schwinger effect in curved spacetimes

37
Schwinger Effect in Curved Spacetimes Sang Pyo Kim Kunsan National University Black Holes’ New Horizons CMO, Oaxaca, May 15-19, 2016

Upload: others

Post on 25-Feb-2022

25 views

Category:

Documents


0 download

TRANSCRIPT

Schwinger Effect in Curved

Spacetimes

Sang Pyo KimKunsan National University

Black Holes’ New Horizons

CMO, Oaxaca, May 15-19, 2016

Outline

• Why Schwinger Effect in Curved Spacetimes?

• Perturbation Theory & Borel Summation &

Vacuum Persistence Amplitude

• Effective Actions in In-Out Formalism

• Reconstructing Effective Action

• QED in (anti-) de Sitter Space

• Schwinger Effect in Near-extremal RN BHs

• Schwinger Effect in Near-extremal KN BHs

• Conclusion

Why Schwinger Effect in Curved

Spacetimes?

What is Schwinger Effect?

• Constant E-field changes energy

spectra in Minkowski spacetime:

• Spontaneous creation of a particle-

antiparticle pair from the Dirac sea

(quantum mechanical tunneling)

• Critical (Schwinger) field to

energetically separate the pair

22 mpxeE

2mcmc

eEc

m

qE

πT,

T

mN S

S

S2

1

2exp

Schwinger Effect in Charged Black HolesZaumen (‘74)

Carter (‘74)

Gibbons (‘75)

Damour, Ruffini (‘76)

Khriplovich (‘99)

Gabriel (‘01)

SPK, Page (‘04), (‘05), (‘08)

Ruffini, Vereshchagin, Xue (‘10)

Chen, SPK, Lin, Sun, Wu (‘12); Chen, Sun, Tang, Tsai (‘15)

Ruffini, Wu, Xue (‘13)

SPK (‘13)

Cai, SPK (‘14)

SPK, Lee, Yoon (‘15); SPK (‘15)

Chen, SPK, Tang, Kerr-Newman BH, in preparation (‘16)

Why Schwinger Effect in (A)dS2?Near-Horizon Geometry of RN BHs

RN Black Holes

Near-extremal BH

AdS2S2

NonextremalBH

Rindler2 S2

Rotating BH in dS

S-scalar wave

QED in dS2

Near-horizon Geometry of Near-extremal

RN BH

Inner Outer Horizons

AdS2S2

G. t’Hooft & A. Strominger, “conformal symmetry near the

horizon of BH,” MG14, July 2015.

magnification

Schwinger Effect in (A)dS[Cai, SPK (‘14)]

Vacuum

Fluctuations

QEDSchwinger

Effect/ Unruh Effect

de SitterGibbons-Hawking Radiation

Effective Temperature for

Unruh Effect in (A)dS[Narnhofer, Peter, Thirring (‘96); Deser, Levin (‘97)]

Effective Temperature

Unruh Effect

TU = a/2

(A)dSR = 2H2

or -2K2

2

2

Ueff8

RTT

Perturbation Theory & Borel

Summation & Vacuum Persistence

Borel Summation

• Large-order perturbation theory may have a divergent

power series with the asymptotic form with three real

constant , >0 and [Le Guillou, Zinn-Justin (‘90)]

• Leading Borel approximation for alternating case (+ sign)/

nonalternating case ( sign) and vacuum persistence

)(,)()1()(00

ngngagf n

n

nn

n

n

n

/1/

/1/

0

1exp

1)(Im

exp1

11)(

gggf

g

s

g

s

ss

dsgf

Borel Summation

• Heisenberg-Euler-Schwinger QED action in a constant

electric field E

• Borel summation leads to the vacuum persistence in a

constant electric field E [one-loop by Dunne, Hall (‘99);

two-loop by Dunne, Schubert (‘00)]

• Borel summation of real effective action for dS (AdS) and

vacuum persistence for Gibbons-Hawking radiation

[Dunne, Das (’06)]

2

2424226

24)1( ,

3

1

2

11

)22(

41

m

eEg

ngma

nnn

n

n

eE

πkm

km

eE

π

m(E)L

k

eff

2

12

2

23

4

exp1

4Im2

Perturbative QED Action in Curved Spacetime[Davila, Schubert (‘10)]

Borel summation? Find large-order perturbation for vacuum persistence!

Effective Actions in In-Out

Formalism

In-Out Formalism for QED Actions

• In the in-out formalism, the vacuum persistence amplitude

gives the effective action [Schwinger (‘51); DeWitt (‘75), (‘03)]

and is equivalent to the Feynman integral

=

• The complex effective action and the vacuum persistence for

particle production

in0,|out0,eff

2/1)(

xLdgDiiW ee

k

Im22

)1ln(Im2,in0,|out0, k

W NVTWe

Effective Actions at T=0 & T

• Zero-temperature effective actions in proper-time integral

via the gamma-function regularization [SPK, Lee, Yoon (‘08),

(‘10); SPK (‘11)]; gamma-function & zeta-function

regularization [SPK, Lee (‘14)]; quantum kinematic

approach [Bastianelli, SPK, Schubert, in preparation (’16)]

• finite-temperature effective action [SPK, Lee, Yoon (‘09),

(‘10)]

kk

*

k )k(lnln ll

l

ibaiiW

)(Tr

)(Trin,0,in,0,exp

in

ineff

3

UUxdtLdi

-Regularization

• Assumption: Bogoliubov coefficients of the form

• The effective action from Schwinger variational

principle

• The integral representation for gamma-function

)(

)(;

)(

)(

ikh

igf

idc

ibakk

away regulated be totermsedrenormaliz be toterm

)(

0)1(

11)(ln z

z

z

z

zibaz

eibae

e

e

e

z

dziba

k

*

keff lnin0,|out0,ln iiW

-Regularization• -regularization [SPK, Lee, Yoon (‘08), (‘10); SPK

(10), (‘11)]

• The Cauchy residue theorem

epersistenc vacuum

1

)2)((

onpolarizati vacuum

0

))((

0

)(

211

n

iniba

is

isiba

z

ziba

in

ei

e

e

s

dsP

e

e

z

dz

Reconstructing Effective Action

Conjecture

• Can one find the effective action from the pair-production

rate? inverse procedure of Borel summation (Gies, SPK,

Schubert)

• If the imaginary part (vacuum persistence) of the effective

action can be factorized into a product of one plus or one

minus exponential factors, then the structure of simple poles

and their residues of these factors uniquely determine the

analytical structure of the proper-time integrand of the

effective action (vacuum polarization) (modulo entire

function independent of renormalization via Mittag-Leffler

theorem):

states }{stateseff )1ln()()1ln()Im(2

}{

I

S I

eNL

Reconstructing Effective Action

from Pair-Production Rate

• Scalar/Spinor effective action (Real part) vs Imaginary part

(Cauchy theorem vs Mittag-Leffler theorem/Borel

summation)

• Most of imaginary parts from the pair-production rate

(Schwinger formula in E & B, Bose-Einstein or Fermi-Dirac

distribution) can be written as a sum of the form

10 2

1

1

0 2

11ln

3

1

sin

cos

)1(1ln

6

1

sin

1

n

SnSSs

n

Snn

SSs

en

ieis

ss

s

s

edsP

en

ieis

sss

edsP

}{}{states

eff )1ln()1ln()Im(2}{}{

II

R

I

S III

eeL

QED in (A)dS

Schwinger formula in (A)dS

• (A)dS metric and the gauge potential for E

• Schwinger formula (mean number) for scalars in dS2

[Garriga (‘94); SPK, Page (‘08)] and in AdS2 [Pioline, Troost

(‘05); SPK, Page (‘08)]

)1)(/(,

)1)(/(,

0

2222

1

2222

KxKx

HtHt

eKEAdxdteds

eHEAdxedtds

2

2

2

2

22

16211

42

,

qE

R

qE

Rm

m

R

qE

mSeN S

Effective Temperature for

Schwinger formula• Effective temperature for accelerating observer in (A)dS

[Narnhofer, Peter, Thirring (‘96); Deser, Levin (‘97)]

• Effective temperature for Schwinger formula in (A)dS

[Cai, SPK (‘14)]

)2(,2,8

, 22

2

2

Ueff

/ eff KHRR

TTeNTm

U2

2

UAdSU

2

GH

2

UdS

GHU

2/

8;

2,

2

/,

8,eff

TR

TTTTTT

HT

mqET

RmmeN

Tm

Scalar QED Action in dS2• Mean number for pair production and vacuum polarization

from the in-out formalism [Cai, SPK (‘14)]

2

22

2

/

0

nsubtractio Schwinger

2/)(2

(1)

dS

dS

)1(

dS2

2)(

dS

2,4

12

6

2

)2/sin(

)2/cos(

12

2

)2/sin(

1

22

1lnIm2,1

H

qES

H

m

H

qES

s

ss

se

s

sse

s

dsP

SHL

NWe

eeN

sS

sSS

S

SSS

Scalar QED Action in AdS2

• Mean number for pair production and vacuum polarization

2

22

2

0

2/2

(1)

AdS

AdS

)1(

AdS)(

)()(

AdS

2,4

12

12

2

)2/sin(

1)2/cosh(

22

1lnIm2,1

K

qES

K

m

K

qES

s

sssSe

s

dsP

SKL

NWe

eeN

sS

SS

SSSS

Spinor QED Action in dS2

• Mean number for pairs and vacuum polarization [SPK (‘15)]

2

22

2

0

/2/)(2

sp

dS

sp

ds

)1(

dS2

2)(

sp

ds

2,2

6

2)

2cot(

2

1lnIm2,1

H

qES

H

m

H

qES

s

s

see

s

dsP

SHL

NWe

eeN

sSsSS

S

SSS

Spinor QED Action in AdS2

• Mean number for pairs and vacuum polarization

2

22

2

0

2/)(2/)(2

sp

AdS

sp

AdS

sp

AdS)(

)()(sp

AdS

2,2

6

2)

2cot(

2

1lnIm2,1

K

qES

K

m

K

qES

s

s

see

s

dsP

SKL

NWe

eeN

sSSsSS

SS

SSSS

Schwinger Effect in D-dimensional dS

• The Schwinger effect in a constant E in a D-dimensional dS

should be independent of 𝑡 and 𝑥 due to the symmetry of

spacetime and the field, and the integration of 𝑘 gives the

density of states D.

• dS radiation in E=0 limit and Schwinger effect in H=0 limit

222

222

2

2

2)(

2

22

1

dS

/

/2,

2

12

1)2(22

12

kHqE

HqE

H

qES

D

H

m

H

qES

e

eekdSH

xdtd

NdS

SSS

D

D

D

D

Schwinger Effect in Near-

extremal RN Black Hole

Interpretation of Schwinger Effect

• Thermal interpretation of Schwinger formula for

charged scalars (upper signs) and fermions (lower signs)

in spherical harmonics [SPK, Lee, Yoon (‘15)]

Qm

qmqET

QTTT

QTTT

e

e

e

eeN

HU

UURNUURN

T

m

T

qA

T

qA

T

m

T

m

T

m

NBH

RNH

H

RN

RNRN

22

/

)2

1(,)

2

1(

,

1

1

1

2222

)( 0

0

Schwinger Effect and Hawking

Radiation• Thermal interpretation of Schwinger formula for charged

scalars and fermions [SPK, Lee, Yoon (‘15); SPK (‘15)]

charges ofRadiation Hawking('00) AP Spindel & Gabriel

SpaceRindler in Effect Schwinger ('14) JHEPSPK & Cai

AdSin Effect Schwinger

0

0

2

1

)1(

1

RNH

HRN

RN

RNRN

RN

T

m

T

qA

T

qA

T

m

T

m

T

m

T

m

T

m

NBH

ee

ee

e

eeeN

Schwinger Effect in Near-

extremal Kerr-Newman BH

Chen, SPK, Tang, in preparation (‘16)

Near-Horizon Geometry

• Kerr-Newman (KN) black hole: 𝑀,𝑄, 𝑎 =𝐽

𝑀; 𝑟0

2 ≡ 𝑄2 + 𝑎2

• Near-horizon geometry warped AdS2 of near-extremal KN

BH

dar

arrdt

ar

arQA

rdtar

ard

ar

ar

dBr

drdtBrards

r

BrMt

artt

ar

arrr

222

0

2

0

222

0

222

0

2

22

0

0

222

0

222

0

2

22

2222222

0

2

0

2

0

22

0

22

0

0

cos

sin

cos

cos

,2

cos

sin

cos

2,,,

Schwinger Effect for Charged Scalars

• Schwinger formula for charged scalars in spheroidal

harmonics in near-extremal KN BH

BS

armS

Sar

narqQS

e

e

e

eeN

c

aba

SS

SS

SS

SSSS

NKNbc

ac

ba

baba

2

,4

1

22,

22

,1

1

1

22

0

2

2

22

0

0

3

)(

)(

)(

)()(

Interpretation of Schwinger Effect• Thermal interpretation of Schwinger formula for charged

scalars in spheroidal harmonics in near-extremal KN BH

BH KN extremal-Nearfor Factor BH KN Extremal

1

1

1

MH

t

MH

t

KN

KNKN

T

m

T

T

m

T

T

m

T

m

T

m

NKN

e

e

e

eeN

22

0

222

0

222

0

0

3

2

2

2

2

4/11,

2,

2

2

112,

112

8,

8

armm

arR

arm

narqQT

TTTTTT

RTTT

RTTT

U

KNKNMKNKNM

UUKNUUKN

Conclusion• The in-out formalism is consistent and systematic QFT

method for vacuum polarization and vacuum persistence in

backgrounds (gauge and/or curved spacetimes) [cf. worldline

formalism and instanton in progress with Schubert.]

• The vacuum polarization of QED in (A)dS and near-extremal

RN black hole exhibits the gravity-gauge relation (or

AdS/CFT).

• The production of charged particles from an near-extremal

RN and Kerr-Newman black hole shows a strong interplay of

the Schwinger effect and the Hawking radiation and may

have a thermal interpretation.