scientia et mente fractional diffusion – theory and...

87
SCIENTIA MANU E T MENTE Fractional Diffusion – Theory and Applications – Part III 22nd Canberra International Physics Summer School 2008 Bruce Henry (Trevor Langlands, Peter Straka, Susan Wearne, Claire Delides) School of Mathematics and Statistics The University of New South Wales Sydney NSW 2052 Australia Fractional Diffusion – Theory and Applications – Part III – p. 1/3

Upload: others

Post on 25-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTE

Fractional Diffusion – Theoryand Applications – Part III

22nd Canberra International Physics Summer School 2008

Bruce Henry(Trevor Langlands, Peter Straka, Susan Wearne, Claire Delides)

School of Mathematics and StatisticsThe University of New South Wales

Sydney NSW 2052 Australia

Fractional Diffusion – Theory and Applications – Part III – p . 1/38

Page 2: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTE

Continuous Time Random Walks

It was the man from Ironbark who struck the Sydney town,

He wandered over street and park, he wandered up and down.

He loitered here, he loitered there, till he was like to drop,

Until at last in sheer despair he sought a barber’s shop.

"’Ere! shave my beard and whiskers off, I’ll be a man of mark,

I’ll go and do the Sydney toff up home in Ironbark."

A.B. "Banjo" Paterson

The Bulletin, 17 December 1892

Fractional Diffusion – Theory and Applications – Part III – p . 2/38

Page 3: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTE

CTRW Master Equations

Standard Random WalkThe step length is a fixed distance ∆x

Steps occur at discrete times separated by a fixed time

interval ∆t.

Fractional Diffusion – Theory and Applications – Part III – p . 3/38

Page 4: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTE

CTRW Master Equations

Standard Random WalkThe step length is a fixed distance ∆x

Steps occur at discrete times separated by a fixed time

interval ∆t.

Continuous Time Random Walk Montroll and Weiss (1965)

The step length is selected at random according to a step

length probability density λ(x).

Steps occur after a waiting time selected at random according

to a waiting time probability density ψ(t)

Fractional Diffusion – Theory and Applications – Part III – p . 3/38

Page 5: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTE

CTRW Master Equations

Standard Random WalkThe step length is a fixed distance ∆x

Steps occur at discrete times separated by a fixed time

interval ∆t.

Continuous Time Random Walk Montroll and Weiss (1965)

The step length is selected at random according to a step

length probability density λ(x).

Steps occur after a waiting time selected at random according

to a waiting time probability density ψ(t)

ProblemFind p(x, t|x0, t0) the conditional probability density that a RW

(Random Walker) starting from x0 at t = 0, is at x at time t.

Fractional Diffusion – Theory and Applications – Part III – p . 3/38

Page 6: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEArrival density

Define qn(x, t|x0, t0) conditional probability density that after n

steps a RW starting at x0 at t = 0 arrives at x at time t

qn+1(x, t|x0, 0) =

∫ +∞

−∞

(∫ t

0Ψ(x− x′, t− t′)qn(x

′, t′|x0, 0) dt′)

dx′

q0(x, t|x0, 0) = δx,x0δ(t) IC

Ψ(x− x′, t− t′) probability density that in a single step a RW

steps a distance x− x′ after waiting a time t− t′.

Fractional Diffusion – Theory and Applications – Part III – p . 4/38

Page 7: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEArrival density

Define qn(x, t|x0, t0) conditional probability density that after n

steps a RW starting at x0 at t = 0 arrives at x at time t

qn+1(x, t|x0, 0) =

∫ +∞

−∞

(∫ t

0Ψ(x− x′, t− t′)qn(x

′, t′|x0, 0) dt′)

dx′

q0(x, t|x0, 0) = δx,x0δ(t) IC

Ψ(x− x′, t− t′) probability density that in a single step a RW

steps a distance x− x′ after waiting a time t− t′.

The conditional probability density that a RW arrives at x at t

after any number of steps q(x, t|x0, 0) =∑∞

n=0 qn(x, t|x0, 0)

q(x, t|x0, 0) =∫ +∞−∞

∫ t0 Ψ(x′, t′)q(x− x′, t− t′|x0, 0) dt

′ dx′ + δ(t)δx,x0

Fractional Diffusion – Theory and Applications – Part III – p . 4/38

Page 8: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEBeing Density

Assume waiting times and step lengths are independent

Ψ(x− x′, t− t′) = λ(x− x′)ψ(t− t′).

ψ(t) =

∫ +∞

−∞Ψ(x′, t) dx′ λ(x) =

∫ ∞

0Ψ(x, t′) dt′

Survival probability that the walker does not step during time t

Φ(t) = 1 −∫ t0 ψ(t′) dt′ =

∫ ∞t ψ(t′) dt′

Fractional Diffusion – Theory and Applications – Part III – p . 5/38

Page 9: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEBeing Density

Assume waiting times and step lengths are independent

Ψ(x− x′, t− t′) = λ(x− x′)ψ(t− t′).

ψ(t) =

∫ +∞

−∞Ψ(x′, t) dx′ λ(x) =

∫ ∞

0Ψ(x, t′) dt′

Survival probability that the walker does not step during time t

Φ(t) = 1 −∫ t0 ψ(t′) dt′ =

∫ ∞t ψ(t′) dt′

The conditional probability density that a walker starting from

the origin at time zero is at x at time t is

p(x, t|x0, 0) =

∫ t

0q(x, t− t′|x0, 0)Φ(t′) dt′ =

∫ t

0q(x, t′|x0, 0)Φ(t− t

Fractional Diffusion – Theory and Applications – Part III – p . 5/38

Page 10: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTECTRW Master EquationLaplace transform arrival density and being density

Fractional Diffusion – Theory and Applications – Part III – p . 6/38

Page 11: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTECTRW Master EquationLaplace transform arrival density and being density

q(x, u|x0, 0) =

∫ +∞

−∞Ψ(x′, u)q(x− x′, u|x0, 0) dx

′ + δx,x0 .

p(x, u|x0, 0) = q(x, u|x0, 0)Φ(u)

Fractional Diffusion – Theory and Applications – Part III – p . 6/38

Page 12: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTECTRW Master EquationLaplace transform arrival density and being density

q(x, u|x0, 0) =

∫ +∞

−∞Ψ(x′, u)q(x− x′, u|x0, 0) dx

′ + δx,x0 .

p(x, u|x0, 0) = q(x, u|x0, 0)Φ(u)

=

∫ +∞

−∞Ψ(x′, u)Φ(u)q(x− x′, u|x0, 0) dx

′ + Φ(u)δx,x0

Fractional Diffusion – Theory and Applications – Part III – p . 6/38

Page 13: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTECTRW Master EquationLaplace transform arrival density and being density

q(x, u|x0, 0) =

∫ +∞

−∞Ψ(x′, u)q(x− x′, u|x0, 0) dx

′ + δx,x0 .

p(x, u|x0, 0) = q(x, u|x0, 0)Φ(u)

=

∫ +∞

−∞Ψ(x′, u)Φ(u)q(x− x′, u|x0, 0) dx

′ + Φ(u)δx,x0

=

∫ +∞

−∞Ψ(x′, u)p(x− x′, u|x0, 0) dx

′ + Φ(u)δx,x0 .

Fractional Diffusion – Theory and Applications – Part III – p . 6/38

Page 14: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTECTRW Master EquationLaplace transform arrival density and being density

q(x, u|x0, 0) =

∫ +∞

−∞Ψ(x′, u)q(x− x′, u|x0, 0) dx

′ + δx,x0 .

p(x, u|x0, 0) = q(x, u|x0, 0)Φ(u)

=

∫ +∞

−∞Ψ(x′, u)Φ(u)q(x− x′, u|x0, 0) dx

′ + Φ(u)δx,x0

=

∫ +∞

−∞Ψ(x′, u)p(x− x′, u|x0, 0) dx

′ + Φ(u)δx,x0 .

Inverse Laplace transform yields Master Equation

p(x, t|x0, 0) = Φ(t)δx,x0+

∫ t

0ψ(t−t′)

∫ +∞

−∞λ(x−x′)p(x′, t′|x0, 0) dx

′ dt′.

Fractional Diffusion – Theory and Applications – Part III – p . 6/38

Page 15: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTECTRW Balance Equation

The expected concentration of many independent CTRW

random walkers at position x and t given the initial

concentration n(x, 0) is

n(x, t) = Φ(t)n(x, 0)+

∫ +∞

−∞

∫ t

0n(x′, t′)ψ(t− t′)λ(x−x′) dt′ dx′

Fractional Diffusion – Theory and Applications – Part III – p . 7/38

Page 16: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTECTRW Balance Equation

The expected concentration of many independent CTRW

random walkers at position x and t given the initial

concentration n(x, 0) is

n(x, t) = Φ(t)n(x, 0)+

∫ +∞

−∞

∫ t

0n(x′, t′)ψ(t− t′)λ(x−x′) dt′ dx′

Different choices for the densities ψ(t) and λ(x) result in

different (possibly fractional) diffusion equations.

Fractional Diffusion – Theory and Applications – Part III – p . 7/38

Page 17: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFrom CTRW Equations To Diffusion Equations

Decouple convolution integrals in the master equation using

Fourier transform in space and Laplace transform in time

Fractional Diffusion – Theory and Applications – Part III – p . 8/38

Page 18: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFrom CTRW Equations To Diffusion Equations

Decouple convolution integrals in the master equation using

Fourier transform in space and Laplace transform in time

Consider asymptotic expansions of the transformed equation

for small values of the Fourier variable (spatial continuum limit)

and small values of the Laplace variables (long time limit)

Fractional Diffusion – Theory and Applications – Part III – p . 8/38

Page 19: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFrom CTRW Equations To Diffusion Equations

Decouple convolution integrals in the master equation using

Fourier transform in space and Laplace transform in time

Consider asymptotic expansions of the transformed equation

for small values of the Fourier variable (spatial continuum limit)

and small values of the Laplace variables (long time limit)

Carry out inverse Fourier-Laplace transforms using (possibly

fractional order) differential operators.

Fractional Diffusion – Theory and Applications – Part III – p . 8/38

Page 20: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFourier-Laplace CTRW Balance Equation

n(x, t) = Φ(t)n(x, 0) +

∫ +∞

−∞

∫ t

0n(x′, t′)ψ(t− t′)λ(x− x′) dt′ dx′

Φ(t) = 1 −∫ t

0ψ(t′) dt′ ⇒ Φ(u) =

1

u− ψ(u)

u

uˆn(q, u) = (1 − ψ(u))n(q, 0) + uψ(u) λ(q)n(q, u)

Asymptotic expressions for λ(q), ψ(u)?

Fractional Diffusion – Theory and Applications – Part III – p . 9/38

Page 21: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEStandard Diffusion

Assume step length density is an even function λ(x) = λ(−x)with finite variance σ2 =

r2λ(r) dr,

λ(q) ∼ 1 − q2σ2

2+O(q4),

Example λ(x) = 1√2πσ2

exp(

− x2

2σ2

)

Gaussian density

Fractional Diffusion – Theory and Applications – Part III – p . 10/38

Page 22: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEStandard Diffusion

Assume step length density is an even function λ(x) = λ(−x)with finite variance σ2 =

r2λ(r) dr,

λ(q) ∼ 1 − q2σ2

2+O(q4),

Example λ(x) = 1√2πσ2

exp(

− x2

2σ2

)

Gaussian density

Assume waiting time density has a finite mean τ , then

ψ(u) = 1 − τu+O(u2).

Example ψ(t) = 1τ exp

(

− tτ

)

Exponential density

Fractional Diffusion – Theory and Applications – Part III – p . 10/38

Page 23: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEStandard Diffusion

Leading order terms Fourier-Laplace-CTRW Balance

Equation

un(q, u) − n(q, 0) = −σ2q2

2τn(q, u).

Fractional Diffusion – Theory and Applications – Part III – p . 11/38

Page 24: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEStandard Diffusion

Leading order terms Fourier-Laplace-CTRW Balance

Equation

un(q, u) − n(q, 0) = −σ2q2

2τn(q, u).

Invert Fourier and Laplace transforms

∂n

∂t= D

∂2n

∂x2

where

D =σ2

Fractional Diffusion – Theory and Applications – Part III – p . 11/38

Page 25: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEExponential Density Markov PropertyThe probability of waiting a time T > t+ s conditioned on having

waited a time T > s is equivalent to the probability of waiting a time

T > t at the outset. (There is no memory in the distribution of

having already waited).

Fractional Diffusion – Theory and Applications – Part III – p . 12/38

Page 26: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEExponential Density Markov PropertyThe probability of waiting a time T > t+ s conditioned on having

waited a time T > s is equivalent to the probability of waiting a time

T > t at the outset. (There is no memory in the distribution of

having already waited).

P (T > t) =

∫ ∞

t

1

τexp

(

− t′

τ

)

dt′ = e−tτ

Fractional Diffusion – Theory and Applications – Part III – p . 12/38

Page 27: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEExponential Density Markov PropertyThe probability of waiting a time T > t+ s conditioned on having

waited a time T > s is equivalent to the probability of waiting a time

T > t at the outset. (There is no memory in the distribution of

having already waited).

P (T > t) =

∫ ∞

t

1

τexp

(

− t′

τ

)

dt′ = e−tτ

⇒ P (T > t+ s|T > s) =P (T > t+ s)

P (T > s)= e−

tτ = P (T > t).

Fractional Diffusion – Theory and Applications – Part III – p . 12/38

Page 28: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEExponential Density Markov PropertyThe probability of waiting a time T > t+ s conditioned on having

waited a time T > s is equivalent to the probability of waiting a time

T > t at the outset. (There is no memory in the distribution of

having already waited).

P (T > t) =

∫ ∞

t

1

τexp

(

− t′

τ

)

dt′ = e−tτ

⇒ P (T > t+ s|T > s) =P (T > t+ s)

P (T > s)= e−

tτ = P (T > t).

What if the waiting time density has a power law tail?

Fractional Diffusion – Theory and Applications – Part III – p . 12/38

Page 29: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTE

An average individual who seeks a friend twice his height would fail.

On the other hand, one who has an average income will have no

trouble in discovering a richer person with twice his income, and

that richer person may, with a little diligence, locate a third party

with twice his income, etc.

Elliot Montroll and Michael Shlesinger (1984)

catastrophes can occur for no reason whatsoever

Per Bak (1996)

Fractional Diffusion – Theory and Applications – Part III – p . 13/38

Page 30: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEPower Law Waiting Times

Assume step length density as above λ(q) ∼ 1 − q2σ2

2 +O(q4),

Fractional Diffusion – Theory and Applications – Part III – p . 14/38

Page 31: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEPower Law Waiting Times

Assume step length density as above λ(q) ∼ 1 − q2σ2

2 +O(q4),

Consider a Pareto power law waiting time density

ψ(t) =ατα

t1+αt ∈ [τ,∞], 0 < α < 1

Fractional Diffusion – Theory and Applications – Part III – p . 14/38

Page 32: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEPower Law Waiting Times

Assume step length density as above λ(q) ∼ 1 − q2σ2

2 +O(q4),

Consider a Pareto power law waiting time density

ψ(t) =ατα

t1+αt ∈ [τ,∞], 0 < α < 1

Note (i) the mean waiting time is infinite, (ii) the probability of waiting a time

T > t+ s, conditioned on having waited a time T > s, is greater than the probability

of waiting a time T > t at the outset (the waiting time density has a temporal

memory) (iii) the waiting time density is scale invariant, ψ(γt) = γ−(1+α)ψ(t).

Fractional Diffusion – Theory and Applications – Part III – p . 14/38

Page 33: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEPower Law Waiting Times

Assume step length density as above λ(q) ∼ 1 − q2σ2

2 +O(q4),

Consider a Pareto power law waiting time density

ψ(t) =ατα

t1+αt ∈ [τ,∞], 0 < α < 1

Note (i) the mean waiting time is infinite, (ii) the probability of waiting a time

T > t+ s, conditioned on having waited a time T > s, is greater than the probability

of waiting a time T > t at the outset (the waiting time density has a temporal

memory) (iii) the waiting time density is scale invariant, ψ(γt) = γ−(1+α)ψ(t).

Tauberian Theorem

ψ(u) ∼ 1 − Γ(1 − α)ταuα

Fractional Diffusion – Theory and Applications – Part III – p . 14/38

Page 34: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEAnomalous subdiffusion

Leading order terms Fourier-Laplace-CTRW Balance

Equation

uˆn(q, u) − n(q, 0) = − q2σ2

2ταΓ(1 − α)u1−αˆn(q, u)

Fractional Diffusion – Theory and Applications – Part III – p . 15/38

Page 35: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEAnomalous subdiffusion

Leading order terms Fourier-Laplace-CTRW Balance

Equation

uˆn(q, u) − n(q, 0) = − q2σ2

2ταΓ(1 − α)u1−αˆn(q, u)

Invert Fourier and Laplace transforms

∂n(x, t)

∂t= D

(

0D1−αt

∂2n(x, t)

∂x2

)

D =σ2

2ταΓ(1 − α)

Fractional Diffusion – Theory and Applications – Part III – p . 15/38

Page 36: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEAnomalous subdiffusion

Leading order terms Fourier-Laplace-CTRW Balance

Equation

uˆn(q, u) − n(q, 0) = − q2σ2

2ταΓ(1 − α)u1−αˆn(q, u)

Invert Fourier and Laplace transforms

∂n(x, t)

∂t= D

(

0D1−αt

∂2n(x, t)

∂x2

)

D =σ2

2ταΓ(1 − α)

0D1−αt denotes a Riemann-Liouville fractional derivative of

order 1 − α

Fractional Diffusion – Theory and Applications – Part III – p . 15/38

Page 37: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFundamental SolutionGreen’s solution G(x, t), G(x, 0) = δ(x)

Metzler and Klafter (2000)

G(x, t) =1√

4πDtαH2,0

1,2

[

x2

4Dtα

(1 − α2 , α)

(0, 1), (12 , 1)

Special case α = 1/2 the solution in terms of Meijer G-function

G(x, t) =1

8πDt12

M3,00,3

[

x2

16Dt12

0, 14 ,

12

The Meijer G-functions are included as special functions in MAPLE

and Mathematica.

Fractional Diffusion – Theory and Applications – Part III – p . 16/38

Page 38: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEMean Square Displacement

〈x2(t)〉 =

∫ ∞

−∞x2G(x, t) dx = L−1

(

limq→0

− d2

dq2ˆG(q, u)

)

Rearrange

uˆn(q, u) − n(q, 0) = − q2σ2

2ταΓ(1 − α)u1−αˆn(q, u)

using G(q, 0) = 1

ˆG(q, u) =

1

u+ q2Du1−α

Then

〈x2(t)〉 = L−1(

2Dαu−1−α)

=2D

Γ(1 + α)tα

Fractional Diffusion – Theory and Applications – Part III – p . 17/38

Page 39: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEThe Fundamental Solution in Fractional Subdiffusion

Carry out Fourier transform in space and Laplace transform in

time (using the known results for the Laplace transform of

Riemann-Liouville fractional derivatives).

Fractional Diffusion – Theory and Applications – Part III – p . 18/38

Page 40: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEThe Fundamental Solution in Fractional Subdiffusion

Carry out Fourier transform in space and Laplace transform in

time (using the known results for the Laplace transform of

Riemann-Liouville fractional derivatives).

Find the transformed solution as the solution of an algebraic

problem in Fourier-Laplace space.

Fractional Diffusion – Theory and Applications – Part III – p . 18/38

Page 41: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEThe Fundamental Solution in Fractional Subdiffusion

Carry out Fourier transform in space and Laplace transform in

time (using the known results for the Laplace transform of

Riemann-Liouville fractional derivatives).

Find the transformed solution as the solution of an algebraic

problem in Fourier-Laplace space.

Carry out the inverse Fourier transform (easy).

Fractional Diffusion – Theory and Applications – Part III – p . 18/38

Page 42: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEThe Fundamental Solution in Fractional Subdiffusion

Carry out Fourier transform in space and Laplace transform in

time (using the known results for the Laplace transform of

Riemann-Liouville fractional derivatives).

Find the transformed solution as the solution of an algebraic

problem in Fourier-Laplace space.

Carry out the inverse Fourier transform (easy).

Carry our inverse Laplace transform (hard). Expand the

Laplace transform as a series expansion in Fox H-functions

and then perform a term by term inversion.

Fractional Diffusion – Theory and Applications – Part III – p . 18/38

Page 43: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTESubdiffusion is Subordinated Diffusion

If n(x, t) is the Green’s solution of the time fractional

subdiffusion equation then

n(x, t) =

∫ ∞

0n⋆(x, τ)T (τ, t) dτ ⋆

n⋆(x, τ) is the Green’s solution of the standard diffusion

equation and L (T (τ, t)) = T (τ, u) = uα−1e−τuα

τ is called the operational time t is called the physical time

Fractional Diffusion – Theory and Applications – Part III – p . 19/38

Page 44: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTESubdiffusion is Subordinated Diffusion

If n(x, t) is the Green’s solution of the time fractional

subdiffusion equation then

n(x, t) =

∫ ∞

0n⋆(x, τ)T (τ, t) dτ ⋆

n⋆(x, τ) is the Green’s solution of the standard diffusion

equation and L (T (τ, t)) = T (τ, u) = uα−1e−τuα

τ is called the operational time t is called the physical time

The operational time scales as the number of steps in the

walk. In the standard random walk the number of steps is

proportional to the physical time but in the CTRW with infinite

mean waiting times the number of steps is a random variable.

Fractional Diffusion – Theory and Applications – Part III – p . 19/38

Page 45: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEWhere Does a Power Law Waiting Time Density Come From?

Random walkers in an environment with an exponential

distribution of trap binding energies ρ(E) = 1E0e− E

E0 and

thermally activated trapping times τ = eE

kBT

Scher, Montroll (1975)

Fractional Diffusion – Theory and Applications – Part III – p . 20/38

Page 46: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEWhere Does a Power Law Waiting Time Density Come From?

Random walkers in an environment with an exponential

distribution of trap binding energies ρ(E) = 1E0e− E

E0 and

thermally activated trapping times τ = eE

kBT

Scher, Montroll (1975)Waiting time density

ψ(τ)dτ = ρ(E)dE = ρ(E)dE

dτdτ

=1

E0e− E

E0

(

kBT

τ

)

=1

E0τ− kT

E0

(

kBT

τ

)

=

(

kBT

E0

)

τ− kT

E0−1dτ ⇒ ψ(t) = αt−1−α

Fractional Diffusion – Theory and Applications – Part III – p . 20/38

Page 47: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTELevy Step Length Density

Assume exponential (Markovian) waiting time density

ψ(u) ∼ 1 − τu

Fractional Diffusion – Theory and Applications – Part III – p . 21/38

Page 48: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTELevy Step Length Density

Assume exponential (Markovian) waiting time density

ψ(u) ∼ 1 − τu

Consider a Levy (power law) step length density

λ(x) ∼ Aασα

|x|−1−α, 1 < α < 2.

The Levy step length density enables walks on all spatial

scales.

λ(q) = exp(−σα|q|α) ∼ 1 − σα|q|α

Fractional Diffusion – Theory and Applications – Part III – p . 21/38

Page 49: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEAnomalous Superdiffusion

Leading order terms Fourier-Laplace-CTRW Master Equation

uˆn(q, u) − u n(q, 0) = −σα|q|ατ

ˆn(q, u)

Fractional Diffusion – Theory and Applications – Part III – p . 22/38

Page 50: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEAnomalous Superdiffusion

Leading order terms Fourier-Laplace-CTRW Master Equation

uˆn(q, u) − u n(q, 0) = −σα|q|ατ

ˆn(q, u)

Invert Fourier and Laplace transforms

∂n

∂t= D∇α

|x|n 1 < α < 2 D =σα

τ

Fractional Diffusion – Theory and Applications – Part III – p . 22/38

Page 51: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEAnomalous Superdiffusion

Leading order terms Fourier-Laplace-CTRW Master Equation

uˆn(q, u) − u n(q, 0) = −σα|q|ατ

ˆn(q, u)

Invert Fourier and Laplace transforms

∂n

∂t= D∇α

|x|n 1 < α < 2 D =σα

τ

∇α|x| is the Riesz fractional derivative

Fractional Diffusion – Theory and Applications – Part III – p . 22/38

Page 52: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFundamental SolutionGreen’s solution G(x, t), G(x, 0) = δ(x)

Metzler and Klafter (2000)

1

α |x|H1,12,2

|x|(Dt)1/α

(1, 1/α) (1, 1/2)

(1, 1) (1, 1/2)

Levy Stable Law

Fractional Diffusion – Theory and Applications – Part III – p . 23/38

Page 53: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEPseudo-Mean Square Displacement

The solution has the asymptotic behaviour

n(x, t) ∼ σαt

τ |x|1+α , 1 < α < 2.

Fractional Diffusion – Theory and Applications – Part III – p . 24/38

Page 54: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEPseudo-Mean Square Displacement

The solution has the asymptotic behaviour

n(x, t) ∼ σαt

τ |x|1+α , 1 < α < 2.

The mean square displacement diverges 〈x2(t)〉 → ∞ but

〈|x|δ〉 ∼ tδα , 0 < δ < α < 2.

Fractional Diffusion – Theory and Applications – Part III – p . 24/38

Page 55: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEPseudo-Mean Square Displacement

The solution has the asymptotic behaviour

n(x, t) ∼ σαt

τ |x|1+α , 1 < α < 2.

The mean square displacement diverges 〈x2(t)〉 → ∞ but

〈|x|δ〉 ∼ tδα , 0 < δ < α < 2.

Define a non-divergent pseudo mean square displacement

〈[x2(t)]〉 ∼ t2α

Fractional Diffusion – Theory and Applications – Part III – p . 24/38

Page 56: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEGeneralized Central Limit Theorem

A symmetric Levy stable law with a power law tail ∼ C|x|−1−α

is the limiting stable law for the distribution of the ‘normalized’

sum of random variables

X1 +X2 + . . . XN

Nα0 < α < 2

with infinite variance. The mean is infinite if 0 < α < 1 so

restrict to 1 < α < 2.

Fractional Diffusion – Theory and Applications – Part III – p . 25/38

Page 57: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEGeneralized Central Limit Theorem

A symmetric Levy stable law with a power law tail ∼ C|x|−1−α

is the limiting stable law for the distribution of the ‘normalized’

sum of random variables

X1 +X2 + . . . XN

Nα0 < α < 2

with infinite variance. The mean is infinite if 0 < α < 1 so

restrict to 1 < α < 2.

If the random variables are RW steps the sum is the rescaled

position.

Fractional Diffusion – Theory and Applications – Part III – p . 25/38

Page 58: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEGeneralized Central Limit Theorem

A symmetric Levy stable law with a power law tail ∼ C|x|−1−α

is the limiting stable law for the distribution of the ‘normalized’

sum of random variables

X1 +X2 + . . . XN

Nα0 < α < 2

with infinite variance. The mean is infinite if 0 < α < 1 so

restrict to 1 < α < 2.

If the random variables are RW steps the sum is the rescaled

position.

The solution of the space fractional diffusion equation is the

Levy stable distribution.

Fractional Diffusion – Theory and Applications – Part III – p . 25/38

Page 59: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTESimulating Random Walks for Fractional DiffusionSet the starting position x and jump-time t to zero.

Generate a random waiting-time δt from ψ(t) and a random

jump-length δx from λ(x).

Fractional Diffusion – Theory and Applications – Part III – p . 26/38

Page 60: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTESimulating Random Walks for Fractional DiffusionSet the starting position x and jump-time t to zero.

Generate a random waiting-time δt from ψ(t) and a random

jump-length δx from λ(x).

Update the position x(t+ δt) = x(t) + δx.

Fractional Diffusion – Theory and Applications – Part III – p . 26/38

Page 61: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTESimulating Random Walks for Fractional DiffusionSet the starting position x and jump-time t to zero.

Generate a random waiting-time δt from ψ(t) and a random

jump-length δx from λ(x).

Update the position x(t+ δt) = x(t) + δx.

Update the jump-time t = t+ δt. For non-constant waiting

times both the position of the particle and the jump-time need

to be stored.

Fractional Diffusion – Theory and Applications – Part III – p . 26/38

Page 62: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTESimulating Random Walks for Fractional DiffusionSet the starting position x and jump-time t to zero.

Generate a random waiting-time δt from ψ(t) and a random

jump-length δx from λ(x).

Update the position x(t+ δt) = x(t) + δx.

Update the jump-time t = t+ δt. For non-constant waiting

times both the position of the particle and the jump-time need

to be stored.

Repeat above bullet steps

Fractional Diffusion – Theory and Applications – Part III – p . 26/38

Page 63: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEGeneration of Waiting-TimesTo generate a random waiting-time t with a probability density

function ψ(t)

Select a random r ∈ [0, 1] with a uniform density ρ(r) = 1

Fractional Diffusion – Theory and Applications – Part III – p . 27/38

Page 64: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEGeneration of Waiting-TimesTo generate a random waiting-time t with a probability density

function ψ(t)

Select a random r ∈ [0, 1] with a uniform density ρ(r) = 1

ρ(r) dr = ρ(r(t)dr

dtdt = ψ(t) dt

Fractional Diffusion – Theory and Applications – Part III – p . 27/38

Page 65: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEGeneration of Waiting-TimesTo generate a random waiting-time t with a probability density

function ψ(t)

Select a random r ∈ [0, 1] with a uniform density ρ(r) = 1

ρ(r) dr = ρ(r(t)dr

dtdt = ψ(t) dt

ρ(r(t)) = 1 ⇒ dr

dt= ψ(t)

Fractional Diffusion – Theory and Applications – Part III – p . 27/38

Page 66: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEGeneration of Waiting-TimesTo generate a random waiting-time t with a probability density

function ψ(t)

Select a random r ∈ [0, 1] with a uniform density ρ(r) = 1

ρ(r) dr = ρ(r(t)dr

dtdt = ψ(t) dt

ρ(r(t)) = 1 ⇒ dr

dt= ψ(t)

∫ r

0dr′ =

∫ t

0ψ(t′) dt′

Fractional Diffusion – Theory and Applications – Part III – p . 27/38

Page 67: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEGeneration of Waiting-TimesTo generate a random waiting-time t with a probability density

function ψ(t)

Select a random r ∈ [0, 1] with a uniform density ρ(r) = 1

ρ(r) dr = ρ(r(t)dr

dtdt = ψ(t) dt

ρ(r(t)) = 1 ⇒ dr

dt= ψ(t)

∫ r

0dr′ =

∫ t

0ψ(t′) dt′

r =

∫ t

0ψ(t′) dt′ invert for t.

Fractional Diffusion – Theory and Applications – Part III – p . 27/38

Page 68: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTE

Random Walk waiting time δt step length δx constant D

Standard τ∆x 0 ≤ r < 1

2

−∆x 12≤ r < 1

∆x2

fBm τ

∆x 0 ≤ r < αnα−1

−∆x αnα−1 ≤ r < 2αnα−1

0 2αnα−1 ≤ r < 1

∆x2

τα

Subdiffusion τ“

(1 − r)−1

α − 1” ∆x 0 ≤ r < 1

2

−∆x 12≤ r < 1

∆x2

2ταΓ(1 − α)

Superdiffusion τ ∆x

„ − lnu cosφ

cos ((1 − α)φ)

«1− 1

α sin (αφ)

cosφ

∆xα

τu, v ∈ (0, 1) independent random numbers, φ = π(v − 1/2), n = t/τ .

Fractional Diffusion – Theory and Applications – Part III – p . 28/38

Page 69: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTE

Probability Density Functions

Standard 1√4πDt

e−x2

4Dt Gaussian

Markovian

fBm 1√4πDtα e

− x2

4Dtα Gaussian

Non-Markovian

Subdiffusion 1√4πDtαH

2,01,2

2

4

x2

4Dtα

˛

˛

˛

˛

˛

˛

(1 − α/2, α)

(0, 1) (1/2, 1)

3

5 Non-Gaussian

0 < α < 1 Non-Markovian

Superdiffusion 1α|x|H

1,12,2

2

4

|x|(Dt)1/α

˛

˛

˛

˛

˛

˛

(1, 1/α) (1, 1/2)

(1, 1) (1, 1/2)

3

5 Non-Gaussian

1 < α < 2 Markovian

Fractional Diffusion – Theory and Applications – Part III – p . 29/38

Page 70: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEStandard Diffusion

–4

–2

0

2

4

6

8

10

12

x(t)

20 40 60 80 100

t

0

5

10

15

20

2 4 6 8 10 12 14 16 18 20

t

0

0.02

0.04

0.06

0.08

p(x)

–20 –10 10 20

x

Fractional Diffusion – Theory and Applications – Part III – p . 30/38

Page 71: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Brownian Motion α = 1/2

–4

–2

0

2

4

x(t)

20 40 60 80 100t

1.

2.

4.

7.

.1e2

.2e2

5. .1e2 .5e2 .1e3

t

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p(x)

–20 –10 10 20

x

Fractional Diffusion – Theory and Applications – Part III – p . 31/38

Page 72: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Subdiffusion α = 1/2

–8

–6

–4

–2

0

2

x(t)

20 40 60 80 100t

2.

3.

4.

6.

8.

1. 2. 5. .1e2 .2e2

t

0

0.05

0.1

0.15

0.2

p(x)

–20 –10 10 20

x

Fractional Diffusion – Theory and Applications – Part III – p . 32/38

Page 73: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Superdiffusion α = 3/2 (δ = 3/4)

0

50

100

150

200

x(t)

20 40 60 80 100

t

2.

3.

4.

1. 2. 5. .1e2 .2e2

t

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

p(x)

–20 –10 0 10 20

x

Fractional Diffusion – Theory and Applications – Part III – p . 33/38

Page 74: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Fokker-Planck EquationsBiased CTRWs lead to fractional Fokker-Planck equations.

Fractional Diffusion – Theory and Applications – Part III – p . 34/38

Page 75: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Fokker-Planck EquationsBiased CTRWs lead to fractional Fokker-Planck equations.

Space dependent force (Barkai, Metzler, Klafter, 2000)

∂n(x, t)

∂t= 0D1−α

t D∇2n(x, t) − 0D1−αt ∇

(

1

ηf(x)n(x, t)

)

A

D = kBT

mηgeneralized Einstein relation.

Fractional Diffusion – Theory and Applications – Part III – p . 34/38

Page 76: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Fokker-Planck EquationsBiased CTRWs lead to fractional Fokker-Planck equations.

Space dependent force (Barkai, Metzler, Klafter, 2000)

∂n(x, t)

∂t= 0D1−α

t D∇2n(x, t) − 0D1−αt ∇

(

1

ηf(x)n(x, t)

)

A

D = kBT

mηgeneralized Einstein relation.

Time dependent force (Sokolov, Klafter, 2006)

∂n(x, t)

∂t= 0D1−α

t D∇2n(x, t) −∇(

1

ηf(t) 0D1−α

t ∇n(x, t)

)

B

Fractional Diffusion – Theory and Applications – Part III – p . 34/38

Page 77: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Fokker-Planck EquationsBiased CTRWs lead to fractional Fokker-Planck equations.

Space dependent force (Barkai, Metzler, Klafter, 2000)

∂n(x, t)

∂t= 0D1−α

t D∇2n(x, t) − 0D1−αt ∇

(

1

ηf(x)n(x, t)

)

A

D = kBT

mηgeneralized Einstein relation.

Time dependent force (Sokolov, Klafter, 2006)

∂n(x, t)

∂t= 0D1−α

t D∇2n(x, t) −∇(

1

ηf(t) 0D1−α

t ∇n(x, t)

)

B

Open Problems: Space and time dependent force, Model A or

Model B or . . . .? Time subordination in A may suit internal

force fields but not external force fields. Nonlinear Forces?

Fractional Diffusion – Theory and Applications – Part III – p . 34/38

Page 78: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Reaction-Diffusion EquationsCTRW balance eqns with temporal memory and source/sink terms

yield fractional reaction diffusion equations (Henry, Wearne, 2000)

Model A: Time fractional derivative on the spatial diffusion

term but not on the reaction terms.

Fractional Diffusion – Theory and Applications – Part III – p . 35/38

Page 79: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Reaction-Diffusion EquationsCTRW balance eqns with temporal memory and source/sink terms

yield fractional reaction diffusion equations (Henry, Wearne, 2000)

Model A: Time fractional derivative on the spatial diffusion

term but not on the reaction terms.

Model B: Time fractional derivative equal on both reaction and

diffusion terms. Motivated by subordination – reactions and

diffusions affected by the same operational time scales (Yuste,

Acedi, Lindenberg, 2004).

Fractional Diffusion – Theory and Applications – Part III – p . 35/38

Page 80: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Reaction-Diffusion EquationsCTRW balance eqns with temporal memory and source/sink terms

yield fractional reaction diffusion equations (Henry, Wearne, 2000)

Model A: Time fractional derivative on the spatial diffusion

term but not on the reaction terms.

Model B: Time fractional derivative equal on both reaction and

diffusion terms. Motivated by subordination – reactions and

diffusions affected by the same operational time scales (Yuste,

Acedi, Lindenberg, 2004).

Turing pattern formation in fractional reaction diffusion

systems (Henry, Langlands, Wearne, 2005, 2008)

Fractional Diffusion – Theory and Applications – Part III – p . 35/38

Page 81: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTEFractional Reaction-Diffusion EquationsCTRW balance eqns with temporal memory and source/sink terms

yield fractional reaction diffusion equations (Henry, Wearne, 2000)

Model A: Time fractional derivative on the spatial diffusion

term but not on the reaction terms.

Model B: Time fractional derivative equal on both reaction and

diffusion terms. Motivated by subordination – reactions and

diffusions affected by the same operational time scales (Yuste,

Acedi, Lindenberg, 2004).

Turing pattern formation in fractional reaction diffusion

systems (Henry, Langlands, Wearne, 2005, 2008)

Problem: Should reactions modify diffusions in CTRWs?

Fractional Diffusion – Theory and Applications – Part III – p . 35/38

Page 82: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTELinear Reactions, CTRWs and SubdiffusionHenry, Langlands, Wearne, 2006 Sokolov, Schmidt, Sagues, 2006

Linear reaction dynamics to model exponential growth (+k) or

decay (−k) during the CTRW waiting time intervals

Fractional Diffusion – Theory and Applications – Part III – p . 36/38

Page 83: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTELinear Reactions, CTRWs and SubdiffusionHenry, Langlands, Wearne, 2006 Sokolov, Schmidt, Sagues, 2006

Linear reaction dynamics to model exponential growth (+k) or

decay (−k) during the CTRW waiting time intervals

CTRW Balance Equation

n(x, t) = Φ(t)e±ktn(x, 0) +

Z ∞

−∞

Z t

0n(x′, t′)e±k(t−t′)ψ(t− t′)λ(x− x′) dt′ dx′

Fractional Diffusion – Theory and Applications – Part III – p . 36/38

Page 84: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTELinear Reactions, CTRWs and SubdiffusionHenry, Langlands, Wearne, 2006 Sokolov, Schmidt, Sagues, 2006

Linear reaction dynamics to model exponential growth (+k) or

decay (−k) during the CTRW waiting time intervals

CTRW Balance Equation

n(x, t) = Φ(t)e±ktn(x, 0) +

Z ∞

−∞

Z t

0n(x′, t′)e±k(t−t′)ψ(t− t′)λ(x− x′) dt′ dx′

Fractional Reaction-Subdiffusion Equation (HLW2006)

∂n

∂t= D e±kt 0D1−α

t

(

e∓kt∂2n

∂x2

)

± kn.

Fractional Diffusion – Theory and Applications – Part III – p . 36/38

Page 85: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTELinear Reactions, CTRWs and SubdiffusionHenry, Langlands, Wearne, 2006 Sokolov, Schmidt, Sagues, 2006

Linear reaction dynamics to model exponential growth (+k) or

decay (−k) during the CTRW waiting time intervals

CTRW Balance Equation

n(x, t) = Φ(t)e±ktn(x, 0) +

Z ∞

−∞

Z t

0n(x′, t′)e±k(t−t′)ψ(t− t′)λ(x− x′) dt′ dx′

Fractional Reaction-Subdiffusion Equation (HLW2006)

∂n

∂t= D e±kt 0D1−α

t

(

e∓kt∂2n

∂x2

)

± kn.

Extended to multispecies (LHW 2008) but nonlinear fractional

reaction-diffusion is an open problem.

Fractional Diffusion – Theory and Applications – Part III – p . 36/38

Page 86: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTE

Fractional Diffusion

Space-time fractional Fokker-Planck equation (Metzler, Klafter, 2000)

∂w

∂t= D1−α

t

∂x

V ′(x)

η+K∇µ

|x|

«

w.

Space Fractional Equation for Maximum Tsallis Entropy (Bologna, Tsallis, Grigolini, 2000)

∂p

∂t= D

∂γp

∂xγ0 < γ ≤ 2

Space-time fractional diffusion for plasmas (del-Castillo-Negrette, Carreras, Lynch, 2004)

Dβt P = χ∇α

|x|P.

Fractional Black-Scholes model for option prices (Cartea, 2006)

rV (x, t) =∂V (x, t)

∂t+

r + σα sec(απ

2)” ∂V

∂x− σα sec(

απ

2)Dα

xV

Fractional cable equation for nerve cells (Henry, Langlands, Wearne, 2008)

rmcm∂V

∂t=

drm

4rL(γ)D1−γ

t

∂2V

∂x2

«

−D1−κt (V − rmie)

Fractional Diffusion – Theory and Applications – Part III – p . 37/38

Page 87: SCIENTIA ET MENTE Fractional Diffusion – Theory and ...people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS... · Fractional Diffusion – Theory and Applications – Part III 22nd

SCIENTIA

MANU E T MENTE

Thank You

Fractional Diffusion – Theory and Applications – Part III – p . 38/38