sdn control of spatial division multiplexing (sdm) for 5g...

24
SDN control of Spatial Division Multiplexing (SDM) for 5G fronthaul/backhaul networks Raul Muñoz , R. Vilalta, R. Casellas 1 , R. Martínez (1) Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, Spain. ONDM 2018, May 14-17, 2018, Dublin, Ireland

Upload: others

Post on 11-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

SDN control of Spatial Division Multiplexing (SDM) for 5G fronthaul/backhaul networks

Raul Muñoz, R. Vilalta, R. Casellas1, R. Martínez

(1) Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, Spain.

ONDM 2018, May 14-17, 2018, Dublin, Ireland

Page 2: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

4G mobile transport networks

§ Mobile transport networks can be traditionally sorted out as backhaul and fronthaulsolutions

2

EPC

Packet-based Network (dark fiber & grey interface)

C-RAN (CPRI)

D-RAN (Ethernet)

Wireless Transport Network

C/DWDM PtPLinks/networks

Microwave PtP Links

Optical Transport Network

EthCPRI

Eth

Eth

Central Office

Eth

Mobile cell-site cabinets

DRoF

BBU

Eth

RRH

RRH

BBURRH

Eth

BBU

Ethernet, IP/MPLS

DRoF

CPRI

CPRI

Fronthaul Backhaul

Fronthaul

Optical Metro/core

Network

Backhaul

BBU

Page 3: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Digitalized fronthaul (CPRI) does not scale§ The main drawback that CPRI does not scale for the massive MIMO antenna

deployments foreseen in 5G in terms of bandwidth requirements.

3

Thomas Pfeiffer, Next Generation Mobile Fronthaul and Midhaul Architectures [Invited] . J. OPT. COMMUN. NETW./VOL. 7, NO. 11/NOVEMBER 2015

Page 4: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

5G C-RAN defined by 3GPP

§ BBU functions are split into remote unit (RU), distributed unit (DU) and the centralized unit (CU).

§ It brings the introduction of the next generation fronthaul interface (NGFI) that is packetized to provide more efficient network utilization in ultra-dense scenarios (statistical multiplexing)

4

Mobile cell-site cabinets

Core Network

RU

RU

DU

Central OfficeRU

RUAcces

Network

RU

RU

DU

Central OfficeRU

RUAcces

Network

CU

Main Central Office

EPC NGC

Aggregation

Network

NGFI-I NGFI-II (midhaul) Backaul

Page 5: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Function split of the baseband processing

5

CPRI

NGFI-II

CelI Site (RRH)

Central office (DU)

Chih-Lin I, Han Li, Jouni Korhonen, Jinri Huang, Jinri Huang, RAN Revolution with NGFI (xhaul) for 5G, Journal of Lightwave Technology,v:36, n:2, Jan 2018.

CU

Central office (BBU)

Cell site (eNodeB)

Cell Site (RU)

D-RAN

C-RAN

5G C-RAN

eCPRI

?

Page 6: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

The BlueSPACE Project approach§ A complementary solution under investigation in the BlueSPACE project to reduce

the bandwidth requirements is to use analog radio over fibre (ARoF) transceivers:

§ The radio waveforms are directly modulated onto light for connecting BBUs and RRHs.

§ It can be used in combination with digital RoF solutions for the 5G NGFI

§ Additionally, the BlueSPACE project also considers to include spatial division multiplexing (SDM) for further increasing the network capacity in the fronthaul:

§ It can be deployed with bundles of single mode fibers or multicore optical fiber.

§ SDM can also be used to power the cell sites using Power of Fiber (PoF) devices.

§ The BlueSPACE network architecture also deploys edge computing in the central office for NFV and MEC applications (e.g. video analytics, data caching).

6

Page 7: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

BlueSPACE’s network architecture

7

BBU

SDM/WDM ODN

1

M

…1

M

1

N

1

N

RRH

RRH

DU

DU

PoF Tx

PoF Tx

Optical Switch (OS)

SSS

SSS

MCM

MCM

Central Office

Cell site (a)

Spatial channels

Edge Computing

Packet Switch (PS)

PoF Tx

Pool of BBUs/DUs

Pool of RoF Tx

PoF Tx

MCM

PoF Tx

1

M

RRH

RRH

SSS/AWG

Cell site (b)

Spectral channels

Optical Metro

Network

MCM

PoF Tx

M

RU

RU

ARoF

ARoF

ARoF

ARoF

1

1

1

N

RU

RU

DRoF

DRoF

BBU ARoF

ARoF

DRoF

DRoF

Optical Switch (OS)

DRoF

DRoF

Spatial or Spectral channels + statistical packet multiplexing

Packet Switch (PS)

Cell site (c)

VNF

MEC

Page 8: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Spatial channels§ An array of NxRRH is

connected to an array of NxBBU using the same wavelength in different cores/ fibers.

BBU

SDM/WDM ODN

1

M

…1

M

1

N

1

N

RRH

RRH

DU

DU

PoF Tx

PoF Tx

Optical Switch (OS)

SSS

SSS

MCM

MCM

Central Office

Cell site (a)

Spatial channels

Edge Computing

Packet Switch (PS)

PoF Tx

Pool of BBUs/DUs

Pool of RoF Tx

PoF Tx

MCM

PoF Tx

1

M

RRH

RRH

SSS/AWG

Cell site (b)

Spectral channels

… MCM

PoF Tx

M

RU

RU

ARoF

ARoF

ARoF

ARoF

1

1

1

N

RU

RRU

DRoF

DRoF

BBU ARoF

ARoF

DRoF

DRoF

Optical Switch (OS)

DRoF

DRoF

Spatial or Spectral channels + statistical packet multiplexing

Packet Switch (PS)

Cell site (c)

8

FS1 FS2 FS3 FS4

1

2

3

4

SDM

WDM

Page 9: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Spectral channels§ An array of NxRRH is

connected to an array of NxBBU using the same fiber/core and different wavelengths.

BBU

SDM/WDM ODN

1

M

…1

M

1

N

1

N

RRH

RRH

BBU

BBU

PoF Tx

PoF Tx

Optical Switch (OS)

SSS

SSS

MCM

MCM

Central Office

Cell site (a)

Spatial channels

Edge Computing

Packet Switch (PS)

PoF Tx

Pool of BBUs/DUs

Pool of RoF Tx

PoF Tx

MCM

PoF Tx

1

M

RRH

RRH

SSS/AWG

Cell site (b)

Spectral channels

… MCM

PoF Tx

M

RU

RU

ARoF

ARoF

ARoF

ARoF

1

1

1

N

RU

RRU

DRoF

DRoF

BBU ARoF

ARoF

ARoF

ARoF

Optical Switch (OS)

DRoF

DRoF

Spatial or Spectral channels + statistical packet multiplexing

Packet Switch (PS)

Cell site (c)

8

FS1 FS2 FS3 FS4

1

2

3

4

SDM

WDM

Page 10: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Spatial or Spectral channels + statistical multiplexing§ An array of MxRU is

connected to an array of NxDU using spatial or spectral channels.

§ M >= N

8

BBU

SDM/WDM ODN

1

M

…1

M

1

N

1

N

RRH

RRH

DU

DU

PoF Tx

PoF Tx

Optical Switch (OS)

SSS

SSS

MCM

MCM

Central Office

Cell site (a)

Spatial channels

Edge Computing

Packet Switch (PS)

PoF Tx

Pool of BBUs/DUs

Pool of RoF Tx

PoF Tx

MCM

PoF Tx

1

M

RRH

RRH

SSS/AWG

Cell site (b)

Spectral channels

… MCM

PoF Tx

M

RU

RU

ARoF

ARoF

ARoF

ARoF

1

1

1

N

RU

RRU

DRoF

DRoF

BBU ARoF

ARoF

DRoF

DRoF

Optical Switch (OS)

DRoF

DRoF

Spatial or Spectral channels + statistical packet multiplexing

Packet Switch (PS)

Cell site (c)FS1 FS2 FS3 FS4

1

2

3

4

SDM

WDM

RU

Page 11: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

BlueSPACE’s SDN control requirements§ To develop a hierarchical transport SDN solution to control the SDM/WDM-

enabled fronthaul network and packet-based network segments:

§ A single SDN controller comprising the multiple and diverse technologies of the SDM/WDM-based fronthaul and packet-based backhaul is not realistic.

§ Traditionally, network operators fragment their networks into multiple administrative domains for scalability, modularity, and security purposes

§ To integrate the developed Transport SDN control solution with the NFV MANO framework to provide NFV network services:

§ Current NFV MANO framework considers the network as a commodity that provides packet pipes with QoS. It can be dynamically provisioned between the specified end-points.

§ Currently, the interface with the Transport SDN defined by the ETSI NFV MANO framework is still lacking of maturity.

11

Page 12: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Hierarchical Transport SDN controller§ We rely on a hierarchical Transport SDN control approach with different levels of

hierarchy (parent/child architecture):

§ Three SDN controllers (child WIMs) for the fronthaul, backhaul and NGFI-I segments.

§ Another SDN controller on top (parent WIM) acting as the Xhaul transport network controller.

§ The child WIM for the packet network segment is based on a regular SDN controller using OpenFlow or P4 protocols as SBI to configure the packet switches.

§ On the fronthaul segment side, the proposed solution is to deploy SDN agents at the cell sites and another at the CO.

§ The SDN agent’s purpose is to map high-level operations coming from the child SDN controller into low-level, hardware-dependent operations.

12

Page 13: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Hierarchical Transport SDN controller

13

ARoFAgent

OS/SSS Agent

SDN CO Node Agent SDN CS NodeAgent

Fronthaul SDN ControllerBackhaul/NGFI-II SDN Controller

XHAUL Transport SDN Controller

ARoFAgent

PoFAgent

SDN CS Node Agent

DRoFAgent

SSS/AWG Agent

NGFI-I SDN Controller

DRoFAgent

ARoF

ARoF

DRoF

DRoF

PoFAgent

PoF Tx

PoF Tx

PoFAgent

ARoF

ARoF

PoF Rx DRoF

DRoF

PoF Rx

NBI (TAPI)

TAPI

NETCONFNETCONFNETCONF

TAPITAPI

RESTAPI

Proprietary Interfaces

OpenFlow/P4

Page 14: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Transport API (TAPI)§ It enables to abstract a set of common SDN control plane functions (e.g., path computation,

topology and connection provisioning) and defines a common data model and protocol based on YANG/RESTconf.

§ TAPI has a flexible modularity and it allows extension of all its data models. In fact, extensions for OTSi, ODU, and Ethernet are included in official release.

§ We have followed the same procedure in order to define a novel hybrid SDM/OTSi data model (tapi-sdm.yang):

§ node edge point data model has been extended by introducing an sdm-pool container, which includes a list of available cores and available transceiver information.

§ Regarding connectivity service extensions, connection end points are augmented with information regarding the termination core id, as well as a list of selected frequency slots.

14

Page 15: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

BlueSPACE scenario using TAPI topology and connectivity service data models

15

CSNode Edge Points (SDM)

Node Edge Points (WDM)

RRH

RRH

RRH

CS

Service Interface Point

RRH CS

RRH

RRH

RRH

CO

BBU

BBU

BBU

BBU

BHVNF/MEC

Node Edge Points (EtH)

Backhaul TAPI Topology

Fronthaul TAPI Topology

Page 16: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

NETCONF for the fronthaul segment§ We consider YANG data model and NETCONF protocol between the SDN agents

and the child SDN controllers.

§ The CO and the cell sites can be modelled as nodes with ports connected to A/DRoF transceivers (WDM ports) or to the ODN (SDM ports).

§ We have developed YANG data models for:

§ Configuring and monitoring of sliceable SDM/WDM transceiver (sliceable-transceiver-sdm.yang).

§ Retrieving the topology of the CO and cell sites nodes (node-topology.yang).

§ Provisioning a spatial/spectral connection between ports (node-connectivity.yang)

§ The defined YANG models are on a public repository in:

§ https://github.com/CTTC-ONS/SDM

16

Page 17: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

YANG data models for node topology and connectivity

17

module: node-topology +--ro node-id +--ro port [port-id] +--ro layer-protocol-name +--ro available-core* [core-id] | +--ro core-id | +--ro available-frequency-slot* [slot-id] | | +--ro slot-id | | +--ro nominal-central-frequency | | | +--ro grid-type? | | | +--ro adjustment-granularity | | | +--ro channel-number | | +--ro slot-width-number | +--ro occupied-frequency-slot* [slot-id] | +--ro slot-id | +--ro nominal-central-frequency | | +--ro grid-type | | +--ro adjustment-granularity | | +--ro channel-number | +--ro slot-width-number +-- ro available-transceiver +-- ro transceiver-id +-- ro transceiver-type +-- ro supported-modulation-format [modulation-id] | +-- ro modulation-id | +-- ro mod-type +-- ro supported-center-frequency-range | +-- ro max-cf | +-- ro min-cf +-- supported-bandwidth | +-- ro max-bw | +-- ro min-bw +-- ro supported-FEC +-- ro supported-equalization

+-- ro supported-monitoring

module: node-connectivity +--rw connection [connectionid] +--rw connectionid +--rw port-in_id +--rw port-out_out

+--rw transceiver[transceiverid]

Page 18: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

YANG data model for SDM/WDM transceivers§ List of transceivers.

§ Each transceiver is composed of a list of slices.

§ Each slice is composed of a slice ID, a list of:

§ Optical-channels :

§ optical-channel-id,

§ frequency-slot(n,m),

§ mode-id and core-id.

§ optical-signal parameters (associated to the optical-channels).

§ optical-channel-id (for associating the signal parameters to an optical channel),

§ constellation (e.g. Nyquist-shaped DP-16QAM),

§ bandwidth (e.g. 12GHz), FEC (e.g, SD-FEC)

§ equalization: equalizer (e.g., LMS 12x12), MIMO (e.g. True/False), and num-taps (e.g. 500).

§ State data: BER and OSNR in the monitor field.18

module: sliceable-transceiver-sdm+--rw transceiver [transceiverid]

+--rw transceiverid+--rw slice* [sliceid]+--rw sliceid+--rw optical-channel* [opticalchannelid]| +--rw opticalchannelid| +--rw coreid| +--rw modeid| +--rw frequency-slot| +--rw ncf| +--rw slot-width+--rw optical-signal* [opticalchannelid]

+--rw opticalchannelid+--rw constellation+--rw bandwidth+--rw fec+--rw equalization| +--rw equalizationid| +--rw mimo| +--rw num_taps+--ro monitor

+--ro ber+--ro osnr

Page 19: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Experimental setup

19

Tunable LD for measured ch.

IQM

AWG

IQM

AWG

15 LDs

PME SSSC

oupl

er

6-m

ode

Mux

6-mode 19-core fiber (11km)

Up to 6 modes(LP01, LP11a, LP11b, LP21a, LP21b, LP02)

Fan-in Fan-out

Mod

e D

EMux Pol OH

Pol OHPol OHPol OHPol OHPol OH

BPDsBPDsBPDsBPDsBPDsBPDs

OSC

OSC

OSC

LOCPL

SDN Agent SS-SSRx

SDN Agent SS-SSTx

SDN Controller Network (Barcelona, Spain)

Internet

(Saitama, Japan)

Cou

pler

6-m

ode

Mux

6-m

ode

coup

ler

6-m

ode

Mux

6-m

ode

coup

ler

6-m

ode

Mux

6-m

ode

coup

ler

6-m

ode

Mux

6-m

ode

coup

ler

Cou

pler

6-mode signals

1 23

4

5

678

9

10

11

1213 14

15

1617

18 19

Marker

267 µm12x12 MIMO equilizer200 TapsLeast-mean square (LMS)

Nyquist-shaped DP-64QAM

R. Muñoz, et al., SDN-enabled Sliceable Multi-dimensional (Spectral and Spatial)Transceiver Controlled with YANG/NETCONF, OFC 2018.

Page 20: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Proof-of-concept§ There are available 16 optical channels (1 measured + 15 dummy) transmitted in the

6 modes and the 19 cores (16x6x19=1824 channels).

§ First, we sequentially provision three slices:

§ For slice #1, we transmit 114 channels (measured channel x 6 modes x 19 cores)

§ For slice #2, we transmit 912 channels (8 dummy channels x 6 modes x 19 cores)

§ For slice #3 we transmit 798 channels (7 dummy channels x 6 modes x 19 cores).

§ Second, we experimentally measure the BER of the optical channels of slice #1 in all modes in the reference core in order to monitor the impact due to the provisioning of additional slices

20

Slice#3Slice#1Slice#2

55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 n

m=1 for all channels

Page 21: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Provisioning of slices with YANG/NETCONF§ We sequentially provision the three slices using the NETCONF message exchange

between the SDN controller and the SDN Tx and Rx agents.

21

SDN

Controller

SDN Tx

Agent

SDN Rx

Agent

<edit-config> <ok>

<edit-config><ok>

When the agent (TX) completes setting up

the transmitter (LDs, and SSS), the agent

sends “OK” message to the controller.

* 3-4 minutes

<edit-config><target><running/></target><config><top

xmlns="urn:sliceable-transceiver-sdm">

<transceiver>

<slice>

<sliceid>1</sliceid>

<optical-channel>

<opticalchannelid>1</opticalchannelid>

<coreid>Core19</coreid>

<modeid>LP01</modeid>

<frequency-slot>

<ncf>39</ncf>

<slot-width>1</slot-width>

</frequency-slot>

</optical-channel>

<optical-signal>

<opticalchannelid>1</opticalchannelid>

<constellation>64qam</constellation>

<bandwidth>12000000000</bandwidth>

<fec>sd-fec</fec>

<equalization>

<equalizationid>1</equalizationid>

<mimo>true</mimo>

<num_taps>500</num_taps>

</equalization>

</optical-signal>

<opticalchannelid>2</opticalchannelid>

…..

</slice>

</transceiver>

</top></config></edit-config>

When the agent (RX) completes setting

up the receiver (LO, and OSC), the agent

sends “OK” message to the controller.

* Approx 3 minutes

overall provisioning time of a slice is between 6-7 minutes

slice1

<edit-config> <ok>

<edit-config><ok>

slice2

<edit-config> <ok>

<edit-config><ok>

slice3

Page 22: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Integration in the BlueSPACE’s NFV MANO architecture

22

RRH/RU PNF Agent

CS FH NodeAgentCS FH NodeAgent

VNFs and MEC applications

vEPC

CO NodeSDN Agent

CUMEC

NFV Orchestrator (NFVO)

Network Sclicing Manager (NSM)

TED

C&R

FH TransportSDN Controller (WIM)

C & R

• Network slice template (NST)• Network slice instance (NSI) C & R

• VNF/VM Images

Edge computing

Or-wi (TAPI) Or-pnfmOr-Vi

(OpenStack API)

Or-vnfm

Or-Nsm

Nf-vi-ec(Nova API)

Vi-Vnfm(OpenStack API)

Ve-Vnfm

Nf-wi-pa (OF/P4)

ARoFAgent

DRoF T Agent

Edge computingController (VIM)

Pe-Pnfm(REST API)

PNF Manager (PNFM)PNF Manager

(PNFM)

VNF Manager (VNFM)VNF Manager

(VNFM)VNF Manager

(VNFM)

PS Control

PoF T Agent

OS/SSS Agent

CS NodeSDN Agent

wi-ag (NETCONF)

• SDM/WDM/Packet resources

• XHAUL Topology

• Network services descriptors, VNF Packages and PNF descriptors.

• NS, VNF and PNF instances• NFVI resources

BBU/DU PNF Agent

XHAUL Transport SDN Controller(WIM)

BH/NGFI TransportSDN Controller (WIM)

Network Service and Network

Slice allocationMEC

Manager

wi-wi (TAPI) wi-wi (TAPI)

Nf-wi-op (RESTAPI)

or-mec

Hierarchical Transport SDN controller

NFV Service Platform

Page 23: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

ONDM 2018, May 14-17, Dublin, Ireland

Conclusions§ The BlueSPACE project proposes Spatial Division Multiplexing (SDM) as the key

technology to overcome the capacity crunch that the conventional optical single-mode fibers (SMFs) are facing to accommodate the increasing bandwidth demands forecasted for 5G mobile communications in the fronthaul network.

§ The combination of SDM with flexi-grid DWDM enables to exploit both dimensions (spectral and spatial resources) in combination with analog and digital Radio over Fiber (RoF) techniques.

§ This talk has presented the challenges and architectural Transport SDN solutions proposed to enhance the ETSI NFV MANO framework in order to meet the functionalities considered in BlueSPACE.

23

Page 24: SDN control of Spatial Division Multiplexing (SDM) for 5G …ondm2018.scss.tcd.ie/wp-content/uploads/2018/05/Munoz... · 2018-05-29 · SDN control of Spatial Division Multiplexing

Thank you! Questions?

24

Raul Muñoz

[email protected]

Work supported by EC H2020 BLUESPACE (762055) and the Spanish DESTELLO (TEC2015-69256-R) projects.