sci. living sys.trascription unit i sck_21.01.15 (1)

Upload: maimslap

Post on 06-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    1/87

     Overview of transcription, translation and

    recombinant DNA technology

    S. C. Kundu

    Department of Biotechnology

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    2/87

    Eukaryotic cells

    with a nucleus

    • Nucleus

    • Mitochondria• Chloroplast• Ribosomes• RER• SER• Golgi body• Cytoplasm

    • acuoles

    Prokaryotic cells

    without a nucleus

    • Cytoplasm

    • Ribosomes• Nuclear !one• DN"• #lasmid• Cell Membrane• Mesosome• Cell $all

    • Capsule %or slime layer&• 'lagellum

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    3/87

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    4/87

    DN" consists of t(o strands running anti)parallel and formingdouble hellical structure

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    5/87

    RN"• RN" is a polymer of ribonucleotides that contain ribose rather than

    deo*yribose sugars.

    • +he normal base composition is made up of guanine, adenine, cytosine,and uracil

    •  RN" is found in nucleus and cytoplasm

    • +ypes of RN" - Messenger RN" %mRN"&

      Ribosomal RN" % rRN"&  +ransfer RN" %tRN"&

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    6/87

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    7/87

    'ormation of the peptide bond

    O

    N!

    "#O

    O

    N!

    "!O

    +(o amino acid molecules4

    the nature of the R group %R5 

    and R/& determines the amino

    acid

    O

    N!

    "#

    O

    O

    N!

    "!

    O

    +he molecules must be

    orientated so that the

    carbo*ylic acid group of one

    can react (ith the amine group 

    of the other 

    O

    N!

    "#N

    O

    "!

    O

    O!

    +he peptide bond forms (ith

    the elimination of a (ater

    molecule.

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    8/87

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    9/87

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    10/87

    SG

    Y

    A

    V

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    11/87

    The levels of protein structure

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    12/87

    DNA

    mRNA

    Transcription

    +he Central Dogma of Molecular Biology

    Cell

    Polypeptide

    (protein)

    Translation   Ribosome

    +his describes the flo( of information from DN" into RN" %most commonly

    mRN"& through transcription %copying the same code from one molecule to

    another&, and then e*pressing the code into a functional molecule by

    translation %con3erting from a nucleic acid code into an amino acid code&.

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    13/87

    +R"NSCR6#+60N "ND +R"NS7"+60N-

    #ro8aryotic 3s Eu8aryotic

    SE#"R"+E C0M#"R+MEN+SC09#7ED

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    14/87

    7

    Prokaryotic Gene Structure

    Promoter CDS erminator

    transcription

    Genomic DNA

    mRNA

     protein

    !R !R 

    translation

    #romoter is a DN" se:uence usually present upstream of coding regions

    (here RN" polymerase binds to initiates transcription.

    Gene is the structural and

    functional unit of heridity,

    (hich carry genetic

    information from onegeneration to ne*t. 6n

    molecular terms Gene is a

    part of chromosomes

    %DN"&, (hich codes for

    functional RN" or protein

     Gene transcription in pro8aryotes

    9+R %9ntranslated se:uences&- ;2 9+R contains ribosome binding sitesfor protein synthesis4

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    15/87

    RN" transcript is complementary

    to template strand and identical

    to coding strand

    "e$uirement for transcription in

    prokaryotesGene or DN" to be transcribed, RN" polymerase, rN+#sand cellular en3ironment

    Di""erent genes are transcribed "rom di""erent strands

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    16/87

    Bacterium has

    one RN"

    polymerase tosynthesi=e all

    three RN"-

    %mRN", rRN",

    tRN"&

    RN" polymerase binds to promoter of a gene to initiate transcription

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    17/87

    1

    Promoter 

    ! Promoters se"uences can vary tremen#ously$

    ! RNA polymerase reco%ni&es hun#re#s of

    #ifferent promoters

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    18/87

    Stages of +ranscription

    • Chain 6nitiation 

    • Chain Elongation

    • Chain +ermination

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    19/87

    Bacterial +ranscription 6nitiation

    • #romoter recognition by RN" polymerase

    > 'ormation of +ranscription Bubble by separating DN"

    strands

    > Bond formation bet(een rN+#s to start RN" synthesis

    > Escape of transcription apparatus from promoter 

    RN" # l fi d t d 6 iti t

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    20/87

    o( RN" #olymerase finds promoter and 6nitiates

    +ranscription

    •Core en=yme can synthesi=e RN" on a DN" template but cannot initiate

    transcription.

    •Core polymerase loosely binds at random sites in DN" (ithout

    discriminating promoter and other se:uences.

    •Binding of sigma in the polymerase %holoen=yme& reduced its ability to

    loose binding sites, and the en=ymes mo3es along the DN".

    •$hen it reaches the promoter se:uences, sigma factor recogni=e

    specifically )

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    21/87

    Finding and bindingthe promoter

    Closed complex

    formation

    RNAP bound -40 to

    +20

    Open complexformation

    RNAP unwinds from-10 to +2

    Binding of 1st NTPRequires highpurine[NTP]

    Addition of next NTPs

    Requires lower

    purine[NTPs]

    Dissociation of sigmaAfter RNA chainis 6-10 NTPslong

    initiation

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    22/87

    %ubse$uent

    hydrolysis of PPi drives the

    reaction forward

    "NA strand

    0.

    0.

    DNA strand

    RN" Synthesis is in the ;# to

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    23/87

    RNA polymeraseelongation

    '()*+(,-1./*0*0 *233*4

    •During Elongation

    RN" polymerase

    un(inds DN" ahead

    of it, transcribe theregion and re(inds

    the DN" at the bac8

    and RN" comes out

    of the comple*.

    •+ranscription occursin the +ranscription•Bubble at the rate of

    ;@ ntsec.

    •Elongation continuestill Core en=ymes

    reaches the

    terminator

    se:uences.

    • 

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    24/87

    +ranscription +ermination

     +ranscription ends after a terminator is transcribed

    >

    +(o types of terminators in bacteria-

     & Rho)dependent terminators

     & Rho)independent terminators

    7

    Prokaryotic Gene Structure

    Promoter CDS erminator

    transcription

    Ge nomic DNA

    mRNA

     protein

    !R !R 

    translation

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    25/87

    Rho-Independent TranscriptionTermination

    (depends on DNA sequence -NOT a protein factor)

    Stem-loop structure

    $hen a nascent RN" transcript contains a series of 9 residues at the

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    26/87

    Rho independent transcription termination

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    27/87

    +he termination function of factor 

    +he factor, a he*amer, is a "+#ase

    and a helicase.

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    28/87

    Rho-Dependent Transcription Termination(depends on a protein AND a DNA sequence)

    G/C -rich site

    RNAP slows down

    Rho helicasecatches up

    Elongating complex is disrupted

    5& Rho binds astretch of GC rich

    se:uence of

    nacent RN"

    upstream of the

    terminator .

    /& Rho acts as

    he*amer, brea8s

    "+# and (ith the

    energy mo3es

    through RN" tocatch DN")RN"

    hybrid and

    polymerase

    comple* and

    terminates

    transcription.

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    29/87

    Lactose operon: a regulatory gene and 3stuctural genes, and 2 control elements

    lac$

    Regulatory gene

    lacZ    lacY    lacA   DNA

    m%RNA

    &%'alactosidase

    Permease

    ransacetylase

    Protein

    Structural 'enesCis%actingelements

    P lac 6 P lac O lac 

    The Lac operon

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    30/87

    5. $hen lactose is absent 

    •  A repressor protein is continuously synthesi'ed( )t sits ona se$uence of DNA *ust in the lac  operon, the 0perator  site 

    • +he repressor protein blocks the #romoter  site where

    the "NA polymerase settles before it starts transcribing

    Re%ulator

    %ene  lac operon

    5perator

    site

    y aDN"

    $ O

    Repressor

    protein

    RNA

    polymeraseloc*ed

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    31/87

    /. $hen lactose is present 

    •  A small amount of a sugar allolactose is formed within

    the bacterial cell( +his fits onto the repressor protein atanother active site allosteric site-

    • +his causes the repressor protein to change its shape a conformational change-( )t can no longer sit on the

    operator site( "NA polymerase can now reach itspromoter site and initiates transcription(

    Promotor site

    y aDN"

    $   O

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    32/87

      Eu8aryotic transcription is much complicated

    +hree different polymerases-

    RN" polymerase 6- synthesi=es rRN" in the nucleolus.

    RN" polymerase 66- synthesi=es mRN" in the nucleoplasm.

    RN" polymerase 666- synthesi=es tRN", ;S rRN", small RN"s in the nucleoplasm

    "ll eu8aryotic RN" polymerases ha3e 5/)5 subunits %aggregates of H;@@ 8D&.

    Some subunits are common to all three RN" polymerases such as +B#.

    Multiple promoter types -+"+" Bo*, 6nitiator elements,

    CpG island for pol 6&,

    core elements,

    upstream core elements %pol 6&,%" bo*, B Bo*, C Bo* for pol 666&

    •Each RN" polymerase recogni=es its o(n promoter 

    •Many proteins %transcription factors& are in3ol3ed in promoter

    recognition by RN" #olymerase

    Eu8aryotic +ranscription

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    33/87

    6

    7ukaryotic Gene Structure

    +# % Promoter ,xon- $ntron- ,xon. erminator / 0#

    !R splice splice !R

    transcription

    translation

    Poly A

     protein

    7ukaryote Promoter 8Pol 99:

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    34/87

    +ranscription by #olymerase 66

    +hree Steps-

    6ntiation-

      Binding of transcription factors and #ol 66 to promoter,DN" strand separation and beginning of RN" synthesis.

     

    Elongation-

      Continuous process of RN" synthesis by RN" pol 66.

    +ermination-

      Ending of transcription after transcribing a poly " signalse:uence.

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    35/87

    + i i i i

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    36/87

    +ranscription termination

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    37/87

    )n eukaryotes, the primary transcript pre m"NA- must be

    modified by.

     & addition of a ;2 cap

     & addition of a

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    38/87

    ppp;JNpNp

    pp;J

    NpNp

    G+#

    ##i

    G;J

    ppp;J

    NpNp

    methylating at '1

    methylating at C.J o" the

    "irst and second

    nucleotides a"ter '

    "orming +2%+2

    triphosphate group

    remo3ing

     

    phosphate group

    mGpppNpNp

    mGpppm

    /JNpm

    /JNp

    #i

    Capping at ;2 end of mRN"

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    39/87

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    40/87

    ! pA ' p!+2 02+2exon 02exon

    intron

    p'%O4

    p'pA

    ' p!   02!+2   O4

    first transesterification

    +(ice transesterification

    second transesterification

    !+2 p! 02

    p'pA

    'O4

    +2

    02

    Splicing mechanism

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    41/87

    DNA

    ;ytoplasm

     Nucleus

    Eukaryotic +ranscription

    ,xport

    G AAAAAA

    RNA

    ranscription

     Nuclear

     pores

    G AAAAAA

    RNAProcessing

    mRNA

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    42/87

    !  http566777%class8unl8edu6biochem6gp.6m

     9biology6animation6gene6gene9a.8html

    http://www-class.unl.edu/biochem/gp2/m_biology/animation/gene/gene_a2.htmlhttp://www-class.unl.edu/biochem/gp2/m_biology/animation/gene/gene_a2.htmlhttp://www-class.unl.edu/biochem/gp2/m_biology/animation/gene/gene_a2.htmlhttp://www-class.unl.edu/biochem/gp2/m_biology/animation/gene/gene_a2.html

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    43/87

    +ranslation is the process of decoding a m"NAmolecule into a polypeptide chain or  protein

    +ranslation- #rotein synthesis

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    44/87

    •Transcription and translation ineukaryotic cells are separated inspace and time. Extensive processing of primaryRNA transcripts in eukaryotic cells.

    +ranslation

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    45/87

    +ranslation

      )t is process of protein synthesis assembly of amino

    acids- using m"NA as template with the help of t"NAand ribosomes r"NA with several proteins-(

    +herefore, it re$uires the participation of multiple types

    of "NAs.

    • messenger RN" %mRN"& carries the information from DNA thatencodes proteins

    • ribosomal RN" %rRN"& is a structural component of theribosome

    • transfer RN" %tRN"& carries amino acids to the ribosome fortranslation

    +h G ti C d

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    46/87

    +he Genetic Code

      +he genetic code is the (ay in (hich the nucleotide se:uence innucleic acids specifies the amino acid se:uence in proteins.

    " codon is a set of < nucleotides that specifies a particular aminoacid.

    +herefore, mRN" carries information from DN" in a three letter

    genetic code.

    • " three)letter code is used because there are /@ different aminoacids that are used to ma8e proteins.

    • 6f a t(o)letter code (ere used there (ould not be enough codons to

    select all /@ amino acids.

    • +hat is, there are ? bases in RN", so ?/ %?* ?&54

    (here as for < lettered code the number is ?

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    47/87

     S                                                                    

    A                                  ;                                   ?                                  >                                 5                                  N                                  7                                  

    >                                  A                                  

     S                                    7                                   

     S                                   

    4

    P  O

    O

    4O

    O

    O

    C4.N4.N

    N4

    N

    N

    4O4

    P

    O

    O

    4O

    O

    O

    C4.

    N4.

    N

    N

    N

    N

    4

    P

    O

    O4

    4O

    O

    O

    C4.

    N4.

    N

    NN

    N

    O

     A 1odon

    Guanine

    A#enine

    A#enine

    Ar%inine

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    48/87

    GENE+6C C0DE

    +herefore, there is a total of ? codons (ith mRN", 5

    specify particular amino acid.

    +he remaining three codons %9"", 9"G, L 9G"& are stop

    codons, (hich signify the end of a polypeptide chain%protein&.

     +his means there are more than one codon for each of

    the /@ amino acids.

    Besides selecting the amino acid methionine, the codon

    "9G also ser3es as the initiator codon, (hich starts

    the synthesis of a protein

    Deciphering the Genetic code

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    49/87

    p g

    Marshall Nirenberg, Khorana and their collegues deciphered the genetic code by

    adding homopolymers such as 999, """, CCC, or co)polymers such as "C",

    C"", ""C of synthetic nucleotide triplets to cell e*tracts containing /@ amino

    acyl tRN", (hich are capable of limited translation.6n each e*pt. one amino acid is radioacti3ely labeled and rest 5 are unlabeled

    and the reaction mi*ture are passed through filter. Since, ribosomes binds to filter

    if the added trinucleotide caused the labeled aminoacyl tRN" to the ribosome,

    then radioacti3ity (ould be detected on the filter %positi3e test& other(ise label

    (ill pass through)a negati3e test)bind filter 

    RN" t i d hi h d f i id

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    50/87

    mRN" contains codons, (hich code for amino acids(

    tRN" ) +ransfer RN"(

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    51/87

    Each tRN" molecule has / important sites of attachment.

    •"nticodon binds to the codon on the mRN" molecule.

    •"mino acid acceptor site attaches to a particular amino acid.

    During protein synthesis, the anticodon of a tRN" molecule

    base pairs (ith the appropriate mRN" codon.

    t"NA Activation

    tRNAStructure

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    52/87

    tRNA Structure

    Aminoacyl tRNA synthetase

    +here are !2 different aminoacyl t"NA synthetases, one for each amino acid(

    Rib

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    53/87

    Ribosome

    • Are made up of ! subunits, a large one and a smaller one,

    each subunit contains ribosomal RN" %rRN"& L proteins(

    • Protein synthesis starts when the t(o subunits bind tomRN"(

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    54/87

      +he ribosome hasmultiple t"NA bindingsites.

     & # site & binds the t"NAattached to the growingpeptide chain

     & " site & binds the t"NAcarrying the ne0t aminoacid

     & E site & binds the t"NAthat carried the last aminoacid

    T lti h 3St h ii

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    55/87

    Translation has 3 Steps, each requiringdifferent supporting proteins

    •Initiation

    –Requires Initiation Factors

    •Elongation

    –Requires Elongation Factors

    •Termination

    –Requires Termination Factor

    I

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    56/87

    Initiation:

    1. Binding of initiationfactors to small subunit.Of ribosome andattachment to mRNA

     2. Binding of first tRNAto mRNA attached tosmall subunit.

     3. Binding of largesubunit.

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    57/87

    First step in elongation

    (bacteria ):

     Binding of the secondaminoacyl-tRNA 

    S d t i

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    58/87

    Second step in

    elongation:

    Formation of the first

     peptide bond  

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    59/87

    hird step in elongation:

     translocation 

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    60/87

    A7

    Large

    subunitP

    Small

    subunit

    +ranslation / )nitiation

    ":et

    !AC

    'A'888C!%A!'%%!!C%%C!!%%A'!%%''!%%A'A%%'C!%%'!A%%!'A%A 'CA888AAAAAA@mRNA

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    61/87

    A7

    Ribosome P ! C ! 

    Arg

    Aminoacyl tRNA

    PheLeu

    :et

    Ser

    'ly

    Polypeptide

    CCA

    +ranslation / Elongation

    'A'888C!%A!'%%!!C%%C!!%%A'!%%''!%%A'A%%'C!%%'!A%%!'A%A 'CA888AAAAAA@mRNA

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    62/87

    A7

    Ribosome P

    PheLeu

    :et

    Ser

    'ly

    Polypeptide

    Arg

    Aminoacyl tRNA

    !C!CCA

    +ranslation / Elongation

    'A'888C!%A!'%%!!C%%C!!%%A'!%%''!%%A'A%%'C!%%'!A%%!'A%A 'CA888AAAAAA@mRNA

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    63/87

    A7

    Ribosome P

    CCA

    Arg

    !C!

    PheLeu

    :et

    Ser

    'ly

    Polypeptide

    +ranslation / Elongation

    'A'888C!%A!'%%!!C%%C!!%%A'!%%''!%%A'A%%'C!%%'!A%%!'A%A 'CA888AAAAAA@mRNA

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    64/87

    A7

    Ribosome P

    +ranslation / Elongation

    Aminoacyl tRNA

    C ' A

    Ala

    CCA

    Arg

    !C!

    PheLeu

    :et

    Ser

    'ly

    Polypeptide

    'A'888C!%A!'%%!!C%%C!!%%A'!%%''!%%A'A%%'C!%%'!A%%!'A%A 'CA888AAAAAA@mRNA

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    65/87

    A7Ribosome

    P

    +ranslation / Elongation

     C C A

    Arg

    !C!

    PheLeu

    :et

    Ser

    'ly

    Polypeptide

    C'A

    Ala

    'A'888C!%A!'%%!!C%%C!!%%A'!%%''!%%A'A%%'C!%%'!A%%!'A%A 'CA888AAAAAA@mRNA

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    66/87

    Termination:

    1. Binding of

    Release Factor toStop Codon UGA,UAA, UAG.

    2. Disassembly

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    67/87

    Overview of Prokaryotic Translation

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    68/87

    Summary

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    69/87

    Summary

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    70/87

    http-((()class.unl.edubiochemgp/

    mObiologyanimationgenegeneOa

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    71/87

    Recombinant DN"

    • #roduction of a uni:ue DN" molecule by

     Poining together t(o or more DN" fragmentsnot normally associated (ith each other 

    • DN" fragments are usually deri3ed fromdifferent biological sources

    •" series of procedures used to recombineDN" segments and are called Recombinant

    DN" +echnology

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    72/87

    History of recombinant DNAtechnology

    Recombinant DNA technology is one

    of the recent advances inbiotechnology, which was developedby two scientists named Boyer and

    Cohen in 197!

    DNA Bi

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    73/87

    DNA recomBinant

    technolo%y

    asic principle o" recombinant DNA

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    74/87

    p p

    technology

    0ne DN" molecule %called insert& is isolated from one

    sources and then this DN" is inserted into another DN"

    molecule called 13ector2

    Mostly bacterial plasmid is used as 3ector 

    +he recombinant 3ector is then introduced into a host

    cell (here it replicates, transcribes and translates to

    produce protein.

    3asic steps in "ecobinant DNA

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    75/87

    3asic steps in "ecobinant DNA

    +echnology

    #( )solate the gene

    !( )nsert it in a host using a vector plasmid-

    4( Produce as many copies of the host as

    possible

    5( %eparate and purify the product of the gene

    S+E# 5 D6GES+60N 0' DN"

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    76/87

    S+E# 5. D6GES+60N 0' DN"

    S"M#7E +0 6S07"+E GENE

    S+E# / D6GES+60N 0'

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    77/87

    S+E# /. D6GES+60N 0'

    #7"SM6D DN"

    %tep 4. )nserting gene into digested

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    78/87

    6

    Recombinant

    #lasmid

     E. co R5

    digestedpector 

     !"co R6 digested 6nsert% gene&

    %tep 4. )nserting gene into digested

    vector to create recombinant plasmid

    7igase

    %tep 5. inserting recombinant plasmid into

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    79/87

    "mpicillin resistance gene %"mpr &

    and target gene on bacterial plasmid

    Bacterial clones

    +ransformation mi*ture is plated

    on to agar plate containing

    "mpicillin

    0nly E. coli containing plasmid

    sur3i3e on "mpicillin plates

    6ndi3idual colony is selected and

    cultured to amplify recombinant DN"

    #lasmid enters some

    bacteria

    host E. coli bacteria and selection

    Overall cloning strategy

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    80/87

    7Ctracte# DNA from

    any or%anism

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    81/87

    Applications of

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    82/87

    Applications of

    Recombinant DNA

    "echnology#arge$scale prod%ction of h%man

    proteins by genetically

    engineered bacteria!

    &%ch as ' ins%lin, (rowthhormone, )nterferons and

    Blood clotting factors *+))) )-.

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    83/87

    /rod%ction of 0%man

    )ns%lin*???

    .1) Obtaining the human insulin gene0%man ins%lin gene can be obtained bymaing a complementary DNA *cDNA. copyof the messenger RNA *mRNA. for h%manins%lin!

    ) i i h h i li

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    84/87

    2)Joining the human insulin geneinto a plasmid(  ) vector

    "he bacterial plasmids and the cDNA aremi2ed together! "he h%man ins%lin gene

    *cDNA. is inserted into the plasmid thro%gh

    complementary base pairing at sticy ends!

    3)I t d i th bi t

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    85/87

    3)Introducing the recombinant

    DNA plasmids into bacteria

    "he bacteria E.coli  is %sed as the host cell! )f E.coli  and the recombinant plasmids are mi2ed

    together in a test$t%be!

    4)electing the bacteria !hich

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    86/87

    4)electing the bacteria !hich

    have ta"en up the correct

    piece o# DNA"he bacteria are spread onto n%trient agar! "he

    agar also contains s%bstances s%ch as an

    antibiotic which allows growth of only the

    transformed bacteria!

    #urification of recombinant protein by affinity

    h h

  • 8/16/2019 Sci. Living Sys.trascription Unit I SCK_21.01.15 (1)

    87/87

    chromatography