concrete Structures

Civil 04 -- 03 25 100 125

5 06CV755 Highway Geometric Design

Civil 04 -- 03 25 100 125

6 06CV764 Photogrammetry and Remote Sensing

Civil 04 -- 03 25 100 125

7 06CVL77 Environmental Engineering Lab

Civil -- 03 03 25 50 75

8 06CVL78 Concrete & Highway Materials Lab

Civil -- 03 03 25 50 75

TOTAL 24 06 24 200 700 900

Page 2: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 2 MVJCE

06CV71 – ENVIRONMENTAL ENGINEERING - II

Page 3: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 3 MVJCE

ENVIRONMENTAL ENGINEERING – II Subject Code : 06CV71 IA Marks : 25 No. of Lecture Hours/Week : 04 Exam Hours : 03 Total No. of Lecture Hours : 52 Exam Marks : 100

PART – A UNIT - 1 INTRODUCTION: Necessity for sanitation, methods of domestic waste water disposal, types of sewerage systems and their suitability. Dry weather flow, factors affecting dry weather flow, flow variations and their effects on design of sewerage system; computation of design flow, estimation of storm flow, rational method and empirical formulae of design of storm water drain. Time of concentration. 6 Hours UNIT - 2 DESIGN OF SEWERS: Hydraulic formulae for velocity, effects of flow variations on velocity, self cleaning and non-scouring velocities, Design of hydraulic elements for circular sewers flowing full and flowing partially full (No derivations). MATERIALS OF SEWERS: Sewer materials, shapes of sewers, laying of sewers, joints and testing of sewers, ventilation and cleaning of sewers. 6 Hours UNIT - 3 SEWER APPURTENANCES: Catch basins, manholes, flushing tanks, oil and grease traps, Drainage traps. Basic principles of house drainage. Typical layout plan showing house drainage connections, maintenance of house drainage. 6 Hours UNIT - 4 WASTE WATER CHARACTERIZATION: Sampling, significance, techniques and frequency. Physical, Chemical and Biological characteristics, Aerobic and Anaerobic activity, CNS cycles. BOD and COD. Their significance & problems 6 Hours

PART – B

UNIT - 5 DISPOSAL OF EFFLUENTS : Disposal of Effluents by dilution, self purification phenomenon. Oxygen sag curve, Zones of purification, Sewage farming, sewage sickness, Effluent Disposal standards for land, surface water & ocean. Numerical Problems on Disposal of Effluents. Streeter Phelps equation. 6 Hours UNIT - 6 TREATMENT OF WASTE WATER: Flow diagram of municipal wastewater treatment plant. Preliminary & Primary treatment: Screening, grit chambers, skimming tanks, primary sedimentation tanks – Design criteria & Design examples. 6 Hours

Page 4: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 4 MVJCE

UNIT - 7 SECONDARY TREATMENT: Suspended growth and fixed film bioprocess. Trickling filter – theory and operation, types and designs. Activated sludge process- Principle and flow diagram, Modifications of ASP, F/M ratio. Design of ASP. 8 Hours UNIT - 8 Anaerobic Sludge digestion, Sludge digestion tanks, Design of Sludge drying beds. Low cost waste treatment method. Septic tank, Oxidation Pond and Oxidation ditches – Design. Reuse and recycle of waste water. 8 Hours TEXT BOOKS: 1. Manual on Waste Water Treatment: CPHEEO, Ministry of Urban Development, New

Delhi. 2. Water and Wastewater Engineering Vol-II: - Fair, Geyer and Okun : John Willey

Publishers, New York. 3. Waste Water Treatment, Disposal and Reuse: Metcalf and Eddy inc: Tata McGraw Hill Publications. REFERENCE BOOKS: 1. Water Technology. - Hammer and Hammer 2. Environmental Engineering: Howard S. Peavy, Donald R. Rowe, George Tchnobanoglous

McGraw Hill International Edition.

Page 5: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 5 MVJCE

LESSON PLAN

Subject Name: Environmental Engineering - II Hours / Week: 05 Subject Code: 06CV71 Total Hours: 62

Period No

Topics to be covered

01 Introduction : Waste water disposal methods of sewage disposal,

02 Necessity for sanitation

03 Methods of sewage disposal,

04 Types of sewerage systems and their suitability.

05 Quantity Of Sewage: dry weather flow,

06 Factors affecting dry weather flow.

07 Flow variations and their effects on design of various components of sewage scheme

08 Computation of design flow,

09 Estimation of storm flow, Rational method

10 Empirical formula of design of storm water drain

11 Time of concentration

12 Design of sewers: Hydraulic formula used to determine velocity,

13 Effect of flow variation on velocity

14 Self-cleansing and non-scouring velocities.

15 Design of hydraulic elements of circular sewers flowing full

16 Design of hydraulic elements of circular sewers flowing partially full.

17 Problems on design of sewers

18 Materials Of Sewers: Materials of sewers,

19 Shape of sewers

20 Laying of sewers

21 Joining and testing of sewers,

22 Ventilation and cleaning of sewers

23 Sewer Appurtenances: Catch basin,

24 Manhole,

25 Flushing tanks

26 Oil and grease traps, Drainage traps

27 Basic principles of house drainage

28 Typical layout plan showing house drainage connection,

29 Maintenance of house drainage

Page 6: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 6 MVJCE

Period No. Topics to be covered

30 Sewage Pumping: Need

31 Types of pumps and pumping stations

32 Analysis of sewage, physical, chemical and biological characteristics.

33 Concepts of aerobic and anaerobic activity,

34 CNS cycles

35 More emphasis on BOD and COD.

36 Sampling significance, techniques and frequency

37 Disposal Of Effluents: Disposal of sewage effluents by dilution,

38 Dispersion method

39 Self purification phenomenon

40 Oxygen sag curve

41 Zones of purification

42 Sewage farming, sewage sickness

43 Disposal standards on land

44 Disposal standards on water and its suitability

45 Treatment Of waste water: Flow diagrams of municipal sewage treatment plant,

46 Preliminary and Primary treatment: screening

47 Grit chambers, Skimming tanks

48 Primary sedimentation tanks

49 Design of screens

50 Primary sedimentation tank designs

51 Design examples of primary treatment

52 Secondary treatment: suspended growth and fixed film bioprocess

53 Trickling filter- theory, parts and operation

54 Types of trickling filter, design of trickling filter

55 Activated sludge process- Principle and flow diagram

56 Modifications of ASP, F/M ratio

57 Design of ASP

58 Anaerobic sludge digestion, sludge digestion tanks

59 Design of sludge drying beds

60 Low cost waste treatment method, septic tank

61 Oxidation pond, oxidation ditch -design

62 Recycle and reuse of waste water

Page 7: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 7 MVJCE

QUESTION BANK 01 Explain combined system and separate system of sewerage giving their merits and

demerits

02 Define dry weather flow and explain its pattern of variation. Explain the factors on which DWF depends

03 Explain the following: i. Rational method of estimation of storm water flow ii. Design period as applicable to sewerage schemes iii. Self cleansing velocity in sewers

04 Design a circular sewer running half full to carry the sewage generated from a town with the following data

Population = 150000 Rate of water supply = 135 LPHD Peak flow factor = 2 Slope of the sewer = 1in400 ‘n’ value of the sewer = 0.013

Check the velocity developed

05 List the common sewer materials and discuss their merits and demerits

06 Explain with neat sketches the following: (i) Drop manhole (ii) Inverted siphon (iii) Flushing tank (iv) storm regulators

07 Explain the concept of BOD, and COD, giving their utility in the wastewater management. List their limitations.

08 Calculate the 5 day BOD and ultimate BOD of the sample of sewage using the following data obtained from a BOD test

DO of the original sample = 0.4mg/l DO of the dilution water = 3mg/l DO of the dilution sample = 0.4mg/l After 5 days of incubation Dilution ratio = 2%

Assume deoxygenating coefficient KD at test temp as 0.1

09 Explain aerobic and anaerobic process

10 Explain carbon and nitrogen cycle of decomposition of organic matter

11 Explain about population equivalent

12 Write a short note on sewage sickness

13 Write short note on self purification in natural water

14 Explain different methods of disposal of sewage

15 Explain about oxygen sag curve and critical deficit

16 Write a detailed flow sheet of sewage treatment scheme for a large city. Indicate the different

Page 8: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 8 MVJCE

17 Explain the following: i. Suspended growth system and attached growth system

ii. Aerobic and anaerobic processes

18 With the help of neat sketch explain the working of a rotating biological disc

19 Explain with neat sketch the working of tricking filter

20

Determine the depth, volume and efficiency of a standard rate trickling filter for the following data

(i) Quantity of settled sewage =6 million litre per day (ii) BOD of sewage = 200mg/l (iii) Rate of organic loading = 200 gm/m3/day (iv) Rate of surface loading = 2500l/m2/ day

21 What is meant by activated sludge process? Describe with sketch the treatment of sewage by activated sludge process

22 Calculate the area of land required for drying the 50m3/day of wet sludge from the digestion tank and also design the dimension tank

23

Design and sketch a sludge digester for the following data Average flow of sewage = 15x106 liters/day Total suspended solids in sewage = 400mg/l Removal of solids in primary settling tank = 60% Specific gravity of sludge is assumed as unity Moisture content of fresh sludge = 95% Moisture content of digested sludge = 85%

24 Write a short notes on sludge drying beds

25 Explain with sketch the working of sludge digester

26 Explain bulking of sludge and how it can be controlled

27 Write a short note on chlorination of sewage

28 Explain with neat sketch the working of aerated lagoon

29 Explain with neat sketch the working of septic tank

Page 9: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 9 MVJCE

Page 10: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 10 MVJCE

Page 11: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 11 MVJCE

Page 12: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 12 MVJCE

Page 13: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 13 MVJCE

Page 14: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 14 MVJCE

06CV72 - DESIGN OF STEEL STRUCTURES

Page 15: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 15 MVJCE

SYLLABUS

Subject Code: 06CV72 IA Marks: 25 No. Of Lecture Hours/Week: 05 Exam Hours: 03 Total No. Of Lecture Hours: 62 Exam Marks: 100

PART - A UNIT - 1 INTRODUCTION: Advantages and disadvantages of steel structures. Loads and load combinations, Design considerations.Limit state method (LSM) of design, Failure criteria for steel, Codes, Specifications and section classification 7 Hours UNIT – 2 BOLTED CONNECTIONS: Introduction, Behavior of bolted joints, Design strength of ordinary black bolts, Design strength of high strength friction grip bolts (HSFG),pin connections, simple connections, moment resistant connections, beam to beam connections, beam &column splices,semirigid connections. 7 Hours UNIT – 3 WELDED CONNECTIONS: Introduction, Welding process, welding electrodes, advantages of welding, types & properties of welds, types of joints, weld symbols, weld specifications, Effective areas of welds, design of welds, simple joints, moment resistant connections, continuous beam to column connections,continous beam to beam connections, beam-column splices, tubular connections 7hours UNIT - 4 PLASTIC BEHAVIOUR OF STRUCTURAL STEEL:- Introduction, plastic theory, plastic hinge concept, plastic collapse load, conditions of plastic analysis,theorum of plastic collapse, methods of plastic analysis, plastic analysis of continuous beams. 7 Hours

PART – B

UNIT – 5 DESIGN OF TENSION MEMBERS: Introduction, types of tension members, design of strands,slederness ratio,behaviour of tension members, modes of failures, factors affecting strength of tension members, angles under tension, other sections, design of tension members, lug angles,splices,gussets 7 Hours UNIT – 6 DESIGN OF COMPRESSION MEMBERS:Introduction,failure modes,behaviours of compression members, elastic buckling of slender compression members, sections used for compression members, effective length of compression members, design of compression members,builtup compression members. 9 Hours UNIT – 7 DESIGN OF COLUMN BASES: Design of simple slab base and gusseted base 7 Hours

Page 16: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 16 MVJCE

UNIT - 8 DESIGN OF BEAMS: Introduction, Lateral stability of beams, factors affecting lateral stability, behavior of simple & built-up sections in bending (without vertical stiffeners), design strength of laterally supported beams in bending, design strength of laterally unsupported beams, maximum deflection, design of beams & purlins 7 Hours Note; Study of this course should be based on IS 800-2007 TEXT BOOKS: 1. Design of Steel Structures- N. Subramanian, Oxford, 2008 REFERENCE BOOKS:

1. - Ramachandra - Vol - 2, Standard Book House, New Delhi 2. Comprehensive Design of Steel Structures- Dr. B.C. Punmia,ashok kumar Jain,arun

kumar Jain, Laxmi publications. 3. IS – 800-2007,IS- 875 - 1987,Steel tables (to be supplied in examination).

Page 17: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 17 MVJCE

LESSON PLAN

Subject Name: Design of Steel Structures Hours / Week: 05 Subject Code: 06CV72 Total Hours: 62 Period

No. Topic to be covered

1.INTRODUCTION 1 Introduction to steel structures, Advantages and Disadvantages of Steel Structures

2 Loads and Load combinations

3 Design considerations

4 Limit state method (LSM) of design

5 Failure criteria for steel

6 Codes, specification 7 Section classification 2.BOLTED CONNECTIONS

8 Introduction, Behavior of bolted joints

9 Design strength of ordinary black bolts. Design strength of high strength friction grip bolts (HSFG)

10 Pin connections. Simple connections, Moment resistant connections

11 Beam to beam connections

12 Beam splices

13 Column splices 14 Semi rigid connections 3.WELDED CONNECTIONS

15 Introduction, Welding process, Welding electrodes

16 Advantages of welding, Types & properties of welds, Types of joints

17 Weld symbols, Weld specifications, Effective areas of welds

18 Design of welds, simple joints, moment resistant connections

19 Continuous beam to column connections, Continuous beam-to-beam connections, beam column splices, tubular connections.

Bb beam column spli 20 Beam column splices,. 21 Tubular connections.

4.PLASTIC BEHAVIOUR OF STRUCTURAL STEEL

22 Introduction, Plastic theory

23 Plastic hinge concept, Plastic collapse load

24 Conditions of plastic analysis

25 Theorems of plastic collapse

26 Methods of plastic analysis

27 Plastic analysis of continuous beams

28 Numerical problems on above 29 Numerical problems on above

Page 18: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 18 MVJCE

Period

No. Topic to be covered

5.DESIGN OF TENSION MEMBERS

30 Introduction, Types of tension members

31 Design of strands, Slenderness ratio

32 Behavior of tension members, Modes of failure

33 Factors affecting strength of tension members

34 Angle under tension. Other sections,

35 Design of tension members 36 Lug angles, splices & gussets 6.DESIGN OF COMPRESSION MEMBERS

37 Introduction, Failure modes,

38 Behavior of compression members

39 Elastic buckling of slender compression members

40 Sections used for compression members

41 Effective length of compression members

42 Design of compression members

43 Built up compression members

44 Numerical problem on built up sections 45 Numerical problem on built up sections continued 7.DESIGN OF COLUMN BASES

46 Design of simple slab base

47 Design of simple slab base continued

48 Design of simple slab base continued

49 Design of gusseted base

50 Design of gusseted base continued

51 Design of gusseted base continued 52 Design of gusseted base continued 8.DESIGN OF BEAMS

53 Introduction, beam types

54 Lateral stability of beams, Factors affecting lateral stability

55 Behavior of simple & built up beams in bending (with out vertical stiffeners)

56 Design strength of laterally supported beams in bending,

57 Design strength of laterally unsupported beams in bending,

58 Shear strength of steel beams, ,

59 Maximum deflection

60 Design of beams

61 Design of purlins

62 Revision on above topic

Page 19: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 19 MVJCE

QUESTION BANK

8. a) What are the different types of steel structural members?

b) State different loads and load combination for the design of structures c) Sketch the General forms of tension and compression members.

9. State the different methods of design of steel structures. Distinguish among themselves 10. Explain in detail four accepted yield criteria. 11. Two plates of same width 65mm and different thickness18mm and16mmare to be

connected by a lap joint to resist a tensile load of 75 kn usingM16 bolts of grade 4.6 and plates of grade 410. design the lap joint.

12. A hanger joint is shown in fig below carry a factored load of 300kn using an end plate of size 280mm X160mm. Design the hanger joint using M24 HSFG bolts provided as shown. Take end plates of grade Fe410

280x160mm end plate 300 kn

13. A bracket is as shown in fig below and is provided with 8 no of 20mm diameter bolts of grade 4.6. Cheque the adequacy of the connection to resist the external forces

140mm 140mm W=120kn 40 80 o o o o 80mm x G 80mm o o o o Thickness of bracket=12mm 40mm ISHB 300 7. Two plates of 18kn & 14 mm thick are to be joined together by a groove weld as shown in

fig below. The joint is subjected to a factored tensile force of 300 kn. Assuming the effective length length of 180mm, Cheque the adequacy of joint for the following cases

a) Single V groove weld b) Double V groove weld

Take that Fe 410 steel plate & welds as shop weld

Page 20: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 20 MVJCE

8. Determine A channel section ISMC 250 is connected to a gusset plate of 16mm thick and it will transfer a factored tensile force of 800 kn. If the overlap of the channel section on the gusset plate is restricted to 320 mm, design the fillet weld.

9. Two brackets of thickness 08mmeach are welded on each side of flange ISHB 300

@58.8 kg/m as shown in fig below. If the size of the weld is 6mm,determine the maximum load W that can be taken by weld.

180mm 280mm W θ =600

300mm G

10.determine the values of shape factors for the following sections 300mm 200mm 50mm 300mm 400mm 200mm 120mm 100mm Take uniform thickness=20mm 11. Determine the plastic moment using load factor Q=1.85 for the continuous beam shown

in figure below 20kn 6kn/m 15kn D A 1.5Mp 2Mp Mp 2m 3m B 4m C 3m 3m

12.Determine the collapse load for the beam shown in fig below W 1.2W 1.5W W A B B C D 5m, 2Mp 3m, 1.5Mp 2m 1m 2m 1m Mp

Page 21: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 21 MVJCE

13.Determine the design tensile strength of plate 180mmX10mm connected to 12mm thick

gusset plate using M16 bolts as shown in figure below. Use Fe410 grade steel. 40mm O O 50mm Plate 180mmX10mm O O 12mm thick gusset plate 40mm 40mm, 50mm, 40mm

14. A single equal angle 90x90x8mm is connected to a 10mm thick gusset plate at the ends as shown in fig below.

Calculate the design tensile strength of the angle by using plate of grade Fe410 &bolts of grade 4.6 if the angle is connected to gusset plate using 20mmdiameter bolts.

O O O 40mm 50mm, 50mm,40mm

15. A double angle discontinuous strut 150mmx75mmx12mm long leg back to back is connected to either side by gusset plate of 12mm thick with 2 bolts. The length of the strut between the intersection is 3.3m. Determine the safe load carrying capacity of the section.

16.Calculate the safe compressive load of a bridge compression member of two channels

ISMC300, 35.8 kg/m placed toe to toe. The effective length of member is 6m. the widths over the back of the channel is 320mm and the section is properly connected to bracings.

17. An ISMB 300 @ 577 N/m column carries a factored axial load of 900 kn . Design the

base plate under it assuming the grade of steel used as Fe410 & the grade of concrete to be provided below the base plate as M25.

18.Design a gusseted base on a concrete pedestal for a column ISHB 400 @ 759N/m with

two flange plates 400x20mm carrying a factored load of 4000 kn. The column is to be supported on concrete pedestal to be build with M20 concrete.

Page 22: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 22 MVJCE

19A s/s beam of span 6m carries a udl of 35kn/m. Design the beam if it is laterally

restrained. 20. A rolled beam section section ISLB 300 @ 37.7x9.81 N/m carry a factored moment

Mu=125knm and factored SF of 250kn. Check the adequacy of the rolled section if the span of the beam is 6m.

Page 23: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 23 MVJCE

Page 24: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 24 MVJCE

Page 25: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 25 MVJCE

Page 26: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 26 MVJCE

Page 27: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 27 MVJCE

Page 28: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 28 MVJCE

Page 29: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 29 MVJCE

06CV73 - QUANTITY SURVEYING AND ESTIMATION

Page 30: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 30 MVJCE

SYLLABUS

Sub. Code : 06 CV73 IA Marks : 25 Hr/Week : 04 Exam Hours : 03 Total Hrs. : 52 Exam Marks: 100

PART- A

ESTIMATION – Study of various drawings with estimates, important terms, units of measurement, abstract. Methods of taking out quantities and cost – centerline method, long and short wall method or crossing method. Preparation of detailed and abstract estimates for the following civil engineering works – Buildings – RCC Framed structures with flat, sloped RCC roofs with all Building components. 16 hrs

PART- B ESTIMATE – Different type of estimates, approximate methods of estimating buildings, cost of materials. Estimation of wooden joineries such as doors, windows & ventilators. 05 hrs ESTIMATES – Steel Truss (fink and Howe Truss), Man Hole and Septic tanks. 06 hrs SPECIFICATIONS – Definition of specifications, objective of writing specifications, essentials in specifications, general and detail specifications of common item of works in buildings. 05 hrs

PART- C RATE ANALYSIS – Definition and purpose. Working out quantities and rates for the following standard items of works – earth work in different types of soils, cement concrete of different mixes, bricks and stone masonry, flooring, plastering, RCC works, centering and form work for different RCC items, wood and steel works for doors, windows and ventilators. 06 hrs MEASUREMENT OF EARTHWORK FOR ROADS – Methods for computation of earthwork – cross sections – mid section formula or average end area or mean sectional area, trapezoidal & prismoidal formula with and without cross slopes. 06 hrs CONTRACTS – Types of contract – essentials of contract agreement – legal aspects, penal provisions on breach of contract. Definition of the terms –Tender, earnest money deposit, security deposit, tender forms, documents and types. Comparative statements, acceptance of contract documents and issue of work orders. Duties and liabilities, termination of contract, Completion certificate, quality control, right of contractor, refund of deposit. Administrative approval – Technical sanction. Nominal muster roll, measurement books – procedure for recording and checking measurements –preparation of bills. 08 hrs

Page 31: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 31 MVJCE

TEXT BOOKS: 1. Estimating, Costing, Specification and Valuation in Civil Engineering – N. Chakraborti,

Published by author, Calcutta 2. Estimating and Specification – by B. N. Dutta, UBS Publishers and distributors, New

Delhi. REFERANCE BOOKS; 1. Quanity survey- by P.L.Basion S.Chand& co,New Deihi. 2. Estimating & specification – by S.C.Rangwala, Charotar Publishing House, Anand. 3. Test book of Estimating & Costing –G.S Birde, Dhanpath Rai and sons, New Delhi. 4. A test book on Estimating , costing and Accounts – D.D. Kohli and R.C.Kohli S.Chand Co., New Delhi. 5.Professional Practice for Civil Engineers by J.Nanavati . SCHEME OF EXAMINATION: One question on estimate of building (Chapter 2) -compulsory; 40 marks Four questions to be answered out of six in the remaining chapters (one question from chapters 3,4,5 and 6; two questions from chapter 1 and 7) 60 marks

Page 32: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 32 MVJCE

LESSON PLAN

Subject Name: Quantity Surveying & Estimation Hours / Week: 05 Subject Code: 06CV73 Total Hours: 62

Period

No. Topic to be covered

ESTIMATION 1. Study of various drawings with estimates, important terms, units of

measurement, abstract. 2. Long wall and Short wall Method 3. Methods of taking out quantities and cost – long and short wall method or

crossing method. 4. Preparation of detailed and abstract estimates for – Buildings works –

Framed structures with flat RCC roof with all building components. 5. Preparation of detailed and abstract estimates for – Buildings works –

Framed structures with flat RCC roof with all building components.(contd)

6. Preparation of detailed and abstract estimates for – Buildings works – Framed structures with flat RCC roof with all building components. (contd)

7. Preparation of detailed and abstract estimates for – Buildings works – Framed structures with sloped flat RCC roof with all building components.

8. Preparation of detailed and abstract estimates for – Buildings works – Framed structures with sloped flat RCC roof with all building components.

9. Preparation of detailed and abstract estimates for – Buildings works – Framed structures with sloped flat RCC roof with all building components.

CENTER LINE METHOD 10. Methods of taking out quantities and cost – center line method . 11. Preparation of detailed and abstract estimates for – Buildings works –

Framed structures with flat RCC roof with all building components. 12. Preparation of detailed and abstract estimates for – Buildings works –

Framed structures with flat RCC roof with all building components. (contd)

13. Preparation of detailed and abstract estimates for – Buildings works – Framed structures with flat RCC roof with all building components(contd)

14. Preparation of detailed and abstract estimates for – Buildings works – Framed structures with flat RCC roof with all building components(contd)

15. Preparation of detailed and abstract estimates for – Buildings works – Framed structures with flat RCC roof with all building components(contd)

16. Preparation of detailed and abstract estimates for – Buildings works – Framed structures with sloped RCC roof with all building components

17. Preparation of detailed and abstract estimates for – Buildings works – Framed structures with sloped flat RCC roof with all building components. (contd)

Page 33: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 33 MVJCE

Period

No. Topic to be covered

18 Preparation of detailed and abstract estimates for – Buildings works –

Framed structures with sloped flat RCC roof with all building components. (contd)

19 Preparation of detailed and abstract estimates for – Buildings works – Framed structures with sloped flat RCC roof with all building components. (contd)

20 Preparation of detailed and abstract estimates for – Buildings works – Framed structures with sloped flat RCC roof with all building components. (contd)

ESTIMATE 21 Different type of estimate 22. Approximate methods of estimating buildings 23. Approximate methods of estimating cost of materials 24. Estimation of wooden joineries such as doors 25. Estimation of wooden joineries such as windows 26. Estimation of wooden joineries such as ventilators

ESTIMATES 27. Steel fink Truss 28. Steel fink Truss(contd) 29. Steel Howe Truss 30. Man Hole 31. Man Hole (Contd.,) 32. Septic tank 33. Septic tank(contd)

SPECIFICATIONS 34. Definition of specification, objective of writing specification, essentials in

specifications 35. General and detail specification of item of works in building. 36. General and detail specification of item of works in building(contd) 37. General and detail specification of item of works in building.(contd) 38. General and detail specification of item of works in building.(contd)

RATE ANALYSIS 39. Definition and purpose.

Working out quantities and rates for– Earthwork in hard soils 40. Working out quantities and rates for– Earthwork in soft soils 41. Cement concrete of different mixes 42. Brick and stone masonry 43. Flooring, Plastering 44. RCC works, Centering and formwork for different RCC items 45. Wood and steel works for doors, windows and ventilators

Page 34: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 34 MVJCE

Period

No. Topic to be covered

MEASUREMENT OF EARTHWORK FOR ROADS

46. Methods for computation of earthwork– cross sections 47. Computation of earthwork – mid section formula average end area or

Mean sectional area formula, 48. Computation of earthwork – mid section formula, 49. Computation of earthwork - Trapezoidal formula, 50. Computation of earthwork - Prismoidal formula, 51. Computation of earthwork – mid section formula, without cross slopes. 52. Computation of earthwork – mid section formula, with cross slopes.

CONTRACTS

53. Types of Contracts – essentials of Contract agreement

54. Legal aspects, penal provisions on breach of contract.

55. Definition of the terms – Tender, earnest money deposit, security deposit, tender form

56. Tender documents and types

57. Comparative statements, acceptance of contract documents and issue of work orders.

58. Duties and liabilities, termination of contract, completion certificate, quality control, right of contractor, refund of deposit.

59. Administrative approval technical sanction.

60. Nominal muster roll, measurement books

61. Procedure for recording and checking measurements

62. Preparation of bills.

Page 35: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 35 MVJCE

QUESTION BANK

1) The plan & section of a residential building(not drawn to scale)is shown in fig1.Taking out quantities, work out the cost of construction of the following items of work-only adopting the local rates prevailing in your area. The items of work should be fully specified at least in the abstract.

• Earth work excavation in hard gravelly soil. • 1:4:8 cement concrete using 40mm jelly for foundation bed. • Size stone masonry in cement mortar 1:6 for foundation and basement. • Burnt brick masonry in cement mortar 1:6 for super structure. • R.C.C roof slab in 1:2:4 mix. • R.C.C chajja and lintel • 20mm thick plastering over brick work with cement mortar in 1:6

W W

ROOM 1 ROOM 2 W 3.60 X 3.00 3.60 X 3.00 W D D VERANDAH ROOM 3 3.60 X 2.40 W W 2.40m D W 1.8m W1

Page 36: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 36 MVJCE

D – 1.20 X 2.10m W – 1.20 X 1.35m RCC Slab 12cm thick W1 – 1.80 X 1.35m ALL 30CM WALL 3.0m 0.15 0.40 0.40 0.40 0.30 0.90 2) Prepare detail estimate along with an abstract estimate for a septic tank together with a soak pit as shown in the figure 2 the specifications as follows

• foundations bed with cement concrete 1:4:8 • Brick work with cement mortar 1:6 • Slab cover of RCC 1:2:4 • The flooring of cement concrete 1:2:4 • Plastering 12mm thick cement mortar 1:2:4

3) Prepare detailed estimate of a manhole from the figure3, Specifications- Foundation and floor concrete shall be of 1:3:6 cement concrete with brick ballast. Brick shall be in cement mortar 1:4 and inner faces of wall shall be pointed with 1:2 cement mortar. 4) The sketch 4 shows the details of a factory building estimate the below mentioned items of work only.

• PCC 1:4:8 for column footing. • PCC 1:2:4 for column footing • PCC 1:2:4 for column pedestal • PCC 1:2:4 for columns • PCC 1:2:4 for lintels & gutter beam • PCC 1:2:4 for gutter slab & gutter facia. • BBM in CM 1:6 for superstructure

Page 37: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 37 MVJCE

5) Calculate the quantity of wood for preparing a king post truss for a clear span of 6m wall thickness:300mm Size of principal rafter- (150x 100)mm Size of king post -(250x100)mm Size of tie beam -(200x100)mm Size of truss -(100x100)mm Rise of roof -1/3 of span 6) Work out the cost of column and footing with the following details.

Footing: concrete 2m x 2.5m x 0.55 m size HYSD bars 20mmdia, 10nos both ways Column size 0.35m x 0.5m x 5m height HYSD bars 8 nos of 20 mm dia 6mm dia lateral ties at 250mm

7) Estimate the cost of arch masonry in CM 1:4 which is used for the arch culvert subtending an angle of 120 0 at the center, the span of the arch is 6m and 550 mm thick.

8) From the Ist principles arrive the rate for the below mentioned itemws

• BBM in CM 1:6 for superstructure • Coursed rubble masonry in CM1:6 for foundation. • Plastering in CM 1:6 for internal walls of 20mm thick. • PCC 1:2:4 for roof slab • Two coats of enamel painting over a coat of primer for wood work • Cement concrete of mix 1:4:8 for foundation • Half brick wall with cement mortar 1:3 • 1:4:8 cement concrete for flooring • Asbestos cement corrugated sheey roofing on mild steel angle purlins • Cement concrete flooring of mix 1:3:6 of 2.5cm thick with red oxide finishing • RCC M15 mix for roof slab

9) Write down the detailed specification for the following? • Earth work in excavation in foundations • Cement concrete 1:4:8 for foundation bed • Random rubble masonry in cement mortar 1:6 for foundation • 1:2:4 cement concrete for laying and costing RCC lintels • Laying stone ware pipe of 200mm diameter for underground lines • Mangalore tile roofing • Cement concrete flooring • Plastering 12mm thick with cement mortar 1:4 • Painting doors and windows • Earth working • Construction of BBM for super structure in cement mortar 1:6 • Laying GI pipe of 25mm diameter for water supply

10. Calculate the quantity of earth work of a road embankment which is 200m length, the height

of the bank at the two ends being 1m and 1.5 m the formation width is 10m and side slopes of 2:1( H:B) assume there is no transverse slope

Page 38: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 38 MVJCE

11. Estimate the quantity of the earth work for the formation of a road 200m long Formation width 10m, side slope 2:1 for banking 11/2:1 for cutting the ground is level in lateral direction. The road has falling gradient of 1 in 200, in the formation level at station 1 is 51.4m

Station Distance in meters RL of ground

1 0 50.8 2 40 50.6 3 80 50.7 4 120 51.2 5 160 51.4 6 200 51.3

12. Estimate the volume of earthwork in cutting for a road fro the following data Breadth of

formation =10m , side slope =11/2:1

Distance in meters Depth of Cutting in meters Cross slope of the

surface of the ground 0 2.5 1 in 10 30 3.4 1 in 12 60 3.1 1 in 9

13. Calculate the cost of the column and footing with the following details

Footing 2.5 m x 2.2 m x 0.6m size 16 numbers of 12mm diameter HYSD bars in lengthwise and 22 no. of 10mm diameter HYSD bars in breadth wise directions.

Column 0.4m x 0.6m x 4.5m clear height 6no of 16mm dia. HYSD bars and 4 no. of 12mm dia HYSD bars. 8mm dia. Lateral ties at 250mm c/c

14. Write short notes of the following? • Administrative approval and technical sanction • A quittance role and nominal muster role • Work charged establishment • Contingencies and supervision charges • EMD and security money deposit • Book value , scrap value and salvage value • Schedule of rates • Appropriation and Re-appropriation • Plinth area estimate and Approximate estimate • Tools and plant account • Depreciation • Royalty and work order • Estimate, types estimate and revised estimate • Measurement Book • Tender and tender document • Original works and repair works • Floor area, Plinth area and carpet area • Types of contract • Public works account.

Page 39: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 39 MVJCE

Page 40: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 40 MVJCE

Page 41: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 41 MVJCE

Page 42: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 42 MVJCE

Page 43: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 43 MVJCE

Page 44: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 44 MVJCE

Page 45: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 45 MVJCE

Page 46: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 46 MVJCE

06CV74 –DESIGN OF PRESTRESSED CONCRETE STRUCTURES

Page 47: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 47 MVJCE

SYLLABUS

Subject Code : 06CV74 IA Marks : 25 No. of Lecture Hours/Week : 04 Exam Hours : 03 Total No. of Lecture Hours : 52 Exam Marks : 100

PART A UNIT - I MATERIALS : High strength concrete and steel, Stress-Strain characteristics and properties. 2 hrs BASIC PRINCIPLES OF PRE-STRESSING: Fundamentals, Load balancing concept, Stress concept, center of thrust. Pre-tensioning and post tensioning systems, tensioning methods and end anchorages. 4 hrs UNIT - II ANALYSIS OF SECTIONS FOR FLEXURE : Stresses in concrete due to pre- stress and loads, stresses in steel due to loads, cable profiles. 8hrs UNIT III LOSSES OF PRE-STRESS: Various losses encountered in pre-tensioning and post tensioning methods, determination of jacking force. 6 hrs UNIT - IV DEFLECTIONS : Deflection of a pre-stressed member – Short term and long term deflections, Elastic deflections under transfer loads and due to different cable profiles. Deflection limits as per IS 1343. Effect of creep on deflection, load verses deflection curve, methods of reducing deflection. 6hrs

PART – B UNIT - V LIMIT STATE OF COLLAPSE : Flexure - IS code recommendations- Ultimate flexural strength of section 5 hrs UNIT - VI LIMIT STATE OF COLLAPSE (Cont..): Shear – IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. 7 hrs UNIT - VII DESIGN OF END BLOCKS: Transmission of pre-stress in pre tensioned members, transmission length, Anchorage stress in post tensioned members. Bearing stress and bearing tensile force, stresses in end blocks-- Methods, IS code provision for design of the end block reinforcement. 6hrs UNIT - VIII DESIGN OF BEAMS: Design of pre-tensioned and post tensioned symmetrical and asymmetrical sections, permissible stress, design of pre-stressing force, and eccentricity. Limiting zone of pre-stressing force, cable profile 8 hrs

Page 48: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 48 MVJCE

Text Books:

1. Pre-stressed concrete- N.Krishna Raju 2. Pre-stressed concrete- P.Dayarathnam

Reference Books:

1. Design of pre-stressed concrete structures – T.Y. lin and Ned .H. Burns 2. N.C. Sinha & S.K. Roy “Fundamental of pre-stressed concrete” John Wiley & Sons.

New York. 3. N. Rajghopalan “Pre-stressed Concrete”

Code Book:

1. I.S; 1343:1980

Page 49: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 49 MVJCE

LESSON PLAN

Subject Name: Design of Prestressed Concrete Structures Hours / Week: 05 Subject Code: 06CV74 Total Hours: 62

Period

No. Topics to be Covered

1. Unit 1 Introduction to prestressed concrete structure,

2. Introduction to High strength concrete & high tensile steel.

3. Comparison between R.C.C. & P.S.C structures. Stress strain characteristics & properties

4. Basic principles of pre-stressing: Fundamentals

5. Load balancing concept, stress concept.

6. Center of thrust, pre-tensioning and post tensioning systems

7. Tensioning methods and end anchorages.

8. Unit 2 Introduction of Analysis of section for flexure

9. Stresses in concrete due to pre stress and loads

10. Stress in steel due to loads, cable profiles

11. Analysis of stress of beams of rectangular types of cross section

12. Analysis of stress of beams of rectangular types of cross section

13. Analysis of stress of beams of Tee types of cross section

14. Analysis of stress of beams of I types of cross section

15. Analysis of stress of beams of I types of cross section

16. Problems related to post tensioning methods

17. Problems related to pre tensioning methods

18. Unit 3 Introduction about losses of pre stress & different methods to calculate losses of pre stress

19. Loss due to Elastic deformation of concrete & related problems

20. Loss due to shrinkage, loss due to creep & related problems

21. Ultimate creep strain method & creep coefficient method, loss due to anchorage slip.

22. Problems related to anchorage slip, Loss due to relaxation of steel, Determination of jacking forces

23. Problems related to anchorage slip, Loss due to relaxation of steel, Determination of jacking forces

24. Total losses allowed for design, differences between loss of prestress in pre stressed & post tensioned structure

25. Unit 4 Introduction to deflection of beams & factors influencing deflection.

26. Various deflection procedure for straight tendons, trapezoidal tendon

27. Deflection of parabolic profile, parabolic tendons of eccentric anchors

Page 50: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 50 MVJCE

Period No.

Topics to be Covered

28. Deflection of parabolic profile, parabolic tendons of eccentric anchors

29. Deflection of sloping tendon, parabolic & straight load

30. Deflection due to -self weight of dead load & live load

31. Deflection due to -self weight of dead load & live load

32. Short term deflection - Mohr's theorem & long term deflection

33. Unit 5 Limit state of collapse – flexure- IS Code recommendations

34. Type of members & flexural tensile stresses

35. Introduction to Flexures strength of concrete

36. Ultimate flexural of rectangular sections of bonded tendons & unbonded tendons

37. Ultimate flexural of T ,I, Box sections of bonded tendons & unbonded tendons

38. Ultimate flexural of T ,I, Box sections of bonded tendons & unbonded tendons

39. Ultimate flexural of T ,I, Box sections of bonded tendons & unbonded tendons

40. Unit 6 Shear – IS Code recommendations,

41. Limit state of serviceability

42. Control of deflections and cracking

43. Shear resistance of sections, shear reinforcement

44. Shear resistance of sections, shear reinforcement

45. Shear resistance of sections, shear reinforcement

46. Shear resistance of sections, shear reinforcement

47. Unit 7 Transmission of pre stress in pre tensioned member

48. Transmission length anchorage stress in post tensioned members

49. Bearing stress and bursting tensile force- stress in end blocks

50. IS code provision for the design of end block reinforcement

51. Problems on design of end block reinforcement

52. Problems on design of end block reinforcement

53. Unit 8 Design of pre tensioned symmetrical sections

54. Design of post tensioned symmetrical sections

55. Design of post tensioned symmetrical sections

56. Design of post tensioned symmetrical sections

57. Design of pre tensioned asymmetrical sections

58. Design of pre tensioned asymmetrical sections

59. Design of post tensioned asymmetrical sections

60. Design of post tensioned asymmetrical sections

61. Permissible stress design of pre stressing force & eccentricity

62. Limiting zone of pre stressing force, cable profile.

Page 51: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 51 MVJCE

QUESTION BANK

1. Discuss the relative merits and demerits of prestressed concrete over the R.C.C 2. List the various systems of pre stressing. Explain any one of the system with neat

sketches. 3. Explain the necessity of using high tensile steel and high strength concrete in prestressed

concrete structures. 4. Explain the concept of load balancing in prestressed concrete design. 5. Why are the concrete and steel used in the P.S.C structures different from that used in the

RCC structures? explain briefly with salient points 6. A prestressed concrete beam 8m consists of a hollow rectangular section with outer

dimensions 300mmx 500mm and inner dimensions of 200mmx 400mm. The beam is prestressed by a straight cable with an eccentricity of 225mm with an effective pre stressing force of 150 KN. Live load on the beam is 3 KN/ m. Draw the sketch distribution diagrams at the central section for the following cases.

1) pre stress + self weight 2) pre stress+ self weight+ live load 7. A concrete beam of symmetrical I section has an effective span of 8m. The width of the

flange is 400mm and the thickness of the flange is 80mm. The overall depth of beam is 500mm and web thickness is 80mm. The beam pre stressed by parabolic cable with an eccentricity of 150mm at the center and zero at the supports. The effective pre stressing force is 180 KN. The live load on the beam is 8KN/ m. Draw the distribution diagram at the center section for

1) pre stress + self weight 2) pre stress+ self weight+ live load 8. A rectangular pre stressed concrete beam 400mm wide and 850mm deep supports two

concentrated loads of 25KN each at one third point of span of 9m. 1) Suggest a suitable cable profile the eccentricity of the cable profile is 150mm for

the middle third portion for the beam. Calculate the effective pre stressing force required to balance the loading effect of concentrated load. (Neglect self weight of the beam)

2) For the same cable profile find the initial pre stressing force in the cable if the resultant stress due to prestress + self weight + imposed loads is zero at soffit of the beam at mid span section.

9. A pre-tensioned pre stressed concrete beam of span 9.5m as a cross section of 250mmx

550mm and is pre stressed with tendon of area 200mm2. Located at an eccentricity of 90mm with an initial stress of 1000N/mm2 Calculate the percentage loss of prestress using the following data.

Modular ratio = 6 Anchorage slip = 1.2mm Relaxation of stress = 2% Shrinkage of concrete = 300x 10 -6

Creep strain = 40x10-6mm/mm

Page 52: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 52 MVJCE

10. List the factors that account for loss of prestress in prestressed concrete structures. Give

the approximate values of percentage loss of pre tress in each case. 11. A post tensioned concrete beam spanning 10 m and rectangular in cross section 300 mm

deep is pre stressed with a straight cable of C/S area of 320 mm2 at an eccentricity of 80 mm. The initial stress in the cable is 1000 N/mm2. Calculate the percentage loss of prestress in the cable given:

Creep coefficient = 1.6 Shrinkage strain in concrete = 2 x 10 –4 Relaxation of steel stress = 5% Friction coefficient for wave effect = 0.0015/m Anchorage slip = 1 mm Es = 210 KN/mm2 Ec = 35 KN/mm2

12. Explain the methods of determine the short and long term deflection of pre

Stressed concrete beams

13. What are the types of prestress losses in pre tensioned and post tensioned members ? 14. A post – tensioned beam with a cable of 24 parallel wires (total area = 800 mm2) is

tensioned with 2 wires at a time. The cable with zero eccentricity at the ends and 150 mm at the center follows a circular curve. The span of the beam is 10 m and if has a rectangular cross section 250 mm wide and 500 mm deep. The wires are to be stressed to a value of f1 to overcome frictional loss and then released to a value of f2 so that immediately after anchoring, an initial prestressed of 900 N/mm2

would be available.

Compute f1 and f2 and the final design stress in steel after all losses, given the following data:

Coefficient of friction for curvature = 0.6 Friction coefficient for ‘wave’ effect = 0.003/m Deformation and slip of anchorage =- 1.25 mm Es=210 kn/mm2 Ec=28 kn/mm2 Shrinkage of concrete= 0.0002 Relaxation in steel stress=3% of initial stress

15. A pre stressed concrete beam 300x600mm is pre stressed by parabolic cable having eccentricity of 200mm at center and 60mm at the supports effective pre stress in the cable is 1200 kN simply supported span is 12m.

16.Determine the maximum deflection of the Beam due to pre stress and self weight 2)The

magnitude of the central concentrated load the beam can support so that maximum deflection shall not exceed L/400 where L is the simply supported span

17. A rectangular beam 200x 400mm is simply supported over the span of 10 m. The

eccentricity of the parabolic pre stressing cable is 80mm from soffit at mid span and 125mm from top at supports if force in the cable 200KN Ec= 38Mpa Calculate

1) The deflection at mid span on the beam is supporting self-weight 2) The magnitude of the central concentrated load, which restores the beam at mid

span to the level of supports.

Page 53: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 53 MVJCE

18. a post tensioned beam with unbonded tendons is of rectangular cross section is 500 x 1000mm the cross sectional area of pre stressing steel are of 3000mm square .The effective pre stress after considering all losses is 1000Mpa. The effective span of the beam made of M40 concrete is 15m. Estimate the ultimate moment of resistance of the section using codal provisions

19. What are the codal recommendations for shear reinforcement in PSC beams? 20. A cantilever PSC girder 8m long is 600mm wide and 1750mm deep. It carries a tip load

of 400 kN, and an udl of 60kN/m inclusive of self weight. The beam is pre stressed by 8 cables, each carrying a force of 900N. 3 cables are located at 150mm from top edge, 3 are located at 400mm and the other two are located at 750mm from top edge. Calculate the principal stresses at a point 600mm from the top edge at support section of the cantilever.

21. Explain the importance of Deflection control in PSC members?

22. List the factors affecting the deflection of PSC members?

23. Differentiate between the stress distribution in the end blocks of pre tensioned and post

tensioned beams with sketches?

24. What are the methods of improving shear resistance of a concrete member by pre stressing techniques?

25. Explain the various types of flexural failures encountered in pre stressed concrete

members?

26. An unsymmetrical section has an overall depth of 2m. It has a top flange 1.2m wide and 300mm deep. The bottom flange is 750mm wide and 200mm deep> Thickness of web is 300mm. Tendons having a cross sectional area of 7000mm2 are located 200mm from the soffit. Estimate the flexural strength of the section if the tendons are effectively bonded to the concrete and ultimate compressive and tensile strength of steel are 42 and 1750N/mm2 respectively?

27. Write the short notes of the following

i. Need for high strength concrete and steel in PSC members ii. Pre tensioning and post tensioning iii. Stress relaxation and stress corrosion in steel iv. Thrust line and pressure line v. Selection of cable profile

vi. Arrangement of Anchorage zone reinforcement vii. Shear cracks viii. Tensioning devises ix. Types of tensile steel x. Bonded and un bonded tendons

xi. Limiting zone pre stressing force xii. Transmission length xiii. Methods of pre stressing xiv. Chemical pre stressing xv. Flexural failures in PSC members

Page 54: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 54 MVJCE

Page 55: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 55 MVJCE

Page 56: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 56 MVJCE

Page 57: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 57 MVJCE

Page 58: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 58 MVJCE

06CV755 - HIGHWAY GEOMETRIC DESIGN

Page 59: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 59 MVJCE

SYLLABUS

Subject Code: 06CV755 IA Marks: 25 No. of Lecture Hours/Week: 04 Exam Hours: 03 Total No. of Lecture Hours: 52 Exam Marks: 100

Unit - I INTRODUCTION: Elements Geometric Design control factors like topography-design Sped design vehicle traffic –Capacity-Volume –Environment other factors-IRC and AAHO standards and specification- PCU concept for design. 06hrs Unit - II CROSS SECTION ELEMENTS: pavement surface Characteristics Friction –skid and skid resistance- Pavement unevenness-light reflecting Characteristics- camber and its shapes –providing camber in the field Pavement width computation –kerbs and its types-Medians-shoulders- foot paths- parking lanes-service roads-cycle tracks-driveways-guard rails- width of formation- Right of way –Design of Road humps as per IRC Specification 10hrs Unit – III SIGHT DISTANCES :.Importants, types, Side distance at uncontrolled intersection, derivation, factors affecting side distance, IRC, AASHTO standards, problems on above. 06hrs Unit - IV HORIZONTAL ALIGNMENT: Definition, Checking the stability of vehicle, while moving on horizontal curve, Super elevation, Ruling minimum and maximum radius, Assumptions – problems – method of providing super elevation for different curves – Extra widening of pavement on curves – objectives – Mechanical widening – psychological widening – Transition Curve – objectives – Ideal requirements – Types of transition curve – Method of evaluating length of transition curve – Setting the transition curve in the field, set back distance on horizontal curve and problems on above 08hrs Unit - V VERTICAL ALIGNMENT: . Gradient – Types of gradient – Design criteria of summit and valley curve – Design of vertical curves based on SSD – OSD – Night visibility considerations – Design standards for hilly roads – problems on the above. 05hrs Unit – VI INTERSECTIONS DESIGN: Principle – Atgrade and Grade separated junctions – Types – channelization – Features of channelising Island – edian opening – Gap in median at junction. 06hrs Unit - VII ROTARY INTERSECTION: Elements – Advantages – Disadvantages – Design guide lines – problem on the above – Grade separated intersection – Three legged inter section – Diamond inter change – Half clover leaf – clover Leaf- Advantages- Disadvantages only 06hrs

Page 60: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 60 MVJCE

Unit - VIII HIGHWAY DRANIAGE Importance – sub surface drainage –surface drainage – Design of cross sections – Hydrological – Hydraulical considerations and design of filter media, problems on above. 05hrs TEST BOOKS: 1.Khanna S.K and Justo, C.E.O, Highway Engineering. Nem Chand and Bros. 2. L R Kadiyali., “Traffic Engineering and Transport Planning” Khanna Publishers. REFERANCE BOOKS 1.Kadiyyali L.R., “Highway Engineering ‘’ Khanna Publishers. 2.Relevant IRC publications. 3.Papa coastas and Prevendours., ‘Transportation Engineering and Planning .,Phi,NewDelhi. Scheme of Examination; Student has to answer five questions out of eight.

Page 61: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 61 MVJCE

LESSON PLAN

Subject Name: Highway Geometric Design Hours / Week: 05 Subject Code: 06CV755 Total Hours: 62

Period

No. Topic to be covered

INTRODUCTION 1. Introduction to Geometric Design and importance 2. Control factors like topography-design Speed design vehicle traffic 3. Capacity-Volume –Environment other factors 4. IRC and AAHO standards and specification 5. PCU concept for design 6. Factors controlling PCU for different design purpose

CROSS SECTION ELEMENTS 7. Pavement surface Characteristics Friction –skid and skid resistance- related

problems 8. Pavement unevenness-light reflecting Characteristics- 9. Camber and its shapes –providing camber in the field 10. Pavement width computation – related problems 11. kerbs and its types- 12. Medians-shoulders- foot paths 13. Parking lanes-service roads 14. Cycle tracks-driveways-guard rails- 15. Width of formation- Right of way 16. Design of Road humps as per IRC Specification 17. Problems on above 18. Problems on above

SIGHT DISTANCES 19. Important, types 20. Side distance at uncontrolled

Intersection, 21. Derivation, factors affecting side distance 22. IRC, AASHTO Standards, 23. Problems on above. 24. Problems on above.

HORIZONTAL ALIGNMENT 25. Definition, Checking the stability of Vehicle, while moving on horizontal

curve 26. Super elevation, Ruling minimum And maximum radius, Assumptions –

problems 27. Method of providing super Elevation for different curves 28. Extra widening of pavement on curves 29. Objectives – Mechanical widening – psychological widening – Transition

Curve 30. Objectives – Ideal requirements – Types of transition curve

Page 62: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 62 MVJCE

31. Method of evaluating length of transition curve

Page 63: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 63 MVJCE

Period

No. Topic to be covered

32. Set back distance on horizontal curve and problems on above 33. Problems on above 34. Problems on above

VERTICAL ALIGNMENT 35. Gradient –Vertical curve design criteria- 36. Types of summit and valley curves 37. Design of vertical curves based on SSD – OSD 38. Problems on above 39. Night visibility considerations 40. Design standards for hilly roads 41. Problems on above 42. Problems on above.

INTERSECTIONS DESIGN 43. Principle 44. At grade Junctions 45. Grade separated Junctions 46. Types 47. Channelization 48. edianopening – 49. Gap in median at junction

ROTARY INTERSECTION 50. Elements – Advantages – Disadvantages 51. Design guide lines 52. Problem on the above – Grade separated intersection 53. Three legged inter section – Diamond inter change 54. Grade separators-subways -under pass suitability of each types and their design

principles 55. Half clover leaf –Advantages- Disadvantages only 56. clover Leaf- Advantages- Disadvantages only

HIGHWAY DRANIAGE 57. Importance – sub surface drainage –surface Drainage 58. Design of cross sections 59. Hydrological – Hydraulically Considerations and design of filter media, 60. Problems on above 61. Design of cross section-problems on above 62. Design of cross section-problems on above

Page 64: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 64 MVJCE

QUESTION BANK INTRODUCTION

1. In drawing up Geometric Design standards for a country, what are the considerations to

be kept in view? 2. Why geometric design is important? What are the objects of geometric design? 3. Describe the classification system of urban streets and rural streets in India. Define the

various classes. 4. Describe the basis for terrain classification on geometric design. 5. What is the design Hour Volume? 6. Define the design speed in geometric design? What permissible speed is usually taken as

Design speed? What are the suggested Design speeds in India for urban and rural conditions?

7. What is the distinction between ruling and minimum design speeds and where they are adopted?

8. What is level of Service in capacity studies? What is the level of service recommended for Indian conditions for design of rural roads?

9. What are the design control elements and criteria for design? (Design speed, Topography, traffic factors, Design hourly volume and capacity, Environmental and other factors)

SIGHT DISTANCE

10. Develop the equation for determining the braking distance of a vehicle in terms of initial speed and coefficient of friction.

11. Derive the formula for stopping sight distance in terms of speed, perception and break reaction time, coefficient of friction and gradient of road. Calculate the safe stopping distance on a National Highway in plain terrain on a downward gradient of 3%. Make your own assumptions. [Hint: Assumptions (i) V = 100, (ii) I = 2.5s (iii) f = 0.35, Stopping distance = 173.1m].

HORIZONTAL CURVE

12. Derive the following equations used for design of horizontal curves in India: R = 0.0357 V2 (for plain and rolling terrain) R =0.0315 V2 (for hill roads snow bound) R = 0.0357 V2 (for hill roads not snow bound)

13. Derive the following equations used for design of horizontal curves in India: .e = V2 .

225 R 14. What are the maximum values of super – elevation recommended in India for

i) plain and rolling terrain ii) hilly areas which are snowbound iii) hilly areas which are not snowbound

15. What are the general controls to be kept in view in designing the horizontal alignment of

a road? What are the standards for gradient in India? Explain where (i) ruling (ii) limiting and (iii)

exceptional gradients are used? 15. what is grade compensation of curves?

Page 65: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 65 MVJCE

VERTICAL CURVES 16. Derive the formulae for determining the length of a summit curve (i) when the design

distance is less than the length of the curve and (ii) when the sight distance is greater than the length of the curve. Modify the formulae when overtaking sight distances are involved.

17. Derive the formula for determining the length of a sag curve for fulfilling rider comfort criterion.

18. What are the general controls to be kept in mind in designing the vertical profile of a road?

19. what are the general controls to be kept in mind in designing a combination of vertical and horizontal alignment?

CROSS SECTIONAL ELEMENTS

20. Give the recommended right – of – way widths for various classes of roads in India. Explain the terms “ building line” and “control line”, “width of roadway”, ”carriageway”, ”shoulders”.

21. What are the current space standards for urban roads in India? 22. Explain the term “road width”. What are the current standards for roadway width for

various types of roads in India? 23. What are the functions of a median? What are current Indian standards in this regard? 24. What are the functions of a curb? Describe the “barrier” and “mountable “ curbs. 25. What is the function of a camber in a road surface? What are the recommended values of

camber for various types of surface? 26. What considerations govern the side slopes of embankment and cutting of roads? What

are the present standards in this regard. 27. Explain the role of pavement surface characteristics in high way geometric design. State

the factors effecting friction between pavement and tyre of vehicles/ 28. Give sketches of various types of roads (i) rural (ii) urban areas. 29. What are Expressways? What are the geometric design standards for each facility. 30. Write a note on Passenger Car Unit concept for design. What are the factors on which

PCU values depend. 31. Mention the PCU equivalents as per Indian standards for different Vehicle type on a

straight stretch of road? 32. Mention the PCU equivalents as per Indian standards for different Vehicle type for use in

Rotary design. INTERSECTION DESIGN

33. What are the general principles to be observed in designing intersections? 34. What locations justify grade-separated intersection? 35. What are the basic forms of at- grade intersection? Give sketches showing the details of

each type. 36. What are the objectives of Channelisation? What are the features of channelisation

islands? 37. what are the advantages and disadvantages of rotary intersection? 38. What are the guidelines for selecting a rotary type of intersection? 39. what are the design consideration for a rotary intersection/ 40. How is the capacity of a rotary determined? 41. Describe the features of mini-roundabouts, giving their advantages and limitations. 42. Describe with sketches the various types of grade-separated junctions and the conditions

under which they are provided.

Page 66: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 66 MVJCE

PROBLEMS

INTRODUCTION 44. Determine the capacity of single lane(uni directional) pavement on a rural highway in India for a design speed of 80 KMPH from theoretical considerations. The average length

of mixed vehicles of all types is 7 meters. The coefficient of friction is 0.5. assume a value of perception-brake reaction time recommend by IRC.

45.A truck traveling at 50 KPH on a wet bituminous surface (coefficient of friction 0.3) is suddenly brought to rest by braking. Calculate the distance traveled in coming to halt.

46.A vehicle moving at 60KPH on a bituminous dry surface is suddenly brought to rest by braking. The coefficient of friction can be assumed to be 0.5. calculate the distance over which the vehicle comes to a stop.

HORIZONTAL ALIGNEMENT

47.A horizontal curve is to be designed for a National Highways on plain terrain. Calculate the ruling minimum and absolute minimum radii. Make suitable assumptions

48.Calculate the super elevation to be provided for a horizontal curve with a radius of 400m for a design speed of 100kmph. On plain terrain. Comment on the results. What is the coefficient of lateral friction mobilized if super – elevation is restricted to 0.07.

49.Calculate the safe driving speed on a curve with radius 200m. the super-elevation being 0.07. is the curve meeting the standard of Major District Roads in plain terrain? If the pavement width is 7m, how much should the pavement edges be raised or depressed about the crown if the super elevation is provided by rotating about the centerline?

50.A horizontal curve on a National Highway in plain terrain on a bituminous road (high type) has a radius of 3000m. what should be the super-elevation?

51.A two-lane(7.0m wide) pavement on a National Highway has a curve of radius 400m. determine the length of transition curve making suitable assumptions.

52.A two-lane pavement (7.0m) on a National Highway in hilly terrain (snow bound) has a curve of radius 60m. the design speed is 40kmph. Determine the length of the transition curve. Determine the total length of the curve and tangent length if the deflection angle is 60°. Make suitable assumptions.

53.Calculate the extra widening necessary on a two-lane pavement for a radius of curve of 100m. assume the wheelbase of design vehicle to be 6m. Assume the design speed of 65 kmph.

54.Design a horizontal curve for a National Highway in rolling terrain. Calculate the ruling minimum and absolute minimum radii. Make suitable assumptions. [Assumptions: Design speed = 80kmph (ruling)

=65kmph (minimum) e = 0.07, µ = 0.15, Ruling radius=155m]

55.Calculate the super – elevation to be provided for a horizontal curve of radius 50m for a design speed of 40kmph. On snow-bound hilly terrain. What is the maximum super-elevation that can be provided and what will be the coefficient of friction then? Is design safe? If it is not safe, what remedy do you suggest? [Ans e = 0.14, restricted to 0.07 µ=0.18, which is greater than 0.01, hence safe. Remedy is to increase the radius or post a road sign restricting the speed]

56.Calculate the safe driving speed on a curve of radius 300m and having a super-elevation of 0.07. assume suitable values of friction. Is the curve meeting the NH standard in plain terrain? If the pavement is 7m wide how much should the outer edge be raised if super-elevation is provided by rotating about the inner edge?

Page 67: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 67 MVJCE

[Ans. Assume µ = 0.15,V=91.6; since minimum speed on NH is 80, curve is safe, Raise outer edge by 0.49m]

57.A National Highway located in rolling terrain has a radius of 250m. determine the length of the transition curve making suitable assumptions. ( Assumptions V = 80, e = 0.07 max, rate of attainment of e = 1 in 150, rotation of super elevation about center) [Ans. 84.7m and 80.3m, adopt 84.7m]

58.Calculate the extra width of a two-lane pavement for a National Highway in hilly terrain (steep) for a design speed of 40kmph and radius of curve of 50m. the vehicles using the road have a wheelbase of 7m. [ Ans. 1.55m]

VERTICAL ALIGNEMENT

59.Calculate the length of a summit curve for a stopping sight distance of 180m on a National Highway at the junction of an upward gradient of 1%and downward gradient of 2%. Assume height of eye of driver to be 1.2m and height of object above the roadway to be 0.15m.

60.Calculate the length of summit curve for a stopping sight distance of 180m on a National Highway at the junction of an upward gradient of 1 in 200 and a downward gradient of 1 in 200. assume the height of the object above road way to be 0.15m

61.Design a summit curve for a national highway for a stopping site distance of 100m at the junction of a rising gradient of 1-in 50 and a falling gradient of 1-in 30.Set out the curve with a chord 20m long determine the RL of the point immediately bellow the inter section point of the grade lines and also the RL of the highest point on the curve.

62.Design a summit curve for a national highway at the inter section of two gradient + 2 percent and – 2.5 percent. over taking of vehicle is to be catered to. Make suitable assumption.

63.Design a valley curve at the junction of a downward gradient of 1 in 30 and a level stretch from head light consideration. The stopping site distance is 180m. Treading the curve as a square parabola, set out the curve.

64.A sag curve is to be designed where two gradients meet. The gradients are – 2.0 % and +2.5%. the design speed is 100kmph. What is the length required (i) for stopping sight distance of 180m and (ii) for overtaking sight distance of 640m? what is the vertical distance between the Point of Vertical Intersection (PVI) and curve in either case? [ Ans: length (i) 257.7m,say 260m (ii) 1493.9m, say 1500m Vertical Distance (i) 1.14m (ii) 6.56m]

65.A sag curve is to be designed where two gradients meet. The gradients are – 2.0% and +2.5%. the design speed is 100kmph. Find the length of curve (i) for rider comfort and (ii) for headlight sight distance. The stopping sight distance is 180m [Ans (i) 80m (ii) 147m]

SIGHT DISTANCE :

66.Calculate the safe stopping distance while traveling at a speed of 80kmph.On an upward gradient of 2 percent. Make suitable assumptions.

67.Calculate the over taking sight distance as per AASHO practice for a design speed of 100kmph, making suitable assumptions. Calculate as per IRC practice.

68.A six line divided carriage wave as a curve 1000m long and radius of 500m.The safe stopping sight distance is 200m. Calculate the minimum set back distance from the inner edge of the road to the edge of a building to ensure safe visibility. The payment width per lane is 3.5m.

Page 68: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 68 MVJCE

INTERSECTION DESIGN 69.traffic flows in an urban section at the intersection of 2 highways in the design hour or

given below. Approach Left turning Straight ahead Right turning

Cars Com-mercial

Scooter Cars Com-mercial

Scooter Cars Com-mercial

Scooter

N 200 50 100 250 100 150 150 50 80 E 180 60 80 220 50 120 200 40 120 S 250 80 100 150 50 90 160 70 90 W 220 50 120 180 60 100 250 60 100 The highways at present intersect at right angles and have a carriageway width of 15m.Design a rotary intersection making suitable assumptions.

Page 69: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 69 MVJCE

Page 70: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 70 MVJCE

Page 71: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 71 MVJCE

Page 72: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 72 MVJCE

Page 73: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 73 MVJCE

Page 74: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 74 MVJCE

06CV764-PHOTOGRAMMETRY AND REMOTE SENSING

Page 75: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 75 MVJCE

PHOTOGRAMMETRY AND REMOTE SENSING Subject Code: 06CV764 IA Marks: 25 No. of Lecture Hours/Week : 05 Exam Hours : 03 Total No. of Lecture Hours : 62 Exam Marks : 100

PART – A

UNIT-1 PHOTOGRAMMETRY: Introduction-Basic Principles-Photo theodelite-Definitions-Horizontal and Vertical angle from terrestial photograph-Horizontal position of a point from photographic measurement from camera horizontal axis-Elevation of point by photographic measurement- focal length. 8 Hours UNIT-II AERIAL CAMERA-SCALE OF PHOTOGRAPH - Determination of height of lens for a vertical photograph - Relief displacement - Scale of tilted photograph - computation of a length of line between points of different elevation from measurement on a tilted photograph. 6 Hours UNIT-III DETERMINATION OF FLYING HEIGHT FOR A TILTED PHOTOGR APH: Tile distortion – Relief displacement – Combined effect of tile and relief – Flight planning for Aerial photogrammetry, Ground control – Stereoscopic vision – Drift Mosaics, relevant numerical examples in the above topics. 8 Hours UNIT-IV REMOTE SENSING: Introduction-Historical sketch of remote sensing g – Idealized remote sensing – Basic principles of remote sensing – Electro magnetic energy, Electromagnetic spectrum – Wavelength regions and their application in remote sensing – Characteristics of solar radiation – Basic radiation law – EM radiation and atmosphere - Interaction of EM radiation with earth surface – Remote sensing observation platforms – sensors – Application of remote sensing. 8 Hours

PART – B

UNIT-V GEOGRAPHICAL INFORMATION SYSTEM, DEFINITION : The four M’s concept – contributing disciplines for GIS, GIS objectives – components of a GIS – Topology – Data models – Data structures – Data base management - Errors in GIS – GIS software packages – Linkage of GIS to remote sensing - Application areas of GIS and Remote sensing. 9 Hours UNIT – VI FIELD ASTRONOMY : Definitions of astronomical terms – coordinate systems – Terrestial attitude and longitude – Spherical trigonometry and Spherical triangle – Astronomical triangle – relationship between coordinates – Earth and sun units time – relationship between degrees and hours of the time. Conversion of local time standard time and vice versa. 9 Hours

Page 76: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 76 MVJCE

UNIT- VII Conversion of Mean time interval to Sinderael time interval and vice versa – Estimation of local mean midnight at any place on the same date. 6 Hours UNIT – VIII Determination of LST from given value of LMT – Determination of LMT from the given value of LST-LMT of star across median given GST and GMN – Determination of Azimuth, latitude and longitude – Relevant numerical examples. 8 Hours

TEXT BOOKS:

1. Higher Surveying – Dr. B.C. Punmia Ashok K Jain – Arun K Jain : Lakshmi Publications

2. Element of Photogrammetry – Paul R Wolf: Mc Graw Hill Internation 3. GIS studies – Korte : Thomas Publications, New Delhi 4. Remote Sensing & Interpretation – Lille Sand: Wiley publications.

REFERENCE BOOKS:

1. Remote Sensing Geology – Ravi Gupta : Springer Verlog (NY) 2. Surveying & Levelling – R. Subramanian: Oxford University Press.

Page 77: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 77 MVJCE

LESSON PLAN

Subject Name: Photogrammetry & Remote Sensing Hours / Week: 05 Subject Code: 06CV764 Total Hours: 62

Period

No. Topics to be covered

1. UNIT-1 PHOTOGRAMMETRY: Introduction

2. Basic Principles

3. Photo theodelite - Definitions

4. Horizontal and Vertical angle from terrestial photograph

5. Horizontal position of a point from photographic measurement from camera horizontal axis.

6. Horizontal position of a point from photographic measurement from camera horizontal axis contd.,

7. Elevation of point by photographic measurement

8. Focal length

9. UNIT-II AERIAL CAMERA-SCALE OF PHOTOGRAPH - Determination of height of lens for a vertical photograph.

10. Determination of height of lens for a vertical photograph contd.,

11. Relief displacement

12. Scale of tilted photograph

13. Computation of a length of line between points of different elevation from measurement on a tilted photograph

14. Computation of a length of line between points of different elevation from measurement on a tilted photograph contd.,

15. UNIT-III DETERMINATION OF FLYING HEIGHT FOR A TILTED PHOTOGRAPH: Tile distortion

16. Relief displacement.

17. Combined effect of tile and relief

18. Flight planning for Aerial photogrammetry, Ground control

19. Stereoscopic vision

20. Drift Mosaics

21. Relevant numerical examples in the above topics

22. Relevant numerical examples in the above topics contd.,

23. UNIT-IV REMOTE SENSING: Introduction, Historical sketch of remote sensing

24. Idealized remote sensing – Basic principles of remote sensing.

Page 78: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 78 MVJCE

Period

No. Topics to be covered

25. Electro magnetic energy, Electro magnetic spectrum

26. Wavelength regions and their application in remote sensing

27. Characteristics of solar radiation – Basic radiation law

28. EM radiation and atmosphere - Interaction of EM radiation with earth surface

29. Remote sensing observation platforms – sensors

30. Application of remote sensing

31. UNIT-V GEOGRAPHICAL INFORMATION SYSTEM, DEFINITION : The four M’s concept

32. Contributing disciplines for GIS, GIS objectives

33. Components of a GIS

34. Topology – Data models

35. Data structures

36. Data base management - Errors in GIS

37. GIS software packages

38. Linkage of GIS to remote sensing

39. Application areas of GIS and Remote sensing

40. UNIT – VI FIELD ASTRONOMY : Definitions of astronomical terms

41. Coordinate systems

42. Terrestial attitude and longitude

43. Spherical trigonometry and Spherical triangle

44. Astronomical triangle.

45. Relationship between coordinates

46. Earth and sun units time

47. Relationship between degrees and hours of the time. Conversion of local time standard time and vice versa

48. Relationship between degrees and hours of the time. Conversion of local time standard time and vice versa contd.,

49. UNIT- VII Conversion of Mean time interval to Sinderael time interval and vice versa

50. Conversion of Mean time interval to Sinderael time interval and vice versa contd.,

51. Conversion of Mean time interval to Sinderael time interval and vice versa contd.,

52. Estimation of local mean midnight at any place on the same date

53. Estimation of local mean midnight at any place on the same date contd.,

54. Estimation of local mean midnight at any place on the same date contd.,

Page 79: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 79 MVJCE

Period

No. Topics to be covered

55. UNIT – VIII Determination of LST from given value of LMT

56. Determination of LST from given value of LMT contd.,

57. Determination of LMT from the given value of LST-LMT of star across median given GST and GMN

58. Determination of LMT from the given value of LST-LMT of star across median given GST and GMN contd.,

59. Determination of Azimuth, latitude and longitude

60. Determination of Azimuth, latitude and longitude contd.,

61. Relevant numerical examples

62. Relevant numerical examples contd.,

Page 80: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 80 MVJCE

QUESTION BANK

1. Define the following:

• Air base • Tilt displacement • Principal point • Isocentre • Isometric parallel

2. Explain the basic principles of photogrammetry 3. Describe, with the help of neat sketch a photo-Theo elite 4. Derive an expression for Elevation of a point by photographic measurement? 5. Describe the various steps involved in the combination of vertical air photographs by the

principal point radial line method? 6. Two objects A and B whose elevations are 500m and 1500m respectively above mean

sea level are photographed from certain height with the axis of the camera vertical. The coordinates expressed in mm of the corresponding photo-images a and b are:

Point x-coordinate y-coordinate a +200 +150 b -320 -300

The focal length = 200mm and length AB=44227m. Find the height of the camera station.

7. Derive an expression for the height displacement in a vertical photograph. 8. The distances from two points on a photographic print to the principal line are 42.36mm

to the left and 38.16mm to the right. The angle between the points measured with a transit is 30°45’. Determine the focal length of the lens.

9. What is tilt distortion? Prove that, in a tilted photograph, tilt distortion is radial from the isocentre.

10. Vertical photographs were taken from height of 3048m, the focal length of the camera lens being 15.24 cm . if the points were 22.86*22.86 cm and the overlap 60%, what is the length of the air base? What would be the scale of th print?

11. How do you determine the number of photographs necessary to cover a given area in an aerial survey?

12. Write short notes on a) Stereoscopic vision b) Mirror stereoscope c) Crab and Drift d) Parallax bar

13. Derive an expression for computation of length of line between points of different elevations on a vertical photograph.

14. the ground length of a line AB is known to be 645 m and the elevations of A and B are respectively 5oom and 300m above the m.s.l On a vertical photograph taken with a camera having focal length of 20cm include the images a and b of these points and their photographic coordinates are: (xa=+2.65cm. ya=+1.36cm); (xb=-1.92cm, yb=+3.65 cm) The distance ab scaled directly from the photograph is 5.112cm. Compute the flying height above the mean sea level.

15. Determine the flying height of a tilted photograph. 16. Short notes on mosaics 17. What do you understand by remote sensing ? Differentiate between active and passive

remote sensing? 18. Explain, with the help of a neat sketch, an idealized remote sensing?

Page 81: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 81 MVJCE

19. Write a detailed note on Electro-magnetic energy used for remote sensing? 20. What do you understand by electro-magnetic spectrum? State the wavelength regions,

along with their uses, for remote sensing applications 21. Explain the interaction mechanism of EM radiation with earth’s surface, stating the basic

interaction equation. 22. Write a short notes on remote sensing observation plat forms. 23. Write a short notes on various types of sensors used for remote sensing in India. 24. Write detailed notes on applications of remote sensing. 25. What do you understand by geographic information systrem? 26. What are the essentials of a GIS? 27. What are the four M’s for which geographic information’s are used? Elaborate. 28. What are the contributing disciplines for GIS 29. What are the objectives of a GIS 30. Write a note on the components of GIS 31. Explain various types of data structures used in GIS 32. Enumerate various types of GIS software packages 33. Write a note on linkage of GIS to remote sensing 34. Write a note on application areas of GIS and remote sensing

Page 82: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 82 MVJCE

Page 83: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 83 MVJCE

Page 84: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 84 MVJCE

06CVL77 – ENVIRONMENTAL ENGINEERING LABORATORY

Page 85: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 85 MVJCE

SYLLABUS Subject Code : 06CVL77 IA Marks : 25 No. of Practical Hours/Week : 03 Exam Hours : 03 Total No. of Practical Hours : 42 Exam Marks : 50

1. Determination of Solids in Sewage: Total Solids, Suspended Solids,Dissolved Solids, Volatile Solids, Fixed Solids, Settleable Solids.

2. Electrical conductivity. Determination of Chlorides and Sulphates. 3. Determination of Alkalinity, Acidity and pH. 4. Determination of Calcium, Magnesium and Total Hardness. 5. Determination of Dissolved Oxygen. Determination of BOD. 6. Determination of COD. 7. Determination of percentage of available chlorine in bleaching powder, Residual Chlorine

and Chlorine Demand. 8. Jar Test for Optimum Dosage of Alum, Turbidity determination by Nephelometer. 9. Determination of Iron. Phenanthroline method. 10. Determination of Fluorides SPANDS Method. 11. MPN Determination 12. Determination Nitrates by spectrophotometer. 13. Determination of sodium and potassium by flame photometer.

REFERENCE BOOKS: 1. Manual of Water and Wastewater Analysis – NEERI Publication. 2. Standard Methods for Examination of Water and Wastewater (1995), American Publication – Association, Water Pollution Control Federation, American Water Works Association, Washington DC. 3. IS Standards : 2490-1974, 3360-1974, 3307-1974. 4. Chemistry for Environment Engineering. Sawyer and Mc Carthy,

Page 86: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 86 MVJCE

LESSON PLAN

Hour No. Topic to be Covered

01 Determination of Acidity, Alkalinity of Water and pH of water

02 Hardness Test

03 Calcium & Magnesium Hardness

04 Dissolved Oxygen

05 Determination of Chlorides In Water

06 Electrical conductivity

07 Jar Test for Optimum Dosage of Coagulant (Alum), Turbidity

08 Residual Chlorine

09 Percentage of Available Chlorine in Bleaching Powder

10 Chlorine Demand Of Water

11 Solids in Waste Water

12 Biological Oxygen Demand (BOD) of Waste Water

13 Determination of Chemical Oxygen Demand (COD)

14 Determination of (B/E-Coli) Coliforms

15 Determination of Fluorides

16 Determination of Iron

17 Determination of Nitrates

18 Determination of Sodium and Potassium by Flame Photo meter

19 Determination of Conductivity in Water Sample using Electrical Conductivity Meter

Page 87: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 87 MVJCE

06CVL78 – CONCRETE & HIGHWAY MATERIAL LABORATORY

Page 88: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 88 MVJCE

SYLLABUS

Subject Code: 06CVL78 IA Marks: 25 No. of Practical Hours/Week: 03 Exam Hours: 03 Total No. of Practical Hours: 42 Exam Marks: 50

PART A

CEMENT: Normal Consistency, Setting time, Soundness by Autoclave method, Compression strength test and Air permeability test for fineness, Specific gravity of cement. FRESH CONCRETE: Workability – slump, Compaction factor and Vee Bee tests. HARDENED CONCRETE: Compression strength and Split tensile tests. Test on flexural strength of RCC beams, Permeability of concrete.

PART – B

AGGREGATES: Crushing, abrasion, impact and Shape tests (Flaky, Elongation, Angularity number) Specific gravity and water absorption. BITUMINOUS MATERIALS AND MIXES: Specific Gravity, Penetration,Ductility, Softening point, Flash and fire point, Viscosity. Marshall Stability tests. REFERENCE BOOK:

1. Relevant IS Codes and IRC Codes. 2. Highway Material Testing Laboratory Manual – Nemi Chand & Bros. 3. M. L. Gambhir : Concrete Manual : Dhanpat Rai & sons New Delhi

Page 89: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 89 MVJCE

LESSION PLAN

Hour No. Topic to be covered

1 CEMENT TESTS: Normal Consistency, Setting time

2 Specific gravity of cement, Compression strength test

3 Air permeability test for fineness, Soundness by Autoclave method,

4 FRESH CONCRETE: Workability – slump Test

5 Workability – Compaction factor test

6 Workability – Vee Bee test

7 HARDENED CONCRETE: Compression strength and Split tensile test

8 Test on flexural strength of RCC beams, Permeability of concrete

9 AGGREGATES: Crushing Test and Impact Test

10 Abrasion Test and Specific gravity and water absorption.

11 Shape tests (Flaky, Elongation, Angularity number).

12 BITUMINOUS MATERIALS AND MIXES: Specific Gravity test, Penetration test, Ductility test.

13 Softening point test, Flash and fire point test

14 Viscosity test and Marshall Stability tests.

Page 90: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 90 MVJCE

SCHEME OF TEACHING & EXAMINATION

SEMESTER: VIII

S. No.

Subject Code

Title of the Subject Teachi

ng Dept/.

Teaching Hrs/Week

Examination

Theory

Practical

Duration (Hr)

Marks

IA Theory/ Practic

al Total

1 06CV81 Advanced Concrete Technology

Civil 04 -- 03 25 100 125

2 06CV82 Design and Drawing of Steel Structures

Civil 02 03 04 25 100 125

3 06CV833 Pavement Design (Elective)

Civil 04 -- 03 25 100 125

4 06CV844 Geographic Information System (Elective)

Civil 04 -- 03 25 100 125

5 06CV85 Project Work Civil -- 06 03 100 100 200

6 06CV86 Seminar Civil -- 03 03 50 -- 50

TOTAL 14 12 19 250 500 750

Page 91: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 91 MVJCE

06CV81 - ADVANCED CONCRETE TECHNOLOGY

Page 92: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 92 MVJCE

SYLLABUS Subject Code : 06CV81 IA Marks : 25 No. of Lecture Hours/Week : 04 Exam Hours : 03 Total No. of Lecture Hours : 52 Exam Marks : 100

PART - A

UNIT – 1 Importance of Bogue’s compounds, Structure of a Hydrated Cement Paste, Volume of hydrated product, porosity of paste and concrete, transition Zone, Elastic Modulus, factors affecting strength and elasticity of concrete, Rheology of concrete in terms of Bingham’s parameter. 7 Hours UNIT – 2 CHEMICAL ADMIXTURES - Mechanism of chemical admixture, Plasticizers and super Plasticizers and their effect on concrete property in fresh and hardened state, Marsh cone test for optimum dosage of super plasticizer, retarder, accelerator, Air-entraining admixtures, new generation superplasticiser. MINERAL ADMIXTURE- Fly ash, Silica fume, GCBS, and their effect on concrete property in fresh state and hardened state. 6 Hours UNIT – 3 MIX DESIGN - Factors affecting mix design, design of concrete mix by BIS method using IS10262 and current American (ACI)/ British (BS) methods. Provisions in revised IS10262-2004. 6 Hours UNIT - 4 DURABILITY OF CONCRETE - Introduction, Permeability of concrete, chemical attack, acid attack, efflorescence, Corrosion in concrete. Thermal conductivity, thermal diffusivity, specific heat. Alkali Aggregate Reaction, IS456-2000 requirement for durability. 7 Hours PART – B UNIT – 5 RMC concrete - manufacture, transporting, placing, precautions, Methods of concreting- Pumping, under water concreting, shotcrete, High volume fly ash concrete concept, properties, typical mix Self compacting concrete concept, materials, tests, properties, application and Typical mix. 6 Hours UNIT – 6 Fiber reinforced concrete - Fibers types and properties, Behavior of FRC in compression, tension including pre-cracking stage and post-cracking stages, behavior in flexure and shear, Ferro cement - materials, techniques of manufacture, properties and application 7 Hours UNIT – 7 Light weight concrete-materials properties and types. Typical light weight concrete mix High density concrete and high performance concrete-materials, properties and applications, typical mix. 6 Hours

Page 93: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 93 MVJCE

UNIT – 8 Test on Hardened concrete-Effect of end condition of specimen, capping, H/D ratio, rate of loading, moisture condition. Compression, tension and flexure tests. Tests on composition of hardened concrete-cement content, original w/c ratio. NDT tests concepts-Rebound hammer, pulse velocity methods. 7 Hours TEXT BOOKS: 1. Properties of Concrete- Neville, A.M. - ELBS Edition, Longman Ltd., London 2. Concrete Technology- M.S. Shetty 3. Concrete- P.K. Mehta, P J M Monteiro,- Prentice Hall, New Jersey (Special Student Edition by Indian Concrete Institute Chennai) 4. ACI Code for Mix Design 5. IS 10262-2004 6. Concrete Mix Design- N. Krishna Raju - Sehgal Publishers 7.Concrete Manual- Gambhir M.L.- Dhanpat Rai & Sons, New Delhi

REFERENCE BOOKS: 1. Advanced Concrete Technology Processes- John Newman, Ban Seng Choo, - London. 2. Advanced Concrete Technology Constituent materials- John Newman, Ban Seng Choo- London 3. Non-Destructive Test and Evaluation of Materials- J.Prasad, C G K Nair,-Mc Graw Hill. 4. High Performance Concrete- Prof Aitcin P C- E and FN, London. 5. Properties of Fresh Concrete- Power T.C.- E and FN, London 6. Concrete Technology- A.R. Santhakumar,-Oxford University

Page 94: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 94 MVJCE

LESSON PLAN Subject: Advanced Concrete Technology Subject Code: 06CV81 Hours/week:5 IA Marks: 25 Total Hours: 62

Period

No. Topics to be Covered

1 Chapter 1. Importance of Bogue’s compounds

2 Structure of a Hydrated Cement Paste

3 Volume of hydrated product,

4 Porosity of paste and concrete

5 Transition Zone,

6 Elastic Modulus

7 Factors affecting strength and elasticity of concrete,

8 Rheology of concrete in terms of Bingham’s parameter

9 Chapter 2. Chemical admixture, Mechanism of chemical admixture

10 Plasticizers and super Plasticizers and their effect on concrete property in fresh and hardened state

11 Marsh cone test for optimum dosage of super plasticizer, retarder, accelerator

12 Air-entraining admixtures,

13 new generation super plasticizer

14 Fly ash, Silica fume, GCBS

15 Effect of these on concrete property in fresh state and hardened state

16 Chapter 3. MIX DESIGN, Introduction

17 Factors affecting mix design,

18 Design of concrete mix by BIS method using IS10262 and current American (ACI)/ British (BS) methods.

19 Design of concrete mix by BIS method using IS10262 and current American (ACI)/ British (BS) methods

20 Provisions in revised IS10262-2004

21 Provisions in revised IS10262-2004

22 Provisions in revised IS10262-2004

23 Provisions in revised IS10262-2004

24 Chapter 4. DURABILITY OF CONCRETE- Introduction,

25 Permeability of concrete

26 Chemical attack,

27 Acid attack, efflorescence

28 Corrosion in concrete

29 Thermal conductivity, thermal diffusivity, specific heat.

30 Alkali Aggregate Reaction

31 IS456-2000 requirement for durability

Page 95: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 95 MVJCE

Period

No. Topics to be Covered

32 PART B- Chapter 5. RMC concrete - manufacture

33 Transporting, placing, precautions

34 Methods of concreting- Pumping, under water concreting shotcrete

35 High volume fly ash concept,

36 Fly ash concept properties, typical mix

37 Self compacting concrete concept, materials, tests

38 Self compacting concrete properties, application and Typical mix

39 Chapter 6. Fiber reinforced concrete - Fibers types and properties,

40 Behavior of FRC in compression, tension including pre-cracking stage and post-cracking stages,

41 Behavior of FRC in compression, tension including pre-cracking stage and post-cracking stages

42 Behavior of FRC in behavior in flexure

43 Behavior of FRC in behavior in shear

44 Ferro cement - materials, techniques of manufacture

45 Ferro cement - techniques of manufacture

46 Ferro cement - techniques of manufacturpe

47 Ferro cement properties and application

48 Chapter 7 Light weight concrete-materials properties and types

49 Typical light weight concrete mix

50 High density concrete

51 High performance concrete-materials

52 High performance concrete properties and applications,

53 High performance concrete typical mix

54 Chapter 8 Test on Hardened concrete-Effect of end condition of specimen

55 Capping, H/D ratio, rate of loading, moisture condition.

56 Compression test

57 Tension test

58 Flexure test

59 Tests on composition of hardened concrete-cement content original w/c ratio.

60 Tests on composition of hardened concrete-cement content original w/c ratio.

61 NDT tests concepts-Rebound hammer, pulse velocity methods.

62 NDT tests concepts-Rebound hammer, pulse velocity methods.

Page 96: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 96 MVJCE

QUESTION BANK

UNIT – 1

1. Explain the Importance of Bogue’s compounds. 2. Explain the Structure of a Hydrated Cement Paste. 3. Explain the process of hydration of cement. 4. Define the terms transition Zone, Elastic Modulus. 5. What are the factors affecting strength and elasticity of concrete. 6. What is Rheology of concrete in terms of Bingham’s parameter?

UNIT – 2 CHEMICAL ADMIXTURES -

1. Define admixture and list the types of admixtures. 2. Define Plasticizers, super Plasticizers,, retarder, accelerator, Air-entraining admixtures,

new generation superplasticiser. 3. Explain mechanism of chemical admixture. 4. What are the effects of Plasticizers and super Plasticizers on concrete property in fresh and

hardened state. 5. Explain Marsh cone test and state its advantages.

MINERAL ADMIXTURE-

1. Define the term Fly ash, Silica fume, GCBS. 2. Explain the effects of Fly ash, Silica fume, GCBS on concrete property in fresh state and

hardened state. UNIT – 3

1. Explain the concept of mix design. 2. Explain the factors affecting mix design.

UNIT – 4

1. What is permeability of concrete? 2. Explain Corrosion in concrete. 3. Define chemical attack, acid attack in concrete. 4. Define Thermal conductivity, thermal diffusivity, and specific heat. Alkali Aggregate

Reaction. PART – B UNIT – 5

1. What is RMC? Explain in detail the process of manufacturing. 2. What are the precautions to be taken while transporting RMC? 3. What are the various methods of concreting? 4. Write short notes on:

a. Pumping of concrete. b. Under water concreting. c. Shotcrete. d. High volume fly ash. e. Explain Self-compacting concrete, its properties. f. List the applications of Self Compacting Concrete.

Page 97: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 97 MVJCE

UNIT – 6 1. What is Fiber reinforced concrete, various Fibers types? 2. List the properties of fiber reinforced concrete. 3. Explain the Behavior of FRC in compression, tension including pre-cracking stage and

post-cracking stages. 4. Explain the behavior of FRC in flexure and shear. 5. What is Ferro cement? 6. Explain the various techniques of manufacture of Ferrocement. 7. Explain the properties of Ferrocement. 8. Explain the various application of Ferrocement.

UNIT – 7

1. What is Light weight concrete. 2. What are the various materials used in Lightweight concrete. 3. Explain the properties of Lightweight concrete. 4. What are the various types of Lightweight concrete? 5. Explain typical lightweight concrete mix. 6. Write short notes on:

a. High density concrete. b. High performance concrete.

7. List the properties and applications of High density concrete. 8. List the properties and applications of High performance concrete.

UNIT – 8

1. What are tests on Hardened concrete? 2. Explain the Compression, tension and flexure tests of Hardened concrete. 3. What are the NDT tests? Explain Rebound hammer, pulse velocity methods.

PROBLEMS:

1.Calculate the gel/space ratio and the theoretical strength of concrete made with 500gm. of cement with 0.5 water/cement ratio, on full hydration and at 60 percent hydration.

2.The strength of a sample of fully matured concrete is found to be 400 kg/sq.cm. Find the

strength of identical concrete at 7 days when cured at an average temperature during day time at 20 degree centigrade and night time at 10degree centigrade.

3.It is required to design a concrete mix for an airfield pavement. The pavement is to be

designed for a minimum compressive strength of 250 kg/cm² at 28 days. The laboratory tests on the controlling mix show a standard deviation of 40 kg/cm². The specific gravity of coarse aggregates is 2.68 and its dry rodded density is 1600kg/m³ and its maximum size is 40mm. The specific gravity of fine aggregate (sand) is 2.64 and its finess modulus is 2.8. A slump of 25mm is specified. Ordinary Portland cement will be used.

4. Design a high strength concrete mix for prestressed concrete to be used in the construction

of a cantilever beam for a Racecourse stand. The mix should satisfy the following requirements:

Specified 28 days minimum strength=500kg/cm² Degree of quality control-very good (k=2.33) Degree of workability- very low Type of cement-ordinary Portland Type of coarse aggregate-20mm max. size crused granite. Type of fine aggregate-Natural sand.

Page 98: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 98 MVJCE

Page 99: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 99 MVJCE

06CV82 - DESIGN AND DRAWING OF STEEL STRUCTURES

Page 100: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 100 MVJCE

SYLLABUS

Subject Code : 06CV82 IA Marks : 25 No. of Lecture Hours/Week : 02 (T) + 3(D) Exam Hours : 04 Total No. of Lecture Hours : 26 (T) + 39 (D) Exam Marks : 100

PART-A

(Drawings to be prepared for given structural details)

1. CONNECTIONS: Boiled and welded, beam-beam, Beam-column, seated, stiffened and un-stiffened.

2. COLUMNS: Splices, Column-column of same and different sections, Lacing and

battens.

3. COLUMN BASES: Slab base and gusseted base. Grillage foundation (13 T+18D)

PART-B (Design & Drawing)

4. DESIGN AND DRAWING OF

i. Bolted and welded plate girder ii. Roof Truss (Forces in the members to be given) iii. Gantry girder

(13T+ 21D) REFERENCE BOOKS:

1. Dr. Ramachandra, Design of Steel Structures. 2. Dayaratnam P - Design of Steel Structures. 3. Negi, Design of Steel Structures. 4. Arya and Ajamani, Design of Steel Structures. 5. Raghupathi - Design of Steel Structures. 6. IS:800 – 1984 7. SP 6 (1) – 1984 or Steel Tables 8. Design of Steel Structures – N. Subramanian

Scheme of Examination: Question paper shall contain two questions in each part. Students should answer one question from part A covering 30 marks and one question from part B covering 70 marks. (equal weightage for design and drawing).

Page 101: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 101 MVJCE

LESSON PLAN Subject: Design & Drawing of Steel Structures Subject Code: 06CV82 IA Marks: 25 No. of Lecture Hours/Week : 02 (T) + 3(D) Exam Hours : 04 Total No. of Lecture Hours : 26 (T) + 39 (D)

Period No. Topics to be covered

1 General introduction to various types of steel structures used in building construction.

2 Design of apex joint of roof truss with welded joint.

3 Drawing of apex joint of roof truss.

4 Design of support joint of roof truss with bolted joint.

5 Drawing of support joint of roof truss.

6 Design of welded plate girder.

7 Drawing of welded plate girder.

8 Design of bolted plate girder.

9 Design of bolted plate girder.

10 Drawing of bolted plate girder.

11 Drawing of bolted and welded beam to beam and beam to column connection for the given design details.

12 Drawing of bolted and welded stiffened and un-stiffened seated connection for the given design details.

13 Drawing of column splice of same and different cross sections of the connecting columns for the given design details.

14 Drawing of laced and batten column’s for the given design details.

15 Drawing of slab base and gusseted base for the given design details.

16 Drawing of grillage foundation

17 Design of gantry girder.

18 Drawing of gantry girder.

Page 102: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 102 MVJCE

Page 103: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 103 MVJCE

Page 104: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 104 MVJCE

06CV833 – PAVEMENT DESIGN

Page 105: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 105 MVJCE

SYLLABUS

Sub Code : 06CV833 IA Marks : 25 Hrs/Week; 04 Exam Hours 03 Total Hrs: 52 Exam Marks: 100 UNIT - 1 INTRODUCTION: Desirable characteristics of pavement, types and components, Difference between Highway pavement and Air field pavement, Design strategies of variables – Functions of sub-grade, sub base – Base course – surface course – comparison between Rigid and flexible pavement 6 Hours UNIT - 2 FUNDAMENTALS OF DESIGN OF PAVEMENTS: Design life – Traffic factors – climatic factors – Road geometry – Subgrade strength and drainage,Stresses and deflections, Boussinesqs theory – principle, Assumptions – Limitations and problems on above - Busmister theory – Two layered analysis – Assumptions – problems on above 6 Hours UNIT - 3 DESIGN FACTORS: Design wheel load – contact pressure – ESWL concept – Determination of ESWL by equivalent deflection criteria – Stress criteria – EWL concept 6 Hours UNIT - 4 FLEXIBLE PAVEMENT DESIGN: Assumptions – McLeod Method – Kansas method – Tri-axial method - CBR method – IRC Method (old) - CSA Method using IRC 37-2001, problems on above. 6 Hours

PART – B UNIT - 5 STRESSES IN RIGID PAVEMENT: Principle – Factors - wheel load and its repetition – properties of sub grade - properties of concrete. External conditions – joints – Reinforcement – Analysis of stresses – Assumptions – Westergaard’s Analysis – Modified Westergaard equations – Critical stresses – Wheel load stresses, Warping stress – Frictional stress – combined stresses (using chart / equations) - problems on above. 6 Hours UNIT - 6 DESIGN OF RIGID PAVEMENT: Design of C.C. Pavement by IRC: 38 – 2002 for dual and Tendem axle load – Reinforcement in slabs – Requirements of joints – Types of joints – Expansion joint – contraction joint – warping joint – construction joint – longitudinal joint, Design of joints, Design of Dowel bars, Design of Tie bars – problems of the above 8 Hours UNIT - 7 FLEXIBLE PAVEMENT FAILURES, MAINTENANCE AND EVALUAT ION: Types of failures, causes, remedial/maintainance measures in flexible pavements – Functional Evaluation by visual inspection and unevenness measurements - Structural Evaluation by Benkelman Beam Deflection Method, Falling weight deflectometer, GPR Method. Design factors for Runway Pavements - Design methods for Airfield pavements and problems on above. 7 Hours

Page 106: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 106 MVJCE

UNIT - 8 RIGID PAVEMENT FAILURES, MAINTENANCE AND EVALUATION : Types of failures, causes, remedial/maintenance measures in rigid pavements – Functional Evaluation by visual inspection and unevenness measurements. Design factors for Runway Pavements – Design methods for Airfield pavements. 7 Hours TEXT BOOKS: 1. Highway Engineering- Khanna & Justo 2. Principles & Practices of Highway Engineering- L R Kadiyalli &N B. Lal 3. Pavement Analysis & Design - Yang H. Huang- II edition. 4. Relavent IRC codes

REFERENCE BOOKS: 1. Principles of Pavement Design- Yoder and Witzack - 2nd edition, John Wileys and Sons 2. Principles of Pavement Design- Subha Rao

Page 107: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 107 MVJCE

LESSON PLAN

Subject: Pavement Design Subject Code: 06CV833 Hours/week:5 IA Marks: 25 Total Hours: 62

Period No.

Topics to be Covered

1. Chapter : 1 Desirable characteristics of pavement

2. Types and components of pavements

3. Difference between Highway pavement and Air field pavement

4. Design strategies of variables

5. Properties and Functions of sub-grade

6 Functions of sub base – Base Course – surface course

7 Comparison between Rigid and flexible pavement

8. Chapter : 2 : Design of pavements

9. Design life – Traffic factors – climatic factors – Road geometry

10. Subgrade strength and drainage, Stresses and deflections

11. Boussinesqs theory – principle, Assumptions, Limitations

12. Busmister theory – Two layered analysis – Assumptions

13. Problems

14. Problems

15 Problems

16. Chapter: 3 : Design wheel load

17. Contact pressure

18. ESWL concept

19. Determination of ESWL by equivalent deflection criteria

20. Stress criteria – EWL concept.

21. Problems

22. Problems

23. Chapter: 4 : Assumptions – McLeod Method , Kansas method

24. Tri-axial method

25. CBR method

26. IRC Method (old) , CSA Method using IRC 37-2001

27. Problems

28. Problems

29. Problems

30. Chapter: 5 : Principle – Factors , wheel load and its repetition

31. Properties of sub grade - properties of concrete, External conditions – joints, Reinforcement

32. Analysis of stresses – Assumptions , Westergaard’s Analysis – Modified Westergaard equations – Critical stresses

Page 108: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 108 MVJCE

Period No.

Topics to be Covered

33. Wheel load stresses, Warping stress – Frictional stress – combined stresses (using chart / equations)

34. Problems

35. Problems

36 Problems

37. Chapter: 6 : Design of C.C. Pavement by IRC: 38 – 2002 for dual and Tendem axle load

38. Reinforcement in slabs

39. Types of joints – Expansion joint , contraction joint, warping joint, construction joint – longitudinal joint

40. Design of joints

41. Design of Dowel bars

42. Design of Tie bars

43. Problems

44. Problems

45. Problems

46. Chapter: 7 Types of failures

47. Causes, remedial/maintenance measures in flexible pavements

48. Functional Evaluation by visual inspection and unevenness measurements

49. Structural Evaluation by Benkelman Beam Deflection Method

50. Falling weight deflectometer, GPR Method.

51. Design factors for Runway Pavements

52. Problems

53. Problems

54. Problems

55. Chapter: 8 Types of failures

56. Causes of failures in rigid pavement

57. Remedial / maintenance measures in rigid pavements

58. Functional Evaluation by visual inspection and unevenness measurements.

59. Design factors for Runway Pavements

60. Design methods for Airfield pavements

61. Problems

62. Problems

Page 109: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 109 MVJCE

QUESTION BANK

1.Explain the differences between flexible an rigid pavement. 2.What are the main differences between air field and highway pavements. 3.What are the factors too be considered while designing pavement.Explain briefly.

4.What do you mean by equivalent single wheel load.Explain? 5Calculate ESWL of dual wheel load assembly carrying 20440 N each for pavement thickness of 150mm, 300mm and 450mmCenre to center tyre spacing is 270mm and between walls of tyrres is 110mm

1. A dual wheel load assembly has a load of 50kN on each wheel.The clear distance between the dual wheel load assembly is 200mm and spacing 410mm. Determine ESWL at depths 600 and 800mm using simplified procedure.

2. In a dual wheel load assembly load on each wheel is 70kN with a conytact pressure of 0.75N/mm2 . If center to center distance between wheels is 600mm. Determine ESWL by graphical method for pavement thicknesses 1) 600mm 2) 800mm. Show details on plain graph paper.

3. Calculate the repetations for 10year period equivalent to 22680 N wheel load if the mixed traffic in both directions is 2000 vehicles / day with a road of 4 lanes.The details of distribution of different wheel loads of commercial vehicles are as given below.

Wheel load in Newtons

Percentage in total traffic

22680 30.0 27220 15.0 31750 10.0 36290 12.0 40820 8.0 45360 6.0

4. Explain elastic single layer theory. What are the assumptions made ion elastic single

layer theory. 5. Determine thickness of pavement by single layer elastic theory so as to limit vertical

stress on subgrade to 0.07N/mm2 due to a) wheel load of 60kN and contact pressure of 0.6 N/mm2 . b) wheel load of 6000N contact pressure of 3N/mm2 .

6. Explain Burmister’s two layer theory and what are the assumptions. 7. A dual wheel, load assembly has 50kN load on each wheel with a contact pressure of 0.7

N/mm2 . The clear gap between dual wheels is of 0.7N/ mm . The clear gap between dual wheels is 250mm. Determine the deflection values at 5 points in transverse direction and estimate maximum deflection values due to wheel load at a depth of 480mm. Assume elastic modulus of pavement layer as 7.5N/mm2 .

8. The plate load test was conducted on a soaked subgrde soill during monsoon season using rigid plate of dia 300mm. The load value corresponding to mean settlement are given below. Determine modulus of subgrade reaction for a settlement plate.

Mean settlement mm

0.0 0.24 0.52 0.76 1.02 1.21 1.47 1.73

Load values N

0.0 4600 9000 11800 13600 15000 16700 17400

Page 110: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 110 MVJCE

9. Plate bearing test were conducted with 300mm dia plte on soil subgrade and over 150mm thick base course. The pressure yielded at 5mm deflection are 0.125 N/mm2 respectively. Design the pavement section for 41000 N wheel load with a pressure of 0.5N/mm2 using Burmister’s approach for allowable deflection of 5mm.

10. A plate bearing using 750mm dia rigid plate was made on sub-grade as well as 250mm gravel base course. The unit load required for settlement of 5.08mm was 0.07N/mm2 and 0.28N/mm2. Determine the thickness of the base course to sustain 222400 N tyre load and 0.7N/mm2 pressure and maximum deflection of 5.08mm.

11. The CBR of subgrade soil is 3.5% . Present traffic consists of 600 commercial vehicles per day with an anticipated growth rate of 6% per year. Design a flexible pavement to be constructed after 2 years consisting of moorum sub base with CBR of 9%, granular subbase of CBR 80% and bituminous surfacing.

12. CBR value of sub-grade soil is 5%. Calculate total thickness of pavement using I ) Design curve developed by California State Highway Deptii)Design chart by IRCiii) Design formula by US corp of engineer. Asssume 51kN wheel load on heavy traffic of 1000 commercial vehicles per day. Tyre pressure 0.6N/mm2 .

13. Design the pavement section by triaxial method using following data. Wheel load = 41000 N, Radius of contact area = 150mm, traffic coeffient = 1.5, rainfall coeffient= 0.9, Design deflection = 2.5mm E value of the subgrade = 10N/mm2 E value of base course material = 40N/mm2 , E value of 7.5cm bituminous concrete surface surface course = 100N/mm2

14. Design a highway pavement for a wheel load of 41000 N with a tyre pressure of 00.5 N/ mm2. The plate bearing test carried out on subgrade soil using 30cm dia plate yielded a pressure of 0.25N/mm2.after 10 repetitions of loads at 5mm deflection.

15. A plate bearing test using 30cm dia plate carried out on a subgrade yield at a pressure of 0.3N/mm2. After 10 load repetitions at 0.5 cm deflection. Design a highway pavement of 51kN with a tyre pressure of 0.6N/mm2.

16. Calculate the radius of relative stiffness and radius of resisting section from the following data.slab thiockness 220mm, E= 0.31N/mm2 µ= 0.15, a = 160mm k = 0.6N/mm2

17. Calculate warping stresses for cement concrete pavement of thickness 30cm with length of the slab 4.5m spacing. The width of the slab is 3.5m. Assume e= 8x10 / c.E= 0.31xpa, K = 0.02N/mm2, temparature differential 0.90c/cm

Page 111: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 111 MVJCE

Page 112: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 112 MVJCE

Page 113: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 113 MVJCE

Page 114: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 114 MVJCE

06CV843 - URBAN TRANSPORTATION PLANNING

Page 115: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 115 MVJCE

SYLLABUS

Sub Code : 06CV843 IA Marks : 25 Hrs/Week : 04 Exam Hours : 03 Total Hrs. : 62 Exam Marks : 100

UNIT - 1 INTRODUCTION: Scope of Urban transport planning – Inter dependency of land use and traffic – System Approach to urban planning. 6 Hours UNIT - 2 STAGES IN URBAN TRANSPORT PLANNING : Trip generation – Trip production - Trip distribution – Modal split – Trip assignment. 6 Hours UNIT - 3 URBAN TRANSPORT SURVEY - Definition of study area-Zoning-Types of Surveys – Inventory of transportation facilities – Expansion of data from sample. 8 Hours UNIT - 4 TRIP GENERATION: Trip purpose – Factors governing trip generation and attraction – Category analysis – Problems on above 5 Hours

PART - B UNIT - 5 TRIP DISTRIBUTION: Methods – Growth factors methods – Synthetic methods – Fractor and Furness method and problems on the above. 5 Hours UNIT - 6 MODAL SPLIT: Factors affecting – characteristics of split – Model split in urban transport planning – problems on above 6 Hours UNIT - 7 TRIP ASSIGNMENT: Assignment Techniques – Traffic fore casting – Land use transport models – Lowry Model – Garin Lowry model – Applications in India – (No problems on the above) 8 Hours UNIT - 8 URBAN TRANSPORT PLANNING FOR SMALL AND MEDIUM CITIE S: Introduction – Difficulties in transport planning – Recent Case Studies 8 Hours TEXT BOOKS: 1. Traffic Engineering and Transport Planning- L.R. Kadiyali - Khanna Publishers. 2. Principles of urban transport system planning - B.G. Hutchinson - Scripta Book Co., Washington D.C. & McGraw Hill Book Co. 3. Introduction to transportation engineering- Jotin Kristey and Kentlal - PHI, New Delhi. REFERENCE BOOKS: 1. Urban Transport planning - Black John - Croom Helm ltd, London. 2. Urban and Regional models in geography and planning- Hutchison B G - John Wiley and sons London. 3. Entropy in urban and regional modeling- Wilson A G - Pion ltd, London.

Page 116: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 116 MVJCE

LESSON PLAN

Hour No. Topic to be covered

INTRODUCTION

1 Introduction to Urban transport Planning

2 Scope of Urban Transportation Planning

3 Inter dependency of land use and traffic

4 System approach to Urban Transport Planning

5 System approach to Urban Transport Planning contd.

6 System approach to Urban Transport Planning contd.

7 System approach to Urban Transport Planning contd.

STAGES IN URBAN TRANSPORT PLANNING

8 Introduction to Stages In Urban Transport Planning

9 Trip generation

10 Trip production

11 Trip distribution

12 Trip distribution

13 Model split

14 Trip assignment

URBAN TRANSPORT SURVEY

15 Introduction to Urban Transport Survey

16 Definition of study area, factors effecting selection of Cordon line.

17 Zoning, factors effecting zoning

18 Types of surveys: Home interview surveys, Commercial vehicle survey

19 Types of surveys: Taxi survey, Road – side interview survey, Post card questionnaire survey

20 Types of surveys: Taxi survey, Road – side interview survey, Post card questionnaire survey

21 Types of surveys: Registration survey, tag survey, Public Transport survey

22 Types of surveys: Registration survey, tag survey, Public Transport survey

23 Inventory of transport facilities

24 Expansion of data from sample.

TRIP GENERATION

25 Trip purpose

26 Factors governing trip generation and attraction

27 Multiple Linear regression analysis

28 Category analysis

29 Problems on above

30 Problems on above

Page 117: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 117 MVJCE

Hour No. Topic to be covered

TRIP DISTRIBUTION

31 Methods to Trip distribution

32 Growth factor methods

33 Synthetic methods

34 Fratar Method and Furness method

35 Problems

36 Problems

MODEL SPLIT

37 Factors affecting model split

38 Characteristic of split

39 Model split in Urban Transport Planning

40 Model split in Urban Transport Planning

41 Problem

42 Problem

43 Problem

TRIP ASSIGNMENT

44 Assignment techniques

45 Traffic forecasting

46 Land use transport models

47 Lowry model

48 Lowry model

49 Garin Lowry model

50 Garin Lowry model

51 application in India.( no problems )

52 application in India.( no problems )

53 application in India. .( no problems )

URBAN TRANSPORT PLANNING FOR SMALL AND MEDIUM CITIE S

54 Introduction

55 Difficulties in Transport planning

56 Difficulties in Transport planning

57 Difficulties in Transport planning

58 Difficulties in Transport planning

59 Recent studies

60 Recent studies

61 Recent studies

62 Recent studies

Page 118: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 118 MVJCE

QUESTION BANK

INTRODUCTION 1. Adopt system approach of UTP in order to develop a workable solution to reduce

congestion at ‘Hope form’ junction, whitefield, bangalore-560067. 2. Write a report on the effect of construction of the Peripheral ring road in Bangalore on

Land-use and demographic patterns in the city. 3. With the help of flow chart briefly explain the ‘system approach’ to Urban Transport

System. 4. With the help of flow chart briefly explain the ‘rational approach’ to Urban Transport

System 5. With the help of flow chart briefly explain the ‘planning process’ to Urban Transport

System 6. Explain the interdependence of land use and traffic. 7. What is land use - traffic cycle.

STAGES IN URBAN TRANSPORT PLANNING

1. Explain how the various stages planned in the transportation process. 2. Indicate the importance of trip generation, trip attraction, trip distribution and model split

process with their definitions. 3. Explain briefly the following stages in Urban Transport planning

a. Definition of transport goals and objective. b. Identification of needs c. Generation of alternative plans d. Evaluation of alternative plans e. Selection and implementation of alternative plan. f. The continuing process

4. Explain how the different alternatives are evaluated for a. Financial feasibility b. Economic impact c. Technicality d. Land use and demographic impact analysis. e. Environmental impact analysis

URBAN TRANSPORT SURVEY

1. List and explain various stages of Urban Transport Survey. 2. Define Study area? Define ‘External Cordon Line’. What are the factors considered for

fixing the external cordon line? 3. Explain Zoning. What are internal zones, external zones and Central Business District

(CBD). 4. Define ‘zone’. Mention the factors to be considered while dividing Study area in Zones. 5. List the various surveys that are carried out in transport planning process? Explain each

of them. 6. Indicate the various inventories of transport facility. State how the data from sample is

expanded. 7. Explain how ‘Sequential Demand Analysis’ forecasts the Traffic data. 8. Indicate the various inventories of transport facility. State how the data from sample is

expanded. 9. Write short notes on:

a. Inventory of transport facilities. b. Inventory of land use and economic activities.

Page 119: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 119 MVJCE

TRIP GENERATION 1. Define the terms: trip, home based trip, non-home based trip, trip end, trip purpose, 2. Define Trip Generation? Discuss briefly the various factors that govern trip generation. 3. Classify the Category analysis stating the assumptions, advantages and disadvantages. 4. Clearly indicate the various advantages and disadvantages of category analysis

technique. 5. Write short notes on

a. Criteria for evaluation of regression equation. b. Assumptions made in multiple linear regression analysis.

6. What is Multiple Linear Analysis? What are its assumptions and disadvantages?

TRIP DISTRIBUTION 1. Define ‘ Trip Distribution’. 2. List the methods available for trip distribution estimation for future. 3. Explain Uniform factor method of trip distribution. 4. Explain Fratar method of predicting future interzonal movements by successive

approximations.

MODEL SPLIT

1. List and briefly explain the various factors affecting modal split. 2. Explain briefly the various developments in modal split analysis.

TRIP ASSIGNMENT

1. Define ‘Trip Assignment’ Explain the various applications of trip assignment. 2. State the purpose for trip assignment. 3. Explain methods of assignment techniques. 4. Briefly bring out the improvements suggested in the Garin-Lowry model 5. Explain clearly the Lowery model and state whether it can be applied to Indian

condition. Why? 6. sketch the minimum path tree method commonly employed in assignment studies.

URBAN TRANSPORT PLANNING FOR SMALL AND MEDIUM CITIE S 1. What are the factors that govern the planning process for small and medium cities? How

those factors are taken care? 2. State the methods in planning medium sized cities.

Write short notes

1. Grain-Lowry model 2. Diversion curves 3. all – or – nothing assignment 4. Uniform factor method 5. Difficulties in transport planning

Page 120: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 120 MVJCE

PROBLEMS TRIP GENERATION

1. Establish the relationship between house hold size and car ownership for the data.

Howse hold (in lakhs) 5 8 12 18 25 Car ownership (in 1000’s) 26 34 42 61 74

TRIP DISTRIBUTION

1. Obtain the future trip table by a. Uniform Growth Factor b. Average growth factor

O D

1 2 3 4 GF

1 40 40 40 30 Fi1 2 20 20 30 20 Fi2 3 40 30 50 60 Fi3 4 20 10 30 20 Fi4

GF Fj1 Fj2 Fj3 Fj4

2. The growth factors can be obtained from the matrix given below. Zones 1 2 3 4 Trips produced Present 150 90 180 80

Future 300 170 270 240 Trips attracted Present 120 100 150 130

Future 180 300 300 200 3. The total trips produced in and attracted to the three zones A,B,C of a survey area in the design year are tabulated as:

Zone Trips produced Trips attracted

A 2000 3000 B 3000 4000 C 4000 2000

It is known that the trips between two zones are inversely proportional to the second power of the travel time between zones, which is uniformly 20 minutes. If the trip interchange between zones B and C is known to be 600, calculate the trip interchange between A and b, A and C, Band A, C and B.

TRIP ASSIGNMENT 4. In order to relieve congestion on an urban street network a motorway is prodused to be

constructed. The travel time from one zone centroid to another via the proposed motorway is estimated to be 10 minutes whereas the time for the same travel via the existing streets is 18minutes. The flow between the two zone centroids is 1000 vehicles per hour. Assign the flow between the new motorway and existing streets.

MODEL SPLIT

5. Determine the best mode using the data, when the weightages for cost, invehicle travel time (IVTT) and out of vehicle travel time (OVTT) are –1, -4 and –2.

Rail Truck Cost 4 Rs/ ton 5 Rs / ton IVTT 2.5 days 2 days OVTT 1 day 0.3 day

Page 121: SCHEME OF TEACHING & EXAMINATION year.pdf06 Factors affecting dry weather flow. 07 Flow variations and their effects on design of various components of sewage scheme 08 Computation

CIVIL ENGINEERING FINAL YEAR COURSE DIARY

PAGE 121 MVJCE