second and higher order elastic constants

700
1.1 Introduction 1 1 The elastic constants of crystals 1.1 Introduction 1.1.1 Notation, units and abbreviations a) List of symbols CPU GPa c’ GPa CL GPa K GPa SP, (TPa)-’ SP T K Tp GPa Tc,, 10-4K-1 K K K K K K K K GPa (TPa)-’ V kms-’ n s v, cm3/mole N cme3 P kgmV3 b) Letters used as superscripts Letter Indication elastic stiffnesses (contracted’)) 1 GPa = 10gNm-’ = 1010dyncm-2 = fhl - 4 = th + CIZ + 2’24) bulk modulus for cubic crystals K = fh + 2~12) elastic compliances (contracted’)) l(TPa)-’ = 10-12m2N-1 = 10-13cm2dyn-1 strain components (contracted’)) temperature stress components (contracted’)) temperature coefficients of the elastic stiffnesses Tcpd = &!!k (see text) cp, dT Curie temperature melting temperature N6el temperature structural transition temperature spin-flip temperature spin rotation temperature transition temperature martensitic start temperature hydrostatic pressure pressure coefficients of the elastic stiffnesses Pcpo = Ldc,, (see text) cw dp sound velocity V’Jcp,Ip number of observations standard deviation molecular volume carrier concentration density S T E D P adiabatic (constant entropy) isothermal (constant temperature) constant electric field constant electric displacement constant electric polarization *) For the tensornotation, see Section 2.1.1 Land&-Bhstein New Series III/29a

Upload: others

Post on 11-Sep-2021

32 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Second and Higher Order Elastic Constants

1.1 Introduction 1

1 The elastic constants of crystals

1.1 Introduction

1.1.1 Notation, units and abbreviations a) List of symbols

CPU GPa

c’ GPa CL GPa K GPa

SP, (TPa)-’

SP T K Tp GPa Tc,, 10-4K-1

K K K K K K K K GPa (TPa)-’

V kms-’

n s v, cm3/mole N cme3 P kgmV3

b) Letters used as superscripts Letter Indication

elastic stiffnesses (contracted’)) 1 GPa = 10gNm-’ = 1010dyncm-2 = fhl - 4 = th + CIZ + 2’24)

bulk modulus for cubic crystals K = fh + 2~12) elastic compliances (contracted’)) l(TPa)-’ = 10-12m2N-1 = 10-13cm2dyn-1 strain components (contracted’)) temperature stress components (contracted’)) temperature coefficients of the elastic stiffnesses

Tcpd = &!!k (see text) cp, dT

Curie temperature melting temperature N6el temperature structural transition temperature spin-flip temperature spin rotation temperature transition temperature martensitic start temperature hydrostatic pressure pressure coefficients of the elastic stiffnesses

Pcpo = Ldc,, (see text) cw dp

sound velocity V’Jcp,Ip number of observations standard deviation molecular volume carrier concentration density

S T E D P

adiabatic (constant entropy) isothermal (constant temperature) constant electric field constant electric displacement constant electric polarization

*) For the tensor notation, see Section 2.1.1

Land&-Bhstein New Series III/29a

Page 2: Second and Higher Order Elastic Constants

2 1.1 Introduction [Ref. p. 576

c) Other abbreviations

(piezoel.)

at% mole% wt %

p: BCC FCC

After the name of a crystal in Tables 3. . .27 and Figs. 3.1 . * .52.1 indicates it is (or may be) piezoelectric atomic % mole % weight % room temperature (Z 300 K; all results are for RT unless otherwise stated) around a figure indicate that there is some doubt about it body-centered cubic face-centered cubic

1.1.2 Stiffness and compliance constants

In the absence of electrical and thermal effects, the stiffnesses c,, and the compliances spa of an anisotropic material are defined by the generalized Hooke’s law

Tp = &%r Cpa = cop, (p,o= 1,2,3,4,5 or 6) (1)

s, = sp,L spa = hp. where summation over indices appearing twice in any product is understood (Einstein convention).

S,, S, are the six components of the strain matrix’.“) as defined by Voigt [28vl]. Tp, T, are the six components of the stress tensor”). The cpa and spa form symmetrical 6 x 6 arrays, and the number of independent constants is therefore 21 in the

most general case of a triclinic material”‘). The existence of symmetry elements in the material leads to a reduction in the number of independent constants [28vl, 57nl,61 hl]. The schemes of constants appropriate to the various classes of crystal symmetry are given in Tables 1 and 2. Reading from the top downwards, these tables show: name of system; the point groups belonging to the system (Hermann-Mauguin notation”“)); the orienta- tion of the principal axes with respect to the coordinate axes x, , x2, and x3; the number of independent constants; the column number; and, in the body of the tables, the schemes of independent stiffnesses c,,,,, quoting only the suffixes pa. As an example, the existence of a simple 4-fold axis or its equivalent parallel to the x3 axis necessitates the following relations:

Cl1 = czz. Cl3 = c239 C44 = css. Cl6 = - C26.

Cl4 = Cl5 =C24 = C25 = C34 = C35 = C36 = C45 = C46 = C56 = 0,

and there are 7 independent stiffnesses”‘):

CllrC33,C12,C13.C44,C66.and c16.

Examination ofcolumn 6, Table 1 shows that all these relations are contained in it, and it therefore represents the scheme of stiffnesses appropriate to point groups 4, 3, and 4/m. The other columns of Tables 1 and 2 similarly represent the schemes of stiffnesses applicable to the point groups shown at the head of the particular column. The monoclinic system is listed for three orientations, with the 2-fold axis respectively parallel to x1, x2, and x3; the standard orientation for a monoclinic crystal is with the 2-fold axis parallel to x2.

‘I The shear strains S,, Ss, S6 as defined by Voigt and most later writers must be halved to obtain true tensor components. a1 The problem of tensor vs. matrix Voigt notation is discussed in detail in Section 2.1.2. Ir’ In triclinic crystals the orientation of the coordinate system is not fixed by the crystal structure. Hence, by a suitable

rotation of axes it is possible to reduce the number of independent elastic constants from 21 to 18 [65fl]. However a full description of the elastic tensor now requires specification of the three Euler angles or equivalent parameters, and so the information content is still the same. Similarly in monoclinic crystals the freedom to rotate the coordinate system about the 2-fold axis can be used to reduce the number of independent elastic constants from 13 to 12, with gain of one angular parameter. It is usual however for’investigators to adopt the convention< coordinate system for a particular crystal and list the higher number of elastic constants. For the tetragonal groups 4, 4 and 4/m, a suitable rotation about the xX axis eliminates c,~ and the elastic constant tensor takes on the same form as for the remaining tetragonal groups, displaying a higher degree of“acoustic symmetry” [61K2,65fl, 79B5,87E4,89Fl]. In a similar way c 14 or cl5 can be eliminated for the trigonal groups 3 and 3 yielding an elastic constant tensor which has the higher acoustic symmetry of the remaining trigonal groups. Related questions that have attracted attention are the identification of material symmetry from given elastic constants [87Cl] and the obtaining of invariants of anisotropic elastic constants [87T5].

-’ For the corresponding Schoenflies notation, see Table 4 in Section 2.1.3.

Land&-B6msrcin New Swim 111,29a

Page 3: Second and Higher Order Elastic Constants

2 1.1 Introduction [Ref. p. 576

c) Other abbreviations

(piezoel.)

at% mole% wt %

p: BCC FCC

After the name of a crystal in Tables 3. . .27 and Figs. 3.1 . * .52.1 indicates it is (or may be) piezoelectric atomic % mole % weight % room temperature (Z 300 K; all results are for RT unless otherwise stated) around a figure indicate that there is some doubt about it body-centered cubic face-centered cubic

1.1.2 Stiffness and compliance constants

In the absence of electrical and thermal effects, the stiffnesses c,, and the compliances spa of an anisotropic material are defined by the generalized Hooke’s law

Tp = &%r Cpa = cop, (p,o= 1,2,3,4,5 or 6) (1)

s, = sp,L spa = hp. where summation over indices appearing twice in any product is understood (Einstein convention).

S,, S, are the six components of the strain matrix’.“) as defined by Voigt [28vl]. Tp, T, are the six components of the stress tensor”). The cpa and spa form symmetrical 6 x 6 arrays, and the number of independent constants is therefore 21 in the

most general case of a triclinic material”‘). The existence of symmetry elements in the material leads to a reduction in the number of independent constants [28vl, 57nl,61 hl]. The schemes of constants appropriate to the various classes of crystal symmetry are given in Tables 1 and 2. Reading from the top downwards, these tables show: name of system; the point groups belonging to the system (Hermann-Mauguin notation”“)); the orienta- tion of the principal axes with respect to the coordinate axes x, , x2, and x3; the number of independent constants; the column number; and, in the body of the tables, the schemes of independent stiffnesses c,,,,, quoting only the suffixes pa. As an example, the existence of a simple 4-fold axis or its equivalent parallel to the x3 axis necessitates the following relations:

Cl1 = czz. Cl3 = c239 C44 = css. Cl6 = - C26.

Cl4 = Cl5 =C24 = C25 = C34 = C35 = C36 = C45 = C46 = C56 = 0,

and there are 7 independent stiffnesses”‘):

CllrC33,C12,C13.C44,C66.and c16.

Examination ofcolumn 6, Table 1 shows that all these relations are contained in it, and it therefore represents the scheme of stiffnesses appropriate to point groups 4, 3, and 4/m. The other columns of Tables 1 and 2 similarly represent the schemes of stiffnesses applicable to the point groups shown at the head of the particular column. The monoclinic system is listed for three orientations, with the 2-fold axis respectively parallel to x1, x2, and x3; the standard orientation for a monoclinic crystal is with the 2-fold axis parallel to x2.

‘I The shear strains S,, Ss, S6 as defined by Voigt and most later writers must be halved to obtain true tensor components. a1 The problem of tensor vs. matrix Voigt notation is discussed in detail in Section 2.1.2. Ir’ In triclinic crystals the orientation of the coordinate system is not fixed by the crystal structure. Hence, by a suitable

rotation of axes it is possible to reduce the number of independent elastic constants from 21 to 18 [65fl]. However a full description of the elastic tensor now requires specification of the three Euler angles or equivalent parameters, and so the information content is still the same. Similarly in monoclinic crystals the freedom to rotate the coordinate system about the 2-fold axis can be used to reduce the number of independent elastic constants from 13 to 12, with gain of one angular parameter. It is usual however for’investigators to adopt the convention< coordinate system for a particular crystal and list the higher number of elastic constants. For the tetragonal groups 4, 4 and 4/m, a suitable rotation about the xX axis eliminates c,~ and the elastic constant tensor takes on the same form as for the remaining tetragonal groups, displaying a higher degree of“acoustic symmetry” [61K2,65fl, 79B5,87E4,89Fl]. In a similar way c 14 or cl5 can be eliminated for the trigonal groups 3 and 3 yielding an elastic constant tensor which has the higher acoustic symmetry of the remaining trigonal groups. Related questions that have attracted attention are the identification of material symmetry from given elastic constants [87Cl] and the obtaining of invariants of anisotropic elastic constants [87T5].

-’ For the corresponding Schoenflies notation, see Table 4 in Section 2.1.3.

Land&-B6msrcin New Swim 111,29a

Page 4: Second and Higher Order Elastic Constants

Ref. p. 5761 1.1 Introduction 3

Table 1. Elastic stiffnesses in the triclinic, monoclinic, orthorhombic, tetragonal, and cubic systems [61hl] I’.

Triclinic Monoclinic Orthorhombic Tetragonal Cubic

1 2 ii:

4 4mm 23 i m 3 32rn m3

2/m mmm 4/m 42 23rn 4/mmm 43

m3m

2(x1) or mh)

2(x,) or

mh)

2(x3) or m(x3)

4(x3) 4(x3) and 2(x2 or x1)

:6) ;3

11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 12 14 14 0 0 0 0 0 0 15 0 15 0 0 0 0 0 16 0 0 16 0 16 0 0 22 22 22 22 22 11 11 11 23 23 23 23 23 13 13 12 24 24 0 0 '0 0 0 0 25 0 25 0 0 0 0 0 26 0 0 26 0 -16 0 0 33 33 33 33 33 33 33 11 34 34 0 0 0 0 0 0 35 0 35 0 0 0 0 0 36 0 0 36 0 0 0 0 44 44 44 44 44 44 44 44 45 0 0 45 0 0 0 0 46 0 46 0 0 0 0 0 55 55 55 55 55 44 44 44 56 56 0 0 0 0 0 0 66 66 66 66 66 66 66 44

l) Reproduced by permission of Oxford University Press.

Landoh-Btmstein New Series III ‘298

Page 5: Second and Higher Order Elastic Constants

4 1.1 Introduction [Ref. p. 576

Table 2. Elastic stiffnesses in the triclinic, trigonal, hexagonal, and isotropic systems [6lhl] ‘!

Triclinic Trigonal Hexagonal Isotropic

1 3 3m 6 i 3 3m 5

32 6/m 6mm’ 6m2 62 g//mm

3(x3) 3(x3) 6(x3) 2(x,)

11 11 12 12 13 13 14 14 15 15 16 0 22 11 23 13 24 -14 25 -15 26 0 33 33 34 0 35 0 36 0 44 44 45 0 46 -15 55 44 56 14 66 j(ll-12)

j(ll-12) 0

f(ll-12)

” Reproduced by permission of Oxford University Press

The schemes of Table 1 apply to the compliances as well as to the stiffnesses. Table 2 is also valid for the compliances, subject to the following modifications:

a) in the trigonal system where

C46 = - ClS, C56 = c14,

the corresponding relations for the compliances are

s46 = - 2s,5, s56 = h4;

b) in the trigonal, hexagonal, and isotropic systems, where

C66 = fkl, - c,2),

the corresponding relation for the compliances is

S66 = as, I - s12).

It is evident from equations (1) that the stiffnesses can be converted to the compliances and vice versa by the standard determinant procedure for solving simultaneous equations. The conversion equations, and the special cases of them appropriate to the various crystal systems are given in [61hl].

Landoh-BZmstein New Series 11IR9.3

Page 6: Second and Higher Order Elastic Constants

Ref. p. 5761 1.1 Introduction 5

1.1.3 Methods for the determination of the elastic constants

The methods for measuring the elastic constants are described in [46hl, 56h1, 61h1, 62wl,65zl, 67N2, 70m1, 71K7,71L4,72vl, 73sl,76C2,77Pl, 82cl,82dl, 83L9,84kl, 85n2,88sl]. The most widely used methods are, or have been:

1 Ultrasonic wave transmission, including the pulse superposition method, 2 Resonance of samples in the shape of rods, bars, parallelepipeds and plates, 3 Light scattering from ultrasonic waves (Schaefer-Bergmann), 4 Static deformation, 5 Brillouin scattering, 6 Ultrasonic wedge method, 7 Thermal diffuse scattering of X-rays, 8 Neutron scattering. Methods 2 and 4 determine the compliances s,, directly; the remainder determine the stiffnesses cpo directly.

The accuracy of the methods varies widely, and the above list represents an approximate ranking in order of decreasing accuracy. Methods 1 and 5 are the most widely used at the present time. Most complete sets of elastic constants have in fact been obtained by ultrasonic transmission, Brillouin scattering enables measurements to be made on small crystals with size of the order of a few millimeters, and has proved invaluable in the study of effects of p and Ton elastic constants. With the aid of this method and of the more traditional ones, the behavior of many substances has been followed through phase transition regions; the interpretation of this behavior in terms of phonon effects, soft modes, order parameters and allied topics has developed into an extensive subject, and is not dealt with here.

Methods have also been proposed and used for the estimation of single crystal elastic constants from the mean square amplitudes of atomic vibrations [78Sl, 80KlO], and from the elastic constants of polycrystalline aggregates [78L2, 79B6, 79H5, 81L11, 83V3, 87Bl], in some cases complemented by X-ray diffraction strain measurements [85H3]. Phonon focusing [85nl, 86ml] yields detailed information on the elastic anisotropy of crystals, and hence their elastic constant ratios, but up to the present has mainly served to confirm existing values of these ratios, and to explore dispersive and other effects at thermal phonon frequencies. Recently, however, all three elastic constants of an anisotropic cubic crystal have been determined from ultrasonic group velocities measured along off-symmetry directions using a point-source/point receiver technique. The elastic constants are varied so as to obtain a least-squares fit between the measured and calculated group velocities [90El]. There have been a few reported measurements of elastic constants using surface acoustic waves [84Ml, 8115, 85m1, 88B2], and Lamb modes of oriented thin films have yielded information about elastic constants [87(35,88N7]. The vibrating reed mechanism [87B5] has been used for measuring Young’s modulus of single crystal charge- density-wave conductors and high-T, superconductors [89S3,89Xl], and a similar technique based on the bending vibrations of single crystal whiskers has been used [8411]. The torsional pendulum method [82BS, 84B10, 86B6,87Xl] has been used for measuring shear moduli. There are other methods that have been proposed [71C7,73N5,7323,7602,76SlO, 7786,88M4,89A2], but not widely used so far.

There is an extensive literature on theories of elastic constants, much of which concerns the subjects of phase transitions and lattice dynamics, and lies outside the scope of this compilation. For recent reviews and other general discussions see [82bl, 8211,82sl, 82S5,84M8,85fl, 85Kll,86sl, 88F1,88sl].

Landolt-Bdmstein New Series II1/29a

Page 7: Second and Higher Order Elastic Constants

6 1.1 Introduction [Ref. p. 576

1.1.4 Secondary effects: thermal, electrical and magnetic conditions

There are a number of secondary effects which have to be taken into account when discussing the elastic constants, the most important of which are those associated with thermal and electrical conditions [57nl]. The adiabatic and isothermal elastic constants differ from each other, and are distinguished from each other when necessary by the superscripts S and T respectively (e.g. ci,, and c,‘o). Similarly for piezoelectric crystals (identified in Tables 3 1 . . 27 by (piezoel.) after the name of the substance), the elastic constants appropriate to conditions of constant field (c:~), constant polarization (c:~), and constant displacement (c:~) also differ from each other. All these differences are usually of the same order as, or even smaller than experimental errors, and are normally not distinguished in the tables. However, for a few substances, particularly those for which the differences are large, values of the different types of constants are quoted when available, but no special calculations have been made for present purposes. For many of the materials labelled “piezoel.“, the labelling is based on the reported point group, and has not necessarily been confirmed experimentally. In noncentrosymmetric crystals the linear variation of the elastic moduli with electric field defines the fifth-rank electroelastic tensor [74P2,82R5]. No attempt will be made here to tabulate the very limited amount of data that is available on this tensor.

A variety of complicated effects of magnetic field on elastic constants have been reported, particularly in the rare earth elements Dy, Er, Gd, Ho, Nd, Pr, and Tb [7OP3,70R4,72P2, 7314,73S9,74K2,74Pl, 74R4,76Dl, 76P7, 77J2, 77P1, 77P2, 8451, SSSfS]. Acoustic de Haas-van Alphen effects have been reported in rare earth and other compounds [82N6,82T4,84L3,85N2,8586,87813,87El], and other magnetic field effects have been observed in heavy-fermion compounds [87K3,87N3,87W3] and in ferromagnetic, ferrimagnetic and antiferro- magnetic materials [82B4,8311,8664,87M2], and in materials showing spin reorientation phase transitions [84D3]. A complete summary of these results has not been attempted; a few results are quoted for illustration, but reference should be made to the original papers for full details. Unless otherwise stated, all results for the rare-earths and materials with similar behavior are quoted at zero magnetic field.

Illumination has been reported to have an influence on the elastic constants of certain crystals [81G6,85W4] and the effects of X-ray and y-ray irradiation have also been investigated [SSVl].

1.1.5 Secondary effects: frequency

Comparison of elastic constants obtained in the ultrasonic, Brillouin scattering, and neutron scattering regions is ofinterest in connection with the frequency dispersion of the elastic constants, and with sound propagation in the first sound and zero sound regimes [67C7]. The former corresponds to a collision-dominated regime (07 < 1,

where o is the frequency, and 7 is the phonon lifetime), explored by ultrasonic propagation and, at higher temperatures, by Brillouin scattering techniques. The second corresponds to a collision-free regime (~7 9 l), and is explored by neutron scattering techniques. Comparisons of elastic constants over wide frequency ranges have been made for quartz [70B6,7389], sulfur [74Vl], copper [76Lll], potassium bromide [68S4], and the nitrates of Ca, Ba, and Sr [71M6]; the available data for the rare-gas solids is summarized in [72T2,77kl, 77R2]. However, there is conflict over the size and even the sign of these differences, and in order not to overburden the tables with detail, the differences are not normally distinguished in the tables.

A lattice-dynamical approach which takes into account the inertial effects of optic modes [88N6] leads to coupling of the strain and rotation fields, and thereby dispersive contributions to the elastic constants. In the general case of triclinic symmetry this extended elastic constant matrix has 45 independent components (compared with the usual 21). In [88P6] it is shown that only 36 of these are bulk elastic constants, the remaining 9 being surface constants. Observable effects might be expected in materials with zone-centre soft modes, but no experimental confirmation has been reported as yet.

In certain classes of crystals, spatial dispersion is an important factor and gives rise to observable effects even at ultrasonic frequencies. It can be treated as an extension to continuum elasticity theory by expanding the elastic constants in powers of the wavevector, and retaining only the leading terms of low order [68P2,80K17, 86D3,87E3]. The coefficients of the linear terms comprise the acoustic gyrotropic tensor, and are responsible for the phenomenon of acoustical activity. Certain components of this tensor have been measured in a small number of crystals, but are not tabulated here.

LandolbB6mswin New Series 111’29a

Page 8: Second and Higher Order Elastic Constants

Ref. p. 5761 1.1 Introduction

1.1.6 Temperature coefficients

7

The temperature coefficients of the elastic stiffnesses are defined formally as

Tc,, = a In cpolaT.

In practice, they have been calculated from

Tc,, = Wc,,W,o/AT), where cpa is the stiffness at a particular temperature. If the temperature coefficient is quoted at a particular temperature, the value of cpO at that temperature was used in the calculations, otherwise the reference temper- ature was usually taken as 300 K.

The above treatment of temperature coefficients assumes a linear relationship between c and T. If the relationship is not linear, a polynomial relationship, truncated at the cubic term, is taken to represent the c vs. T relationship [62B3,74S8]:

c-co AC -=-= co co

i Tc’“‘(T - T,)“, II=1

where the suffices pa have been omitted, and the Td”) are generalized temperature coefficients:

This treatment of temperature coefficients has been developed with special reference to quartz, and some generalized temperature coefficients for this material are given in Tables 37 . . .39. Elsewhere, the relationship is taken as linear, and the superscript (1) is omitted. General relationships connecting c with T have been discussed in [7OV4] and [71Ll].

1.1.7 Pressure coefficients

The hydrostatic pressure coefficients are defined formally as

kpa = a In cpoIap,

and have been calculated from

&,a = W$!d@cp,/A~)> where c,“o is the value at zero pressure.

The pressure coefficients as normally measured in ultrasonic propagation experiments are mixed quantities, and refer to the variation of the adiabatic stiffnesses with pressure at constant temperature, i.e.

PC,, = (a ln c;a4T, where S denotes constant entropy. Other pressure coefficients are

Adiabatic: Pc:~ = (a In c&/dp)s,

Isothermal: PcTc = (a In c&/ap), .

and

The relations among them, and numerical values are given in [67Bl] and [67B2]. The entries in the present tables are mixed coefficients unless otherwise specified; some adiabatic and isothermal values are given if already available, but no special calculations have been made for the present tables.

The pressure coefficients are included in the tables if results of direct measurements have been published. If the third-order elastic constants are known (see Chap. 2), the coefficients can be calculated under unidirectional as well as hydrostatic stress from equations originally derived in [64Tl], and reproduced in more convenient form in [65Bl, 67D3,6762]. In the great majority of cases, the c vs. p relationship is effectively linear, but some information on nonlinear c vs. p relationships is given in the tables and graphs.

Land&Biirnstein New Series 111/29a

Page 9: Second and Higher Order Elastic Constants

8 1.1 Introduction [Ref. p. 576

1.1.8 Accuracy and selection of data

If the number of sets of observations on any material is one or two, then all the data are given. If the number of sets is three or more, the average (2) is usually given, together with the standard deviation (s). Since the number of sets (n) is usually small, s has been estimated from the range as described in [56S2]. However, for some materials, n is too large for this method to be applicable (e.g. for NaCI, n is at least 35, and for Cu at least 20), and for n > 10, the 10 most recent and acceptable sets were generally used for the calculation of Z? and s. Where new data has become available on a material since the previous editions of this tabulation in Chaps. 1 of Landolt-Bornstein, New Series, Vol. III/II and Vol. III/l8, it has, where appropriate, been combined with existing data in the tabulations to calculate new averages and standard deviations.

The level of accuracy aimed at in the tables is three figures, but in individual cases it may be greater or less than this. Thus the elastic constants ofsome sets of alloys are given to four figures, whereas some temperature and pressure coefficients are only given to two.

Most authors report either the set of compliances spO or the set of stiffnesses c,,~ but not both. All sets have been converted as appropriate for use in the present tables by means of the equations given e.g. in [57nlJ or [6lhl], but because oferror propagation during the matrix inversion [81H2,81L5,81LlO], the original accuracy of the data is reduced during conversion. In addition, because the compliances and the stiffnesses have been averaged separately, some of the values entered in the tables may not obey exactly the relevant conversion relations between the compliances and the stiffnesses.

In general the accuracy of the off-diagonal constants (p # a) is less than that of the diagonal constants (p = a). In the monoclinic system, the off-diagonal constants with suffices 15,25,35 and 46, which are zero in all other systems except the triclinic, are often small and have large standard deviations s, so it is doubtful whether many of them differ significantly from zero. In addition, there is ambiguity about the signs of some of these constants, e.g. the signs quoted for the materials in [70B4] differ in some instances from those published previously.

Large discrepancies exist for some substances e.g. lead nitrate and pentaerythritol. In such cases, greater weight is usually given to the later results, on the assumption that the author took the earlier results into account, and would therefore be especially careful about checking his own.

Some discrepancies (iodic acid, lead chloride) exist because different workers used different axial systems. In such cases, the axial system given in [73dl] is accepted, and the results are transformed to this system where necessary. However, if the axial difference has previously been noticed and resolved e.g. Liz SO4 * HZ0 [52Bl], no further alteration is made here.

Purely theoretical calculations of the elastic constants are excluded, but some results obtained by combining theoretical and experimental results are included. This applies to elastic constants derived by interpreting neutron scattering experiments in conjunction with a particular model of the substance under investigation (often one of the rare-gas solids), and to constants obtained by axial transformation between two modifications of the same material e.g. wurtzite (hexagonal) 4 zincblende (cubic) [72M8]; see also [60D2, 74F5,75W2].

A few sets of constants (KNb03 [72P5], triglycine sulfate [6162], 1,3,5triphenylbenzene [73C12]) are omitted because they violate the elastic stability conditions for crystals [57A2].

Incomplete sets of data are usually not included in the main tables, but partial sets for materials on which complete sets are not available are given in Tables 10, 12, 16, 20, 22, and 26.

Compositions are given in atomic or mole % unless otherwise stated, but uncertainty exists in some instances because authors do not always state how their compositions are expressed.

Consideration has been given in the literature to factors affecting the accuracy of measuring and deriving elastic constants. Errors arising from crystal misorientation in wavespeed measurements of elastic constants have been considered [59Wl, 88111, the effect of phase shift of elastic waves due to the transducer and bond in experimental arrangements has been evaluated [77D6], and the convergence in the calculation of the elastic stiffnesses from wave velocities in cubic crystals has been examined [80NYJ. Optimal methods have been discussed for determining the elastic constants from wavespeed measurements in symmetry directions [89L2] and in arbitrary non-principal planes [82C5,8588,89Cl, 89C2]. A theory of the acoustic measurement of the elastic constants of a general anisotropic solid has been put forward [86V3].

Page 10: Second and Higher Order Elastic Constants

Ref. p. 5761 1.1 Introduction 9

1.1.9 Arrangement of tables and graphs

Tables 3. . . 27 contain the elastic constants of the materials classified by the symmetry system to which they belong at room temperature unless indicated otherwise. Within each table, the substances are arranged alphabetically by their English name. Because of the large number of substances represented, the cubic system is subdivided. In some cases the exact classification is not certain, but any uncertainty can be removed by free use of the substance index (ch. 2.6):Unless otherwise stated, all elastic constants are given at room temperature, RT, (= 300 K). Tables 28 . . .44 contain the temperature coefficients, and Tables 45 . . . 53 the pressure coefficients in the same order as in the respective Tables 3. . .27.

The compositions, synonyms, and piezoelectric status of the materials are given in Tables 3 . . .27, but are not repeated in Tables 28 . . .53, nor in general on the graphs, so for full information, reference must be made to the relevant entry in Tables 3 . * .27. Most of the chemical formulae for minerals are taken from the list in [69H2]; variants of some of them can be found e.g. in [73dl].

The graphs (Figs. 3.1 . . .52. l), follow the same order of arrangement as the substances in Tables 3 . . 52, and their numbering indicates the tables they are associated with. All graphs are plotted to a left-hand scale unless a right-hand scale is specified; most of them refer to the stiffnesses cpa vs. temperature T, but some are included showing stiffnesses vs. pressure p, temperature coefficients Tc,, vs. T, compliances spa vs. T, as well as a few miscellaneous relationships not included under these headings.

Additional information regarding some of the graphs and tabular entries is conveyed as follows: parentheses ( ) around a figure indicate that there is some doubt about it; a question mark indicates that some numerical data are available, but that a definite value cannot be obtained; no entry indicates no data available; a dashed line (-----) on a graph indicates some element of doubt or conjecture about the relationship, caused e.g. by errors in reading from small-scale graphs, or by error propagation in converting from stiffnesses to comphances and vice versa.

1.1.10 Notes on bibliography

The bibliography contains two sets of references: “General references”,.identified by a lower-case letter, which are to sources of background information such as textbooks and review articles, and “Special references”, identified by a capital letter, which supply information on specific substances.

References quoted in the tables are divided into the two categories: “Main references”, and “Other references”. The entries in the tables are based on the “Main references”, and the “Other references” direct attention to additional information on the material. Other classes of papers under “Other references” include those contain- ing doubtful data, and partial sets of constants for materials for which complete sets are available. This reference classification is also used on the graphs.

The data from Chaps. 1 of Landolt-Bornstein, New Series, Vol. III/11 and Vol. III/l8 have largely been retained in the present chapter. To keep within the ambit of “crystals” has however necessitated omitting data from those earlier chapters on anisotropic but non-crystalline materials such as biological materials, polymers, and composites etc. (poled ceramics being a notable exception). The tables and figures have been expanded with new experimental data that has become available since the last edition. Most of the “Other references” from the earlier chapters have been deleted from the tables, figures, and bibliography, and their reference numbers left vacant. New references have been numbered consecutively with the earlier ones. Many papers published before 1956 are cited indirectly through the review articles [46hl, 52hl,56hl], but others are cited directly if required. The literature was searched to early 1990, but some later papers are included.

Russian references are to the original journal of publication. Most of these are available in translation as shown in the list below. For most papers, the volume number and year of the translation are the same as those of the original, but the page numbers differ.

Russian journal Akust. Zh. Defektoskopiva Dok. Akad. Nauk SSSR Fiz. Met. Metalloved. Fiz. Nizk. Temp. Fiz. Tekh. Poluprovodn. Fiz. Tverd. Tela

Translation journal Sov. Phys-Acoust. Sov. J. Nondestr. Test. Sov. Phys.-Doklady Phys. Met. Metallogr. (USSR) Sov. J. Low Temp. Phys. Sov. Phys-Semicond. Sov. Phys.-Solid State

Land&-Bhstein New,Series II1/29a

Page 11: Second and Higher Order Elastic Constants

10 1.1 Introduction [Ref. p. 576

Russian journal

Izmeritel. Tekh. Izv. Akad. Nauk SSSR Fiz. Zemli Izv. Akad. Nauk SSSR Met. Izv. Akad. Nauk SSSR Neorg. Mater. Izv. Akad. Nauk SSSR Ser. Fiz. Izv. Akad. Nauk SSSR Ser. Geofiz. Izv. Vyssh. Uchebn. Zaved. Fiz. Kristallografiya Litov. Fiz. Sb. Mekh. Polim. Metallofizikia Opt. Mekh. Prom. Prib. Tekh. Eksp. Prikl. Mekh. Probl. Prochn. Sb. Kratk. Soobshch. Fiz. AN SSSR Fiz. Inst. P. N. Lebedeva Teplofiz. Vys. Temp. Ukr. Fiz. Zh. Usp. Fiz. Nauk Vestn. Mosk. Univ. Fiz. Astron. Zh. Eksp. Teor. Fiz. Zh. Eksp. Teor. Fiz. Pis’ma Zh. Tekh. Fiz.

Translation journal

Meas. Tech. Izv. Acad. Sci. USSR, Phys. Solid Earth Russ. Metall. Inorg. Mater. (USSR) Bull. Acad. Sci. USSR, Phys. Ser. Bull. Acad. Sci. USSR, Geophys. Ser. Sov. Phys. J. Sov. Phys-Crystallogr. Sov. Phys-Collect. Polym. Mech. Phys. Met. Sov. J. Opt. Technol. Instrum. Exp. Tech. Sov. Appl. Mech. Strength Mater. Sov. Phys-Lebedev Inst. Rep. High Temp. Ukr. Phys. J. Sov. Phys-Usp. Moscow Univ. Phys. Bull. Sov. Phys-JETP JETP Letters Sov. Phys.-Tech. Phys.

Acknowledgement is made to authors cited in the bibliography who have supplied data and reprints of their papers, and for valuable discussions.

Land&-BBmrlein New Series IIIR9a

Page 12: Second and Higher Order Elastic Constants

1.2 Tables

1.2.1 Elastic constants

Table 3. Cubic system. Elements (3 constants, see Table 1).

Element S11 s44 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

@Pa)-’ ’ Gpa

Aluminum, Al 16.0 35.3 -5.8 108 28.3 62 s(n=lO) 0.5 0.2 0.3 2 0.2 2

Argon, Ar =8OK SW3

RT P B’4 m) 2 4 6 10 15 20 25 30

Barium, Ba

Calcium, Ca

Cerium, y-Ce

593 ’ 1073 -205 2.77 0.98 1.37 208 322 105 0.39 0.25 0.22

98 133 -34 16 7.5 8.4 48 86 -16 32 11.6 16.3 29 57 -9.1 48 17.6 21.9 19 37 -5.8 74 27.1 33.3 12 24 -3.4 109 41 44 8.9 19 -2.5 142 54 54 6.9 15 -1.8 178 68 63 5.7 13 -1.4 211 80 71 123.7 98.9 +6.01 8.12 10.11 -0.38 157 105 -61 12.6 9.5 8.0 104 71 -42 22.8 14 16.0 74.8 61.3 -29.6 27.8 16.3 18.2 62.8 57.8 -22.3 26.0 17.3 14.3

46h1,49L1,53Sl, 88N7,83V3 3.1 54L1,59S1,64Kl, 3.2 64V2,68T1,69GZ, 3.3 73S4,77T2,79Tl, 79T3 66M3,68G7,7OK2, Table 4 3.4 72M9,74F4,74G4 3.5 86G5,86P2

85M4 fl 84B8 d) 86H6 d) 8389 f)

81B13,76Tl Table 10

8OGl continued

Page 13: Second and Higher Order Elastic Constants

‘Ihble 3 (continued)

Element Sll

0-W’

s44 s12 Cl1

GPa

(32 Main refs. Other refs. Figs.

Cesimn, Cs 78K b, 1676 676 -762 2.47 1.48 2.06 280K 1190 690 -450 1.60 1.44 0.99

Chromium, Cr k, 3.05 9.98 -0.49 348 100.0 67 s(4 0.03 0.07 0.02 4 0.5 5

Cobalt, p -Co a) 8.81 7.83 -3.51 242 128 160 s(n=4) 0.62 0.39 0.32 4 6 3

copper, cu 15.0 13.3 -6.3 169 75.3 122 s(n=lO) 0.2 0.09 0.06 1.5 0.6 1.8

4K 13.66 12.29 -5.66 176.58 81.40 124.80 Diamond, C 0.951 1.732 -0.0987 1077 577 124.7

s(n=3) 0.002 0.003 0.0006 1.7 1.0 0.6 Germanium, Ge =) 9.73 14.9 -2.64 129 67.1 48

4-9) 0.05 0.12 0.11 3 0.5 3

Wdoped) Type N[crnm3 ] n 4-1013 (Sb) n 1.610** (Sb) n 1019 (Sb)

Gild, Au 9.91019 (Ga)

s(n=9)

9.75 14.97 -2.64 128.9 66.8 47.6 9.75 15.24 -2.64 128.1 65.6 47.5 9.71 15.26 -2.62 128.8 65.5 47.7 10.14 15.30 -2.52 118.0 65.3 39.0 23.4 23.8 -10.8 191 42.2 162 0.7 0.7 0.3 2 0.8 3

68K3 86M3 63B2,63S4,71F2, 78L2,79K6,83V2 7OL1,72M4,74F5, 80BlO 66Hl &X3,6612, 68S2,70H12,71Dl, 73C1,73F1,74Cl, 74L1,76L11,77S4, 78V4,79R3,79V2 81L14 n, 72M3,57M1,7569

53F1,53M1,59Kl, 63G3,63M3,65Bl, 7OB7;74V2

85Nl 8622 3.6

3.7 6oD2

83V3,81L14, 3.8 82W6 3.9

58K1,62M3, 3.10 72M5,86F3 83G1,89A2 3.11

88K5

7OB3 67K4 68Bl 7OB3 46h1,58D1,58Nl, 66C3,66H1,67G3, 78V4,81Bl

8705 3.12 3.13

Page 14: Second and Higher Order Elastic Constants

3 F 40 Table 3 (continued) ‘

0% p-g

Element S11 S44 S12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

Helium 3, 3He V, [cm3/mole] 23.8 23.84 24.0 24.06 24.28 24.40 24.1 21.66 24.4 0.4K 21.0

Helium 4; 4He V, [cm3 /mole]

(3 21.00 1.6K

lridimn, Ir

Iron, Fe s(n=lO)

Y-Fe, FCC 1428K 6 21.7 13.0 -9.58 154 77 122 Krypton, G =115K 618 744 -226 2.85 1.35 1.60

s(n=4) 142 52 75 0.14 0.09 0.27 RT, 35GPa 8.4 13.7 -3.1 205 73 118

180000 86200 -82600 0.0243 0.0116 0.0205 168000 92500 -76200 0.0244 0.0108 0.0203 81000 92200 -82400 0.0235 0.01085 0.0197 181000 95200 -82300 0.0232 0.0105 0.0194 191000 97100 -87000 0.0222 0.0103 0.0186 191000 100000 -86800 0.0217 0.0100 0.0181 263000 91800 -124000 0.0233 0.0109 0.0208 195000 50800 -92940 0.0378 0.0197 0.0343 202000 108000 -91600 0.0200 0.0092 0.0164 211000 41800 -102000 0.0445 0.0239 0.0413

170000 42700 -79700 0.033 0.0234 0.029 226000 46200 -107000 0.0311 0.0217 0.0281 2.24 3.72 -0.67 600 270 260 2.28 3.90 -0.67 580 256 242 7.67 8.57 -2.83 230 117 135 0.31 0.09 0.17 5 1 4

71Wl

73w5 75G8

76Gl

71Wl 76Gl 65Pl 66Ml 43Y1,57M2,61Rl, 83V3,85S8 65L1,65T3,66R2, 67L1,68G1,68Ll, 72D2 8721 85T7 72K6,72K9,73S7, 76Ll 89Pl

3.15

3.16

3.17 3.18

continued

Page 15: Second and Higher Order Elastic Constants

‘fable 3 (continued)

Element Sll

crpa)-’

s44 s12 Cl1

GPa

=44 Cl2 Main refs. Other rcfs. Figs.

Lanthanum,La FCC RT ftP)

66OKf) Lead, Pb

s(n=6) Lithium, Li t)

195K 6Li 195K ‘Li 195K

Molybdenum, MO s(n=7)

51.7 55.7 -19.2 34.5 18.0 20.4 87.6 60.5 -36.6 28.5 16.5 20.4 93.7 68.0 - 43.0 48.8 14.8 41.4 0.7 1.4 0.4 1.0 0.3 1.2 315 104 -144 13.4 9.6 11.3 315 102 -144 13.9 9.85 11.7 319 102 -146 13.6 9.84 11.4 319 102 -146 13.6 9.82 11.4 2.63 9.20 -0.68 465 109 163 0.02 0.08 0.01 3 1 3

Neon, Ne 4.7K 1020 1000 6K 970 1080 23.7K 1570 1590 24.3K 1640 1660

Nickel, Ni. Zero 7.67 8.23 field s(n=fQ 0.08 0.08 Saturation 7.45 8.08 field s(n=4) 0.15 0.08

Niobium, Nb 6.56 35.2 s(n=lO) 0.13 0.4

-370 -330

-630 -2.93 0.06 -2.82 0.08 -2.29 0.09

1.69 1.00 0.97 1.62 0.93 0.85 1.21 0.63 0.75 1.17 0.60 0.73 247 122 153 5 2 5 249 124 152 2 1 5 245 28.4 132 5 0.3 5

85813 82S4 46h1,62W2,66A2, 69M8,77Vl 59Nl 6936 77F3

62B 1,67D2,68D6, 56h1,63Fl 72L4,78S5,78V3, 8204,88Bl 79K4 69L3 75El

75Ml 51B3,55D1,59D2, 65E2

61B1,65C1,65W4, 8365,82Zl 66A4,68G2,69J2, 72H9,74H5,75F3, 76K2,76M2,77B9, 77S8,77T3,79K4, 8OFl

3.19

3.20

3.21

3.22

3.23 3.24 3.25

Page 16: Second and Higher Order Elastic Constants

FE a& Table 3 (continued)

9s

Element Sll s44 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

y-y-Oxygen, 0, 54.4K Palladia, Pd

SW3 Platinum, Pt Potassium, K

Rhodium, Rh Rubidium, Rb

=SOK Silicon, Si c)

s(n=7)

1280 3640 -570 2.60 0.275 2.06 13.7 14.1 -6.0 221 70.8 171 0.07 0.14 0.02 4 0.7 5 7.35 13.1 -3.08 347 76.5 251 1215 531 -558 3.71 1.88 3.15 1339 526 -620 3.69 1.90 3.18 3.46 5.43 -1.10 413 184 194 1330 625 -600 2.96 1.60 2.44 1320 505 -600 3.25 1.98 2.73 7.73 12.7 -2.15 165 79.1 63 0.08 0.09 0.04 2 0.6 1

Si(doped) O) Type N[cm -3] n 5*1014 (As) i, n 1.510’7 (P) i)

P 6~5.10’~ (B) i) n 51014 (As) 3 n 4.8-10’9 (As) j)

Silver, Ag s(n=lO)

Sodium, Na s(n=3)

7.72 12.59 -2.15 164.9 79.5 63.5 7.73 12.56 -2.15 164.4 79.6 63.2 7.69 12.53 -2.11 164.1 78.8 62.1 7.69 12.58 -2.14 165.4 79.5 63.6 8.02 12.70 -2.30 162.2 78.7 65.4 23.0 22.0 -9.8 122 45.5 92 0.2 0.7 0.3 2 1.0 3

549 233 -250 7.59 4.30 6.33 22 7 25 0.15 0.09 0.13

75K3 6OR1,7OW 1,74W2, 74W3,79H2,8OS 11 65Ml 65S2 75F5 81W2 66Rl 67G4 63G3,64M2,67Hl, 68E1,68E2,7OM6, 72E1,7701

87Y6 3.26

83P3 3.27 3.28

3.29 3.30

8361,8202, 3.31 82D5 3.32

84s 10,86S 14, 86B8

67K4

7OB3

46h1,56A1,56Bl, 58N1,61C4,66C3, 66H1,66P1,76M4, 78V4,81Bl 6OD1,66M2,69M4, 73F5

8204 3.33 3.34

88Sl 3.35 3.36

continued

Page 17: Second and Higher Order Elastic Constants

‘Igble 3 (continued) .

Element Sll

PaY’

s44 S12 Cl1

GPi3

=44 Cl2 Main refs. Other refs. Figs.

Strontium. Sr

Tantalum, Ta s(rr=l@

144 101 -58 15.3 9.9 10.3 218 135 -90 10.94 7.41 7.69 6.89 12.1 -2.58 264 82.6 158 0.07 0.07 0.05 5 0.6 5

84B8 d) 85M2 61B1,63F1,64H2. 66S2,7OA4,73L4, 76K2,76Tvl2,77F2, 77s 1,79K4

74M7

3.37 3.38

Thallium, Tl a-Tl(Fccp p -Tl (Bee) h)

Tholium, Th

Tungsten, W a=%

vanadium, v s(rt=lO)

Xenon, Xe 156K 159.6K 160.5K

Ytterbium, Yb 0

101 91 -46 40.8 11.0 34.0 99 89 46 47.4 11.2 40.5 27.2 20.9 -10.7 75.3 47.8 48.9 27.4 22.0 -10.9 77.0 45.5 50.9 2.45 6.24 -0.69 523 160 203 0.005 0.04 0.004 1 1 1 6.75 23.2 -2.31 230 43.1 120 0.07 0.2 0.02 5 0.4 4

667 676 -259 2.98 1.48 1.90 7OG5 =), 71G2 e, 660 666 -250 2.83 1.50 1.73 74L3 fJ 690 708 -271 2.93 1.41 1.89 77R2 4 89.2 56.4 -31.9 18.6 17.7 10.4 8237

66S1,67S8 77M5 59Al 77G3 62B1,63F1,67L3, 79K4,82Al 71B2,72U,75F3, 76M2,78L2,78W4, 79A9,79G3,79K4, 8OKl

46hl

6OA1,61Bl

3.41 3.42 3.43 3.44

a) Indirect estimates. FCC cobalt is stable above 7OOK. but can be obtained at RT by special treatment. b, Some data also at 42K.

Page 18: Second and Higher Order Elastic Constants

Footnotes for Table 3 (continued)

4 The means and standard de&ions refer to p- and n-types of different resistivities. For electronic effects on elastic constants see [67K3]. d, Neutron scattering and bulk modulus. e, Brillouin scattering. fl Neutron scattering. g) Stiffnesses obtained by extrapolation of Pb-Tl ahoy data. h, Stiffnesses obtained by extrapolation of In-Tl ahoy data. 9 T=28OK. -j)T=295K. k, TN =3 1 lK, see Fig.3.6. ‘1 Martensitic transition 70”1OOK. m) The values of cl1 and cl2 should be treated as upper and lower bounds respectively. n, Best values obtained by averaging [81L14]. O) See [84S lo] and [86S 141 for estimated changes in the elastic constants for large carrier concentrations (IV > 1@lcms3). P) Below 609K the FCC phase of La is metastable. The stable form is double hexagonal-close-packed.

Table 4. Cubic system. Alloys.

811 s44 312 Cl1 =44 Cl2 Main refs. other refs.

(Tpa)-’ Gpa /

Aluminum-magnesium, Al-Mg at % Mg 0 a) 15.8 34.8 -5.7 107.4 28.75 60.8 7764 4.5b) 16.0 34.7 -5.7 104 28.8 58 7.7 ‘4 16.0 34.5 -5.7 103 29.0 57 12 ‘3 16.2 34.4 -5.7 100 29.1 54.5

continued

Page 19: Second and Higher Order Elastic Constants

Footnotes for Table 3 (continued)

4 The means and standard de&ions refer to p- and n-types of different resistivities. For electronic effects on elastic constants see [67K3]. d, Neutron scattering and bulk modulus. e, Brillouin scattering. fl Neutron scattering. g) Stiffnesses obtained by extrapolation of Pb-Tl ahoy data. h, Stiffnesses obtained by extrapolation of In-Tl ahoy data. 9 T=28OK. -j)T=295K. k, TN =3 1 lK, see Fig.3.6. ‘1 Martensitic transition 70”1OOK. m) The values of cl1 and cl2 should be treated as upper and lower bounds respectively. n, Best values obtained by averaging [81L14]. O) See [84S lo] and [86S 141 for estimated changes in the elastic constants for large carrier concentrations (IV > 1@lcms3). P) Below 609K the FCC phase of La is metastable. The stable form is double hexagonal-close-packed.

Table 4. Cubic system. Alloys.

811 s44 312 Cl1 =44 Cl2 Main refs. other refs.

(Tpa)-’ Gpa /

Aluminum-magnesium, Al-Mg at % Mg 0 a) 15.8 34.8 -5.7 107.4 28.75 60.8 7764 4.5b) 16.0 34.7 -5.7 104 28.8 58 7.7 ‘4 16.0 34.5 -5.7 103 29.0 57 12 ‘3 16.2 34.4 -5.7 100 29.1 54.5

continued

Page 20: Second and Higher Order Elastic Constants

Table 4 (continued)

Alloy 511

(TPa)-t

S44 812 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

Aluminum-nickel, Al-Ni at % Ni 63.2 4 273K 63.2 %‘)273K 50 4s) 50 s) 47.5 a) 273K 50 4 273K 55 a) 273K 60a) 273K

Argon alloys Ar 82.3K Ar-2% 0, 83.OK Ar-4% 0, 82.2K Ar-5% N2 77.8K

Chromium-nickel, Cr-80.4 at% Ni

Chromium-vanadium, Cr-0.67 at% V Cr-1.5 at % V

Cobalt, Co elinvar Cobalt-aluminum, Co-Al

at % Al 10.49 a) 12.59 a) 13.70 a)

23.6 7.58 -10.7 166.2 132 137

(393) 8.26 (-195) 166.7 121 165 11.5 8.62 -4.7 199 116 137 9.72 8.62 -2.79 205 116 131 8.43 9.44 -3.12 209.9 105.9 123.3 10.1 8.82 -4.0 204.9 113.4 134.3 17.0 8.33 -7.5 189.3 120.1 148.4 42.3 8.31 -20.1 173.5 120.4 157.5

874 893 -346 2.38 1.12 1.56 873 901 -347 2.40 1.11 1.58 893 917 -357 2.39 1.09 1.59 872 935 -348 2.43 1.07 1.61

7.73 7.79 -2.96 247 128

2.93 9.93 -0.549 373.2 3.05 10.01 -0.679 376.4 10.8 6.10 -3.36 129

154

85.9 107.9 59

11.25 8.42 -4.68 217.9 11.88 8.51 -4.98 213.5 12.34 8.58 -5.20 210.6

100.7 99.9 164

118.8 117.5 116.6

155.1 154.2 153.6

76E2 4.2 77R7 4.1 77R7 4.3 77F4 77R7

7464 82A6

81L6 4.4

82D3 4.5

731112 4.8

8OBlO

Page 21: Second and Higher Order Elastic Constants

g Table 4. (continued)

I![ Alloy Sll

(TPa)-l

s44 s12 Cl1

GPa

=44 Cl2 Main refs. Other refs. Figs.

Cobalt-aluminum-nickel, Co-Al-Ni

Al at% Ni at% 14.48 6.55 13.33 4.59 13.30 2.92 12.68 6.57 12.50 4.66 10.58 6.57 10.39 4.72

Cobalt-iron, Co-Fe at % Fe 6 8 12 14 6 8 10

Copper-aluminum, Cu-Al at % Al 4.81 9.98 0 0.75 3.1 3.4 4.85

11.42 8.11 -4.76 217.9 123.3 156.1 11.67 8.29 -4.88 214.8 120.7 154.4 11.92 8.38 -5.00 213.9 119.3 154.8 11.03 8.06 -4.57 220.1 124.1 156.0 11.25 8J3 -4.68 218.1 122.9 155.3 10.51 7.95 -4.33 224.4 125.8 157.0 10.66 8.06 -4.40 222.4 124.0 156.0

9.48 7.94 -3.83 234.0 125.9 158.9 9.75 8.01 -3.97 232.7 124.8 159.8 10.31 8.16 -4.24 228.7 122.9 160.0 10.70 8.24 -4.43 226.5 121.3 160.4 9.66 8.06 -3.85 220 124 146 12.19 8.47 -5.05 198 118 140 15.92 9.26 -6.80 173 108 129

15.90 13.35 -6.73 165.8 74.9 121.6 16.75 13.05 -7.11 159.5 76.6 117.6 14.90 13.26 -6.24 169.2 75.4 121.9 14.99 13.14 -6.28 169.0 76.1 122.0 15.34 13.12 -6.45 167.5 76.2 121.6 15.27 13.09 -6.42 167.6 76.4 121.5 15.56 13.04 -6.56 166.7 76.7 121.5

80BlO 4.6 4.7

72M4

73W6 4.9 4.10

54Nl 4.12

71C1,73Cl

continued

Page 22: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy s11

(Tpa)-1

s44 SK2 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

Cu-Al, cont.

at % Al 6.9 7.4 7.5 8.4 10.3 10.8 13.25 1.95 2.14 2.21 4.00 4.34 6.50 7.05 9.85 9.86 10.22 11.77 12.55 0 0.04 0.2 1 5 9 14

15.70 12.94 -6.62 165.7 77.3 120.9 15.84 12.94 -6.70 165.0 77.3 120.7 15.90 12.92 -6.72 164.9 77.4 120.7 16.22 12.90 -6.88 164.1 77.5 120.8 16.63 12.82 -7.07 162.6 78.0 120.4 16.86 12.81 -7.19 162.0 78.1 120.4 17.62 12.69 -7.56 159.4 78.8 119.7 15.08 13.16 -6.33 168.4 76.0 121.7 15.08 13.12 -6.33 168.8 76.2 122.1 15.21 13.14 -6.39 168.4 76.1 122.1 15.53 13.07 -6.55 166.9 76.5 121.6 15.50 13.09 -6.53 167.1 76.4 121.7 15.86 12.97 -6.71 165.5 77.1 121.2 15.97 12.99 -6.76 165.0 77.0 121.0 16.62 12.85 -7.07 163.0 77.8 120.8 16.70 12.82 -7.11 162.7 78.0 120.7 16.69 12.82 -7.11 162.8 78.0 120.8 17.13 12.76 -7.32 161.5 78.4 120.6 17.41 12.67 -7.46 160.6 78.9 120.4 14.87 13.26 -6.22 169.4 75.4 122.0 14.87 13.21 -6.23 169.9 75.7 122.5 14.99 13.21 -6.28 169.0 75.7 122.0 15.06 13.19 -6.32 168.7 75.8 121.9 15.63 13.06 -6.59 166.4 76.6 121.4 16.55 12.75 -7.05 163.8 78.4 121.4 18112 12.45 -7.78 155.4 80.3 116.8

72M12

76F2

Page 23: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy s44 $12 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

Copper-alumimun-manganese, cu27-.3

cu28-.2 Copper-aluminum-nickel,

cu-14 wt% Al- 4.1 wt% Ni t,

WQ (0) m) WQ( 10) m) WQ(40) m, WQ(75) m)

h-14 wt % Al- 4.1 wt % Ni

cu-14.5 wt % Al- 3.15 wt % Ni

Copper-gallium, Cu-Ga at % Ga 1.58 4.15 0 0.36 1.35

\ 2.15 3.27 5.9

(40) 10.8 (-19) 135 92.5 118

(43) 10.6 (-20) 138 94 122

44.5 10.3 43.7 9.8 41.7 10.4 43.7 10.4

36.3 10.4

40.2 9.7

15.38 15.91 14.94 14.99 15.18 15.30 15.5 15.97

-21.0 142.6 -20.6 137.5 -19.6 142.8 -20.6 142.9

-16.9 142.9

-18.6 125

97 127.4 102 121.9 96 126.4 96 127.3

96.2 124.1

103.5 108

13.46 -6.45 165.0 74.3 119.2 13.50 -6.73 165.2 74.1 121.0 13.25 -6.27 169.2 75.5 122.1 13.24 -6.28 168.7 75.5 121.7 13.26 -6.37 168.3 75.4 121.9 13.30 -6.44 168.1 75.2 122.1 13.37 -6.53 167.1 74.8 121.7 13.53 -6.75 164.7 73.9 120.7

76P8 4.13

Table 10 8621

76Sll 4.15

81H9 4.14

8723

54Nl

7OH12

continued

Page 24: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy Sll

0-W l

s44 S12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

ma

copp-germanium, Cu-Ge at % Ge 1.03 1.71

Copper-gold, Cu-Au at % Au 0.23 2.8 10 0 10 25 (CU~AU) 50 80 0 2 a) 5 a) 7.5 a)

Copper-manganese, Cu-Mn at % Mn 0 1.25 2.6 3.5 5.0 5.8

15.44 13.33 -6.50 166.6 75.0 121.0 15.72 13.33 -6.60 163.1 75.0 118.2

15.05 13.48 -6.32 170.0 74.2 123.2 15.52 13.53 -6.56 169.2 73.9 123.9 16.02 13.68 -6.86 174.7 73.1 131.0 14.99 13.24 -6.28 168.8 75.5 121.8 15.90 13.70 -6.81 175.8 73.0 131.8 16.26 15.26 -7.00 176.7 65.5 133.7 18.22 24.09 -8.09 188.3 41.5 150.3 19.70 21.05 -8.86 191.3 47.5 156.3 14.90 13.24 -6.24 169.9 75.5 122.6 15.20 13.42 -6.40 169.9 74.5 123.6 15.71 13.70 -6.64 169.9 73.0 125.2 16.15 13.95 -6.89 169.9 71.7 126.5

14.99 13.26 -6.28 169.0 75.4 122.0 15.19 13.30 -6.37 167.0 75.2 120.6 15.38 13.39 -6.45 165.3 74.7 119.5 15.59 13.40 -6.53 162.7 74.6 117.5 15.87 13.46 -6.66 160.4 74.3 116.0 15.94 13.46 -6.69 159.5 74.3 115.3

54N1

7101

72C2

79R3

Table 10

6Ow2

Page 25: Second and Higher Order Elastic Constants

$E Table 4 (continued) r

gg ag -!3

Alloy 91 s44 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

p5 (TPa)-l GPa

._ Cu-Mn, cont.

at % Mn 40 72 82 v)

Cu-37.2 % Mn 4 Copper-nickel, Cu-Ni

at%Ni 0 2.34 3.02 4.49 6.04 9.73 0 (Non magnetic) 31.1 (Non magnetic) 53.8 (Non magnetic) 65.5 (Unmagnetized) 77.2 (Magnetized) 82.2 (Magnetized) 92.7 (Magnetized) 100 (Magnetized) 9 23 0 3.02 6.02 9.73

19.1 40.1 - (19.2)

15.1 13.3 -6.3 168.1 75.1 121.4 14.8 13.1’ -6.2 .169.3 76.3 121.8 14.8 13.0 -6.2 169.4 76.7 121.8 14.6 12.9 -6.1 170.1 77.3 121.9 14.5 12.8 -6.0 171.1 78.1 122.4 14.2 12.6 -5.9 172.3 79.1 122.6 14.97 13.21 -6.26 168.3 75.7 121.2 12.39 11.16 -5.09 189.1 89.7 131.9 10.81 9.91 -4.39 208.6 100.9 142.8 10.11 9.42 -4.08 216.8 106.1 146.3 9.29 8.89 -3.70 227.0 112.5 150.9

‘8.81 8.63 -3.47 232.7 115.9 151.3 7.94 8.22 -3.07 244.7 121.7 153.9 7.43 8.00 -2.82 252.8 125.0 155.1 13.1 12.5 -5.4 178 79.9 124 12.9 11.5 -5.4 188 87.4 133 15.04 13.23 -6.31 169.6 75.6 122.8 14.68 13.02 -6.14 171.0 76.8 123.0 14.43 12.77 -6.03 173.0 78.3 124.1 14.17 12.56 -5.91 175.4 79.6 125.6

12.5 11.5 11.1 12.7

-7.75 -17.3 - (-7.8)

116.6 79.8 79.4 72.7 86.7 55.3 53 90 =53 119 79 82

84T3,Table 10 4.20

77812 4.i9

6OSl

6B2

6832,7784

71Dl 4.21

continued

Page 26: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy Sll

(TPa)-*

s44 s12 Cl1

Gpa

c44 Cl2 Main refs. Other refs. Figs.

Copper-nickel-zinc, C~&Jq$j() xw %I

0 5 10 15 20 25

Copper-silicon, Cu-Si at % Si 4.17 5.16 7.69

copper-tin, Cu-Sn at%Sn 0.86 1.84

cu-15 % in 3.30

Copper-zinc, Cu-Zn at%Zn 4.59 0 0.87 1.93 5.02 14.3

28.5 13.8 -12.8 130.5 72.3 106.3 33.3 13.1 -15.2 131.5 76.3 110.9 35.6 12.5 -16.4 133.3 80.0 114.1 39.6 12.0 -18.5 135.9 83.5 118.7 43.1 11.6 -20.2 1385 86.0 122.7 47.8 11.4 -22.6 141.6 87.7 127.4

16.10 13.37 -6.85 167.8 74.8 124.2 16.71 13.35 -7.10 160.8 74.9 118.8 17.72 13.50 -7.66 165.8 74.1 126.4

15.50 13.48 -6.53 166.7 74.2 121.3 16.04 13.68 -6.79 164.8 73.1 121.0 16.77 13.93 -7.15 162.4 71.8 120.6 45.4 15.3 -21.3 126 65.5 111

15.91 13.48 -6.71 163.4 74.2 119.2 14.94 13.25 -6.27 169.2 75.5 122.1 15.05 13.28 -6.32 168.9 75.3 122.1 15.18 13.30 -6.37 167.7 75.2 121.3 15.57 13.4 -6.55 165.0 74.6 119.8 16.80 13.68 -7.12 158.0 73.1 116.2

76314 4.22 4.23 4.24

54N1

72M12

78Nl 4.25

54Nl 7OH12

Page 27: Second and Higher Order Elastic Constants

z 2 FL

Table 4. (continued) mne d. -7 P!si Alloy Sll s44 812 Cl1 c44 Cl2 Main refs. Other refs. Figs.

(??a)-’ GPa

Cu-Zn, cont. at %Zn 0 4.1 &x-brass) 9.1 @brass) 17.4 @brass) 22.7 (a-brass) 0 19 (u-brass) 29 (u-brass) 48.2 (~-brass) 45 @-brass) 46 (P-bTass) 47.8 @-brass) 48.8 (j3-brass) 50.0 @-brass) 48.1 (p-brass) 43 (p-brass) 47(P-brass) 44.3 (p-brass) 48.3 (~-brass) 47.5 @-brass)

p-copper-zinc- aluminum,

c%7.7zn19.4A1129 O)

15.00 13.24 -6.28 168.4 75.5 121.4 15.46 13.44 -6.47 163.3 74.4 117.7 16.23 13.83 -6.81 157.1 72.3 113.7 17.54 13.99 -7.42 149.9 71.5 109.8 18.67 14.02 -7.94 144.7 71.3 107.1 14.99 13.24 -6.28 168.7 75.5 121.7 18.47 13.57 -7.99 159.1 73.7 121.3 18.33 13.91 -7.85 152.1 71.9 113.9 36.4 12.27 -16.8 127.9 82.2 109.1 40 12.5 -19 126 80 109 43 12.5 -20 124 80 108 43 12.5 -20 127 80 111 36 12.7 -17 128 79 109 24 13.5 -10 130 74 102 34.2 12.59 k15.7 127.0 79.5 107.0 46.1 13.0 -21.5 lil 77 106 38.0 12.7 -17.5 122 78.5 104 40. 12.35 -18.6 125.8 ’ 81.0 108.8 34.5 12.36 -15.8 124.1 80.9 104.2 31.3 13.5 -14.2 132 74 110

(583) 11.6 (-27.8) 130 86 018)

58Rl 4.26

74Cl

49Ll 63M1,63M2 4.27

71Yl 74M4

7588

82K7

77G6

continued

Page 28: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy $11

(TPa)-l

$44 S12 Cl1

Gpa

%I Cl2 Main refs. Other refs. Figs.

c%6.5z%0.8AI127 183K 213K 253K 293K

Cu-17.0 at % Al-14.3 at % Zn Diaflex (38at % Co,

22.4 Fe, 16.5 Ni, 12 Cr, 4 MO, 4 W, 1.2 Mn, 1 Ti, 0.8 Si)

Gold-cadmium, Au-Cd at % Cd 47.5 (323K) 50 WW 47.5 4 (333K)

Gold-cadmium-copper Gold-copper-zinc,

Au$&&q7 XI& %I 0 15 20 23 30

$I 45 53

Au-33.0 at % (h-47.0 at % Zn

50.8 11.3 -23.9 117.8 88.4 104.4 50.8 11.5 -23.9 117.4 87.3 104.0 49.3 11.6 -23.1 116.8 85.9 103.0 48.3 11.8 -22.6 116.4 84.4 102.3 49.48 12.07 -23.04 106.9 82.85 93.11

8.73 8.48 -3.90 410 118 330 68M3

112.4 23.6 -545 102.0 42.3 %.O 84.9 22.9 -40.6 95.2 43.7 87.2 115.8 24.6 -56.3 110.8 40.7 104.9

38.0 12.7 -17.5 122.9 79.0 104.9 43.4 14.2 -20.3 128.9 70.2 113.2 56.5 16.6 -26.9 131.8 60.4 119.8 75.0 18.0 -36.1 127.0 55.7 118.0 75.0 17.2 -36.1 126.9 58.1 117.9 8.02 17.2 -1.33 133.9 58.1 26.7 57.4 19.2 -27.4 137.9 52.2 126.1 52.67 16.01 -24.85 120.6 62.45 lW.7

84Vl

82N2

5621

7762 Table 10

72M13

82N2

86V6,88Vl

4.28 4.29

4.30

Page 29: Second and Higher Order Elastic Constants

3 F Table 4. (cohinued) *a

s11 s44 s12 Cl1 c44 Cl2 ! Main refs. Other refs. Figs.

(Wa)-l ‘Gpa

Gold-iron Gold-manganese-zinc,

*%+2gn28 Gold-nickel, Au-Ni

at % Ni 0 2.95 9.72 2420 42.42

Gold-silver-cadmium Indium-cadmium, In-Cd

at%Cd 4.4 8) 4ooK 6.5 h, 300K

Indium-thallium, In-Tl at % Tl d, 28.13 30.16 35.15 39.06 25 =) 270 76.5 81.5 30 31

39.8 16.6 -18.4 119.5 60.2 102.3

23.3 23.8 -10.7 192.4 42.0 163.0 22.9 23.3 -10.5 192.6 43.0 162.6 21.9 22.2 -10.0 192.3 45.0 160.9 18.4 19.6 -8.2 195.8 51.0 158.2 16.0 16.2 -7.0 199.5 61.9 156.0

wfw 182 G-1 44.7 5.5 44.2 317 132 -154 39.3 7.56 37.1

1145 120 -568 40.07 8.33 39.49 887 118 -439 40.73 8.51 39.98 564 115 -277 40.71 8.69 39.52 442 115 -217 40.76 8.69 39.24 1452 126 -722 40.46 7.96 40.0 1024 119 -510 39.4 8.38 38.75 197 103 -94 36.1. 9.67 32.7 163 100 -77 ‘38.5 10.0 34.4 (836) 120 (-414) 39.76 8.35 38.96 (697) 115 (-345) 41.50 8.73 40.54

82M2 I

4.32

6763

Table 10 4.33

77M3

65Nl I

4.34 4.35

88Fl 4.41 4.42 4.36

7469

77M5

78M4 4.37 4.38

continued

I

Page 30: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy Sll

(TPa)-l

s.44 s12 Cl1

Gpa

=44 Cl2 Main refs. Other refs. Figs.

Iron-aluminum, FeAl at % Al 4.0 9.6 14.5 17.8 19.8 22.4 23.6 25.0 27.0 28.1 34.0 40.1

Iron-chromium, Fe-19.43 at % Cr Fe-70 at % Cr w)

Iron-chromium-cobalt, Fe-Cr-Co Cr Co Al MO inat% 35 15 31 23 0.1 2315 5

8.23 8.32 -3.09 220.8 120.2 132.5 9.28 8.16 -3.55 204.9 122.6 127.0 10.45 8.04 -4.10 193.7 124.3 125.0 11.75 7.99 -4.72 185.4 125.2 124.6 12.99 7.97 -5.33 179.4 125.5 124.8 14.43 7.92 -6.04 174.3 126.2 125.4 15.62 7.80 -6.66 174.8 128.2 129.9 17.28 7.54 -7.48 171.0 131.7 130.6 16.92 7.65 -7.26 166.4 130.6 125.0 16.04 7.63 -6.79 166.4 131.0 122.6 12.31 7.72 4.90 171.7 129.5 113.6 10.71 7.87 -4.12 181.0 127.1 113.7

67Ll 4.43 4.44

83V3 4.45 4.46

7.16 8.97 -2.48 219.8 111.4 116.1 71M2 3.51 8.00 -0.958 359 125 135 88L3

7.43 8.80 -2.67 226 114 127 6.80 9.65 -2.29 224 104 114 7.42 9.53 -2.68 228 105 129

80B3 4.47

Page 31: Second and Higher Order Elastic Constants

$I Table 4. (continued)

Alloy Sll %I 92 Cl1 =44 Cl2 Main refs. Other refs. Figs.

(TPa)-l GPa

Iron-chromium-nickel, Fe-Cr-Ni Fe Cr Ni inat % 67.3 19.3 13.3 62.4 19.5 18.0 76 12 12 70.5 17.5 12 70 18 12 71 19 10

Iron-cobalt-chromium- molybdenum, Co Cr MO inat% 25 30 3.4

Iron-nickel, Fe-Ni at % Ni 29 31 73 27.2 9 29.0 i) 33.3 9 30.4 32.1 32.7 34.2 36.5 38.8

9.9 8.2 -3.8 198 122 125 10.0 8.1 -3.8 191 119 124 10.05 8.16 -4.13 233 122 163 10.0 7.76 4.01 216 129 144

9.84 7.19 -3.74 191 139 188 10.66 7.92 -4.29 204.6 126.2 137.7

6.4 8.7 -1.5 180 110 56

12.5 8.84 -4.7 147.5 113;1 89.2 16.8 &.07 -7.00 147 124 105 8.39 8.39 -3.23 230.4 119.2 144.4 11.20 8.62 -4.18 160.8 116.0 95.8 11.92 8.84 -4.47 152.6 113.1 91.6 15.09 9.44 -5.91 133.3 105.9 85.7 12.90 8.92 -4.83 140.4 112.1 84.0 14.16 9.21 -5.45 136.2 108.6 85.2 14.94 9.45 -5.89 137.9 105.8 89.9 16.00 9.60 -6.42 135.6 104.2 91.0 16.42 9.80 -6.84 150.7 102.0 107.7 16.36 9.77 -6.90 159.2 102.4 116.2

68M2

6os4 64B5 7x2 84Ll

82K8 4.48 85L3,8567, 4.52 8621,88Fl

6oA2 4.51 85H3 #El 71D2

73H4 k, 4.50

Page 32: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy Sll

UJW1

%I 312 Cl1

GPa

=44 Cl2 Main refs. Other refs. Figs.

T H

ii

Fe-Ni, cont. at % Ni 41.3 44.0 50.2 29.0 48.8 58.8 79.2 89.5 100 at % Ni, 4.2K 35 37 59.6 60.7 77.6 89.2 100

Iron-nickel-chromium- molybdenum (Stainless steel 316 9))

Iron-nickelchromium- molybdenum Ni Cr Mo in at% 14.5 14.5 2.5

Iron-nickel-cobalt Iron-nickel- manganese-

carbon

15.54 9.72 -6.59 171.3 102.9 126.1 14.39 9.66 -6.11 186.0 103.5 137.2 11.89 9.30 -4.94 205.3 107.5 145.9 12.46 8.84 4.69 147.5 113.1 89.2 10.21 8.61 -3.% 192.1 116.1 121.5 9.70 8.50 -3.78 205.1 117.7 130.9 8.20 8.29 -3.14 232.4 120.6 144.2 7.63 8.19 -2.89 242.9 122.1 147.9 7.22 8.10 -2.70 250.8 123.5 150.0

20.54 9.94 -9.03 157.3 100.6 123.5 20.80 10.08 -9.14 154.5 99.2 121.1 9.16 8.50 -3.63 228.3 117.6 150.1 9.11 8.45 -3.61 228.6 118.4 150.0 7.52 7.83 -2.85 247.6 127.7 151.2 7.14 7.69 -2.68 254.6 130.0 152.8 6.83 7.64 -2.54 261.4 130.9 154.8

9.84

10.23 7.73 4.06

8.40 -3.86 206 p)

204

119p)

129

133 p)

134

81K8,83K9,84K7 4.53

68B4 4.49

81Lll

81L6 4.55 7OM4 4.54 Table 10 8621 4.56

4.52

Page 33: Second and Higher Order Elastic Constants

fE Table 4. (continued)

Alloy 91 s44 92 Cl1 =44 Cl2 Main refs. Other refs. Figs.

(TPa)-l GPa

Iron-palladium, Fe-Pd at%Pd T[K] 37 10 37 295 28 295 28 700 34

Iron-platinum Fe28 at% Pt (Disordered, magnetically satumtcd) Fe-25 at% Pt (Partially ordered)

Iron-silicon, Fe-Si at% Si 7 11 4.42 6.29 8.89 10.10 5.86 24.85 (Fe.$i) 6.3 (7.7) 8.59 11.68 12.91 25.1

19.l 12.7 -8.66 208 78.8 172 17.8 13.3 -7.81 177 75.3 138 112 12.5 -55 140 80.0 134 16.7 13.1 -7.13 165 76.5 123 40.0 12.5 -18.8 152 80 135

20.4 11.6 -8.6 123 86.2 89

8.70 8.17 -3.34 220 122 136 9.43 8.05 -3.69 214 124 137 8.20 8.00 -3.08’ 222.3 125 133.7 8.62 8.06 -3.32 223.9 124 140.1 9.35 8.00 -3.67 216.4 125 139.6 9.66 8.13 -3.85 219.0 123 145.0 8.44 8.18 -3.20 221.0 122.3 135.0 9.44 7.38 -3.80 232.2 135.6 156.7 8.36 8.13 -3.16 222.3 123 135.5 9.05 8.00 -3.51 216.6 125 137 8.78 8.02 -3.36 216.4 124.6 134 9.17 7.89 -3.56 215.5 126.7 137 9.01 7.82 -3.49 217.0 127.9 137 7.32 7.35 -2.68 238 136 138

82316 w) 81S15

83M4

74I-C

83L2

4.58

66Kl

7x3 4.62

7x2 4.60 77Rl 4.61 77Ml 4.63

Page 34: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy Sll

(TPa)-l

%4 s12 Cl1

Gpa

c44 Cl2 Main refs. Other refs. Figs.

Lead-indium, &In at % In 5.5 9.0 20.7 25%In

Lead-thallium, Pb-Tl at % Tl 5.01 2050 31.77 4050 52.66 61.41 71.68 0 0.17 1.06 1.77 2.35 3.50 6.10 14.9 17.6

100.4 69.3 46.5 49.32 14.43 42.51 28.3 71.9 -10.2 59.70 13.90 33.70 26.2 60.2 -7.3 48.70 16.60 18.90 23.4 55 -6.8 56.0 18.2 22.8

% 68.2 -44 48.54 14.64 41.38 111 72.4 -52 45.76 13.80 39.64 129 75.2 -60 43.63 13.30 38.37 142 78.5 -67 43.29 12.75 38.51 175 82.2 -84 41.58 12.2 37.72 191 83.7 -92 41.57 11.95 38.03 170 85.2 -80 41.45 11.75 37.45 94.0 66.8 -43.3 49.62 14.% 42.34 w.6) (67.1) -43.5 (49.49) (14.90) (42.25) 94.3 67.9 -43.5 49.40 14.72 42.14 95.1 68.0 -43.8 49.33 14.71 42.13 93.6 68.0 43.1 49.58 14.71 42.26 95.6 69.0 4.0 49.06 14.50 41.90 97.0 69.4 -44.7 48.57 14.40 41.51 104.2 70.8 -48.2 47.16 14.12 40.60 109.1 71.7 -50.6 46.80 13.95 40.54

71V2 4.64

79M3 4.65

66S1,67S8 4.66

66A2

Page 35: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy Sll

(TPa)-*

344 812 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

Lithium-magnesium, Li-Mga at%Mg

0 333 1.09 330 2.26 326 3.01 325 4.28 323

Manganese-iron, Mn-61.5 % Fe 10.24

Manganese-nickel Manganese-nickel-

carbon (29OK), m83Nil lc6 17.2 Mn84.7Ni9.2c6.1 30.4 Mn85.3Ni8.8c5.9 46.1

Molybdenum-rhenium, Mo-Re at%Re 7.0 2.68 16.6 2.79 26.9 2.91 16 2.79 29 3.00

Nickel-aluminum, Ni-Al at % Al 0 7.30 4.1 7.78 7.9 8.28 12.5 9.10

114 -153 13.50 8.78 11.44 112 -151 13.74 8.91 11.66 111 -150 13.94 9.03 11.84 110 -149 13.96 9.12 11.85 108 -149 14.29 9.24 12.17

7.14 -3.75 169.2 140.1 97.7

(9.46) -6.6 9.66 -13.1 9.78 -205

108.5 wm 95.7 103.5 76.3 102.3

66.5 -” 72.7 61.3

8.71 -0.72 466.5 114.8 172.9 8.09 -0.80 465.0 123.7 185.8 7.56 -0.87 460.7 132.3 195.9 8.18 -0.79 463 122 184 7.50 -0.92 458 133 203

8.13 -2.75 250.5 123 151 8.26 -2.97 244 121 151 8.40 -3.21 237 119 150 8.51 -3.62 232.2 117.5 153.6

61Tl

81L6 Table 10

81L2

Table 10

68D6

81K7 i

6oA2 ’ 83P5

86F2

83Ll

4.70

continued

Page 36: Second and Higher Order Elastic Constants

Table 4. (contiuned)

Alloy $11

(TPa)-l

%4 s12 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

Ni-Al alloy PE16Hx) PE16Px) AX)

MAR-MOO2 mod Y) superalloy =) ZbS6F N&Al y-105A y’-105B y’-PE16 NIMONIC 105A NlMoNIc 105B AF 116A2‘“>

Nickel-cobalt, Ni-Co at%Co 10.11 26.35 38.45 4350 62.00 32

Nickel-iron silicide, Ni-2.7 at % FeSi

z a I

10.22 8.33 -4.07 206 120 136 9.95 8.20 -3.94 209 122 137 10.81 8.07 4.00 208 124 137 7.843 8.ooO -3.078 258.6 125.0 167.0 7.7 7.1 -2.9 238 141 144 7.639 8.592 -2.922 249 116 154 9.60 8.07 -3.82 220.6 124.0 146.1 8.22 7.51 -3.15 232.5 133.2 144.5 8.11 7.75 -3.12 238.0 129.1 149.0 7.75 7.96 -2.93 238.6 125.6 145.0 8.61 7.48 -3.36 232.2 133.X 148.7 8.47 7.53 -3.30 235.2 132.8 150.3 6.89 7.63 -2.55 258 131 152

7.39 7.94 -2.80 251.2 125.9 153.0 7.53 7.69 -2.87 250.4 130.1 154.2 7.64 7.58 -2.93 249.6 131.9 155.0 7.73 7.57 -2.97 249.0 132.0 155.6 8.20 7.55 -3.21 245.8 132.4 158.2 8.60 7.61 -3.39 238.7 131.5 155.3

8.29 8.13 -3.08 215 123 127

83P5

88K7 85Y7 8783 87Wlaa)

8OF5

7OLl

73w7

53Ll

4.72

*. 4.73

8621

4.11

Page 37: Second and Higher Order Elastic Constants

PE Table 4. (continued)

gg al ia

Alloy $11 344 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

$5 (TPa)-l GPa

Niobium-deuterium, Nb-D at % D

0 1.5 3 0 2.54 2.74 D/Nb 528K 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.55 0.60 0.65

Niobium-germanium

6.53 35.8 -2.29 246.0 27.9 132.6 6.55 34.8 -2.30 245.9 28.7 132.9 6.57 34.0 -2.31 245.9 29.45 133.3 6.50 35.6 -2.28 247.0 28.13 133.0 6.55 34.0 -2.30 246.5 29.42 133.5 6.55 33.8 -2.30 246.5 29.55 133.5

6.77 33.0 -2.40 241.7 30.3 132.7 6.95 31.5 -2.49 240.0 31.7 134.0 7.10 30.5 -2.57 238.5 32.8 135.1 7.29 29.8 -2.67 236.9 33.6 136.5 7.46 28.9 -2.75 235.2 34.6 137.2 7.67 28.4 -2.86 233.5 35.2 138.5 7.90 28.1 -2.97 232.0 35.6 140.0 8.14 27.9 -3.10 230.5 35.8 141.5 8.40 27.5 -3.23 228.7 36.3 142.7 8.98 27.2 -3.52 2255 36.7 145.5 9.30 27.0 -3.69 224.0 37.0 147.0 9.53 26.5 -3.80 223.0 37.7 148.0 9.65 25.8 -3.86 222.5 38.7 148.5

87Ml&P3 4.78

76M2 4.77

8OFl

85M9

Table 10

continued

Page 38: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy Sll %I s12 Cl1 G4 Cl2 Main refs. Other refs. Figs.

Niobium-hafnium, Nb-Hf at % Hf 5.83 6.70 9.44 7.05 11.20 7.22 1323 7.15 24.85 9.16

Niobium-hydrogen, Nb-H at % H 0 6.51 0.1 6.52 1.06 6.57 3.06 6.60 0 6.53 1.5 6.57 3 6.60 0 6.51 1.2 6.54 2.7 6.57 H/Nb 528K 0 6.72 0.05 6.95 0.10 7.14 0.15 7.39 0.20 7.63 0.25 7.90 0.30 8.14

34.1 -2.36 241.5 29.34 131.2 32.8 -2.52 234.3 30.52 129.8 31.8 -2.59 230.7 31.42 128.8 31.4 -2.52 227.1 31.81 123.6 25.8 -3.40 1942 38.77 114.6

35.7 -2.28 247.4 28.0 133.6 35.5 -2.28 246.8 28.2 133.2 35.0 -2.31 247.0 28.6 134.4 33.8 -2.33 245.8 29.6 133.8 35.8 -2.29 246.0 27.9 132.6 34.8 -2.31 245.7 28.7 133.1 34.0 -2.33 245.5 29.45 133.5 35.7 -2.28 246.8 28.0 133.0 34.6 -2.30 246.8 28.9 133.6 34.1 -2.31 245.9 29.3 133.3

32.3 -2.37 2415 31.0 131.5 31.5 -2.49 239.3 31.7 133.3 30.4 -2.59 237.5 32.9 134.7 29.9 -2.71 235.5 33.5 136.5 28.7 -2.83 233.5 34.8 137.9 28.2 -2.97 231.5 35.5 139.5 27.9 -3.09 229.7 35.8 140.7

Table 10

78Fl 4.74

83Bll,85Fl, 87M1,87M7,

75F3 84P3

76M2 4.76

77B9

85M9 4.75

Page 39: Second and Higher Order Elastic Constants

$K Table 4. (contiuned)

[g Alloy

a 91 s44 s12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

ps (TPa)-’ Gpa

Nb-H, cont. WNb 0.35 8.49 0.40 8.88 0.45 9.26 0.50 9.65 0.55 10.03 0.60 10.30 0.65 10.30 0.70 10.16 0.78 400K 11.4

420K 10.6 Niobiuin-molybdenum, Nb-MO

at % MO 0 6.48 16.8 5.47 23.3 5.01 33.9 4.29 51.6 3.54 75.2 2.93 92.1 2.70 0 6.51 2.04 6.42 5.09 6.28 7.13 6.15 5.33 5.66 0 6.54 25 5.24 31 4.96

27.4 -3.27 228.0 36.5 143.0 27.0 -3.47 226.0 37.0 145.0 27.1 -3.66 224.3 36.9 146.9 27.0 -3.86 222.5 37.0 148.5 27.2 -4.06 221.0 36.7 150.0 27.0 -4.19 220.0 37.0 151.0 26.0 -4.19 220.2 38.5 151.2 25.0 -4.13 222.0 40.0 152.0 23.1 -4.8 219 43.2 157 23.0 -4.35 222 43.4 155

35.4 -2.27 247.4 28.23 133.1 33.9 -1.80 271.0 29.47 133.4 31.2 -1.60 286.0 32.02 134.8 27.6 -1.30 315.7 36.29 136.8 16.0 -1.00 363.6 62.63 143.4 11.3 -0.78 422.3 88.59 153.0 9.78 -0.71 454.0 102.3 159.6 35.3 -2.28 246.9 28.30 133.1 35.2 -2.25 249.2 28.42 134.1 34.8 -2.18 2532 28.71 135.0 34.5 -2.13 256.8 28.97 136.0 32.8 -1.92 270.5 30.48 138.4 34.8 -2.29 246.2 28.69 132.9 31.3 -1.74 284.3 31.93 141.1 28.9 -1.62 295.7 34.61 143.9

77A5 83A3,Table 21

72H9

76K9 4.80

87D3

4.79 4.82 4.83

79K4

continued

Page 40: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy Sll

WW1

s44 s12 Cl1

Gpa

=44 Cl2 Main refs. Other refs. Figs.

Nb-MO, cont. at % MO 37 44 53 72 100 0 3 7 13 16 24 33 38 42 46 56 62 66 71 74 77 88 95

SE 100

!L 2 Niobium-oxygen, N&O 8’ g at % 0

0.58 9.60

4.47 24.3 3.96 19.5 3.47’ 15.3 2.96 11.5 2.62 9.2 (6.63) 36.0 (6.41) 35.4 (6.21) 34.5 (5.92) 33.9 (5.75) 33.3 (5.22) 31.2 (4.73) 27.4 (4.42) 23.2 (4.09) 20.8 (3.76) 18.4 (3.36) 14.2 (3.23) 13.2 (3.11) 12.4 (2.98) 11.6 (2.92) 11.2 (2.88) 11.0 (2.75) 10.0 (2.68) 9.66 (2.62) 9.25

-1.40 -1.18 -0.97 -0.77 -0.68 (-2.30) (-2.21) (-2.13) (-2.01) (-1.94) (-1.72) (-1.52) (-1.39) (-1.22) (-1.09) (-0.9 1) (-0.87) (-0.83) (-0.78) (-0.76) (-0.74) (-0.70) (-0.69) (-0.68)

3132 41.08 142.9 336.3 51.25 141.8 367.5 65.47 141.9 414.4 86.63 146.6 464.8 108.94 161.6 (23% 27.8 (127) (246) 28.2 (130) (251) 29.0 (131) WV 29.5 (W (2W 30.0 (136) (284) 32.0 (140) (304) 36.5 WV (318) 43.0 (146) (328) 48.0 (140) (348) 54.5 (142) (372) 70.5 (138) (387) 76.0 (143) (398) 80.5 (W (412) 86.0 (146) (419) 89.5 (147) (420) 90.5 WV VW 99.5 050) (454) 103.5 (158) (469) 108 w3

6.51 35.5 -2.28 247.2 28.2 133.4 6.42 33.3 -2.24 249.4 30.0 134.0

81B2 4.81

83Bll

75FC3

Page 41: Second and Higher Order Elastic Constants

g Table 4. (continued)

g +lloy ’ S11 s44 s12 Cl1 c-44 Cl2 Main refs. Other rcfs. Figs. 8 g. (rr

(TPa)-l GPa

Niobium-tritium, NbT at % T 0 6.51 0.48 6.52 1.10 6.53 1.20 .’ 6.54

Niobium-tungsten, Nb-W 1.85 at % W 6.47 6.74 at % W 6.25

Niobium-vanadium- tantalum,

Nb-V and Nb-Ta Niobium-zirconium, Nb-Zr

at % Zr 69.6 20.01 74.7 21.95 79.7 25.21 0 250K 6.48 1.4 250K 6.62 6.0 250K 7.03 0 6.53 10 7.13 15 7.62 20 8.32. 25 9.15 30 9.81 35 10.22

35.6 -2.28 247.3 28.06 133.6 35.2 -2.28 246.6 28.40 133.0 34.8 -2.29 246.3 28.70 132.9 34.8 -2.29 246.2 28.74 132.9

34.3 -2.25 245.8 29.19 131.2 31.5 -2.18 255.7 31.71 137.0

29.62 -8.40 127.1 33.76 91.9 29.92 -9.29 120.4 33.42 88.5 30.71 -10.90 116.4 32.56 88.7 35.6 -2.26 247.8 28.12 132.3 36.0 -2.32 244.9 27.90 132.0 37.0 -2.53 239.5 27.03 134.2 35.93 -2.27 243.8 27.83 130.2 37.01 -2.52 228.5 27.02 124.8 36.95 -2.73 218.6 27.06 122.2 36.83 -3.00 202.6 27.15 114.3 35.95 -3.36 190.8 27.82 110.9 34.91 -3.63 181.0 28.64 106.6 34.20 -3.82 177.0 29.24 105.8

8OFl

Table 10 78Fl

8OF2 4.85 4.90

7264 4.91 4.92 4.125

74H5 4.86

77W2 4.87 4.88

continued

Page 42: Second and Higher Order Elastic Constants

Table 4. (continued)

Alloy ?l s44 S12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

(TPa)- l GPa

Nb-Zr, cont. at % Zr 40 45 50 55 70 3.10 7.10

Palladium-boron-hydrogen Palladiumdeuterium,

pmO.63

Pd =OK bb)

PDo.7 =OK WI

Palladium-hydrogen, PdH pm.66

pm.7 =OKbb) 11.4 15.2 -4.74 216 65.9 154 85Pl

Palladilml-rhodium, Pd-Rh at % Rh .

; 20

Palladium-rhodium- hydrogen, Pd-Rh-H

11.18 33.17 -4.22 165.0 30.14 100.1 12.02 32.26 -4.62 159.9 31.00 99.8 13.04 31.44 -5.08 151.9 31.80 96.7 14.50 30.66 -5.73 142.7 31.61 93.3 19.46 29.75 -8.07 124.7 33.61 88.4 6.82 36.5 -2.43 241.8 27.39 133.7 7.11 37.0 -2.53 231.9 26.99 128.1

13.8 16.1 -5.8 194 62 143

12.3 14.1 -5.26 226 71 169 11.2 15.6 -4.66 219 64 156

12.9 15.8 -5.5 210.9 63.4 156.6

13.74 13.87 -5.99 222.7 72.1 172.0 12.75 13.15 -5.50 227.2 76.0 172.4 9.42 11.08 -3.87 249.0 90.25 173.8

78Fl

85B6

78Rl

85Pl

8oG6,8OSll

79H2

7ow1,77w5

Table 10

4.89

4.98 8266

4.97

83L5,82G6 4.93 4.94 4.% 4.97 4.95

Page 43: Second and Higher Order Elastic Constants

Table 4 (continued)

Alloy Sll

(l-Pa)-’

s44 s12 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

Palladium-silver, Pd-Ag at%Ag 2 10

Plutonium-gallium, ” Pu-lwt%Ga

1 Silver-ahunirmm, Ag-Al at% Al 0 1.6 3.9 5.2

Silver-cadmium, Ag-Cd 1.34at % Cd 1.92 at % Cd

PrAgCd 46.7 at % Cd 47.9 at % Cd

Silver-gold, Ag-Au at % Au 2 4 6 25 50 75

13.85 13.92 -6.03 220.3 71.8 170.0 14.49 13.24 -6.30 207.7 75.5 159.6

73.8 29.8 -31.3 36.3 33.6 26.7

22.95 21.71 -9.84 122.2 46.1 91.8 23.42 21.54 -10.17 128.2 46.5 98.6 23.79 21.63 -10.30 123.5 46.2 94.4 24.41 21.22 -10.60 122.8 47.1 94.2

23.09 21.69 -9.91 122.8 46.11 92.5 23.10 21.77 -9.91 121.5 45.93 91.4

62.1 19.9 -28.8 80.3 50.2 69.3 74.5 19.6 -35.4 95.45 51.1 86.35

22.56 21.36 -9.67 123.7 46.9 93.0 22.17 21.15 -9.47 124.1 47.3 92.8 22.17 21.23 (-9.29) (114) 47.1 (82) 20.7 20.5 -8.91 138.5 48.7 104.5 19.7 19.7 -8.52 147.7 50.8 113 20.5 20.6 -9.09 166.5 48.6 132.5

7ow1,77w5 4.103 4.104

76L6

66Pl

56Bl

83M3,81Mll 4.105

66Pl

46hl

continued

Page 44: Second and Higher Order Elastic Constants

‘lhble 4 (continued)

Alloy Sll

(l-Pa)-’

$44 312 Cl1

GPa

C‘M Cl2 Main refs. Other refs. Figs.

Silver-indium, Ag-In at % In 1.2 2.0 4.0 6.0 7.9 8.36

Silver-magnesium, Ag-Mg at%Mg 3.07 7.33

Silver-palladium, Ag-622 at % Pd

Silver-tin, Ag-Sn at % Sn 3.17 0.9 2.0 4.0 5.9 7.8

Silver-zinc, Ag-Zn at % Zn 2.40 3.53

23.38 21.82 -9.98 118 45.8 88 23.64 21.82 -10.32 131 45.8 101 24.47 22.21 -10.41 110 45.0 82 24.49 22.44 -10.59 120 44.6 91 25.35 22.58 -10.86 110 44.3 83 25.30 22.20 -10.96 116.6 45.05 89.0

23.37 21.74 -10.01 119.8 46.00 89.8 23.94 22.10 -10.24 115.9 45.24 86.6

21.93 20.79 -9.40 127.7 48.09 95.8

24.29 21.83 -10.51 121.0 45.81 92.2 23.40 21.86 -10.04 120 45.7 90 23.87 22.09 -10.49 134 45.3 106 24.56 22.34 -10.62 119 44.8 91 25.40 22.68 -11.12 124 44.1 96 26.16 22.99 -11.64 133 43.5 107

23.54 21.68 -10.16 123.0 46.12 93.3 23.89 21.85 -10.30 120.9 45.77 91.6

76M4

56Bl

56Bl 4.106

56B1

56Bl 76M4

4.108

56Bl

Page 45: Second and Higher Order Elastic Constants

liable 4 (continued)

Alloy Sll

(TPa)-l

x44 812 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

A&Zn, cont. at % Zn 42 45 47 49 50 51 53 46.5 48.5

Tantalum-deuterium, Ta-D at % D 0 5 a) 1oa) 15 a)

Tantalum-hydrogen, Ta-H at % H 1.15 11 0 5 4 1oa) 15 a) 20 a)

58.6 17.6 -27.6 108 57.5 96 57.7 17.9 i27.1 102.7 55.8 90.9 55.0 17.8 -25.7 100.6 56.1 88.2 50.2 18.2 -23.3 103.8 55.0 90.2 43.9 18.7 -20.2 104.3 53.4 88.7 48.1 17.4 -22.3 106.0 57.3 91.8 50.2 17.3 -23.3 104.0 57.8 90.4 38.0 18.6 -17.2 103.8 53.7 85.7 34.8 18.3 -15.5 101.8 54.6 81.9

6.88 12.08 -2.59 267.6 82.8 162.0 6.89 11.98 -2.60 268.1 83.4 162.7 6.90 11.93 -2.61 268.5 83.8 163.3 6.92 11.90 -2.62 268.8 84.0 164.0

6.75 12.14 -2.51 263.6 82.4 155.6 7.03 11.99 -2.65 261.5 83.4 158.1 6.88 12.08 -2.59 267.6 82.8 162.0 6.9-l 11.98 -2.61 267.8 83.4 162.8 6.95 11.94 -2.63 268.0 83.8 163.6 6.98 11.94 -2.65 268.1 83.7 164.3 7.02 11.96 -2.67 268.3 83.6 165.1

74M4,74M5 4.107

8OM3

76M2

4.109 75F3

76M2 4.110

continued

Page 46: Second and Higher Order Elastic Constants

‘Pable 4 (continued)

Alloy $11

(TPa)-’

$44 512 Cl1

GPa

=44 Cl2 Main refs. Other refs. Figs.

Tantalum-molybdenum, Ta-Mo at % MO 0 6.90 1.35 6.79 3.4 6.62 4.7 6.52

Tantalum-niobium, Ta-Nb at % Nb 3.95 6.79 8.25 6.66

Tantalum-niobium- hydrogm Tq7Ms3-H

at % H 0 6.52 4.39 6.64

Tantalum-rhenium, Ta-Re at % Re 2.3 6.57 3.8 6.36 5.3 6.14

Tantalum-tungsten, Ta-W at 90 W 2.2 6.77 4.25 6.47 0 6.91 9.6 6.05 21.5 5.27

12.00 -2.56 257.7 83.3 152.0 12.13 -2.52 261.3 82.4 153.8 12.36 -2.43 263.7 80.9 153.2 12.50 -2.38 264.7 80.0 152.3

12.48 -2.52 262.1 80.1 154.7 13.00 -2.48 270.5 76.9 161.0

17.8 -2.35 257.7 56.3 145.0 18.4 -2.41 256.5 54.3 145.9

11.91 -2.42 266.2 83.9 154.8 11.86 -2.3? 271.9 84.3 156.6 11.80 -2.22 276.6 84.7 157.1

12.03 -2.47 254.3 83.1 146.1 12.06 -2.38 270.3 82.9 157.3 12.13 -2.60 266.0 82.5 160.9 11.87 -2.21 285.8 84.3 164.8 11.73 -1.86 310.2 85.3 170.0

7OA4 4.111

7OA4 4.112

79A9

7OA4

Table 10

7OA4 4.113 4.114

79K4 4.116

Page 47: Second and Higher Order Elastic Constants

l’hble 4 (continued)

Alloy 91

(TPa)-l

x44 s12 Cl1

GPa

=44 Cl2 Main refs. Other refh. Figs.

Ta-W, cont. at%W 40.0 64 90.4 100 0 10 30 50

--67 83 100

Thorium-carbon, 7w.ofi3

Titanium-chromium, p-Ti-Cr l) at % Cr

A. 6.98 9.36 13.81 28.37

Titanium-nickel, ,Ti-51 at % Ni

Titanium-nickel-iron Titanium-niobium,

ThIO%Nb

4.34 11.58 -1.47 352.7 86.3 180.5 3.23 9.39 -0.99 424.0 106.4 187.1 2.59 6.84 -0.74 498.1 146.1 197.5 2.45 6.23 -0.69 522.7 160.6 204.6 7.11 12.28 -2.70 262.8 81.4 160.9 6.05 12.03 -2.20 282.5 83.2 161.2 4.93 11.69 -1.71 321.1 85.6 170.4 4.07 11.36 -1.35 366.5 88.0 182.2 3.23 8.78 -0.99 426.9 113.8 190.0 2.80 7.26 -0.82 473.1 137.7 196.7 2.44 6.31 -0.68 521.5 158.5 201.0

82Al 4.115

24.4 23.1 -9.5 80.2 43.3 50.7 77G3 4.117

10.12 18.05 18.57 23.42 16.29 22.62 11.21 20.96

J -3.50 -7.74 -6.64 -4.17

155.9 55.4 82.5 133.1 42.7 95.1 139.9 44.2 96.3 159.1 41.7 94.1

7OF4

23.0 -10.3 161.1 32.0 131.1

15.71

31.3

25.24

87M6 4.118

-6.54 156.5 39.63 111.6 73R2

Page 48: Second and Higher Order Elastic Constants

‘Pdble 4 (continued)

Alloy $11

pay

s44 s12 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

Titanium-vanadium,Ti-V at % V 28 38 53 71 73 79 29.4 38.5 53 73 100

Titanium-vanadinm- hydrogen, Ti-4O%V-H

at % H 0 2.4 \ 3.6 4.8

Tungsten-rhenium, W-Re at % Re 2.97 9.64 11

18.9 25.0 -8.0 141.1 39.8 103.9 14.8 24.5 -6.0 148.6 40.8 100.4 11.5 24.2 -4.5 177.3 41.3 114.7 8.25 22.8 -2.94 200.8 43.8 111.2 8.99 24.1 -3.30 192.6 41.6 111.4 9.03 24.2 -3.30 196.6 41.2 110.4 17.42 25.2 -7.24 140.0 39.7 99.5 14.72 24.4 -5.93 149.0 41.0 100.5 11.55 24.2 -4.45 167.6 41.3 105.1 9.02 24.1 -3.30 192.3 41.5 111.1 6.72 23.1 -2.30 230.9 43.4 120.0

14.8 24.7 -6.0 148.8 40.5 100.8 15.5 24.5 -6.0 1477 40.8 101.8 15.9 24.5 -6.5 146.5 40.9 102.0 16.7 24.4 -6.9 144.5 41.0 102.2

2.44 6.22 -0.70 534.7 160.9 216.4 2.53 5.93 -0.75 524.1 168.5 219.1 2.50 6.08 -0.72 520.6 164.5 210.4

4.119 75G12

75fl

79K4

78A8 79A5

Table 10

75A4

81K7

4.120

Page 49: Second and Higher Order Elastic Constants

g Table 4 (continued) .

it, g

Alloy s11 s44 $12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

(TPa)-l GPa

Uranium-niobimn- zirconium (‘Mulberry’) U+7Sat% Nb+2Sat% Zr

Vanadium-chromium, V-Cr at % Cr 17.5 0 20.3 P) 39.4 p) 59.7 p) 79.7 p) 100

Vanadium-deuterium, V-D at % D 0 2 a) 4 a) 0 0.80 2.0

Vanadium-hydrogen, V-H at % H 0 0.92 0

16.7 46.9 -6.8 134.3 21.33 91.7

5.62 6.79 (5.58) (4.67) (3.93) (3.34) 3.03

22.7 22.9 (22.1) (22.7) (16.1) (11.8) 9.96

-1.80 -2.37 (-1.78) (-1.39) (-1.07) (-0.83) -0.48

255.1 236 (256) (287) cw (360) 351

44.0 43.6 (45.3) W.1) (62.2) W-6) 100.4

120.4 126 (120) (122) (11% (120) 66

6.74 23.3 -2.31 230.8 42.8 120.4 6.92 22.9 -2.40 228.7 43.7 121.5 7.10 22.5 -2.49 226.8 44.4 122.6 6.72 23.3 -2.30 231.0 43.0 120.2 6.80 23.0 -2.34 230.0 43.4 120.6 6.91 22.9 -2.39 228.5 43.7 121.1

iii:: 6.72

22.7 -2.27 232.2 44.0 120.2 22.6 -2.33 230.3 44.3 120.5 23.3 -2.30 230.7 43.0 120.1

72Al Table 10 4.121

79K4 78L2

Table 10 4.123

76M2

8OFl

Table 10

75F3

75F3

4.123

4.122

continued

Page 50: Second and Higher Order Elastic Constants

‘able 4 (continued)

Alloy S11

(TPa).l

s12 Cl1

GPa

%? Cl2 Main refs. Other refs. Figs.

V-H, cont. at % H 0.22 0.62 1.3 0 2 4 3 a) 0 2.04 0 2.15 0 0.08 1.38 3.90 0 0.2 0.7 1.0

Vanadium-oxygen, V-O at % 0 0 0.28 0.021 1.07 1.85 3.46

6.74 23.2 -2.31 230.6 43.1 120.2 6.80 23.1 -2.34 229.3 43.2 119.9 6.87 23.1 -2.37 228.3 43.3 120.1 6.74 23.3 -2.3 1 230.8 42.8 120.4 6.97 22.9 -2.43 228.2 43.7 121.8 7.09 22.7 -2.49 226.9 44.1 122.5 6.66 23.1 -2.27 231.6 43.4 119.7 6.97 22.7 -2.42 228.1 44.1 121.6 6.70 23.2 -2.29 232.1 43.2 120.9 7.01 22.8 -2.44 227.9 43.8 122.1 6.85 23.7 -2.32 222.3 42.2 114.4 6.88 23.5 -2.33 222.2 42.6 113.6 7.07 23.4 -2.42 219.5 42.7 114.1 6.92 22.6 -2.32 218.3 44.2 110.1 6.85 23.6 -2.32 223.4 42.5 114.6 6.89 23.5 -2.34 223.0 42.6 114.6 6.94 23.5 -2.36 221.4 42.6 113.8 6.95 23.5 -2,36 221.4 42.6 114.0

6.67 22.7 -2.28 232.2 44.0 120.4 6.65 22.7 -2.28 233.2 44.1 121.2 6.75 23.4 -2.3 1 230.1 42.8 119.7 6.57 22.4 -2.23 233.8 44.6 120.2 6.47 21.4 -2.18 235.9 46.6 120.2 6.36 20.5 -2.14 237.9 48.7 120.2

76M2

79A9

79-49

8OKl

8OKl

75F3

790 4.124

Page 51: Second and Higher Order Elastic Constants

f[ Table 4 (continued)

3. F at2 Alloy 311 % 312 Cl1 =44 Cl2 Main refs. Other refs. Figs.

(TPa)-l GPa

Vanadium-tritium, V-T at % T 0 0.41 0.68 0.77

Zirconium-molybdenum, Zr-9.7?,at % MO

6.72 23.3 -2.30 231.0 43.0 120.2 8OFl 6.78 23.1 -2.33 230.3 43.3 120.5 6.80 23.0 -2.34 229.9 43.4 120.5 6.79 23.0 -2.34 230.1 43.4 120.5

\ 20.6 27.2 -8.6 119 36.7 85.0 75fl

a) Stiffnesses interpolated or extrapolated. b, Stiffnesses measured on ‘as quenched’ material. Data are also given on the effect of ageing on the stiffnesses. Cl Martensitic transformation at 284K. d, For 10,11.5, and 15 at % Tl see Table18 (tetragonal). e, Marten&c phase transition (face-centred cubic + face-c&red tetragonal at 196K). fl Martensitic phase transition (face-centred cubic + face-centred tetragonal at 127K). d Structural phase transition at 380K. h, Structural phase transition at 232K. 3 Zero field 3 See also Mg-Li(hexagonal). k, All measurements made in a 6 kOe (saturation) field. l) Brine quenched. m) WQ(X) denotes water quenching at X “C. n, ‘Solution treated’ crystal. See Fig. 4.19 for further details. O) Martensitic start temperature MS =28OK. [77G6] contains curves of the relative change in stiffness with temperatnre. P) Stiffnesses estimated from measurements on polycrystalline material. 4) Composition (wt % [69H2]; m=max): Cr 16-18, Ni 10-14, MO 2-3, C 0.08 m, Mn 2 m, P O.O45m, S 0.03 m, Si 1 m, remainder Fe. continued

Page 52: Second and Higher Order Elastic Constants

Footnotes for Table 4 (continued)

‘) Martensitic start temperature hf, =273K. s, See also Ni-Al Table 5. Q Martensitic start temperature M,=245K “1 Composition [at %]: Ni69.7,Cr2.2,Co3.7,Ta2.6,Re2.0,V4.5,Al 14.2,C l.l.Thealloycontains

dispersed y’-N&Al and TaC fibres formed during directional solidification. 4 The compliances xl1 and s12 are undefined when cl2 = c tt . w) Neutron scattering. x) PE16 composition [at %]: Ni 42, Fe 33, Cr 18, C 0.3, Si 0.4, Co 0.4, MO 2, Al 2.4, Ti 1.4. H signifies

homogeneous and P containing y’ precipitates. A is alloy with composition of fully precipitated PE16. y) Composition (wt %, balance Ni): C 0.15, Cr 9, Co 10, Ti 1.2, Al 5.5, W 10, Fe ~1, Ta 2.5, Hf 1.5. z, Composition (wt %, balance Ni): Cr 5, Co 12, Al 5.5, Ta 6, V 2.2, Re 3, W 5, MO 1, Hf 1.5, C 0.06, B 0.015. aa) Compositions [at%] and heat treatments:

Ni Al Fe Co Cr Ti MO Mn Si C Cu Zr S heat treatment

Ni.+Il 75.0 25.0 24h 1473K y--105A 65.64 13.68 0.20 11.15 4.70 2.83 1.75 0.04 24h 1473K y’-105B 65.64 13.68 0.20 11.15 4.70 2.83 1.75 0.04 24h 1473 K

+48h 1198K y’-PE16 72.1 10.4 3.2 1.0 13.3 NlMONIC 105A 49.97 9.68 0.67 18.14 15.78 1.50 2.91 0.13 0.41 0.64 0.08 0.07 0.01 24h 1473K NIMONIC 105B 49.97 9.68 0.67 18.14 15.78 1.50 2.91 0.13 0.41 0.64 0.08 0.07 0.01 24h 1473K

+24h 1079K W Data has been fitted to a polynomial cpa =c&O)( 1 - & - bfl).

Page 53: Second and Higher Order Elastic Constants

f[ Table 5. Cubic system. Intermetallic compounds.

5 kg Compound Sll s44 92 Cl1 c44 Cl2 Main refs. Other refs. Figs.

crpa) -l GPa

CaAI, CeA12

CeB, CeIns CePb, CeMg CeAg CeSn, CeZn CoPt a) Cus Au

b) 4

CuAuZn2 d cu2MnAl

EUAI,

-2

Gdcw

Au%

297K 77K 4.2K 300K

200K 200K 1lOK

297K 77K

11.3 27.4 -2.1 97.0 36.6 22.4 7.32 22.9 -1.24 146.6 43.7 29.8 7.18 25.3 -1.19 149.2 39.5 29.7 7.18 30.3 -1.21 149.5 33.0 30.4 7.45 23.4 -1.40 147 42.8 34.0

13.4 26.8 -3.6 92.9 37.3 33.9 28.7 35.0 -11.6 78.5 28.6 53.7 44.6 28.6 -17.9 48.5 35 32.5 47.9 45.9 -20.6 59.8 21.8 45.2 19.3 23.2 -6.6 80.6 42.8 42.1

6.51 13.4 16.3 14.2 13.5 112.7 18.6 10.44 10.04 6.83

(16.4) 26.2

AuZn (50 at % Zn) 43.8

8.06 -2.48 290 124 178 15.1 -5.65 191 66.3 138 15.3 -7.0 177 65.5 134 14.6 -6.0 185 68.7 135 14.7 -5.7 187 67.8 135 18F -55.1 136 52.9 130 10.6 -7.8 135 94 97 24.6 -1.94 104.7 40.7 23.9 23.5 -1.84 108.6 42.5 24.4 16.8 -1.27 160.5 59.5 36.8

(43.3) (-5.2) (86.8) (23.1) (40.6) 33.4 -11.1 100.2 29.9 73.4 18.3 -20.7 141.8 54.5 126.3

7483 82P2 83L4

84Ml Table 7 8509 87N3 87K3 84P4 88MlO 81T4 8OE2 85N2,87S 13

88MlO 75R2 46hl 72C2 6OFl 6OFl 77Kl 78Ml 82P2

7433 5.8

81G3 5.9 70Tl 5.10 71S2 5.11

5.1

5.2 5.3

5.4 5.5

5.6

5.7

Page 54: Second and Higher Order Elastic Constants

‘Pable 5 (continued)

Compound Sll s44 $12 Cl1 %I Cl2 Main refs. Other refs. Figs.

O-W* GPa

AuZn (47 at % Zn) *(J?i! w2 200K HoAl,

Ho% FeTi

297K L&d LaAgQ Lihl MS% M@b Mg$n

NM2

Ni5u&l~

Ni50.4Al 3 quenched slowly cooled

Ni,Al

57.4 19.2 -27.4 138 52 126 5.71 11.1 -1.86 256 90.3 123 26.6 58.8 -11.8 128 17 102

12.1 24.9 -4.6 153 40.1 93 3.67 13.3 -0.80 310 74.9 86 3.86 14.5 -1.05 325 69 121 7.58 23.2 -1.38 143.7 43.0 32.0 7.51 23.3 -1.39 145.4 43.0 33.0

41.3 49.3 14.0 16.3 13.5 8.61

10.4

10.25 8.79 -4.03 198.8 113.8 128.7 10.38 8.69 4.12 202.5 115.1 133.5 9.27 8.25 -3.19 169 121 89

10.1 8.49 -3.94 198 118 126 9.52 8.0 -3.80 223 125 148 9.60 8.07 -3.82 220.6 124.0 146.1 9.59 8.14 -3.84 223.5 122.9 149.0

47.8 -172 60.3 20.9 43.2 37.5 -21.1 55.9 26.7 41.7 24.2 -5.1 123 41.2 70.6 32.4 -3.8 71.7 30.9 22.1 27.3 -2.7 82.4 36.6 20.8 23.3 -2.15 141 42.8 47.0

8.9 4.2 212 112 143

74M4 6983 85L6 Table 10 82B4 8OL5 83B 13 k, 7483 82P2 Table 10 78All 76K4 67C4 66C4 67Dl 76G6

66Wl

8OR2 5.22

69Dld)

69G3d) 81K2 87Wl 86Fl

5.12 5.13 5.14 5.15

5.16

5.17 5.18

5.19

5.20

5.21

Page 55: Second and Higher Order Elastic Constants

fE Table 5 (continued) gjy ai!? Compound Sll s44 812 Cl1 c44 Cl2 Main refs. Other refs. Figs.

CW -l GPa

N&Fe (75.8 at % Ni) Order parameter S

0 0 0.2 0.6 1.0 0 0.3 0.6 1.0

N&Fe (73.8 at % Ni) NiTi w3e

Nb3Sn

s(n=3) RN2 PrPb3 200K P&n3 SmIn3 SmPb3 SmPd3 SmSn, SmT13

8.39 8.38 -3.26 236.1 119.4 150.3 8.28 8.32 -3.21 237.8 120.2 150.8 8.14 8.27 -3.15 240.0 120.9 151.4 7.68 8.14 -2.92 245.3 122.9 150.9 7.41 8.05 -2.78 246.1 124.2 147.9 8.47 8.39 -3.31 235.9 119.2 151.0 7.88 8.11 -3.03 243.6 123.3 151.9 7.66 8.14 -2.91 245.1 122.8 150.5 7.77 8.06 -2.98 245.9 124.1 152.9 8.40 8.40 -3.24 230 119 144 20.9 28.7 -9.3 165 34.8 132

5.43 25.0 -1.67 255 40.1 114

0.03 0.25 0.07 8 0.4 9 8.42 22.1 -1.95 138 45.2 41.8 30.2 36.1 -11.8 66.8 27.7 43.0

75T3

78T5 5.23

64El 80Ml Table 10

67Kle)

72Rl f),8OC3 6 7666 82Nl Table 10 89El 89El 89El 89El 89El

5.24

5.25

5.26,5.27 5.28 5.29

5.30 5.31 5.32 5.34 5.33

continued

Page 56: Second and Higher Order Elastic Constants

Table 5 (continued)

Compound Sll $44 s12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

O-lW Gh

AgMg

mM2 TmAl, 200K TmMg TmAg 200K TmZn, TmCu u*2

ultrasonic phonon dispersion

UBe13k) RT 1OK

UC% 1

UC%

mA2 297K 77K 4.2K

YM2 YZn a3*

=?2

26.0 21.0 25.6 20.6 7.6 14.7 5.98 16.9

14.7

6.42 18.2 -1.20 170.4 54.8 39.2 5.96 12.8 -1.18 186 78 46 3.78 7.46 -0.1 265 134 7 3.23 6.21 =O 310 161 -1 12.2 30.9 -3.2 100.7 32.4 35.8 7.89 15.3 -2.89 219 65.4 127 8.95 21.4 -0.91 114.4 46.8 13.0 8.46 19.9 -1.04 122.4 50.3 17.2 8.44 19.8 -1.03 122.6 50.6 17.0 6.27 17.8 -1.04 170.8 56.2 34.0 15.6 21.1 -5.1 94.4 47.3 46.0

6.26 12.0 -2.04 233 83.7 113

25

-10.4 83.8 -10.2 84.6 -1.4 144 -0.94 177.8

-5.3 112

47.6 56.4 67Cl 48.5 56.7 67C4 68 33 7468 59.0 33.2 83L4

40 62 8667

8ONl

86Rl

64Sl 67Gl 82P2

7483 71S2 8801 6933

5.35 5.36

8668 5.37

84M7

5.38

5.39 5.40

5.41

a) Disordered. See Table 18 (tetragonal) for ordered CoPt. b, Disordered. 4 ordd

Page 57: Second and Higher Order Elastic Constants

Footnotes for Table 5 (continued)

d, There is some doubt about these values, which differ considerably from later measurements. =) Non-transforming. f) Transforming. ti Martensitic transformation at 284K. h, Values applicable to heating cycle. See Fig.5.9. i) SeealsoFigsd.ll,6.12,6.13. 9 See also Al-50 % Ni, Table 4. k, Neutron scattering.

Table 6. Cubic system. Solid solutions.

Solid solutions Sll s44 s12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

1 WBroslCb.49

%-xW2+y

Bi2Te&ex

Cdl-+-Qe

x=0 X=0.06 x=0.45 x=0.52

CV4Qe %.3Hgo.7Te

%.21Hgo.79Te 250K 300K h,

31.8 141 -3.4 32.3 7.1 3.9

42.8 50.3 -17.5 53.6 19.9 37 44.3 50.5 -18.2 53 19.8 37 44.4 54.3 -18.1 51 18.4 35 44.4 54.9 -18.1 51 18.2 35

28.4 41.7 -10.5 61.9 24.0 36.2

28.2 42.2 -9.9 57.2 23.7 30.9 28.5 42.7 -9.9 56.0 23.4 30.0

79G9

Table 10 85M7

87N1,86N4 8611 85M1,85MlO

\ 86M2

83K12,82K9 87V2

87V5

6.1.“4

6.5

6.6

continued

Page 58: Second and Higher Order Elastic Constants

Footnotes for Table 5 (continued)

d, There is some doubt about these values, which differ considerably from later measurements. =) Non-transforming. f) Transforming. ti Martensitic transformation at 284K. h, Values applicable to heating cycle. See Fig.5.9. i) SeealsoFigsd.ll,6.12,6.13. 9 See also Al-50 % Ni, Table 4. k, Neutron scattering.

Table 6. Cubic system. Solid solutions.

Solid solutions Sll s44 s12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

1 WBroslCb.49

%-xW2+y

Bi2Te&ex

Cdl-+-Qe

x=0 X=0.06 x=0.45 x=0.52

CV4Qe %.3Hgo.7Te

%.21Hgo.79Te 250K 300K h,

31.8 141 -3.4 32.3 7.1 3.9

42.8 50.3 -17.5 53.6 19.9 37 44.3 50.5 -18.2 53 19.8 37 44.4 54.3 -18.1 51 18.4 35 44.4 54.9 -18.1 51 18.2 35

28.4 41.7 -10.5 61.9 24.0 36.2

28.2 42.2 -9.9 57.2 23.7 30.9 28.5 42.7 -9.9 56.0 23.4 30.0

79G9

Table 10 85M7

87N1,86N4 8611 85M1,85MlO

\ 86M2

83K12,82K9 87V2

87V5

6.1.“4

6.5

6.6

continued

Page 59: Second and Higher Order Elastic Constants

‘Ihble 6 (continued)

Solid solutions 91

0-W’

s44 812 Cl1

Gpa

=44 Cl2 Main refs. Other refs. Figs.

c%5$%.48Te

CaF, -m3

DyAsxv@4

E%.8B%2S

Gao.54.5~

AlAs 9 GaInAsP Ga$Qb (piezoel.) a)

x=0.775 x=0.841

=0.72%28 GeTe-SnTe

mole % GeTe 0 8 12 20 22 25 8

I-If02 -10 mole % Y2O3 bhd) 4

32.8

8.7 10.0

12.8

18 17 9.6

9.16 9.08 9.61 9.7 9.37 9.71 9.22

2.98 2.71

42.0

38.4 15.9

18.5

25 25 11.7

103.1 82.6 85.5 80.6 85.5 76.3 83.3

16.6 15.7

-12.7

-0.29 -2.9

-4.24

-6 -5 -3.3

-0.17 -0.22 -0.32 +O.l -0.28 -0.3 1 -0.10

-0.26 -0.62

60

115 133.2

116.3

81 86.5 161

109.3 110.3 104.3 103.2 106.9 103.2 108.5

382 427

23.8 38

26 4 63.0 55.6

54.1. 57.6

40 39 40 41.5 86 34

9.7 2.1 12.1 2.7 11.7 ’ 3.6 12.4 -1.5 11.7 3.3 13.1 3.4 12.0 1.17

60 108 63.6 126

85M7 81C7

87Sll 86K6

88K9

86P4

88P4

6.7

74Gl

74B6

7632 76S2 75s 6.9 7583 6.10 75R5 75R5 81M4

77C2

Page 60: Second and Higher Order Elastic Constants

Table 6 (continued)

Solid solutions $11

VW-’

344 812 Cl1

GPa

=44 Cl2 Main refs. Other refs. Figs.

FeI-,Co,Si

%-PAi

~@l-X x=1 x=0.89 x=0.78

pbo.97%.03Te

pbo.991cfo.oo9Te~ 4K 78K

Pb,Sq-,Te x=0.05 x=0.47 x=0.71

Pb(ZnI@b&03-PbTiO,

MgC%-WGn2 mole % MgZn2 10 19 22.6 27.3 36.7 50.1

MgO : 0.99 % C$+ Hgo.sMrb.2Te

41.3 48.8 54.1 10.5

47.8 47.2 46.3 73.5 29.9 30.5

-17.2 -20.6 -23.4 -0.80

60.3 20.9 43.2 53.5 21.2 39.1 54.2 21.6 41.3 96.4 13.6 7.9 169 33.4 156 32.8

9.17 69.9 -0.54 110 14.3 6.9 8.73 70.9 -0.89 117 14.1 13.4 9.41 76.2 -0.12 106 13.1 1.4

14.7 25.0 -5.4 119.9 39.92 70.2 15.3 26.4 -5.6 112.8 37.82 64.9 15.6 25.9 -5.7 110.9 38.57 63.9 15.4 24.4 -5.5 106.2 41.01 58.2 12.2 21.6 -3.7 111.2 46.30 48.4 8.9 17.3 -2.2 134.1 57.75 43.6 4.08 6.58 -0.95 285 152 86 44.4 51.0 -18.1 51.5 19.6 35.5

8421 6.8 86W5

78All 6.12 6.13 6.11

76S6 88V3

Table 10 76S6

85V3,81N5

82K4

71s3 6.14

87H3 81C5 6.15

continued

Page 61: Second and Higher Order Elastic Constants

‘able 6 (continued)

Solid solutions 91

O- 1

%4 s12 Cl1

GPa

c44 Cl2 Main rcfs. Other refs. Figs.

~~~q-,Cr,O, ‘X=0

x=0.37 x=0.73 x=1

~rl_,(CN), X=0.04

x=0.14 K~&N, KCl-KBr

mole % KBr 0 26 49 60.5 75.5 100 0 16.8 17.1 38.2 38.7 57.8 59.8 79.5 80.0 100

6.55 12.0 -2.34 252 83.5 140 12.0 12.5 -5.2 236 80 178 28.4 16.4 -13.3 1% 61 172 134 17.3 -66.0 174 58 169

30.6 189 -6.2 36.5 5.3 9.3 32.6 208 -6.1 33.6 4.8 7.8

26.0 160 -4.5 39.89 6.25 7.25 28.0 171 -4.2 37.82 5.85 6.74 28.7 179 -4.2 36.65 5.58 6.25 28.9 184 -4.1 36.30 5.44 6.06 29.5 189 -4.1 35.46 5.28 5.64 30.0 197 -3.9 34.68 5.07 5.22 25.9 158 -3.8 40.69 6.31 7.11 26.9 165 -4.0 39.25 6.07 6.88 26.9 165 -4.0 39.22 6.08 6.91 28.0 172 -4.2 37.64 5.81 6.58 28.1 172 -4.2 37.62 5.80 6.60 28.8 180 -4.2 36.55 5.57 6.32 29.0 181 -4.3 36.30 5.52 6.30 29.8 189 -4.4 35.44 5.30 6.15 29.7 188 -4.3 35.45 5.31 6.05 30.3 197 -4.3 34.68 5.07 5.80

72K4

Table 10 85B2,86K2, 6.16 8OL3 82F2,82A4, 6.17

81L15,88F5 Table 10 81K4,88F5 6.19-21

87R2,86R2, 88R2

71s5 6.18

67S4

Page 62: Second and Higher Order Elastic Constants

fF Table 6 (continued)

Solid solutions E!B

_I Sll s44 S12 Cl1 “) c44 Cl2 Main refs. Other refs. Figs.

PO CJJW-* GPa

KCl-KBr, cont. mole % KBr 7.7 50 5 50 4

KCl-RbCl mole % RbCl

’ 0 25 50 75 100 5@ 5oc)

KCl-NaCl mole % KC1 0 3.8 5.6 82.4 90.0 100 0 5 ’ 8

26.4 26.8

168 169 182

-4.0 -4.5

40.1 ‘6.13 40 5.9 36 5.5

7.1 76C4 8 82BlO

26.3 27.5 28.1 28.6 29.0 26.8

159 175 185 200 208 185 189

-3.9 -4.1 -4.2 -4.2 -4.3 -4.5

40.0 6.3 38.4 5.7 37.6 5.4 36.8 5.0 36.4 4.8 40 5.4 38 5.3

6.9 6.8 6.6 6.4 6.3 8

23.3 78.6 -5.16 49.1 12.7 14.0 23.7 82.0 -5.05 47.7 12.2 12.9 23.8 87.9 -5.01 47.3 11.4 12.6 27.2 164 -3.89 38.6 6.10 6.44 27.0 163 -3.85 38.9 6.14 6.47 25.7 160 -3.79 41.0 6.25 7.08 23.0 78 -4.8 49.0 12.8 13.0 23.5 81 -4.8 47.5 12.3 12.1 24.0 83 -4.8 46.4 12.05 11.6

7oc4 6.24

82BlO

87Rl

73B4 6.22 6.23

73B2

continued

Page 63: Second and Higher Order Elastic Constants

‘Ihble 6 (continued)

Solid solutions Sll

0-W’

544 s12 Cl1

Gpa

=44 Cl2 Main rcfs. Other refs. Figs.

KCl-NaCl, cont. mole % KC1 16 24 73 84 89 100

KI-KBr mole % KI 0 23.5 61.5 78 100 0 20 35 55 77 100

K1J-j;ra03 ~~~l-xCN

6132Rb0.6d2Hg(m4

%.+bOSI

K1-,NQQ

25.2 88 -5.1 44.3 11.3 11.3 26.6 95 -5.4 42.0 10.5 10.8 29.1 139 -5.0 37.0 7.2 7.6 27.9 145 -4.3 38.0 6.9 7.0 27.4 154 -4.3 38.7 6.5 7.1 26.0 161 -3.5 40.2 6.2 6.2

30.02 32.22 35.31 36.35 37.60 30.2 33.5 35.8 39.5 39.4 39.0

88 497 -24 14.3 2.01 5.3 32.8 199 -1.3 30.4 5.03 1.23

197 214 244 258 270 197 222 230 260

273

-3.93 34.68 5.07 5.22 -4.21 32.30 4.67 4.86 -4.53 29.43 4.09 4.33 4.59 28.55 3.87 4.13 -4.74 27.60 3.71 3.98 -4.3 34.7 5.07 5.8 -5.0 31.5 4.50 5.5 -5.2 29.4 4.34 5.0 -5.7 26.6 3.85 4.5 -5.5 26.6 3.78 4.3 -5.1 26.7 3.67 4.0

72B5 6.25

71c5

82Cl Table 10 81Wl 76A7

6.29 6.28 6.26,27

88M3

Page 64: Second and Higher Order Elastic Constants

‘pable 6 (continued)

Solid solutions Sll s44 812 Cl1 =44 Cl2 Main refs. Other refs. Figs.

KTq,Nb,O x=0.16 270K

Rbl-x~4)xH2m4 RbCkOH RWN)xBrl-x

%-FXS

Sq-xYxS

x=0.3 /

x=0.25

x=0.42 x=0.424

AgBr-AgCl mole % AgCl 0 19.5 39.1 56.5 78.7

3.60 12.7 -1.10 ’ 380 78.9 167

(13.1) (33.3) (+ 7.7) 135 30 -50 10.75 32.3 + 5.26 137 31 -45 10.2 33.3 + 4.3 131 30 -39 (15.4) (34.5) (+ 8.9) 113 29 -41 18.0 33.3 +12.1 122 30 “49 8.12 28.8 +2.44 143 34.7 -33 7.41 32 +1.98 152 31 (-32)

30.7 137 -11.3 56.5 7.3 32.7 31.2 143 -11.5 56.1 7.0 32.7 31.5 147 -11.6 55.9 6.8 32.7 31.7 152 -11.8 56.0 6.6 33.0 31.4 156 -11.7 57.4 6.4 34.2

88T3 88S6

Table 10 Table 10 Table 10 76D3 75M5 g) 75M5 d 79E2 79M6 85Y6,84H7 84H4

77Cl

77C4,77H13 6.30-33

6.34 89H2

6.35

6.36

6.37

continued

Page 65: Second and Higher Order Elastic Constants

‘Ihble 6 (continued)

Solid solutions Sll

O--Y’

$44 S12 Cl1

Gh

c44 Cl2 Main refs. Other refs. Figs.

NaBr-KBr mole % KBr 0 7 15 83 92 97 100

NaChOH NaCl-NaBr

mole % NaBr 0 11.5 26 50.5 63 78.5 100

W~~~-xO, Thallium halides mixed

KRSS 4 s(n=5)

KRS6 0 SW9

TlBr mr0.d0.42

26.8 100 -5.2 41.1 10.0 9.9 27.9 105 -5.5 39.7 9.5 9.7 29.0 111 -5.5 38.0 9.0 9.0 32.1 182 -4.9 33.0 5.5 6.0 31.2 190 4.5 33.7 5.25 5.7 30.6 196 -4.2 34.2 5.1 5.4 30.1 200 -3.9 34.6 5.0 5.2

23.9 78.7 -5.2 47.63 12.70 13.19 24.5 80.8 -5.3 46.46 12.38 12.88 25.4 83.8 -5.6 45.07 11.94 12.77 26.6 88.4 -5.9 43.02 11.31 12.30 27.3 91.4 -6.1 41.96 10.94 12.00 28.0 95.0 -6.3 41.13 10.52 12.01 29.2 100.6 -6.5 39.36 9.94 11.36

38.9 2.2 31.7 2.1 35.2

170 9 137

9 133 159

-11.3 1.2 -8.5 1.3 -10.1

33.9 5.89 1.3 0.3 39.5 7.32 1.5 0.40 37.0 7.5 34.2 6.3

14.0 1.2 14.5 1.7 14.9

73B2 6.40

85K2 6.38

73A2 6.41

8986 6.39

53K1,56h1,86Bl 73R5,76L7 56h1,74R6,76L7, 76!35,77A3,86B 1 86Bl 86Bl

Page 66: Second and Higher Order Elastic Constants

Table 6 (continued)

Solid solutions Sll

frpa)-’

s44 $12 Cl1

GPa

c44 Cl2 Main rcfs. Other refs. Figs.

mrod0.74 TlCl mCb.sBro.2 ~Cb.9ro.a ncb.2Bro.8 TII+ 2% CSI

~0.3Dyo.7%

Tmse0.32Te0.68 p-0 GPa ~1.26 GPa ~1.54 GPa

Zn$$-,Te

zro, -y203 mole % Y2O3 8 10.3 12 8 b, 8 c) 10 W.4 12b) 12 4 16.5 b,

30.8

10.4

10.3 45.9 -0.37 97.4 21.8 3.67 13.7 45.0 +4.65 87.8 22.2 -22.2 23.8 44.5 +15.4 85.9 22.45 -33.8

2.78 17.9 -0.52 394 56 91 2.67 17.2 -0.46 403 58 83 2.29 16.1 -0.25 449 62 55 2.64 18.9 -0.47 410 53 90 2.75 17.5 -0.62 415 57 119 2.94 16.4 -0.67 395 61 117 2.75 17.5 -0.55 403 57 100 2.96 16.9 -0.65 385 59 108 2.84 16.4 -0.56 390 61 96

172 122 130 133 132 179 26.0

-8.46

-2.7

32.8 5.8 86Bl 41.1 8.2 15.6 86Bl 40.1 7.7 86Bl 37.3 7.5 86Bl 37.6 7.6 86Bl 32.8 5.6 86Bl 117 38.4 40 76B5

83B 12

83A4 6.43

69P1,72F2 74Al 69P1,74Al 77C2

84B18,84B9, 85B7,83W2

87N1,87N2

6.42

continued

Page 67: Second and Higher Order Elastic Constants

l’hble 6 (continued)

mole % YzO3 16.5 c) 20 W.4 12 12 8.5 6.9 k, 6.9 k, 3.9 k) 3.4’E) 3.4 k) 2.8 k, 9.4 15 18 21 24 8.1 11.1 12.1 15.5 17.9 8

3.0 14.9 -0.66 379 67 106 3.17 14.7 -0.76 372 68 117 2.76 16.4 -0.60 413 61 115 2.74 16.4 -0.58 413 61 112 2.52 15.6 -0.45 430 64 94 2.79 17.2 -0.60 405 58 110 2.71 17.2 -0.55 410 58 103 2.74 18.2 -0.58 412 55 110 2.76 18.2 -0.57 406 55 105 2.73 18.2 -0.54 407 55 101 2.84 19.2 -0.67 410 52 125 2.80 17.5 -0.59 401 57 106 2.91 15.6 -0.61 388 64 104 2.97 14.5 -0.63 380 69 102 3.12 14.1 -0.70 368 71 106 3.23 13.9 -0.74 357 72 105 2.74 17.9 -0.52 402 56 95 2.76 16.7 -0.56 404 60 102 2.76 16.1 -0.57 405 62 105 2.85 15.2 -0.61 398 66 109 2.93 14.5 -0.65 390 69 111 2.78 17.9 -0.52 394 56 91

88I2 8811

86H2

84K4

82H2

Solid solutions Q-9 s12 Cl1

Gpa

=44 Cl2 Main refs. Other refs. Figs.

Page 68: Second and Higher Order Elastic Constants

Table 6 (continued)

Solid solutions Sll

UW-’

s44 s12 Cl1

Gpa

=44 Cl2 Main refs. Other refs. Figs.

ZrO,Y203, cont. mole % Y203 12J) 8.813 300K 8.813 lOOOK 8.83 700K

2.99 16.7 -0.70 391 60 120 87Ll 2.45 16.4 -0.57 475 61 144 2.54 18.9 -0.53 443 53 117 2.80 22.2 -0.57 399 45 102

a) Figures approximate. The constants of a solid solution with x=0.95 were indistinguishable from those of GaSb. b, Stiffnesses from Brillouin scattering. 4 Stiffnesses from ustrasonic velocity. d) Preliminary values. e, Approximate composition: 50 wt % TlBr -50 wt % TlI. fl Approximate composition: 30 wt % TlBr -70 wt % TlCl. d interpolated. h, Values extrapolated from lower temperatures. i) Extrapolated from Ga$l&s data. 3 Neutron scattering. k, Crystals of this composition consist of a cubic matrix with tetragonal precipitates.

Page 69: Second and Higher Order Elastic Constants

Table 7. Cubic system. Binary compounds.

Compound Sll

U-W-’

%4 s12 Cl1

Gpa

=44 Cl2 Main refs. other refs. Figs.

Alminum antimonide (piezoel.), AlSb

Ammonia,

NH3 95K =) ND3 solid1 196K NH3 solid1 194K NH3 solid III RT

~1.28 GPa p=2 GPa p=3 GPa

Barium fluoride, BaF2 s(n=5)

Barium oxide, BaO s(n=4)

Beryllium oxide, Be0 Boron phosphide, BP Cadmium fluoride, CdF2

s(n=3) Cadmium selenide

(piezoel.), CdSe Cadmium sulfide

(piezoel.), CdS ‘,

17.0 24.5 -5.6 87.7 40.8 43.4 6OB4,72W3

167 178 -60 10.0 5.6 5.6 8OP3 189 202 -65 8.33 4.96 4.40 87W 198 207 -69 8.11 4.82 4.37 85W

174 159 -70 12.5 6.3 8.4 101 115 -38 17.7 8.7 10.5 87 92 -34 23.0 10.9 14.7 15.2 39.6 4.7 91.1 25.3 41.2 0.1 0.7 0.1 1.0 0.4 1.5 10.2 29.1 -2.7 122 34.4 45 0.3 0.9 0.1 7 1.0 7 3.35 5.01 -0.93 381 200 147 3.75 6.25 -0.90 315 160 100 6.74 45.9 -1.80 184 21.8 67 0.06 0.4 0.02 2 0.2 1 34.8 44.8 -14.2 66.7 22.3 46.3

8869

57B2,63H1,6863, 86N4,87Nl, 7.1.“3 68W2,81H13,85M8 87K6,86H7 73v1,75P5 a), 7.4 77c3,77P7 72M8 b, 84w2 70A3,71H1,77P5 7.5-6

72M8 b,

28.3 41.5 -11.4 77.9 24.1 52.7 72M8 b, 34 43 -14 76 23 55 74F5 b,

Page 70: Second and Higher Order Elastic Constants

fI Table 7 (continued)

Compound 311 s44 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

p-F%)-’ GPa

Cadmium telhnide (piezoel.), CdTe

s(n=4) Calcium fluoride

(Frluorite, Fhrorspar), CaF2 s(n=lO)

Calcium oxide, CaO s(n=3)

Cerium hexaboride, CeB, d, 4

Cerium sulfide (piezoel.), Ce+$

Cerium telhnide, CeTe Cesium bromide , CsBr

s(n=9)

Cesium chloride, CsCl s(n=3)

Cesium fluoride, CsF s(n=3)

42.6 49.4 -17.4 53.5 20.2 36.9 0.4 0.4 0.3 0.2 0.2 0.3 6.93 29.5 -1.52 165 33.9 47

0.14 0.3 0.11 2 0.3 3

5.05 12.4 -1.08 224 80.6 60 0.05 0.06 0.04 2 0.3 2 2.12 12.3 -0.07 473 81 16

1.97 12.7 -0.07 508 79 19 11.9 31.8 -3.5 111.6 31.4 46.8

8.3 138 -1.4 129 7.25 26 36.9 134 -7.9 30.7 7.49 8.4 0.4 3 0.6 0.3 0.15 0.6

30.2 124 -6.0 36.6 8.07 9.0 0.3 1 0.2 0.3 0.08 0.3 28.1 ,132 -7.6 44.2 7.58 15.4 5 11 2.3 4.9 0.6 1.7 26.6 142 -6.3 44.1 7.03 \ 13.8

62M1,71V3,73G6, 85Wl 28v1,56h1,57B2, 60H4,63H1,67H4, 67W2,68N1,74V3, 7753 72S8,77C3,77Dl

87B7 7.7

86H7,87K6 7.8

7.9

84L3 85L6,83G8, 7.10

85L7 8865 88F7 u) 7.11

88M9 6OB3,6OH2,61Ml, 61R2,63Nl, 64Vl 65R1,67B2,67S5 6OH2,67B2,67S5

7.12 7.13

7.14

72R2 =) ,73H6,d) 73B6 4 73H6 d,

continued

Page 71: Second and Higher Order Elastic Constants

Table 7 (continued)

Compound Sll

O-W- *

“12 Cl1

CPa

c44 Cl2 Main refs. Other rcfs. Figs.

Cesium iodide, CsI 46.1 158 -9.7 24.5 6.31 6.6 s(n=7) 0.5 2 0.5 0.1 0.06 0.3

Chromium silicide, Cr$i 7.75 129

Cobalt oxide, Co0 s(?l=3)

Cobalt silicide, CoSi Copper bromide

(piezoel.), CuBr

2.71

2.46 6.43 0.13 3.51 66.9

7.52 12.1 0.2 8.30 71.9e) 67.10 68 73.5 =) 65.1 f) 54.9 =) 54.0 fl 82.4 0.3

-0.51

-0.67 -2.3 1 0.07 -0.79 -29.1

510 260 5 328 45.8

Copper chloride (piezoel.), CuCl

Copper iodide (piezoel.), GUI

Copper oxide, C%O s(n=3)

Dysprosium antimonide Dysprosium sequisulfide,

y-Dy2s3 Erbium antimonide, ErSb Europium fluoride, EuF2

80.5 76.1

-35.8 43.5 -33.8 45.4

133 82.4 1.6 120 13.9 =) 14.9 fJ 14.7 13.6 e, 15.4 0 18.2 =) 18.5 f) 12.1 0.05

94

190 145 1 95 35.4

34.9 73p2 =) 36.3 74Hl

49.4 -20.0 45.1 30.7 72H2

42.3 0.8

-19.6 121 0.4 4

105 4

7.7 34.0 4 31.3 0 38.8 33.4

-1.17 138

-0.81 150 -3.4 107

29.4 =) 32.0 0 25.8 29.9

24.6

6.87 12.1

20 74M8 7.21 43 71L2 7.22

6OB3,6OH2,61R2, 64V1,65K1,67B2, 6785 81B4 d,

8lW4 4 68Al,72U2,78S 11

7424 72H2 d,

70H 1,74M2,79B7 7.19

Table 10 86V5

7.15

7.16

7.17

7.18

7.20

Page 72: Second and Higher Order Elastic Constants

l’hble 7 (continued)

Compound Sll

crpa>-*

s44 s12 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

Europium oxide, EuO 77K

Europium selenide, EuSe 77.K

Europium sulfide, EuS 77K 295K

Europium telluride, EuTe 77K

Gadolinium autimonide Gadolinium sulfide,

GdS b, Gallium antimonide

(piezoel.), GaSb s(n=8) 3

doped N [cm-3] 1 . 9*1017 (n) 7.7 *1017 (n) 1.2 *101* (n)

Gallium arsenide (piezoel.), GaAs

s(n=5)

5.6 18.4 -1.0 192 54.2 42 71SlO

8.8 43.8 -0.8 116 22.8 12 71SlO

7.7 36.6 -0.6 131 27.3 11 10.2 38.5 -2.4 115 26 36 10.8 61.4 -0.7 93.6 16.3 6.7

(3.3) (33) (-0.3)

-4.95

(310) (30) (30)

71SlO 89B4 71SlO

Table 10 76D3

15.8 23.2 88.4 43.4 40.3

0.1 0.5 0.03 0.9 0.9 0.8

15.83 23.15 4.96 88.489 43.201 40.407 15.84 23.19 -4.97 88.473 43.125 40.425 15.85 23.22 4.97 88.442 43.062 40.398 11.75 16.8 -3.66 118 59.4 53.5

63E1,68M5,72B3, 7.24 72L2,73K3,75B5 7.25

82W4

62G1,66D3,67M5, 7.26 73B7,73Cll

0.05 0.05 0.03 0.6 0.2 0.5

7.23

continued

Page 73: Second and Higher Order Elastic Constants

Table 7 (continued)

Compound Sll

0-W’

92 Cl1

GPa

c44 Cl2 Main rcfs. Olller rcfs. Figs.

GaAs, cont.

doped N [cm-3] 7.7.102l (n) ? 8 -1022 (n) ? 2.45 -1024 (n) ? 4*1025(p)? 1016 (n) 10” (n) 1019 (n) 2-10’9 (p) 8.5 - 10’9 (p)

Gallium phosphide (piezoel.), Gal?

s(n=9) Holmium antimonide Ice VII, H20

D20 Indium antimonide

(piezoel.), InSb +=7-J

Indium arsenide (piezoel.), InAs

s(n=3)

11.56 16.61 -3.57 119.8 60.2 53.8 11.47 16.56 -3.52 120.0 60.4 53.3 11.51 16.56 -3.55 119.8 60.4 53.4 11.78 16.86 -3.66 118.0 59.3 53.2 11.68 16.83 -3.71 121.6 59.4 56.6 11.73 16.82 -3.66 118.8 59.4 53.8 11.73 16.88 -3.65 118.8 59.2 53.8 11.80 16.98 -3.68 118.4 58.9 53.8 11.83 17.15 -3.70 1182 58.3 53.8

9.70 0.2

24.5 1.0

19.4 0.06

14.0 -2.97 0.3 0.06

141 3

66.2 0.7

84.4 1.7

71.2 62.4 2.1 1.2

33.2 -8.7 0.3 0.7

30.2 35.9 0.3 2.2

25.3 0.05

-6.8 0.06

39.6 46.4 0.07 1.9

67B5

68B3

68W3,69F2,75B5, 76P6,76Y2,79G7, 79R1,8OG2,81Y 1 Table 10

56D1,56M2,56Pl, 59S2,67D5,72P3, 74Bl

7.28 83W 84P2 88M8 7.29

64G3,69R1,75B6 8502 7.30

7.27

Page 74: Second and Higher Order Elastic Constants

Table 7 (continued)

Compound $11 s44 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

ps @Pa)-’ GPa

Jndium phosphide (piezoel.), JnP

Iron oxide (Wtistite),

Fe0.920 ’

Feo.950 d, 4

%304 Iron sulfide (Pyrites),

F&2 s(n=6) h)

Iron silicide, FeSi Lanthanum antimonide Lanthanum hexaboride,

LaB6 Lanthanum selenide Lanthanum sulfide

(piezoel.), Lass, Lanthanum telluride Lead fluoride, PbF2

s(?z=9)

Lead selenide, PbSe

16.4 21.7 -5.9 102.2 46.0 57.6 66H2 16.4 21.9 -5.8 101.1 45.6 56.1 8ON2

7.53 22.4 -2.85 246 44.7 149

7.67 21.7 -2.74 217 46 121

7.30 17.5 -2.60 226 57 125

2.78 0.10

2.56 3.28

2.21 11.1 -0.09 453 90.1 18 2.12 11.3 -0.13 474.5 88.4 30.7

12.8 31.6 -4.2 116 31.6 57.2 14.8 32.3 -5.2 107 31 57

15.8 47.1 -5.2 93 21.3 46 0.9 2.5 0.4 4 1.3 2

(8.16) (61.6) (-3.6) (404) (16.2) (319) 8.44 62.9 -1.14 124 15.9 19 14.0 50.2 -3.95 92.1 19.9 30.3 8.71 64.39 -0.92 117.8 15.53 13.9

9.38 -0.24 366 106 35 0.23 0.05 13 2 7

8.79 +0.31 402 114 -44 7.58 -0.19 307 132 19

86J2,84C 1 7.31 78Sll

81B8,83Bl

61A1,63Sl 89B3

76813 7321 Table 10 77Tl 86W5 Table 10 8OF3 88F7 Table 10 65W2,7OH3,78C3, 79D1,80R1,86Jl, 84M3,84s 1 63C3 71L5 73V2 87W2

8834 7.33 7.34

7.32 7.35 7.36

7.39 7.38 7.37 7.40 7.41

7.42

continued

Page 75: Second and Higher Order Elastic Constants

‘lhble 7 (continued)

Compound Sll %I “12 Cl1 c4‘4 Cl2 Main ref’s. Other l-efs. Figs.

0-W’ GPn

Lead sulfide (We=& pbs

s(n=4) Lead telluride, F%Te

a=9 4K 78K

Lithium bromide, LiBr s(n=3)

Lithium chloride, LiCl s(n=5)

Lithium fluoride, LiF s(n=lO)

Lithium hydride, LiH 16.5 22.0 -3.1 66.2 45.4 15.3 s(n=7) 0.3 0.7 0.2 1.3 1.4 1.1

‘LiH Lithium deuteride, LiD

‘LiD ‘LiD

Lithium iodide, Lil

8.46 0.25 9.46 0.09

36.8 0.4 28.2 1.1 11.6 0.1

45 9 75.8 1.5 81 83 52.4 0.5 40.3 0.3 15.8 0.2

-1.38 0.36 -0.64 0.06

-12.0 0.1 -8.7 0.7 -3.35 0.13

127 23.0 0.4 3.9 107 13.2 1 0.3 116.6 12.3 113 12.1 39.4 19.1 0.2 0.2 49.1 24.8 0.5 0.2 112 63.5 2 0.6

24.4 6.6 8 1

18.9 0.2 22.0 1.8 46 3

16.08 21.65 -2.88 67.49 46.20 14.75 16.4 22.0 -3.0 66.3 45.5 14.6 16.1 21.2 -2.8 67.1 47.2 14.0 15.80 21.02 -2.93 69.11 47.58 15.73 52 74 -17 28.5 13.5 14.0 50.4 71 -16.6 29.1 14.1 14.2

56h1,76F’4 3 7.43 76S13,81P3

61B3,61C5,63El, 7.44 68H2,81M4 88V3

6OH1,69M2,73C8 7.45

6OH1,67L2,67M2, 7.46 71l’6,73C8 59Ml$OH1,61C2, 7.47 61S1,64M4,65T4, 7.48 67D3,68H3,71!% 7OS11,7652,77H5, 81B3 69H6,71T2,72G7, 7.49 72M7,74G3,76L3, 81V2 8272 69H6 7267 8272 60H11) 72Ml

Page 76: Second and Higher Order Elastic Constants

Table 7 (continued)

Compound s11

0-W’

$44 x12 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

Lithium oxide, Liz0 5.05 Magnesium germanide, Mg@e 9.91

Magnesium oxide, MgO s(n=lO)

Magnesium silicide, Mg2Si

-Manganese oxide, MnO s(n=5)

Manganese silicide, MnSi Manganese sulfide, MnS, Mercury selenide

(piezoel.), HgSe e-v

Mercury sulfide (piezoel.), p-HgS

Mercury telhuide (piezoel.), HgTe

sew

9.06 4.01 0.04

17.0 -0.49 202 58.7 21.5 23.3 -1.18 104 43.0 14.1 21.5 -1.48 118 46.5 23.0 6.46 -0.96 294 155 93 0.12 0.02 6 3 5

8.8 21.5 10.0 23.6 6.72 12.8 0.27 0.3 3.61 7.96 9.92 27.5

43.4 44.9 0.9 0.9 36.5 37.9

43.3 48.0

2.6 1.0

-1.3 121 -1.38 105 -2.27 227 0.14 5 -0.56 293 -2.10 113.6

-18.4 60.8 0.5 1.2 -15.8 81.3

-17.7 53.2

1.2 2.1

46.4 22 42.5 16.7 78 116 2 5 125 54 36.4 30.4

22.3 44.6 0.4 1.8 26.4 62.2

20.8 36.8

0.4 1.1

89F2 62R2 65C2 36D1,56h1,61Sl, 63C1,65B1,66A3, 69C1,70S8,71Ml, 83S6 65Wl 62R2 6902,72U2,77HZ 78S11,8OP2 7424 89Wl 69L4,7OK6,75K5, 76K3,82Fl

76K3 b,

64M5,67A4,71V3, 75c4

7.50

8369 7.51 7.52

7.53

7.54 7.55 7.56

7.57 7.58

87B7 7.59

continued

Page 77: Second and Higher Order Elastic Constants

Table 7 (continued)

Compound St t

(TPa)- *

Cl1

GPa

Cl2 Main rcfs. Other refs. Figs.

Methane, CHH, 90.4K Deuterated CD,89.2K

8557K Ir) Phase I 34SK Phase I 30K O) PhaseIl 25K 0)

Neodymium hexaboride, Nm6

Neodymium selenide, Nd3Se4

Nickel oxide, NiO

Niobium carbide, yo.9

w.865

MO.750 Niobium hydride Palladium deuteride,

hydride Potassium bromide, KBr

s(n=lO)

1373 1087 1389 1093

1362 1065 788 671 756 631 682 575

-584 -595

-584 -332 -310

1.96 0.92 1.45 2.004 0.915 1.500

2.056 0.939 1.542 3.28 1.49 2.39 3.08 1.58 2.14 3.39 1.74 2.35

5.93 5.2

2.73 1.90

9.09 9.5

4.87 6.53 6.76

-1.76 -1.7

-0.58 -0.33

225 110 270 105

413 206 566.4 153.1 542.3 147.8

95 125

111 116.9

30.3 196 -4.2 34.5 5.10 5.5 0.6 6 0.3 0.3 0.15 0.4

79R5,82R2 82R2

84M4 71P7 77SlO

85T4 7.60

88F9 7.61

71D4 72U2

7.62

77K6 86L2 86L2 Table 4

7.63

Table 4 57B2,59M1,63Dl, 64R4,67S3,67S4, 69H3,7OS5,71C5, 73B2,73M3,81B3

84l=3,85GlO 7.64 7.65

Page 78: Second and Higher Order Elastic Constants

g Table 7 (continued)

t g

@ Compound 311 s44 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

p E- (l-El)-’ GPa

Potassium chloride, (Sylvine,Sylvite) KC1

s(n=lO)

Potassium fluoride, KF s(n=4)

Potassium iodide, KI

s(n=lO)

Platinum antimonide, PtSb2 Praseodymium antimonide,

PrSb Praseodymium

hexaboride, PrB, selenide sulfide telhuide tin

Rhenium hioxide, ReO,

354K Rubidium bromide, RbBr

s(n=8)

25.9 159 -3.8 40.5 6.27 6.9 0.1 1 0.3 0.4 0.06 0.3

16.8 79.8 -3.2 65.0 12.5 15.0 0.2 0.8 0.2 0.4 0.3 0.9

38.2 270 -5.2 27.4 3.70 4.3 0.8 3 0.3 0.5 0.04 0.2

4.31 17.0 -0.90 260 59 68 8.36 50.5 -0.86 122 19.8 14.0

2.09 1.75 1.45

33.1 0.3

16.4 +0.03 479 61 -7 14.7 -0.02 572 68.1 7 14.1 -0.18 717 71.1 103

262 -4.4 31.5 3.82 4.8 2 0.3 0.2 0.04 0.3

67S3,67S4,67D3, 68H3,7OS3,7OC4, 73B2,73B4,75B3, 77D7 6OH1,67K2,67L2, 67Ml 57B2,58N2,6OB3, 6OH1,61N1,65Rl, 66B3,70S6,71Bl, 71c5 65Dl 74M8

85Q1,85GlO, 7.66 8851,88R2 7.67

7.68

85GlO 7.69 7.70

7.71

85T4 Table 10 Table 10 Table 10 Table 10 76P3 76T3 77B4 57B2,6OB3,6OHl, 61R2,65R1,67L2, 7OG1,71c3

7.72 7.73,74

7.75 7.76

7.77

7.78

continued

Page 79: Second and Higher Order Elastic Constants

‘IBble 7 (continued)

Compound 92 Cl1

GPa

=44 Cl2 Main rcfs. Other refs. Figs.

Rubidium chloride, RbCl

s(n=lO)

Rubidium fluoride, RbF

Rubidium iodide, RbI

s(n=Q Samarium antimonide Samarium hexaboride. SmB6 Samarium selenide, Sm,Se, Samarium sulfide, SmS

p=O.3 GPa p=O.6 GPa

Scandium sesquioxide, S%03

Silicon carbide, Sic

1273K s, Silver bromide, AgBr

4-9

29.3 212 -4.3 36.4 4.70 6.3 0.3 2 0.1 0.3 0.05 0.1

20.2 108 -4.1 55.2 9.25 14.0 20.4 108 -4.2 55.1 9.24 14.5

40.5 358 -5.1 25.6 2.79 3.7 0.4 4 0.5 0.2 0.03 0.3

2.41 12.82 -l-o.04 416 78 -6.8 10.9 36.0 -1.31 95 27.8 13

(8.46) W.0) (-0.71) 120 25 11 8.44 41.7 -0.82 121 24 13 8.01 37.18 -0.69 127.0 26.90 12 7.80 37.20 -0.63 130.1 26.88 11.5 7.82 37.24 -0.28 128.2 26.85 4.7 5.36 11.2 -1.84 290 89 151

3.67 4.29 -1.05 352 233 140 3.30 3.98 -0.90 379 252 141 3.94 4.42 -1.11 327 226 129 31.1 138 -11.5 56.3 7.26 32.8 0.3 1 0.1 0.2 0.05 0.2

57B2,6OH 1,67L2, 67M2,7OC4,7OGl, 7OG4,71C3,71N5, 71% 6OHl 72C3 6OB3,6OH1,61R2, 67L2;7OF6,7OGl, 71C3,86A3 Table 10 85TlO 85T10,85T5 76D3 75M5 84H4,82S 14 84H4

76A9

6072 b) 72M8 b, 87L4 56T1,7OL5,77Cl, 78D2,78M3,85B4

7.79

7.80

7.81

7.82 88NlO 7.83

7.84 7.85

88L4

7.86

Page 80: Second and Higher Order Elastic Constants

‘Ikxble 7 (continued)

Compound Sll

crpa>-’

*744 Cl1

GPa

c44 Cl2 Main refs. Other refs. Figs.

Silver chloride, AgCl s(n=4)

Silver iodide, a-AgI 613 K

Sodium bromide, NaBr

s(n=8) Sodium chloride, I * (Rocksalt), NaCl

s(n=lO)

Sodium fluoride, NaF

s(n=lO) Sodium iodide, NaI

SW3 Strontium chloride, SrC$

s(?l=3) Strontium fluoride, SrF2

s(n4) Strontium oxide, SrO

s(n=5) Sulfur hexaknide, SF,

221 K Tantalum carbide, TaCoew

31.1 161 -11.7 59.6 6.22 36.1 56hl,67H2,67Vl, 0.6 1 0.4 0.6 0.03 0.3 7OL5

359 159 -167 14.8 6.3 12.9

28.1 100 -5.8 40.0 9.96 10.6 0.6 2 0.3 0.8 0.20 0.7

22.9 78.3 -4.8 49.1 12.8 12.8 0.5 0.8 0.1 0.5 0.1 0.1

11.5 35.6 -2.3 97.0 28.1 24.2 0.06 0.4 0.07 0.4 0.3 1.0 38.3 136 -8.8 30.2 7.36 9.0 0.3 1 0.2 0.1 0.06 0.2 15.9 104 -3.3 70.5 9.6 19 0.3 3 0.2 2.1 0.3 3 9.86 31.5 -2.57 124 31.8 44 0.04 0.3 0.05 0.6 0.3 1 6.67 17.9 -1.42 170 55.6 46 0.27 0.9 0.07 7 2.8 3

87B3 56h1,57B2,6OHl, 67K2,67L2,7ONl, 70S4,73B2 68H3,7OD1,7OG2, 7oG4,7os3,72s9, 75B3,75F2,79K7, 79V1,81B3 57B2,6OH1,64M4, 66V2,67L2,68H3, 72B2,76J2 58E1,59D1,6OCl, 6OH1,71B1,73G9 70H5,71L2,77Al

#G2,7OA2,77J3, 78C3 69M6,7052,7288, 76P1,77c3

603 758 -238 3.41 1.32 2.22 88K2 2.06 12.6 -0.26 505 79 73 67B3

7.87

83A7,74F2 85GlO 7.88

85G10,87Y7 7.89 7.90 7.91 7.92 7.93 7.94

85GlO 7.95

7.96

87K6 7.97

7.98

continued

Page 81: Second and Higher Order Elastic Constants

Table 7 (continued)

Compound Sll s12 Cl1 %I Cl2 Main refs.

(l-P)-’ GPa

other l-h. Figs.

Terbium phosphide Thallium bromide, TlBr 34.2

s(n=3) 0.7 Thallium chloride, TlCl 31.6

s(n=3) 0.06 Thorium oxide, ThO, 3.13 Thulium antimonide Thulium cadmium, TmCd Thulium selenide,

Tm0.87-ISe 6.32 Tm0.99Se 7.95 TmSe 8.72

Tin telluride, SnTe N [ l@O cm -3] 1.24 8.50 2.3 8.59 8.2 9.00 20 9.48 1.01 10.2 4.5 9.16 6 8.96 8 9.0 4.5 9.59

Titanium carbide, Tic 2.10 s(n=3) 0.11

2.58

133 -9.6 37.6 7.54 14.8 1 0.2 0.3 0.05 0.3 130 -8.8 40.3 7.69 15.5 3 0.1 0.2 0.15 0.3 12.5 -0.70 367 79.7 106

Table 10 56hl&W1,67M4

56h 1,72K5,7565

64Ml Table 10 73L6

34.5 -0.72 163 29 21 SOB2 37.0 +3.71 179 27 -57 8OB2 38.5 i4.73 185 26 -65 81MlO

69.1 -0.28 118.0 14.47 4.07 70.9 -0.33 116.7 14.10 4.60 84.7 -0.55 112.0 11.80 7.37 94.2 -0.66 106.7 10.61 8.02 81.0 +0.90 99.7 12.35 -8.1 103.1 -0.17 109.3 9.7 2.1 85.3 -0.56 1125 11.72 7.5 86 -0.5 112.2 11.6 6.4 88.3 -0.16 104.3 11.3 1.78 5.61 -0.36 513 178 106 0.11 0.03 15 4 8 4.60 -0.45 418 217 89

64H4 7.103

76S3 76S2,76S3 69B3 68H.5 81M4 61G1,63B4,66Cl

77K6 n,

7.99

7.100

7.101 7.102

7.104

7.105

7.106

Page 82: Second and Higher Order Elastic Constants

g ‘pdble 7 (continued)

@

!3B Compound Sll ” s44 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

p5 O-W- * GPa

Uranium antimonide, USb

Uranium arsenide, UAs Uranium carbide, UC

Wt%C 4.96 4.64 4.52

Uranium nitride, UN s(n=3)

Uranium oxide, U02

Uranium oxide (piezoel.), U40,

Uranium selenide, USe

Uranium sulfide, US

Uranium telluride, UTe

Vanadium carbide, VC,,, Vanadium germanide, V&Ye

s(n=3)

5.16 56.2 -0.28 195 17.8 11 5.16 56.2 +0.28 195 17.8 -10’) 6.27 50.0 -0.26 160 20 7 4.01 38.5 -0.15 250 26 10 3.55 15.3 -0.76 318 65.6 86.2

3.49 15.0 3.53 15.3 3.54 15.5 2.60 13.2 0.02 0.10 2.96 15.6 3.00 16.8 3.96 24.4

-0.70 -0.71 -0.70 -0.47 0.03 -0.70 -0.70 -1.09

+0.35 0 -0.07 -0.14

+O.lO -0.74 -1.13 0.05

318.0 66.6 79.1 314.9 65.2 78.8 313.7 64.6 77.9 417 75.7 90.7 6 0.7 7 396 64.1 121 389 59.7 119 319 41 121

4.25 5.16 4.08 3.33

67.6 62.5 47.6 59.2 88 83.3 5.21 14.3 0.1

238 14.8 194 16 245 21 301.7 16.9 149 11.3 143.4 12.0 366 192 294 69.9 3 0.4

-18 t, 0 4 13.2

6.97 3.18 4.23 0.09

-2.0 110 107 3

86Nl d)

83317 =) 83s 17 =) 66Cl

82H8 7.107

71Rl

72G8,77V3,86S9 7.110

65W3 76F4 66B6

7.108 7.109

86Nl 86J3 =) 85D4 c) 84N2 d, 86J3 =) 84N2 d, 77K6 69R2,73C2,73T3

82H8,79D3 7.111

82H8

7.112 7.113

continued

Page 83: Second and Higher Order Elastic Constants

?gble 7 (continued)

Compound s11

(-Pa)-’

692 Cl1

GPa

c44 Cl2 Main r&s. Other refs. Figs.

Vanadium silicide, V,Si

s(n=4) Ytterbium hexaboride, YbB,

Yttrium sesquioxide, Y203 Yttrimn sulfide, YS

Zinc oxide, ZnO Zinc selenide (piezoel.), ZnSe

5W-O zinc sulfide

(Sphalerite, Zincblende) (piezoel.). ZnS

s(n=Q Zinc telhuide

(piezoel.), ZnTe +=3)

Zirconium carbide, ZrC s(n=3)

4.60 12.3 -1.34 287 81.1 119 0.03 0.09 0.4 1 0.4 3 3.30 25.0 -0.64 335 40 81 3.30 24.4 -0.64 335 41 81 8.15 14.6 -3.08 227 68.6 138 4.12 35.7 -0.43 249 28 29 (4.05) (33.3) (-0.3) 250 30 20 8.10 18.2 -2.89 204 54.9 113

21.0 24.9 -7.9 86.4 40.2 51.5 1.1 0.9 0.5 3.9 1.8 3.4

19.5 22.5 -7.6 102 44.6 64.6 1.4 0.9 0.7 5 1.8 1.9

23.9 32.5 -8.5 71.5 31.1 40.8 0.2 0.3 0.2 0.6 0.3 0.1 24.1 31.9 -8.8 71.1 31.3 40.7 2.35 6.65 -0.27 441 151 60 0.07 0.33 0.11 31 8 34

65T2,67T2,73C3, 81Kll 7.114” 73L2,78G5 7.116 85T2 85317 76A.9 75M5 76D3 72M8 b, 63B5,70U,72K8, 7.117 75H2,77B2,78W3, 83B4,88Ll

2&1,46h1,61Kl, 83D3 7.118 63B5,63E1,6321, 71V3,8OS 10 63B5,73L4,77Yl 7.119

7OU 61L1,63B4, 66ClP)

7.120

4 Specimens axmealed 170 h at 1423K; oxygen pressure =lv atm. b, Estimated values. c) Stiffnesses from neutron diffraction. d, Stiffnesses from ultrasonic wave velocities.

Page 84: Second and Higher Order Elastic Constants

Footnotes for Table 7 (continued)

=) Constant field. fl Constant displacement. d From frequencies of vibration of a parallelepiped. h, Existing measurements of cl2 on pyrites (Fe&) show some anomalies. Negative values (= - 45 GPa) were reported in [28v1,46B 11, but a positive

value of +30 GPa was reported in [%P3], and this was confirmed in [61A1,63Sl]. Later measurements [76S 131 gave cl2 = - 44 GPa, and it was suggested in [76S 131 that negative values may be due to twinning. The most recent measurement [89B3] is cl2 = + 49 GPa.

i) The means and standard deviations refer to different types of GaSb containing various impurities and carrier concentrations. 3 n-type. k, Schaefer-Bergmann method. *I Extrapolated.

m) Piezoelcchic. n, Results disagree with those of previous workers. O) Order-disorder transition at 27K. p) x0.94 - r, Brillouin scattering. 3 Estimated values from polycrystalline data. t, Using ultrasound and strain gauges. u, These values have been obtained from graphical data in [88F7] and arc not all in agreement with tabulated data in that reference.

Page 85: Second and Higher Order Elastic Constants

82 1.2.1 Elastic constants spa, cpa. Cubic system. Alums mef.p.576

Table 8. Cubic system. Alums b).

Composition *) 511 %I 512 Cl1 c44 Cl2 Refs., Fig.

VW* GPa

cw93vs Cs AIS Cs AlSe cscrs CsFeS CsGaS CsGaSe CsInS CsTiS csvs KAIS

KAlS-KCrS

KAlSe KCrS

KFeS KGaS KVS NaAlS NH,CH,AIS

NH3CH3AlSe NH3CH3FeS NH3CH3GaS NH,CH,InS NH,cH,vs

NH3NHzAlS NH,OHAIS NH,OHGaS NH,AIS

NH4AlSe NH,crs

273K 58.9 192 -23.2 35.1 5.2 22.9 61Hl 47.7 119 -15.8 31.15 8.39 15.39 61Hl 53.3 135 -16.6 26.08 7.42 11.78 61Hl 47.5 118 -15.4 30.7 8.5 14.8 61Hl 48.5 119 -15.9 30.38 8.41 14.84 61Hl 48.8 122 -16.3 30.69 8.16 15.33 61Hl 54.6 132 -16.8 25.30 7.56 11.3 61Hl 48.8 123 -15.7 29.57 8.16 14.07 61Hl 50.0 119 -16.7 30.0 8.4 15.0 61Hl 51.6 125 -17.8 30.4 8.0 16.0 61Hl 53.8 118 -15.6 24.9 8.49 10.4 28v1,56hl,

s(n=6) 1.1 1 0.5 0.7 0.08 0.3 61H1,71N4

mole % KAIS 100 86.5 60 54.5 0

s(n=3) 288K

273K

288K

273K

s(n=3)

51.8 116 -15.3 25.6 8.6 10.7 52.5 123 -15.4 25.2 8.1 10.5 53.1 128 -15.4 24.7 7.8 10.1 53.8 128 -15.6 24.4 7.8 10.0 54.1 130 -15.3 23.7 7.7 9.3 56.8 129 -16.7 23.30 7.75 9.7 56.2 135 -16.7 23.8 7.5 10.0 2.2 16 1.3 0.2 1.3 0.8 56.7 122 -16.0 22.62 8.21 8.86 56.6 118 -16.8 23.56 8.49 9.94 55.0 127 -18.0 26.7 7.85 13.0 55.0 130 -21.2 35.14 7.7 22.02 59.0 171 -21.7 29.71 5.84 17.32 56.0 168 -20.3 30.41 5.94 17.29 64.7 184 -24.0 27.36 5.43 16.08 60.3 174 -22.1 28.75 5.76 16.61 60.3 178 -22.2 28.98 5.62 16.86 63.6 180 -23.2 27.03 5.54 15.51 63.7 179 -23.7 28.0 5.6 16.6 82.4 178 -33.0 26.21 5.63 17.75 109 154 -46.3 24.16 6.49 17.74 93.9 152 -37.9 23.6 6.6 16.0 53.7 124 -16.1 25.1 8.06 10.7 0.2 1 0.2 0.1 0.06 0.1 57.1 133 -17.3 23.84 7.52 10.40 54.2 125 -16.3 24.9 8.0 10.7

56hl

61Hl 56h1,61Hl, 71N4 61Hl 61Hl 61Hl 61Hl 61H1,Fig.g.l 7421 61Hl 61Hl 61Hl 61Hl 61Hl 61Hl 61Hl 61Hl 56h1,61Hl

61Hl 61Hl

Land&-Bl)mst& New Saiu JJ.W!h

Page 86: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.1 Elastic constants spa, cpa. Cubic system. Alums 83

Table 8 (continued)

Composition a) Sll s44 s12 Cl1 c44 Cl2 Refs., Fig.

UW1 GPa

NH4FeS

NH4GaS NH4GaSe NH41nS 288K NH4vs

RbAlS RbAlSe RbCrS RbFeS RbGaS RbGaSe RbInS RbVS TlAlS

s(n=3) TlAlSe TlGaS TlInS 273K TWS

Deuterated alums CsAlS KAlS ND,CD,AlS TlAlS

55.4 125 -16.5 24.13 8.02 10.23 61Hl 70.8 142 -23.5 21.1 7.04 10.5 71N4 56.3 124 -16.9 23.95 8.05 10.29 61Hl 59.2 132 -17.7 22.68 7.58 9.68 61Hl 57.4 127 -17.2 23.51 7.85 10.11 61Hl 56.9 136 -19.4 27.2 7.35 14.1 61Hl 51.6 118 -14.9 25.35 8.44 10.33 61Hl 54.2 128 -15.8 24.26 7.78 9.96 61Hl 53.7 116 -15.8 24.7 8.6 10.3 61Hl 53.2 118 -15.3 24.5 8.5 9.9 61Hl 53.4 117 -15.4 24.50 8.53 9.96 61Hl 56.3 128 -16.2 23.13 7.80 9.35 61Hl 55.0 121 -15.8 23.66 8.26 9.54 61Hl 49.9 119 -15.9 28.6 8.4 13.4 61Hl 50.3 118 -15.7 27.7 8.51 12.6 56h1,56Sl, 4.0 5 1.1 2.2 0.34 1.3 61Hl 58.6 136 -18.1 23.50 7.33 10.46 61Hl 56.5 120 -17.6 24.59 8.3 11.09 61Hl 60.1 125 -18.6 23.0 8.0 10.3 61Hl 53.1 128 -17.8 28.5 7.8 14.4 61Hl

47.5 117 -15.7 31.18 8.55 15.36 61Hl 53.0 117 -15.3 24.59 8.56 9.95 61Hl 58.7 172 -21.6 29.66 5.82 17.2 7421 54.0 122 -16.6 25.42 8.17 11.24 61Hl

a) Alums have the general formula XY(ZO4)2 -12H20, where X is a monovalent atom or radical, Y is a tervalent atom, and Z is S or Se. The composition in the above table is expressed as XYZ.

Order is alphabetical according to element symbol and not according to English name. b, See also Table 48.

Landolt-Barnstein New Series IlW9a

Page 87: Second and Higher Order Elastic Constants

Table 9. Cubic system. Miscellaneous compounds.

Material Sll %4 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

VW1 Gpa

Ammonium bromide, NHJBr

Ammonium chloride normal and deuterated, NH&l and ND&l

s(n=4) Ammonium hexabromo-

platinate, 02ptBre Ammonium hexabromo-

stannate, (NHd2SnBr, Ammonium hexabromo-

tellurate, (NHd2TeBrs Ammonium hexachloro-

stannate, (NH&SnC& s(n=3)

Ammonium hexachloro- tellurate, w5d2=336

02TG Ammonium hexafluoro-

silicate, (NHd2SiPe

s(n=5)

240 295 -79 6.15 3.40 3.02

239 291 -90 7.59 3.44 4.55 218 226 -87 9.71 4.43 6.43 33.4 146 -7.1 33.8 6.85 9.1 32.0 138 -6.0 34.1 7.22 7.82

29.1 116 -5.7 38.1 8.63 9.37

0.6 70.9

0.3 1.1 0.26 0.66 -24.4 22.1 9.0 11.6

94.7 82.8 95.5

-35.2 18.8 8.2 11.1 -28.3 18.7 7.3 9.7 -34.4 17.6 7.0 9.9

65.3 2

-20.8 21.9 10.0 10.2 1.5 0.2 0.5 0.6

70.8 74.8

57

2

3 111

122 137 143

100 5

128 130

140

10

-23.6 21.2 7.8 10.6 -25 20.3 7.7 10.3

-15 22.0 7.1 8.1 8OH5 “@),80Wl”),

1.3 0.4 0.6 0.9 81H5 P),81Pl P),85W2

75D2 9.1

76D2 Jl 9.2 78W5 4 6oH2 78G7,81H18 9.3 66G2 9.4 6OH2,6362,66Gl, 80H8,81H14, 9.5 69L2,79Zl 84H10,87Y3 9.6

85W2,89W2 9.8

85W2,89W2 9.11 82N5 85W2,89W2 85W5 9.9

67Nl,85W2,89W2, 85P5 8OH5

88K6 88P3 9.10

Page 88: Second and Higher Order Elastic Constants

Table 9 (continued)

Material Sll s44 s12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

Ammonium iodide, NH41

Barium dicalcium propionate, Ba%(C2wod6

Barium nitrate, BaW&)2 s(n=3)

Barium titanate (piezoel.), BaTiO,

423K Bismuth germanate

(piezoel.), Bi4(GeO& Bismuth germanium

oxide (piezoel.), %2GeO, s(n=5)

4.5K 24K 77K 293K

Bismuth silicate (piezoel.), Bi4(Si04)3

Bismuth silicon oxide (piezoel.), Bi,,SiO,,

s(n=5)

43.1 417 -6.4 24.5 ‘2.40 4.28 73H6 9.7 42.7 413 -6.4 24.7 2.42 4.36 75M3

232 351 -86 7.64 2.85 4.50 75Kl

81.7 78.2 -33.7 29.3 12.8 20.6 0.7 0.2 0.3 0.06 0.03 0.06 10.8 7.9 -4.4 206 126 140 8.7 8.9 -3.35 222 112 139 8.33 9.24 -2.68 255 108 82 9.47 22.9 -1.79 116 43.6 27 8.20 21.1 -1.24 129 47.3 23 8.81 39.2 -1.63 125 25.5 28

0.62 0.4 0.65 4 0.3 10 8.50 30.3 -1.93 135.6 33.0 39.7 8.59 30.5 -1.96 134.7 32.8 39.9 8.67 31.8 -1.97 133.0 31.4 39.0 8.98 37.2 -1.92 126.0 26.9 34.2 7.74 19.3 -1.11 136 51.8 23

63H1,71M6,73M6, 9.12 78G1,Table 48 51B2 9.13 59H2 9.14 58Bl 9.15 69Sl 89P3 6701,7OK7,7236, 85w4 7821,78Z2,79A6

86K5

73Rl

8.46 40.6

0.07 0.3

-1.57

0.04

129

1.5

24.7

0.2

29.4

1.2

74S11,79A6,79Sll, 88A6,88G6

Page 89: Second and Higher Order Elastic Constants

‘able 9 (continued)

Material Sll s-34 Q Cl1 =44 Cl2 Main refs. Other refs. Figs.

CW GPa

Boracites d Cu3wa3Br

cu3J37013(J

Mg3h0t3Cl U)

Mg,B,O,,Cl v) Ni,B,O,,I

Cadmium ammonium sulfate, cd2(NH4)2(sod3

Cadmium indium sulfide, cdIn2s4

Cadmium pyroniobate, -2eP7

Cadmium thallium sulfate, cd2n2(sod3

Calcium barium propionate, c?2Ba(%%cod6

Cesium cadmium fluoride, cscdF3

Cesium cyanide, CsCN

Cesium lead bromide, CsPbBr, x,

3.9 12.3 -0.67 (276) 81

3.9 11.0 -0.67 (276) 91

8.83 38.9 -1.49 121.5 25.7 24.6 8OYl

5.0

11.7 40 -3.2

95.8 238 -375 90.6 339 -32.9 (49) mo (-14)

12.0 -1.4 255

108 25.0

21.0 4.2 18.8 2.95 (26) (5.1)

83

(57) (57)

Table 10 Table 10

76AlO

Table 10 9.16

98 83Y6 9.17

9.18

40 7sR3 9.19

13.5 8338 9.20 10.7 83L7 9.21 (10) 77H16 9.22

Page 90: Second and Higher Order Elastic Constants

F F Table 9 2%

(continued)

8. F= Pi% k3B

Material s11 s44 512 Cl1 c44 Cl2 Main refs. Other refs. Figs.

p5

crpa)-’ GPa

Cesium lead chloride, CsPbCl, b) 323K

323K c) 353K =)

Cesium lithium molybdate, CsLiMoG4

Cesium lithium tungstate, CsLiWO,

Chromite, FeG,Cr,O, Copper arsenic sulfide,

cu3m3 Copper germanium

phosphide, cuGezp3 291K

77K CuGe4P3 293K

140K Cyanospinels, K2X(CN)4

X=Zn Cd Hg (Ultrasonic) Hg (Brillouin)

Cyclohexane, C,Ht,

56.5

54.9 42.6

35 35

4.27 (22.0) 23.0

10.2 10.0 10.3 10.1

66.6 91.0 87.2 89.9 1774

197

198 197

71 71

8.57

wo 110

15.0 14.7 14.8 14.6

305 397 435 427 2793

-19.7

-19.3 -13.2

-10 -10

-1.32

(-8.7) -8.9

-3.2 -3.1 -3.0 -3.0.

-22.2 -32.3 -29.7 -31.4 -823

28.3

29.5 32.4

37 37

322

w 84.9

136.6 140.1 128.8 131.7

22.49 18.04 17.68 17.84 2.86

5.08

5;04 5.09

14 14

117

(9-l) 9.1

66.6 68.1 67.7 68.7

3.28 2.52 2.30 2.34 0.358

15.2

16.0 14.5

15 15

144

(62) 53.6

61.7 64.0 53.9 55.7

11.23 9.93 9.12 9.60 2.47

75A2

77H6

82A5 82Ml

46hl 81B9 84B3

84H5

85M6

Table 48 76Hl

76K8 78A6

78H11,78H14 9.23 9.24

9.25 9.26

926A 9.26B

9.28 9.27

8OH3

84M4

continued

Page 91: Second and Higher Order Elastic Constants

‘Pable 9 (continued)

Material Sll s44 s12 Cl1 c-+4 Cl2 Main refs. Other refs. Figs.

GJW GPa

Diammonium dicadmium sulfate (piezd.), ~d2cd2(sod3

Dithallium dicadmium sulfate (piezoel.), 250K n2cd2(sod3

Ferrites %-).32 z%22F%.204

Fe-p4 CMagnetW

Li2F%04

16.6 49.0 -4.6 76.6 20.4 29.5 75Sl

15.8 44.3 -1.4 64 23 6 7467 16.5 51.3 -4.6 78.0 19.5 30.6 75Sl

6.49 12.8 -2.37 4.59 10.5 -1.26 4.80 10.1 -1.37 6.84 10.7 -2.46 6.91 10.8 -2.47 9.24 11.6 -3.58 7.89 11.3 -2.98 8.95 12.8 -3.62 0.35 0.5 0.17 6.8 12.3 -2.3 6.75 7.41 -2.51

275 270 245 241 213 234 249 4 220 265

78 153 95.5 104 98.7 108 93.6 137 92.9 134 86 135 88.5 142 78 169 3 1 81.2 109 135 157

56hl 56hl

7oR5 76K6 9.31 6434 83KlO 81Dl 85G1

57Gl 7368

Page 92: Second and Higher Order Elastic Constants

f[ Table 9 (continued)

t= i-$2 Material St1 s44 512 Cl1 c44 Cl2 Main refs. Other refs. Figs.

o.‘pa)-’ -, GPa

Garnets (natural) Q%Jway~33 -

A12Si30t2 m*“) Almandine,

F%AI,si3012

Andradite, Ca,Fe$i,O,, ;F(n=3)

Grossulalite, k) Ca, A12Si30t2 40

pyrope, Mg3A1,si&

spessartite m3A1,si3012

Uvarovite, Ca3Cr2Si30,, 4

4.04 10.8 -1.09 310 93 115 4.01 10.4 -1.07 309 96 112 3.96 10.3 -1.04 309 97 109 4.17 11.9 -0.92 275 84 79 0.06 0.1 0.07 12 1 12

4.17 11.2 -0.98 280 3.69 9.89 -0.87 317.7

3.63 9.8 -0.84 3.67 9.8 -0.85 3.66 9.8 -0.84 4.32 10.9 -1.16. 4.26 10.9 -1.16 4.38 11.0 -1.24 4.07 10.4 -1.07 4.10 10.6 -1.09 4.10 10.6 -1.10 (3.75) (10.4) (-0.63)

320 316 317 287 296 294 302 303

;2?6)

89.6 86 66R4 101.1 98.3 73Hl

102 96 76114 102 95 78B4 102 95 8OL 92 105 76114 92 111 78B4 91 116 8OLl 96 108 7611 e, 94 110 78B4 94 112 8OL (96) (58) 8OLl

7611 e, 78B4 8OLl 78B4,80L1,86B5

continued

Page 93: Second and Higher Order Elastic Constants

‘able 9 (continued)

Material Sll s44 $12 Cl1 c44 Cl2 Maiil refs. Other refs. Figs.

UW’ GPa

Almandinepyrope, W X Y Zm) 81 14 4 1 d) 4.09 17 72 11 1 4.59 63 29 8 1 4.51 64 23 11 2 4.14 74 13 7 6 4.24 77 12 8 4 4.64 72 20 3 3 d, 4.08 50 35 14 1 4.06

-37 55 6 1 4.11 30 66 4 4.20 36 61 2 4.245

PY-1 15.7 72.6 0.6 0.7 4.19 AL-6 45.7 49.7 2.2 0.9 4.11 AL-Y 54.4 38.8 4.6 0.9 4.08

Almandine-spessartite, W X Y Zm)

43 1 55 4 4.01 45 1 53 4 4.02 52 1 46 4.05

10.6 -1.10 304.8 94.4 112.3 11.6 -1.20 268 86.5 94 11.2 -1.13 267 89.1 90 10.6 -1.03 292 94.6 97 11.3 -1.07 285 88.2 97 12.1 -1.21 265 82.8 94 10.8 -1.10 306.2 92.7 112.5 10.48 -1.08 3045 95.4 109.9 10.57 -1.09 300.2 94.6 108.2 10.82 -1.12 2955 92.4 107.6 10.92 -1.132 292.2 91.6 106.2 10.9 -1.12 297 91.7 108 10.5 -1.10 302 95.0 110 10.6 -1.08 303 94.7 109

6OVl 66R4

66R4

6786 7667

7611 77Bl 7888 9.32

10.5 -1.05 307.3 95.2 109.7 6OVl 10.5 -1.07 308.5 94.8 112.3 74Wl 10.6 -1.08 3065 94.4 111.2 7611 9.33

Page 94: Second and Higher Order Elastic Constants

g Table 9 (continued)

8 8’ z&

ifI Material Sll $44 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

35

(TPa)-l GPa

Exact type and/or composition not specified

Almandine-(?) wt(?)% Fe P l&h31

21.8 3760 22.7 3670 23.6 3630 23.0 3670 26.2 3750 28.7 4130 33.5 4320

Ahuandine type(?)

Garnets (synthetic) ca3@2%o12

s(n=3) Ca3(NbXW&-W12

300K 4.3K

E”3Fe5012

~Gdl-xEr,)3%012 x=0.15

{Gd,_,Er,)3(Sc,Ga),Ga3012 x=0.33

Gd3Fe5012

7.11 17.5 -2.23 197 57 90 8.02 16.9 -2.74 192 59 99 7.03 14.9 -2.32 210 67 103 6.42 14.3 -2.05 222 70 104 7.36 16.1 -2.64 226 62 126 6.32 14.7 -2.32 273 68 157 3.87 11.2 -1.06 327 89 124 3.94 10.1 -1.14 332 100 135

5.2 12.5 -1.5 255 80 103 0.8 0.4 0.5 7 3 18

5.32 14.3 -1.35 227 69.7 77.2 5.23 14.1 -1.33 231 70.9 78.6 5.35 13.12 -1.60 251 76.2 107

4.53

4.74 5.14

11.6 -1.25 279 86.5 106 85kl

12.2 -1.36 274 81.7 110.2 84E3,85kl 13.5 -1.60 273 74.1 125 66c5

56hl

64R2

81S2,86K7

87Al

66Bl

continued

Page 95: Second and Higher Order Elastic Constants

mble 9 (continued)

Material 811 s44 s12 Cl1 c44 Cl2 Main refs. Other refs. Figs.

crpa)-’ Gpa

Gd3=5012 4.52 11.1 -1.28 286 90.2 114 7OG6,72H4,75C5,

s(n=6) 0.03 0.1 0.03 2 0.8 3 85A3,88Kl&IK6 1OK 4.46 10.9 -1.28 292 91.4 118 85A3

($@c,~)2~$12 Pure Pure

1.7 at % Er 33at%Er

~N%.3L%.7L%~3012

Nd3%o12

Sm3G;So12

Tb,F%Ol2

4.70 12.9 -1.29 269 77.4 102 8422 4.59 12.4 -1.26 275 80.5 104 8521 4.63 12.3 -1.28 274 81.3 105 85Zl 4.74 12.2 -1.36 274 81.7 110.2 84E3 5.52 15.2 -1.68 247 66 108 8322 4.67 11.93 -1.34 277.8 83.8 111.5 76H3 4.64 11.62 -1.34 280.8 86.0 113.5 76H3 5.00 14.0 -1.47 265 71.5 111 80Al

Synthetic uvarovite y,AI,o,, (YAG)

SW9 ~LEr,)AI,012

x=0.26 Y3Fe,012 VW

s(n=3) y3%5°12

y3~%-x”12 @Id-doped) x=0.9

0.8 0.6

3.8 11.9 -0.9 304 84 91 86B5 3.61 8.74 -0.90 333 114 111 63S3,67A1,74H7, 0.04 0.04 0.02 3 0.6 3 75C5,8OY2

3.65 8.9 -0.93 332 113 114 4.87 13.0 -1.41 . 269 76.6 110 0.05 0.1 0.04 1 0.6 2 4.49 10.47 -1.29 290.3 95.5 117.3

85kl 61C3,66B1,76H3

63S3

3.68 8.77 -0.95 331 114 115 3.75 8.93 -0.98 326 112 115 3.91 9.13 -1.04 318 110 116

74H7

88FlO

85s 16,84Kl, 9.34 88Al

84K6 9.35

Page 96: Second and Higher Order Elastic Constants

f[ Table 9 (continued) s

f$g Material 91 s44 92 Cl1 c44 Cl2 Main refs. Other refs. Figs.

Hexamethylene tetramine (piezoel.), C,H12N4

Hexamine nickel nitrate, W’Q 12 - f3J33

Hexaquo magnesimn bromate, 273K Mg(Bro3 12 * ‘332 0

Hydrazine dichloride, N2%(J2

Hydrosodalite(.), NqW&hl(OW~ - n% 0

h-on (II) titanate, F%.05TB,s 04

Lead magnesium niobate, Pb3w@k?O9

lJi%d nitrate9 PWO3)2

s(n=4) Lithium barium fluoride,

LiBaF3 Lithium sulphate,

Li2SC4 858K 920K 1085K 1133K

68 194 -14 16.4 5.15 4.3 58Hl

900 1010 430 9.23 0.988 8.48 74H4 1008 1131 -485 9.27 0.884 8.6 81W

9.36

73.3 116 -23.7 19.8 8.62 9.5 81H5

50.1 143 -18.5 35.1 6.97 20.6 63Hl

39.6 35.2 -16.1 56.6 28.4 38.7 74L2

25.6 25.2 -11.4 139 39.6 112 71s9 9.37

7.34 13.0 -1.92 167 77 59

72.4 74.6 -30.8 37.4 13.4 27.7 0.7 0.4 0.3 0.1 0.1 0.2 9.49 20.5 -2.50 130 48.7 46.4

75s 12,80815 8636,85812, 8784

63H1,70H8,71M6, 73M6,Table 48 72H5

9.38 9.39 9.40

117 77 -50 %I 13, 18 83AlO 82A8 139 83 -61 23 12 18 87A2 245 97 -112 18.8 10.3 16.0 83A9 229 100 -104 18 10 15 83AlO

continued

Page 97: Second and Higher Order Elastic Constants

Table 9 (continued)

Material Sll s44 s12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

VW GPa

Mercury gallium telluride (piezoel.), &$?iTes 77K H&%-6 77K

Mercury indium telluride (?piezoel.), H&P2=%3 150K

77K HI@+% 77K

Nickel chromite, NiCr20$)

Perovskites (disordered) Pivahc acid ‘), CsHto02 Potassium cadmium cyanide,

K2WW4 Potassium cobalt

fluoride, KCoF3

Potassium cyanide, a’) KCN s(n=4)

Potassium hexabromo- platinate, K$tBrs

Potassium hexabromo- selenate, K2SeBr6

39 46 -15 49.7 21.8 31.4 71Sl 35.9 46.7 -12.7 45.5 21.4 24.9 82H6

47 48 -18 43.9 20.7 28.5 42 48 -17 50.2 20.8 33.3 42.9 50.3 -16.3 43.3 19.9 26.4 134 17.3 -66 174 58 169

68A4

82H6 72K4

379 1560 -109 3.43 0.642 1.38 Table 10 73B3

9.9 28.4 -2.8 130 35.2 51 75A3 9.7 28.6 -2.8 132 35.0 52 74R5

97 690 -37 19.4 1.45 12.0 57H1,73H7,76Kl, 3 21 1 0.4 0.04 0.1. 77W4,Table 48

76.8 118 -27.4 21.6 8.5

75.4 108 -27.7 23.2 9.3

12.0

13.5

85W2,89W2

85W2,89W2

9.42

9.46 9.47

9.54

Page 98: Second and Higher Order Elastic Constants

g Table 9 (continued) 8. F ag a

Material s11 844 S12 Cl1 c44 Cl2 Main refs. Other refs. Figs. p5

(ITa)-’ L GPa ’

Potassium hexabromo- stannate, K2SnBrG 400K

Potassium hexachloro- rhenate, K2ReCl,

Potassium hexachloro- stannate, K2SnCk

s(n=6) Potassium lead copper

nitrite, K2PbCu(NO& Potassium magnesium

fluoride, KMgFs s(n=3)

Potassium magnesium sulfate,(Langbeinite) @ie==l.), K2Mg2(S04)3

Potassium manganese fluoride, KMnFs adiabatic constants isothermal constants

Potassium manganese sulfate (piezoel.), K2%(so4)3

Potassium mercury cyanide, K$kCN)4

106 145 -39 17.1 6.9 10.2 69.6 107 -24.7 23.5 9.3 12.9 73.6 118 -26.4 22.8 8.5 12.8 90 121 -33 19.6 8.2 11.5

89W2 8OH5 85W2,89W2 8OH5 O),8OVl n-P), 81PlP),81H5 q34H6

9.56

9.57 9.58

6 4 2 0.5 0.2 0.4 165 129 -76 29.7 7.75 25.6 78K4 9.48

8.6 20.2 -2.02 136 49.4 42 67R2,68R1,7951 9.49

0.2 0.4 0.04 4 1.0 3 10.6 29.6 -2.5 110 33.8 34.0 65H2

10.5 36.7 -2.7 115.3 27.2 39.6 66A1,66A5,71P4, 10.7 39.1 -2.8 114.6 25.6 40.5 71P5 10.58 37.05 -2.71 114.80 26.99 39.56 88C2 10.64 37.05 -2.66 112.81 26.99 37.61 88C2 (16.6) 45.7 (-3.2) 66.4 21.9 16.1 79M4

9.50 9.51

9.52

9.53

continued

Page 99: Second and Higher Order Elastic Constants

‘IBble 9 (continued)

Material s11 s44 $12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

WW1 Gh

7.38 24.8 -1.73 158 40.3 48.5 74R5 8264

4.62 11.1 -1.10 255 90 80 74w4 2.70 9.2 -0.63 431 109 130 75Ul 2.53 8.40 -0.49 435 119 104 89P2 n,

9.59

9.61

9.54 26.2 -2.69 1345 38.1 52.7 7262 88T2 9.59 26.1 -2.72 134.4 38.3 53.2 87I36 9.60

(13) w9 (-3) (90) (39) G35.l 81M5 9.62

11.0

(15.9)

49.0 -2.8

(50) (-3.2)

110 20.4 37

(70) (20) (17.5)

Table 10 75R3 9.63

8OM2 9.64, 9.65

10.8

10.4

46.5 -2.0 102 78F2

24.1 -3.1 130

21.5

41.5

24.5

55 74R5

103 605 -38 17.5 1.65 10.4 79H3 83D5 9.67 112 617 -43 17.2 1.62 10.8 79Kl 9.66

Potassium nickel fluoride, KNiF3b9

Potassium niobate.

-3 733K h, Potassium tantalate,

KTa03 Potassium zinc cyanide,

K2zn(W4 Potassium zinc fluoride,

=fi3 Potassium zinc sulfate,

(piezoel.), K$n2(S04)3 Praseodymium aluminate Rubidium cadmium

fluoride, RbCdF3 Rubidium cadmium

sulfate (piezoel.), Rb$$(S04)3 Y) 163K

Rubidium calcium fluoride, RbCaF3

Rubidium cobalt fluoride, RbCoF3

Rubidium cyanide, w) RbCN 4

Page 100: Second and Higher Order Elastic Constants

3 F *a Table 9 (continued) 8% gg 51

Material Sll s44 s12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

$5

UW-* GPa

Rubidium hexabromo- stannate, Rb2SnBre

Rubidium manganese fluoride, RbMnFs

Rubidium nitrite, RbN02

Rubidium silver iodide, RbAg‘&

Silver germanhmr phosphide, &,(+&,

Silver tin germanium phosphide, Ag&P@e&

Sodium bromate (piezoel.), NaBrG,

s(n=6) Sodium chlorate

(piezoel.), NaClOs s(n=lO)

Sodium cyanide, NaCN s(n=5)

Sodium hydrogen acetate, NaH(cH3CW2

85.9 119 -30.4 19.0 8.4 10.4 85W2 85.9 120 -30.4 19.0 8.3 10.4 89W2 10.5 31.3 -2.8 117 31.9 42 69M5 10.6 31.2 -2.8 116 32 42 71P4,71P5 219 2174 -96 14.4 0.46 11.2 81H12

9.68

103 204 -37 16.5 4.89 9.34 75G7

9.69

9.70

12.1 19.1 -3.7 113.6 52.4 50.3 85M5 9.71

16.6 18.9 -5.7 94 53 49 21.3 66.0 -5.2 55.7 15.2 17.9

86Cl 51B1,52hl@H3, 8835 68R4,75G4,75S7

9.72

0.6 0.7 0.4 0.6 0.1 1.6 23.3 85.9 -5.3 49.6 11.6 14.7 9.73

0.2 0.9 0.1 0.5

72 2880 -26 23.3 6 403 2 2.1

50.8 518 -10.4 21.98

0.2

0.35 0.05

1.93

0.6

13.0 1.8

51R1,50Jl,5lBl, 8835 64H3,65V1,68R2, 7OV1,65Z1,75S7, 75F2 77L5,77S3,77H4, 82R4 77w4,79s5

9.74 9.75

5.64 86H5

continued

Page 101: Second and Higher Order Elastic Constants

Table 9 (continued)

Material Sll %I %! Cl1 =44 Cl2 Main refs. Other rcfs. Figs.

O-1 Gpa

sodium thioantimonate (Schlippe’s salt), Na,SbS, * 9H,O

@euterated) Sodium hmgsten oxide,

N+W03 (sodimn tungsten

bronze) =)

it522 521 0.628 508 0.695 431 0.74 436

Spinels FeA1204, Hercynite

Mg4% s(n=4)

MgO * 3.5N,$

MgO * 2.61A1203

mo.75F%.35~1.9004 * Pleonaste

Mg2M4

78.9 149.5 -30.1 23.91 6.69 14.73 7OH9

78.7 149.3 -30.0 23.84 6.70 14.64

2.12 10.8 -0.26 488 92.9 68 2.23 11.2 -0.35 477 89.4 90 4.18 13.4 -1.10 296 74.8 107 3.24 10.5 -0.42 321 95.5 48

79B4

8.51 7.49 -3.46 266 134 182 72Wl

5.80 6.49 -2.05 282 154 154 66L1,7102,73C6, 9.76

0.05 0.04 0.02 3 1 1 75L2 5.14 6.36 -1.80 312 157 168 6OBl 5.09 6.31 -1.72 301 159 154 6OVl 5.08 6.35 -1.73 303 156 158 66B7 5.15 6.35 -1.75 299 158 154 67S2

6.84 6.97 -2.58 270 144 163 72Wl

4.29 7.94 -1.21 300 126 118 83W1

Page 102: Second and Higher Order Elastic Constants

Table 9 (continued)

Material Sll s44 s12 Cl1 =44 Cl2 Main refs. Other refs. Figs.

crpa)-* GPa

Mg,SiO, Ni2Si04

Strontium nitrate, SrPJ0312 s(n=3)

Strontium titanate, SrTi03 s(n=3)

Succinonitrile (?piezoel.), C4H4N2

Tetracyanoethylene, ww

Tetrahydrofuranhydrate, C4%0

Thallium cadmium fluoride, TlCdF3

Thallium manganese chloride, TlMnC&

Urotropin Zinc borate (piezoel.),

zn40@02)6 Zinc chromite d,

3.71 7.94 -0.95 327 126 112 84Wl 3.65 9.43 -1.09 366 106 155 84Bll 53.4 63.1 -21.8 42.8 15.8 29.5 63H1,73M6,71M6, 0.4 0.3 0.2 0.3 0.1 0.3 Table 48 3.75 8.15 -0.92 316 123 102 63B3,63W1,76C2 84l%34F4, 0.03 0.08 0.01 2 1 1 85F2 462 1520 -190 5.07 0.656 3.54 68F2

49.5

91 12.2

43.7 62.1 -16.9 44.8 16.1 28.3 75A2

68.6 192 -16.6 17.24 5.21 5.5 82A7

4.39 9.78 -1.34 312.2 102.3 137.6 82B2

6.55 12.0 -2.34 252 83.5 140 72K4

207

333 56.5

-2.71 20.35

-26 14.2 -3.3 103

4.83 1.18 82M5

3.0 5.6 85K8 17.7 38.5 75R3

9.77

9.78 9.79 9.80

9.81

9.82

9.83

ZnCr204

al Tricyclo[3,3,1,1,3~7] decane. b, Twinning carefully controlled.

continued

Page 103: Second and Higher Order Elastic Constants

Footnotes for Table 9 (continued)

c) Phase transition at 320K. see also Table 18. d, The detailed chemical analyses of these garnets are collected in [74Wl]. e, Extrapolated. 0 Magnetically saturated. f9 Values approximate. h, See also Table 22. 9 2,2-Dimethyl propanoic acid, Trimethyl acetic acid. 3 At zero wavelength. k, Contains 1 mole % Fe, 2 mole % Mg. *) Contains 8 mole % Fe, 7 mole % Mn. m, wJ,yJ are expressed as mole fraction %, according to the formula (Fe$lgxCayMn& Al,SisO12 . n, From neutron diffraction. O) From Brillouin scattering. P) From ultrasonic wave propagation. d See also Tables 10,21,22. d s,c+. 4 sD,P. t, At Tc = 538K (ferroelectric). u, The tabulated stiffnesses are extrapolated values for end-members of the garnet series, obtained by statistical analysis of available data. For

details, see [7611,78B4,8OLl]. “1 The errors in the stiffnesses are about 10 times those of the other garnets dealt with in the same reference. w, Ultrasonic wave propagation, Schaefer-Bergmann method. =) Approximate values. Stiffnesses calculated from ultrasonic wave velocities, assuming p = 4800 kg/m3 . Y) Based on the stiffiresses in Fig.2 of [8OM2]. The stiffnesses and compliances in this paper are not entirely consistent. z, See also Table 20. *‘I More recent work on KCN has shown that above the transition point, the CM vs. T relationship is practically independent of pressure to 0.7 GPa

[77H14,78B11,78H7,78H9]. The order-disorder transition is orthorhombic + cubic. b3 For magnetostrictive effects on the elastic constants below the N&l temperature TN = 2c)6K see [82(X].

Page 104: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.1 Elastic constants spu, cpa . Cubic system. Incompl. sets of const. 101

Table 10. Cubic system. Incomplete sets of constants. s’ = 2 (srr i s12 ), c’ = l/2 (cl1 - cl2 ).

Material 511 S44 S’ Cl1 c44 c’ Refs.

(TPa)-l GPa

Ca, BCC 726K 750K

Alloys Cu-14.1 wt% Al-3.0 wt% Ni Cu-38 % Mn Cu-75 % Mn Cu-85 % Mn Au-47.5 at % Cd-O.75 at % Cu

Water quenched from 770K Slowly cooled

Au-49.0 at % Cd-O.75 at % Cu Water quenched from 770K Slowly cooled

AU24.5Ag28Cd47.5 200K Fe-5.9%Ni-4.4%Mn-OS%C Mn8SNilS

MO-35 at % Re Nb-6 at % Hf Nb3Ge Nb-W at % W

1.9 6.7

Pdl-ppX

ii.05 0” 0.05 0.011 0.025 0 0.025 0.02 0 0 0 0.015 0 0.66 200K

Ta-W at % W 9.62 21.50 40.04 43.30 72.66 82.68 90.43

W-Re at % Re 2.8 10

V-19.67 % Cr

Land&-Blmstein New Series UIi29a

83 625 77 625

13.5 142 13.0 78 11.1 (175) 10.8

12 1.6 13 1.6

74.2 77 90

76 92

7.05 12.9 (5.7)

23.6 270 115 42.3 3.71 23.3 301 115 42.9 3.32

22.7 256 22.7 260 41.3 535

27.0 9.0

114 44.0 115 44.0

24.2

180a) 111

3.91 3.85 1.87 37.0

7.41 8.40 135 119 34.1 18.18 29.3 55 20 14 50 70

34.2 17.4 31.5 16.8

29.2 31.7

57.5 59.5

(13.3) (75.2) (13.4) (74.5) (13.6) (73.4) (13.8) (72.4) (14.1) (71.0) (14.1) (70.7) (16.0) (62.5)

12.0 83.5 11.9 84.0 11.7 85.3 1.4 87.9 8.33 120 7.10 141 6.80 147

6.26 159 6.54 153 14.9 67.1

86H6

82Yl 8OV2

84T3

88Mll

88Mll

79Nl 7988 77Hll 77H15 83H3 75Sll 75SlO 84M9

75SlO

8OG6

74c4

75SlO

7OF4 cont.

Page 105: Second and Higher Order Elastic Constants

102 1.2.1 Elastic constants sPcr, cpa. Cubic system. Incompl. sets of const. mef.p.576

Table 10 (continued)

Material 511 544 8’ Cl1 e44 c’ Refs.

(TPa)-l GPa

v-10 % CT 22.7 44.1 82B7 v-15 % CT 22.6 44.3 v-30 % cr 22.4 44.6 v-35 % CT 21.9 45.7 V-40 % Cr (A) 22.0 45.4 v-40 % Cr (B) 22.1 45.3 v-50 % CT 19.1 52.4 V-O.84 at % D 18.4 54.24 87K4 V-l.37 at % D 18.6 53.83 V-l.96 at % D 18.7 53.45 V-O.9 at % H 18.5 53.97 87K4 V-l.34 at % H 18.7 53.50 V-l.88 at % H 18.8 53.06

Boracites Cu,B,O,,Br b,

Cu,B,O,,Cl e,

DySb GdSb HoAl, HoSb LaCd L&b h3Se4

I-a3-4 Pbl-,Sn,Te

95SK

i.05 0.20 0.35 0.55 0.57 0.65 200K 200K 280K 200K

200K

1OOK x=0 0.15 0.20 0.25 0.35

4.96 c) 4.7 4 5.2 4 4.65 d,

11.5

111 121 106 91 126 93

38.5 13.52 42.2 14.82 15.3 36.2 14.50

147 51.3 27.0 39 40 47 36

84.1 67.1 60.3 54.9 50.8

55.6

51.5

212

9.03 8.29 9.40 11.03 7.94 10.71

26 74 23.7 67.5 65.4 27.6 69

6.8 19.5 37 25.4 24.8 21.3 27.9

112.6 11.89 124.4 14.91 123.3 16.58 122.3 18.22 122.3 19.70

86.7 78R4

78Gll

78Gll

81W5

74M8 74M8 7863 74M8 80K8 74M8 76B7 76B7 88V4

Iandolt-Bthexein New Saks lIJf29r

Page 106: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.1 Elastic constants spu, cpu. Cubic system. Incompl. sets of const. 103

Table 10 (continued)

Material 811 $4 s’ Cl1 %I c’ Refs.

(TPa)-l GPa

Perovskites (disordered) ~3/4Bil/4Znl/6Nb5/6)03

PW%l/,QdO,

PbG$$&$+

~rl&N), X

1 0.8 0.6 0.49

Kcl~q(cN), x=0.25 x=0.41 x=0.56

&Rb,$N x 0 0.12 0.37 0.75 0.89 1

PrAlo,

Pr3Se4 (piezoel.) Pr3S4 (piezoel.) Pr3Te4 (piezoel.) PrSn,

Rbl-x~4)xH2p04 x=0.35

Rb(W,Bq-, x 0 0.06 0.19 0.25 0.44 0.53 0.67 0.79 0.87 1

SmSb 200K

14.5 172 69 13.2 76 17.9 131 56

685 1.46 524 1.91 411 2.43 356 2.81 403 2.48 279 3.59 329 3.04

605 1.652 604 1.655 605 1.653 652 1.534 673 1.485 712 1.405 7.41 10.26 135 97.5 40 38 25.1 26.0 35 29 28.2 34.0 48 32 20.9 31.3 30 40 33.7 25.2

66

266 3.76 281 3.56 323 3.10 346 2.89 386 2.59 429 2.33 483 2.07 524 1.91 556 1.80 606 1.65 44.0 15.74 22.7 63.5 74M8

8OUl

73H7 81K4

82G3 81K4 8203

88G3

74B5 76B7 76B7 76B7 76B7

8836 88F6

continued Land&Barnstein New Series IIIl2.9a

Page 107: Second and Higher Order Elastic Constants

1.2.1 Elastic constants spur cpa. Cubic system. Incompl. sets of const. mef.p.576

‘Ihble 10 (continued)

Material Sll 844 8’ Cl1 c44 c’ Refs.

(TPa)-l GPa

Sml-XWS X 88N5 0 8.44 39.8 25.1 0.14 8.59 34.5 29.0 0.18 11.1 31.6 31.6

Sm0.576Y0.424S 32 152 31 84H4 TbP 50 20 76B7 TmSb 200K 37.3 14.82 26.8 67.5 74M8

*) c L= l/2 (cl1 + c12+ 2~~4). b, At T, = 238K. c) sell. d, flII. e, At Tc = 365K,

hdolt-B8mmin New Suiu lII/Br

Page 108: Second and Higher Order Elastic Constants

Table 11. Hexagonal system. c,,~ in GFb.

s or C

Suffixes po Main Other Figs. refs. refs.

11 33 44 12 13 -\

Aluminum pentaiodate sexa- hydrate (piezoel.), Al(IO& - 2HI0, * 6H,O

Apatite (Hy~vpatite), ca10~4)6(o~2

Apatite (Fluor- apatw, s(n=3) ca10@-4)6F2

s(n=3) Argon-oxygen alloy,

~0.94@~0.06 *1x Barium nitrite

hydrate (piezoel.), Ba(NOd2 - H20

Barium scandium hexa- ferrite, BaScXFeIzxO19

x= 0

1.05

SE c+ S

Cb)

s

c 4

S

C

33.2 44.7 62.5 -3.7 -16.7 42.9 38.7 a) 16.0 15.7 21.9 8.8 7.2 25.2 -1.8 -2.2 137 172 39.6 42 55 8.95 8.53 27.6 1.08 -3.85 140 180 36.2 13 69 8.62 7.02 22.9 -2.00 -2.11 0.4 0.2 3.9 0.24 0.36 141 177 44.3 46 56 3 9 7.5 3 9.5 498 384 1524 -216 -103 2.90 3.24 0.656 1.50 1.18 27.0 45.0 89.4 -10.5 -9.8 54.2 29.9 11.2 27.5 17.8

4.27 5.24 13.9 -1.53 -1.24 318.6 243.1 71.8 146.0 110.0 d) 4.36 5.92 14.1 -1.54 -1.39 316.0 220.2 71.0 146.6 108.8

72H6

71K8

73Tl

69Y2, 69rl 73T1, 74A3 82A6

78H2 11.1

89Sll

continued

Page 109: Second and Higher Order Elastic Constants

Material

BaSGFet2-xOtg, cont. x= 1.25

s or c

s

C

5

C

s

C

s

C

s

C

s

C

s

C

s

C

s

C

s

c

Suffixes po Main Other Figs. refs. refs.

11 33 44 12 13

4.43 311.4 4.52 304.0 4.68 2%.0 4.22 0.2 290 15 3.45 0.03 292 3

6.09 214.7 6.10 211.9 6.11 211.4 4.53 0.2 257 18 2.87 0.09 349 10

14.3 69.8 14.6 68.3 14.8 67.4 14.8 0.7 67.7 4 6.16 0.4 163 10

-1.56 144.4 -1.62 141.2 -1.71 139.6 -1.28 0.08 107 12 -0.28 0.04 24 3.8

-1.43 107.2 4 -1.42 103.3 d) -1.43 102.0 d) -0.94 0.17 83 19 -0.05 0.08 6 9

Table 11 (continued)

1.65

2.2

SW9 Beryllium, Be

+=3)

d-3) Beryllium-copper alloys,

BeCu at% cu 0

1.1

2.4

Beryllium oxide (piemel.), Be0

3.41 2.81 5.86 -0.30 0.01 295.4 356.1 170.6 25.9 -1 3.42 2.78 5.88 -0.32 0 294.8 359.7 170.2 27.8 0 3.45 2.82 5.78 -0.35 -0.03 293.1 355.2 173.1 30.1 3 2.52 2.22 6.53 -0.80 -0.41 470 494 153 168 119 2.40 2.15 6.77 -0.60 -0.32 460.6 491.6 147.7 126.5 88.4

28v1, 56h1, 73Yl

6Os2, 11.2 7os7, 71R3

7os7

66B5

67C8

Page 110: Second and Higher Order Elastic Constants

@ ‘Pable 11 (continued)

g

SE! Material s Suffixes po Main Other Figs.

ps or refs. refs. C 11 33 44 12 13

Biotite =), K(Mg,Fe)3-

~Si3OdW9~

Bismuth germanate, !i2%309

Boron nitride, BN3

Cadmium, Cd s(n=6)

s(n=6) Cadmium-magnesium alloys,

Cd-Mg at % Mg 0.07

0.50

3.33

14.01

WCWW

33.3(Cd2Mg)

s

c

S

c

S

Cf)

S

c

S

C

S

C

S

C

S

C

s

C

S

c

5.6 18.9 172 -0.9 -1.1 186 54 5.8 32 12 10.2 16.7 31.1 -0.8 -3.8 110 73 32.2 19 29 7.26 7.35 15.4 -3.98 -2.86

520 424 65 431 370 12.4 34.6 53.1 -1.2 -9.1 0.3 1.7 5.2 0.22 0.4 114.1 49.9 19.0 41.0 40.3 4 1.9 1.7 3.7 2

12.2 30.9 49.3 -1.6 -7.9 112.0 52.2 20.3 39.5 38.8 12.2 32.9 48.1 -2.1 -7.1 105.7 43.6 20.8 36.2 30.6 13.0 33.5 48.8 -2.0 -7.0 95.5 40.9 20.5 29.0 26.2 20.9 44.7 71.9 -0.1 -13.7 64.1 37.4 13.9 16.4 24.6 30.9 31.5 98.0 -14.6 -9.7 59.2 50.0 10.2 37.2 29.7 24.2 28.5 75.1 -12.0 -6.2 66.6 45.1 13.3 39.0 23.0

61A2

7966

7986

46hl,24Gl 24B1,62Cl, 6OG1,66C2, 86Sil.

7OMl

76K7

76K7

11.4

11.4

continued

Page 111: Second and Higher Order Elastic Constants

‘Ihble 11 (continued)

Material s Suffixes pa Main Other Figs. or refs. refs. C 11 33 44 12 13

Cadmium selenide (piemel.), CdSe

4-9 s

C

Cadmium selenide- telluride (piezoel.), CdSexTel-,

x= 1.0

0.95

0.90

0.7

0.6

0.55

S@ 23.1 16.8 c h) 73.4 84.4 Sd 22.9 16.4 c h) 65.2 76.0 Sd X.0 17.4 c h) 74.3 77.5 Sd 23.8 17.0 c h) 72.3 82.4 Sd 24.8 17.3 c h) 67.4 74.6 d 26.0 17.5 c b) 65.2 72.5

23.2 16.9 74.7 -11.2 -5.5 0.2 0.3 2 0.1 0.05 74.1 84.3 13.4 45.2 38.9 0.7 0.8 0.4 0.9 0.4 23.38 17.35 75.95 -11.22 -5.72 74.1 83.6 13.17 45.2 39.3 23.22 16.70 74.66 -11.38 -5.39 74.2 84.8 13.40 45.3 38.6

72 13.9 69 14.5 67 14.9 72.5 13.8

81 12.3

-11.0 -5.5 44.1 38.4 -10.5 -4.5 35.3 27.5 -12.9 -5.0 47.2 34.9 -11.8 -5.4 44.2 37.0 -12.9 4.8 40.9 30.0 -14.0 -4.7 40.2 28.3

63B5, 85M12 67C8, 75B8

63B5

75B8

Page 112: Second and Higher Order Elastic Constants

Table 11 (continued)

Material s Suffixes po Main Other Figs. or refs. refs. C 11 33 44 12 13

Cadmium sulfide (piezoel.), s(n=9) CdS

s(n=9)

Cadmium telluride (piezoel.), CdTe

Cdl-$% alloys J) x = 0.018 at 8

0.048

0.249

Calcium-magnesium, caMg2

20.5 15.9 66.7 -9.9 -5.3 0.7 0.6 1.2 0.3 0.3 88.4 95.2 15.0 55.4 48.0 4.7 2.2 0.3 3.9 2.2 20.69 16.97 66.49 -9.99 5.81 90.7 93.8 15.04 58.1 51.0 20.4 15.81 64.12 -10.28 -5.23 91.3 %.2 15.60 58.8 49.7 19.32 15.62 67.11 -9.38 -5.18 94.30 97.85 14.92 59.46 51.00 19.11 15.18 66.67 -9.60 -4.87 95.71 98.10 15.02 60.88 50.23 25.8 19.4 86 -12.2 -5.7 62.2 68.9 11.6 35.9 29.1

12.55 35.62 49.78 -0.662 -9.76 114.3 51.05 20.09 38.58 41.91 12.13 34.85 50.05 -1.11 -9.22 119.1 51.46 19.98 43.60 43.03 11.49 31.88 49.38 -1.48 -7.98 121.7 52.21 20.25 44.65 41.63 20.1 18.0 55.4 -4.7 -3.7 56.2 61.6 18.0 15.9 15

6OB5,61M2, 8OK11, 63B5,67C9, 85M12 67G6,79D2, 88KlO 63B5

88KlO

72M8

82D2

62Sl

11.5

11.6A, 11.6B

11.7

Page 113: Second and Higher Order Elastic Constants

‘Ihble 11 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. c 11 33 44 12 13

Cancrinite (piezoel.) k), (Na2ca)4(~sio,),-

co, - nH~0 (natural) Cancrinite (piezoel.),

Naaca(AlSio&j~, * l&o synthetic I

synthetic II

Carbon monoxide,

B-CO 67.7K (== triple point)

cerium -cobalt, CecO~ Cerium fluoride, CeF3

Cerium nickel, CeN&

cesium copper

chloride (piezoel.), cscucl~

S

C

$0

ce 1)

Sem)

CEm)

S

c 0)

S

C

S

c 0)

S

C

S

C

S

C

20 13

83

42 0 -3

52 24 2 12

17.4 12.1 46.0 -10.3 -1.4 91.2 86.3 21.7 55.1 16.6 11.9 12.3 41.6 -5.37 -1.1 108 83.9 X0 50.4 14.0 891.2 666.1 2817 433.3 -207.9 1.901 2.095 0.355 1.146 0.951

7.64 180 7.45 182 6.58 216 42.2 29.0 43.0 28.3

5.14 225 5.09 226 4.76

24.3 46.5 24.1 44.8

29.2 -3.3 -1.22 34.2 88 64 27.8 -3.2 -1.2 36 88 63 15.5 -2.67 -1.40 64.3 108 95 182 -14.3 -6.2 5.49 11.3 10.3 180 -15.8 -4.9 5.55 11.3 8

59K4,

6OKl

82815

82315

79G1, 11.8 88A3

85Al 11.9 73H3

83LJ3

8OB4 11.10

76s9 11.11

8111

Page 114: Second and Higher Order Elastic Constants

Table 11 (continued)

Material S Suffixes po Main Other Figs.

p!i or refs. refs. C 11 33 44 12 13

Cesium dithionate (piezoel.), Cs$$06

Cesium nickel chloride, CsNiCls

Cesium nickel fluoride, CsNiF3

Cobalt, Co s(n=3)

s(n=3) Cobalt-nickel,

Co-32 wt% Ni Copper chloride, CuCl

Deuterium, Dz r, Dmlite

Dysprosium, Dy s(n=3)

se I+ S

C

S

C

S

c 0)

S

C

S

C

SQ

Cd

S

C

S

C

s(n=3)

47.6 68.3 122 -21.6 -12.2 30.4 17.6 8.16 15.9 8.3 33.2 17.1 167 -11.5 -3.5 35.8 62.5 6.0 13.4 10 29.0 11.0 213 -13.0 -1.81 44.4 94.5 4.7 20.7 10.7 25.5 10.6 417 -8.38 -1.3 44.5 96.6 2.4 15.0 7.4 5.11 3.69 14.1 -2.37 -0.94 0.61 0.89 1.6 0.09 0.44 295 335 71.0 159 111 20 40 7.1 10 16 4.17 P) 3.12P) 13.51 -18.8 p) -6.1 P) 326 358 74.0 161 95 p) 53 25 143 -36 -9 52.5 61.6 7.0 41.3 32.2

6.64 5.85 14.9 -1.55 -2.05 198 238 67 76 96 16.0 14.5 41.2 -4.6 -3.2 0.3 0.3 0.8 0.05 0.2 74.0 78.6 24.3 25.5 21.8 0.7 0.6 0.5 0.5 0.9

78H2

81M7 11.12

8265 8789 11.13

82K6

55M1, 11.14, 67F1, ll.l5A, 67M6, 11.15B

73W7,75W2, 74F5 7iM8

71C8

67F1, 7OR4, 72FQ

7811 11.16, 11.17, 11.18, 11.19

continued

Page 115: Second and Higher Order Elastic Constants

‘pable 11 (continued)

Material s Suffuses pa Main Other Figs. or refs. refs. C 11 33 44 12 13

Dysprosiumcobal~ Dyc9.2

E!rbium, Er drr=rl)

s(rt=l1) Gadolinium, od

Gadolinium-yttrium, Gd4Oilt%Y

Gallium nilride (piezoel.), GaN

Oalliwn selenide (piemel.), +=7) GaSe

s(n=7) Gallium selenide sulfide,

~%A Gallium sulfide

(piezoel.), s(n=6)

S

C

S

C

S

C

S

C

S

C’)

S

C

S

C

14.1 13.2 36.4 -4.2 -2.8 0.3 0.3 1 0.08 0.2 84.1 84.7 27.4 29.4 22.6 2 0.6 0.8 0.9 1 18.3 16.1 48.3 -5.7 -3.8 66.7 71.9 20.7 25.0 21.3 18.0 16.1 48.1 -5.7 -3.6 67.8 71.2 20.8 25.6 20.7 17.5 14.9 44.5 -5.8 -2.6 67.9 72.6 22.5 25.1 16.2 5.10 6.68 41.5 -0.92 -2.48 296 267 X.1 130 158

67F1, 73R4. 74P1, 76Dl 67Fl

74Pl

77P3

78s

10.5 29.8 98.3 -2.7 -2.7 0.3 1.2 5.6 0.23 0.14 106.4 35.8 10.2 30.0 12.1 3.7 1.5 0.5 2.5 0.4

7532,75Tl, 83G4 75813,76Yl, 78C2,8OK6, 8OK!9,83H6 85Yl

8.98 26.5 95.7 -2.3 -2.2 8OH7, 85F3 1.7 4.4 35 0.9 0.8 8OKlO 0, 126.5 41.6 12.0 35.7 14.3 82P1,82P4, 19 11 7.3 4.5 8.1 83G4,83H6

85D3 11.20

11.21

11.22, 11.23

11.24

11.25

14.17

Page 116: Second and Higher Order Elastic Constants

Table 11 (continued)

Material s Suffixes po Main Other Figs. or refs. refs. C 11 33 44 12 13

Graphite, C

Guanidinium iodide, 03I

Hafnium, Hf

Helium, 4He V, [cm3/mole]

19.28

20.32

20.5

20.97

Holmimn, Ho s(?l=3)

s(n=3)

S

c

S

ce

S

C

s”)

CUJ

9)

CU)

S

c

S

c

S

C

0.98 27.5 250 s, -0.16 -0.33 1060 36.5 4 s) 180 15

61.53 168.2 427 -24.53 -25.6 22.93 7.53 t) 2.34 11.31 5.21 7.16 6.13 18.0 -2.48 -1.57 181 197 55.7 77 66

19300 0.076 25500 0.055 31500 0.0465 34600 0.0405 15.3 0.1 76.5 0.8

11000 0.098 15000 0.071

0.0605 19300 0.0555 14.0 0.4 79.6 2

51000 -10200 -1800 ‘0.01% 0.042 0.0198 7uclO -12900 -2300 0.014 0.029 0.0131 54300”) -17700 -500 0.0184 0.0262 0.0023 80000 -17200 -3280 0.0125 0.0212 0.0105 38.6 -4.3 -2.9 9.4 0.2 0.1 25.9 25.6 21.0 0.3 0.8 0.6

7OB5, 79A1, 8ON3 84I-n

64Fl 11.28

7oF7

7164 7765 “1

71Cll

7292, 73s1, 74R4

11.26, 11.27

11.29, 11.30, 11.31, 11.32

continued

Page 117: Second and Higher Order Elastic Constants

Table 11 (continued)

Material s Suffixes po Main Other Figs. or ref.% refs. c 11 33 44 12 13

Hydrogen, Hz 4.2K X PlM-1 ow)

0.75 w) 3.7 y)

0.75 w) 20 Y)

13.9K

Wdwa HZ @ara) 13.2K

Wdwen, D2 (deuterium) 4.2K

X PFTpal 0.02 w)

0.33 w) 7Y)

0.33w) 2OY)

s=) CX)

s=)

CZ)

s=)

c 2)

S

C

S

C

s=)

c =)

s=)

c 2)

SZ)

C=)

2930 2ooo 0.042 0.51 3110 2310 0.362 0.440 2110 1590 0.537 0.644 3050 2490 0.395 0.441 (3563 (2535) 0.334 0.408

0.11 12050 0.083 7580 0.132 18900 0.053 %15 0.104

1400 995 4350 0.82 1.02 0.23 1720 1310 6100 0.668 0.788 0.164 1460 1170 5100 0.791 0.904 0.1%

-1240 -166 0.18 0.05 -1000 -197 0.119 0.041 -680 -160 0.179 0.072 -1030 -475 0.150 0.104 (-1336) (-306) (0.13O)b) 0.056

-490 -81 0.29 (0.09) -570 -162 0.232 0.111

-174 0.270 0.158

73w4

74L5

78T2

71N2,73W4

73w4

Page 118: Second and Higher Order Elastic Constants

ff ‘Pable 11 (continued)

g Material s Suffixes po Main Other Figs.

pr; or refs. refs. c 11 33 44 12 13

D2, cont.

V, [cm3/mole] aa) i9.95

15.87

14.4

Ice, H,O bb) 257K s(n=12)

s(n=12)

glacial 270K

Mendenhall Glacier 270K

Mender&all Glacier 237SK

Ice, D20 (deuterated) ccl 257K

Indium bismuth, In2Bi

S

c

s

C

5

C

s

C

S

c 0)

S

c 0)

S

c 0)

S

c

S

c

1400 994 4350 -509 -80 0.82 1.02 0.23 0.29 0.09 532 374 1790 -214 -53 2.32 2.81 0.56 0.98 0.47 379 276 1150 -153 -48.3 3.34 3.92 0.87 1.46 0.84 104.2 86.1 326.5 41.1 -24.3 4.9 3 18 3.4 4.9 13.7 14.9 3.1 6.8 5.9 0.3 0.7 0.13 0.63 1.1

105 86 338 -44 -23 13.7 14.7 2.96 7.0 5.6 104.2 85.09 334 -43.3 -23.2 13.77 14.85 2.99 6.99 5.67 99.08 80.88 317 41.2 -22.1 14.48 15.63 3.15 7.35 5.97 99 68 282 -47 -14 14.0 16.5 3.54 7.2 4.4 60.8 28.4 104 -43.5 -9.3 49.2 54.1 9.66 39.6 29.0

8483

5271,56Gl, 11.33, 56hl,57Bl, 11.34 64B4,64B6, 66F’2,68D3, 8OG7,83G2, 8764,8868 8OG7

8764, 8868 8764, 8868 71M8 11.35

74C2

continued

Page 119: Second and Higher Order Elastic Constants

l’hble 11 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. C 11 33 44 12 13

Indium nitride, InN

lndium selenide, InSe

Lanthanum fluoride, LaF3 n)

Lead germanate, fl (piezoel.), PbsGejOt t

473Kd

Lead orthogermanate divanadate, s(n=3) Pb&QdWd2

s(n=3) Lead ortbosilicate

divanadate, Pb$i04(VO&

Lithium aluminum silicate, p-LiAlSiO,

S

Cf)

s

C

S

c d4

S

c

S

;

I+

S

9.6 12.1 101 -2.1 -5.0 190 182 9.9 104 121 11.6 38.7 85.5 -2.6 -7.5 118.1 38.2 11.7 47.5 32 22.5 64.4 85.5 0.7 -21 73.0 36.0 11.7 27 32 4 7.55 5.10 29 -3.3 -1.1 180 222 34 88 59

17.8 12.2 46.3 -5.8 -2.5 66.8 89.9 21.6 24.5 18.9

18.60 11.59 45.20 -7.11 -2.29 66.69 93.64 22.12 27.81 18.68 17.5 16.2 59.7 -2.4 -5.6 0.6 1.3 0.5 0.6 1 70.2 84.0 16.8 19.9 31.1 0.9 1.6 0.2 1.1 2.7 16.4 15.0 47.7 -2.9 -5.3 77 92 21 25 36 17.6 17.1 49.5 -1.1 -7.1 73.7 90.0 20.2 20.3 39 8.953 14.912 17.483 -1.230 -5.157 169.4 124.6 57.2 71.2 83.2

79S6

77Il 11.36

83G4

83L8 11.37

79447

87L6 17.2

76V2, 79A7, 88GlO

77V2

79A7

84Hl

Page 120: Second and Higher Order Elastic Constants

$5 ‘able 11 (continued)

3. P ag

pc

Material S Suffmes po Main Other Figs. or refs. refs. c 11 33 44 12 13

Lithium iodate (piezoel.), s(?l=4) wLiI0.j

s(n=4)

s(n=3)

s(n=3) Lithium perchlorate

tribydrate (piemel.), LiCIO, - 3H20

Lithium perchlorate tribydrate deuterated (piemel.), LiClO, * 3D20

Lithium potassium sulfate, LiKSO,

Lutetium, Lu at%H,&) 0.6

1.5

15.1 21.4 55.5 -4.7 -4.0 0.6 1.8 0.75 0.6 1.9 82.5 55.9 18.0 31.9 20.8 0.8 2.3 0.25 0.8 8.7 15.2 17.2 34.0 -4.8 -4.3 0.6 1.1 1.3 0.7 1.2 85.6 73.3 29.4 35.6 29.2 2.4 2.8 1.1 2.9 5.9 30.8 42.0 138 -12.3 -5.6 40.9 25.9 7.27 17.7 7.8

30.8 42.4 137 -12.2 -5.6 40.8 25.7 7.30 17.6 7.7

24.9 18.5 46.7 -10.3 -5.1 56.7 67.1 21.4 28.3 23.5

14.3 14.8 37.3 -4.2 -3.5 86.2 80.9 26.8 32.0 28.0 14.0 14.7 36.9 -4.2 -3.3 87.5 80.5 27.1 32.5 27.2

,

7OH10, 77L9, 81L9, 86W9 7OH10, 81L9, 86W9

78H2

78H2

89M4 85G8, 11.38, 86P1, 11.39 8769

71T3 11.40

continued

Page 121: Second and Higher Order Elastic Constants

‘able 11 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. c 11 33 44 12 13

Magnesium, Mg dn=Q.

so Magnesium-lithium alloys,

Mg-Li ii) at % Li 0

1.51

3.02

5.10

7.0

10.0

12.05

14.15

15.94

S

c

S

c

S

C

S

c

S

C

S

c

S

C

S

C

S

c

s

C

22.0 19.7 60.9 -7.8 -5.0 0.1 0.08 0.4 0.08 0.04 59.3 61.5 16.4 25.7 21.4 0.5 0.3 0.1 0.5 0.4

22.1 19.8 61.2 -7.9 -5.0 59.50 61.55 16.35 26.12 21.80 22.2 19.9 61.6 -7.9 -5.1 59.24 61.28 16.25 26.00 21.76 22.3 20.0 62.0 -7.9 -5.1 58.92 60.95 16.14 25.88 21.65 22.5 20.2 62.5 -8.0 -5.2 58.53 60.55 16.01 25.72 21.58 22.7 20.4 63.0 -8.0 -5.2 57.95 59.94 15.87 25.39 21.26 23.0 20.6 63.8 -8.1 -5.3 57.24 59.21 15.68 25.10 21.03 23.1 20.8 64.3 -8.2 -5.3 56.72 58.68 15.55 24.79 20.76 23.4 21.0 65.0 -8.3 -5.4 56.27 58.21 15.39 2r1.64 20.67 23.6 21.2 65.6 -8.3 -5.4 55.49 57.42 15.25 24.15 20.22

46hl,57Ll, 57S1,61El. 67S1,67Wl

11.41

67Wl

67Wl

Page 122: Second and Higher Order Elastic Constants

Table 11 (continued)

Material s Suffixes po Main Other Figs. or refs. refs. C 11 33 44 12 13

Magnesium alloys miscellaneous, Mg-E

E at % 0

Ag 0.07

Ag 0.26

Ag 0.37

0

Ag 0.26

Ag 0.37

Sn 0.21

Sn 0.27

Sn 0.43

Sn 0.52

Sn 0.72

22.0 19.7 61.0 -7.9 -5.0 59.74 61.7 16.39 26.24 21.7 22.1 19.4 61.0 -7.9 -5.0 59.50 62.9 16.40 26.14 22.1 22.0 19.7 60.1 -7.9 -5.0 60.20 62.0 16.64 26.74 22.1 22.0 19.7 61.0 -7.8 -5.0 S9.69 61.7 16.40 26.15 21.7 22.1 19.8 61.3 -7.8 -5.0 59.28 61.35 16.32 25.90 21.57 22.0 19.7 60.6 -7.8 -5.0 59.68 61.68 16.49 26.15 21.72 22.0 19.6 60.5 -7.8 -5.0 59.75 62.01 16.52 26.20 21.79 22.1 19.6 61.4 -7.8 -5.1 59.72 62.4 16.30 26.36 22.2 22.1 19.7 61.1 -7.8 -5.1 59.48 62.0 16.38 26.08 22.0 22.1 19.7 61.3 -7.8 -5.1 59.81 62.4 16.32 26.35 22.4 22.2 19.7 61.7 -7.9 -5.1 59.45 62.0 16.21 26.25 22.0 22.1 20.0 61.6 -8.0 -5.1 59.88 61.3 16.23 26.66 22.0

57Ll

61El

57Ll

continued

Page 123: Second and Higher Order Elastic Constants

l’hble 11 (continued)

Material S Suffixes pa Main Other Figs. or refs. refs. c 11 33 44 12 13

Mg-E, cont. E at % Sn 1.00

Sn 0.21

Sn 0.46

Sn 0.67

Sn 0.94

In 0.83

In l.%

In 1.02

In 1.35

In l.%

Magnesium-zinc, W%

S 22.3 20.1 62.1 -8.1 -5.1 C 59.82 61.2 16.10 26.94 22.2 S 22.1 19.8 61.2 -7.9 -5.0 c 59.45 61.54 16.34 26.11 21.74 S 22.2 19.9 61.6 -7.9 -5.1 c 59.32 61.48 16.24 26.13 21.80 S 22.1 19.9 61.3 -7.9 -5.1 C 59.64 61.38 16.31 26.29 21.89 S 22.2 19.8 61.9 -8.0 -5.1 c 59.51 61.77 16.15 26.42 22.11 S 22.2 19.1 61.7 -8.0 4.9 c 59.32 63.5 16.20 26.18 21.8 S 22.2 19.9 62.0 -7.8 -5.2 C 59.74 62.2 16.13 26.42 22.7 S 22.2 19.6 61.7 -7.9 -5.1 C 59.41 62.76 16.20 26.20 22.34 S 22.2 19.9 61.6 -7.9 -5.1 C 59.55 62.48 16.25 26.26 22.01 S 22.3 19.9 62.1 -7.9 -5.2 c 59.44 61.90 16.11 26.34 22.25 S 12.60 9.35 38.2 -5.25 -1.80 C 103 118 26.2 47.2 29.0 S 12.84 9.31 39.8 -5.24 -1.76 C 100 118 25.1 44.5 27.3

61El

57Ll

61El

6932 11.42

76Sl

Page 124: Second and Higher Order Elastic Constants

Table 11 (continued)

Material 5 Suffixes po Main Other Figs. or refs. refs. C 11 33 44 12 13

Manganese arsenide~, s C

Manganese silicide, s Mn.& C

Molibdenum sulfide &), S

MoS, (2-H po@type) C

Muscovite “1, s ~~~i~~~loO-WJ~ C

Neodymium, Nd S

C

Neodymium cobalt, S

NdCos C

Nepheline, S

(piezoel.), &=3) Na3KAl$i40t6 C

s(n=3) Niobium fluoiide, S

NbF3 n, C

Nitrogen, p-N2 -) S

63.2K (-triple point) c O) 47SK S

c 0) Norbomylene, C7Ht2 nn) S

C

26 9.3 29 -5 -2 41 112 34.5 9 11 6.73 5.22 13.6 -3.27 -0.73 204 204 73.5 104 43 4.78 22.1 53.8 +1.35 -2.76 238 51 18.6 -54 23 6.0 18.9 81.9 -1.3 -1.2 178 54.9 12.2 42.4 14.5 23.7 18.5 66.5 -9.5 -3.9 54.8 60.9 15.0 24.6 16.6 9.05 6.72 21.32 -3.67 -2.37 173.9 215.6 46.9 95.3 94.8 17.0 8.6 27.1 -7.8 -1.6 2.4 0.86 2.7 3.0 0.77 79 125 37.2 38 21 4 8 3.7 6.1 7.8 7.11 4.80 26 -3.1 -1.1 191 238 38 93 65 972.5 754.0 3125 -468.4 -250 1.825 1.976 0.320 1.131 0.980 789.7 615.4 2646 -382.6 -208.5 2.307 2.488 0.378 1.454 1.274 1350 609 1100 -1030 -240 4.01 4.01 0.91 3.59 3.00

73D3

8011

76F5, 81F3

61A2

76G2, 77Ll 84D3

62R4, 74A3, 75B4

83L8

76K5

88A3

75F4

11.43

11.44

86p5 11.45, 11.46

11.47

continued

Page 125: Second and Higher Order Elastic Constants

‘l%ble 11 (continued)

s Suffixes pa Main Other Figs. or refs. refs. c 11 33 44 12 13

Fhseodymium fluoride, PrFs n,

Quartz (piezoel.), B-SiO, 873K

Rhenium, Re s(n=3)

s(n=3) Rubidium manganese

chloride, RbMnCl, Rubidium nickel

chloride, RbNiCl, Ruthenium, Ru

Samarium cobalt, SmCo,

scandium, SC

Silicon carbide, Sic, O”) PlYtvpe t3-I

S

c

s

C

5

c

S

C

S

c

S

C

S

c

S

C

S

C

S

C

S

c

S

C

6.1 179 5.9 178 26.6 49.4 7.49 185 9.41 117 2.11 0.1 616 3 28.3 45.5 35.6 35.2 2.09 563 7.75 197 12.5 99.3 2.08 502

22.0 51.7 20.5 51.0 19.3 57.4 4.94 231 10.6 110 1.70 0 683 0.7 23.4 53.1 19.7 72.2 J’J’) 1.82 624 6.00

10.6 107 1.80 565

179 -0.7 -2.7 5.6 32 26 154 -0.9 -1.5 6.5 30 15 73.6 -11.3 -3.8 13.6 23.0 14.3 28 -3.4 -1.1 36 93 63 27.7 -0.6 -2.6 36.0 16 33 6.21 -0.80 -0.40 0.4 0.01 0.004 161 273 206 1 3 1 357 -9.0 -6.7 2.8 18.7 18.3 400 -4.1 -9.6 2.5 10.0 22 5.53 -0.58 -0.41 181 188 168 20.7 -2.95 -2.10 48.3 103 105 36.1 -4.3 -2.2 27.7 39.7 29.4 5.92 -0.37 (-0.17) 169 95 56

61A2

7367 11.48

83L8

48Kl

6482, 67F1, 74Ml

11.49

79A4 11.50

83M6 11.51

67Fl 11.52

77D2

68F3

65Al

11.53

88L4, 89Kl

Page 126: Second and Higher Order Elastic Constants

$K Table 11 (continued)

::s 3. B St? Material s Main Other a

Suffixes po Figs. or refs. refs.

25 C 11 33 44 12 13

Silver aluminum, AgzAl

Silver iodide (piezoel.), p-AgI

Silver-zinc, AgtexZn, Technetium, Tc t&

Terbium, Tb

Terbium cobalt, TbCo5.t Terbium-hohnium,

Tb-50% Ho Thallium, Tl

Titanium, Ti s(n=3)

s(n=3)

S

L

i?

s

C

S

c

S

C

S

c

S

C

S

C

S

c

11.9 8.35 29.3 -5.7 -2.8 142 168 34.1 85 75 80 50 268 -45 -19 29.3 35.4 3.73 21.3 19.6

3.2 2.9 5.7 -1.1 -0.9 433 470 177 199 199 17.9 16.4 46.7 -5.0 -4.1 67.9 72.2 21.4 24.3 23.0 17.4 15.6 46.0 -5.2 -3.6 69.2 74.4 21.8 25.0 21.8

16.4 14.2 42.2 4.7 -2.45 69.7 75.9 23.7 22.3 15.9 104 32.5 138 -81 -12.4 40.8 52.8 7.26 35.4 29 104 31.1 139 -83 -11.6 41.9 54.9 7.20 36.6 29.9 9.69 6.86 21.5 -4.71 -1.82 0.3 1 0.2 0.09 0.18 160 181 46.5 90 66 5 2 0.4 4 3

67C2 11.54

74F2, 8OP4 84M6

8962

72Sl

74Pl

85D3 77I2

63F2 11.64

66w2

64F1, @IQ, 62B2

11.55, 11.56 11.57

11.58, 11.59A, 11.59B, 11.6OA, 11.6OB, 11.6OC, 11.61 11.62 11.63

11.65

continued

Page 127: Second and Higher Order Elastic Constants

‘Ibble 11 (continued)

Material S Suffixes pa Main Other Figs. or refs. refs. c 11 33 44 12 13

Titanium boride, TiB,

Tungsten monocarbide, WC

umniumplatinide,uPt3

Yttrium, Y =)

zinc, zn 504)

S

C

S

C

S

C

S

c

S

c

S

C

4=8) Zinc oxide, (Zmcite)

(piezoel.), ZnO s(n=5)

S

C

tin=3

2.58 q@

690 1.68 720 5.01’ 309.3 15.4 77.9 (15.7) 79.0 8.22 0.3 165 7

3.94 qd

1.21 972 6.29 289.1 14.4 76.9 (15.7) 78.7 27.7 0.8 61.8 6.8

4.00 -0.99 q@ -1.15 q@

250 410 320 n) 3.05 -0.47 -0.33 328 254 267 26.9 -0.976 -2.39

37.2 142.1 171.4 4 41.1 -5.1 -2.7 24.3 29.2 20 40.6 (-4.3) (4.1) 24.6 29.1 (28.4) 25.3 0.60 -7.0 0.8 0.75 0.6 39.6 31.1 50.0 1 6.2 6.0

7.84 6.74 22.4 -3.42 -2.15 0.1 0.7 1 0.1 0.3 209 216 44.2 120 104.4 1.5 14 2 1 2

7.91 7.2 22.3 -3.3 -2.35 207.0 209.5 44.8 117.7 106.1 7.65 5.6 21.4 -3.6 -1.7 209.6 221.0 46.1 120.4 101.3

61Gl

82L2

85D5, 87K9 11.66

85Y9 6Os3 11.67

8OP1, 8OS3 24G1, 46h1, 56h1, 58Al

11.68

62B4, 85M12 11.69, 73c4, 11.70 73T5, 75T2, 8OKll 75T2

Page 128: Second and Higher Order Elastic Constants

“hble 11 (continued)

Material s Suffixes pa Main Other Figs. or refs. refs. C 11 33 44 12 13

Zinc selenide, ZnSe

Zinc sulfde (Wurtzite) w) (piezoel.), a-ZnS

s(n= 10)

s(n=lO)

zinc sulfide (10 96 wmtzite) ww) (piezoel.), ZnS

zinc sulfide- magnesium sulfide (piezoel.), ZnS-MgS xx1

Zinc tellmide, ZnTe

Zirconium, c&k d-3)

s(n=3)

11.8 10.0 40.0 -4.1 -2.3 107 116 25.0 45 35

11.0 8.6 34.8 -4.5 -2.1 0.1 0.1 0.3 0.1 0.25 122 138 28.7 58 43 4.4 3.8 0.3 2.6 7.7

11.17 8.66 35.1 -4.44 -2.25 122.0 140.2 28.5 58.0 46.8 11.15 8.60 34.9 -4.46 -2.22 122.2 140.3 28.6 58.2 46.5

11.33 8.82 36.7 -4.99 -2.38 129.4 142.4 27.2 68.2 53.4 11.27 8.64 36.5 -5.05 -2.28 130.3 143.4 27.4 69.0 52.5 15.1 12.8 49.5 -5.4 -3.1 86 93 20.2 37 30 10.1 8.0 30.1 -4.0 -2.4 0.06 0.06 2 0.08 0.05 144 166 33.4 74 67 0.9 2 2 1 3

72M8

66K4,67C8, 11.71 67D4,67K6, 6721,72Ul, 73C5,74Fl, 82D4 82D4

7834, 11.72 82D4

72M8

64F1, 11.73 7OF5, 73T7

continued

Page 129: Second and Higher Order Elastic Constants

‘Ihble 11 (continued)

Material s Suffixes po Main Other Figs. or refs. refs. c 11 33 44 12 13

Zirconium-oxygen, a-0 at % 0

0

7

8

24

10.2 8.1 27.8 4.1 -2.6 73T7 11.74 145 168 36 75 70 9.1 8.3 21.7 -2.5 -2.9 153 176 46 67 78 8.9 8.3 20.4 -2.0 -3.0 154 179 49 62 79 6.3 6.1 ,13.3 -0.6 -2.4 202 242 75 57 101

a) $33 = 43.1 GPa. b, indirect estimates. 4 X-ray diffuse reflection methcxi. d, Average of results calculated from quasilongitudinal and quasitransverse measured velocities. e) Monoclinic quasi-hexagonal. fl From mean atomic displacements. d s11=~tt,st2=~t2;remainder~~ h) cDpo, assuming se,, = sD11* se,, = 8-Q 3 indirect estimates. 3 Zn content of samples for m easurements parallel and perpendicular to the c axis. Zn content of samples with faces oriented in general directions were

x = 0.025.0.036, and 0.218 at %, respectively. k, Composition approximate. [82S15] specifies a different chemical composition for synthetic cancrinite carbonate. t) Ultrasonic measurements. Vahtes obtained by resonance measurements: fltt = 17.84, ~‘$3 = 11.9 (‘Pa)-t and r.$.+t = 22.9, flu = 24 GPa

Page 130: Second and Higher Order Elastic Constants

Foomotes for Table 11 (continued)

3 Ultrasonic measurements. Values obtained by resonance measurements: #ss = 12.3 @Pa)-l and c?~ = 25.2, L?~ = 25.9 GPa (the corresponding vibration modes for #lt could not be excited).

n) Trigonal, but the magnitude of cl4 _ < 0.05 GPa, thus is treated in the hexagonal approximation. O) From Brillouin scattering experiments. P) Approximate value. @ Indirect estimates. 9 See listing under Hydrogen, D, (deuterium). 4 Irradiated, dislocation free material. Q CD33 - - 7.67 GPa; cl1 and cl2 are the unstiffened values. u) Asswning Cl1 + Cl2 = c33 + c13.

VI It is shown in [7765] that the ca is too high. Interpolation on the graph in [7765] suggests that cti = 0.0142 GPa (s44 s 70500 (IPa)-1). w) x = concentration of molecules with rotational angular momentum J = 1. X) Neutron scattering. Y) p = melting pressure at which crystals were grown. =) Ultrasonic propagation, assuming cl1 + cl2 = c33 + c13. 4 Selected values. bb) See [83P7] for ice VI (tetragonal and orthorhombic) and ice VII for pressures to 30 GPa. Four of the measurements included in the averages are

results from the four types of ice measured in [83G2]. 4 See [84P2] for D20 up to pressures of 34 GPa. a) cll, c33 and cl2 measured by ultrasonic propagation; c44 and cl3 however, were obtained from [77111. m) [83G4] quotes two slightly different values for cl3: 30 and 32 GPa, but 32 GPa is the value given by [7711]. @ Multidomain material. See also Table 17. sd Trigonal at room temperature. fi) The at Q H2 for the samples in [71T3] are specified in [87G3]. See also Table 12. fi) See also Li-Mg (cubic, Table 4). ii) Chthorhombic quasi-hexagonal. W All values approximate.

continued

Page 131: Second and Higher Order Elastic Constants

Footnotes for Table 11 (continued)

u, Monoclinic quasi-hexagonal. -1 See also Table 12. nn) Bicyclo(2,2,1)-hept-2-ene. O”) See also Table 12. m) Calculated from the experimental phonon dispersion curves. ~0 Approximate. m) Esthated. ml Average of quasi-shear and quasi-longitudinal measurements. al The elastic constants are afTected by small amounts of impurity [8OS3]. ““1 indirect estimates. w) The crystals in references [66K4L67Z1, 67C8,67D4,72Ul, 74Fl-J were prepamd at high temperatures. As a result [82D4] believes these samples

were actually sphalerite (cubic 43m), but the stacking fault concentration of ~10-30 % (wurtxite layers perpendicular to the (111) directions) reduced the crystal symmetry to wurtzite (hexagonal 6mm).

war) The phase ratio is 10 % wurtxite (hexagonal 6mm), 90 % sphalerite (cubic z3m). xx) Composition is ZnS-10.3 mole 96 Mg; structnre is 100 % wurtxite (hexagonal 6mm). YY) The value of cs3 read from Fig. 11.51 is 72.2 GPa which disagrees with the value of 75.3 given in the text. If ~33 = 75.3 GPa then stt = 35.3,

s33 = 18.6, s12 = -4.4, and s13 = -9.0 (TPa)-1 with no change in sW

Page 132: Second and Higher Order Elastic Constants

f[ Table 12. Hexagonal system. Incomplete sets of constants.

5 ifg

spc in (IPa)-* c,,= in GPa.

Material S Suffixes po Main Other Figs. or refs. refs. c 11 33 44 12 13

&alumina, x,0 * llAlzO3 X=K

Rb

4

Na

Tl Barium nitrite (piezoel.),

BaW& Barium titanate, BaTiO,

Caxkinite, Na$&,&4lSiO& -

C03)1.4 - 2.1H20 Carbon perflwmalkane,

Cl&4 b, Carbon perflwroa&ane,

c26;42 b,

336

362

346

338 351 376 27

6.25

5.300

5.764

16 62 56.5 14 73 62.3 18 56 42.4 20

245 50 230 44.8

61.9 43 30 3.98

37.0

28.5 6.63 1 -0.038

8.027 0.025

139

162

144

143 136 161 11

1.024

1.066

75M4

81H17,81H16 75M4

81H17,81H16 75M4

81H17,81H16 75M4

81H17,81H16 81H17,81H16 6768

88Yl 12.1

81L13

89M2 12.2

89M2 12.3

continued

Page 133: Second and Higher Order Elastic Constants

‘Ihble 12 (continued)

Material s or c

Suffmes po

11 33 44 12 13

Main refs.

Other refs.

Figs.

Cerium palladium indium, CePdIn

Cobalt-iron, Co-l.37 at % Fe

Cobalt-nickel, Co-32 wt % Ni

a-Fluoroduodecane, 318K a-FeH4ps

Gadolinium-yttrium, G%5.4y34.6

G%8.9y31.1

Gd70.3y29.7

Graphite (HOPG), C

Graphite (intercalated) Lithium graphite, LiC6 Potassium-ammonia graphite

(deuterated), %4W3)4.3

K%2w3)3.1

K%.8m3)23 Potassium graphite, KC,

Potassium graphite, KC;,

c

C

c

C

c

C

C

C

C

C

C C

9Os3 12.4

8311 12.5

326.0 358.4 74 160.6 75W2 85Y3

3.325 4.902 -0 1.353 9oM3

82SlO 12.6

82B3,82Bll 12.7A 82B3,82B 11 12.7B

35.0 0.21.“2.7 83H9 5.05 4 8367, 4.6 d, 72N4

88.6 10.0 8324

17.1 88N3 16.2 29.4 48.5 2.82 8222,

0.89 86S12 37.1 8222

Page 134: Second and Higher Order Elastic Constants

FE Table 12 (continued)

gg

a Material S Suffixes po Main Other Figs.

ps or refs. refs. C 11 33 44 12 13

Lanthanum-magnesium hexa- C

aluminate, Lz+4gAll101g Lutetium, Lu

at % Hze)

0.6 C

0.7 C

1.3 C

1.5 C

Methylammonium sodium selenate hexahydrate, (CH+JHs)NaSeQ, - 6Hz0

Neodymium yttrium cobalt, NcxyI-xc%

Niobium selenide, NbSe, S

C

21 PO~YW S

C

3-1 polytvpe S

C

Ii-N2 h, 37K C

p=4OOMPa 55K C3

389 300 106

86.26 80.67 88.19 82.59

88.62 83.10

87.49 80.53

26.80 f) 27.11 f) 27.12 g) 27.25 f) 27.29 d 27.20 fl 27.15 g)

50.9

194 42

2.55

4.43

52 2.71

5.92

47.2 21.2 56.8 17.6 52.6 19.0 0.43

0.61

91

32.02 71T3 33.39 8763

33.64

71T3

89M5 12.8

84Dl 12.9

77BlO

77M6

81F3

76D4 9

83P8

151 8614

11.40

32.45

continued

Page 135: Second and Higher Order Elastic Constants

‘able 12 (continued)

Material S

or C

Suffixes pa

11 33 44 12 13

Main rcfs.

Other refs.

Figs.

Silicon carbide (piezoel.), Sic polytype4H 2OK s

C

polytype6H 5K S c

300K s C

polytype 21R C Tantalum selenide (2H), TaSe, s

C Tetramethylammonium cadmium c

chloride, (TMCC) (a3),NCda3

Tetramethylammonium manganese c chloride, (TMMC) w314=a3

Tetramethylammonium manganese chloride (copper doped), cH314=(J3:fi 2+

Tungsten sulfide, WS2 d) c 214 POMYP

Yttrium barium copper oxide, C

-%Cu3%-8

2.114 m)

2.035 m)

2.048

229 18.8

20.1

150

211

605.2

551.2

564.9 565.4

54 34.1

34.4

60

159

54.1 18.5

4.1

16

68F4 77M6

107 88L2 12.11

86Ll 12.12A

86Ll 12.12B

89312

33-36 89Bl

89Kl 12.10

89Kl 12.10

Page 136: Second and Higher Order Elastic Constants

Table 12 (continued)

Material s or C

Suffixes po

11 33 44 12 13

Main refs.

Other refs.

Figs.

Zinc manganese selenide, %-FXSe

x=o.20k) 0.37 0.53

Zirconium-niobium, Zr-2.5 % Nb

c 98.1 108.9 21.8 88M5 C 87.7 100.6 18.3 46.7 c 82.5 93.4 16.8 45.6 S 9.25 3.73 44.5 1) 87Bl

3 The actual chemical formula of the Na &ahnnina is l.l6N+O * 1 lAlzOs. b, Hexagonal approximation for this perfluoroahmne but expected struciure trigonal. c, is nearly zero within experimental error. 4 Brillouin scattering. d, Neutron scattering. =) Interstitial Hz impurities. fl c44 determined from measurements parallel (CP) to the c axis. 8) Q, determined from measurements perpendicular (900) to the c axis. h, Hexagonal; the cubic a phase is stable below 35.6 K. See also Table 11. i) Also Kjems, J.K, Dolling, G. (unpublished); Dolliug, G.: Proc. Conf. Neutron Scattering, ed. Moon,R.M. (ORNLUSERDA, 1976), quoted by

[83P8]. 3 At pressures greater than p E: 400 MPa a phase transition occurs to an ordered tetragonal (y-) phase. k, For x = 0.2 the structure is polymorphic having both hexagonal @I) and cubic (C) symmetry. Values deduced assuming cubic symmetry are

cl1 = 95.8, cu = 192 GPa. 1) 4s44 + 2.71,.

m) Values as quoted in the text disagree with those given in Fig.12.10.

Page 137: Second and Higher Order Elastic Constants

Table 13. Hexagonal system. Non-crystalline materials. sp in (TPa)-1 cp in GPa.

Material s or C

Suffiies pa Refs.

11 33 44 . 12 13

Ceramics (piezoel.), 33ao.754 1017.25 S

BaTiO, a)

Poled ceramics (piezoel.) Lead zirconate titanate, ma) Zr/Ti

48152

3.574 3.464 14.93 -1.246 -0.57 337.5 314.2 66.96 130.0 77.2 8.55 8.93 23.3 -2.61 -2.85

166 162 43 77 78 8.18 6.76 18.3 -2.98 -1.95 168 189 55 78 71 9.1 9.5 22.8 -2.7 -2.9 150 146 44 66 66 8.7 7.1 17.5 -3.0 -1.9 150 171 57 68 57 8.55 8.93 23.8 -2.61 -2.85 166 162 42.8 77 78 8.18 6.76 18.3 -2.98 -1.95 168 189 54.6 78 71

10.8 10.9 28.3 -3.35 -3.21 6oB6 125 123 35.3 55 53 10.5 8.83 23.6 -3.66 -2.40 126 140 42.4 55 49

83H2

56B2

64B2

58hl

Page 138: Second and Higher Order Elastic Constants

TF Table 13 (continued) cis 3. 7 SE

fig

Material s Suffxes po Refs.

z!z or C 11 33 44 12 13

PZT, cont. Zrfl?i 60/40

65/35 b,

Lead calcium titanate (cobalt-tungsten doped), ~~1-~~~~~~~~0~~0~~0.~~~.9d~3

x = 0.12

0.24

TB-1

TBKS

10.4 12.05 36.9 -2.96 -3.72

135 120 27.1 60 60 9.75 7.92 22.5 -3.55 -2.17 137 156 44.4 66 55 9.067 11.91 25.7 -2.63 -3.58 83C2 159.4 126.1 38.9 73.85 70.13

7.87 8.40 18.70 -1.57 -1.37 138 128.1 53.5 32.5 27.9 7.85 6.48 16.99 -1.58 -1.22 139 166.5 4 58.9 d, 33.0 32.4 7.35 8.59 18.11 -1.50 -1.48 150 127.5 =) 55.2 37.1 32.3 7.34 6.08 15.75 -1.51 -1.36 152.3 183.6 =) 63.5 39.3 42.84 8.2 8.0 22.4 -1.1 -2.2 139 152 45 31 47 7.1 7.6 18.9 -1.05 -2.2 163 165 53 41 59

81Y5

83Pl f.d

continued

Page 139: Second and Higher Order Elastic Constants

‘pable 13 (continued)

Material Suffues pa Refs.

11 33 44 12 13

Poled ceramics, cont.

T,TS-19

TJBS-1

T,TE%S-3

TJKNS-2

TJKNS-3

TJKNS-4

TJKVS-1

T,TSNV-1

TJT,NS- 10

T,TT,NS- 12

11.1 11.6 41.4 -2.30 -3.9 119 124 24 45 55 15.0 15.8 40.4 -4.75 -6.7 134 141 25 82 92 8.9 8.4 27.1 -1.9 -2.7 138 153 37 46 56 10.4 10.6 31.3 -1.25 -3.25 113 120 32 27 43 12.6 14.0 34.7 -1.95 -5.7 117 125 29 49 67 10.3 10.0 31.1 -2.25 -3.3 126 138 32 46 57 12.0 12.3 33.4 -2.35 4.2 108 117 30 38 51 15.8 15.6 36.8 -2.05 -7.5 103 133 27 47 72 13.1 14.5 36.1 -2.05 -5.5 106 112 28 40 56 11.2 11.1 34.5 -1.45 -9.7 116 137 29 36 79

83Pl *d

83Pl *aI

Page 140: Second and Higher Order Elastic Constants

g 7 Table 13 (continued)

@ ai2 8P

Material S Suffixes po Refs.

ps / or C 11 33 44 12 13

Poled ceramics, cont.

T,lT$N- 1

T,l’TsNSN-1 h,

T,TQNSN-1 i)

T,TT,NSN-1 D

T,l’T,NSN-1 k,

TsTBS-3 (PBZT) ‘1

Lead titanate (modified ceramics), PLT X/Y/Z m) PLT 2.5/1/O

PL*T n,

PNTx/Y/zO) PNT 10/l/O

PNT 11/2/4

12.7 14.8 27.8 1.35 -7.1

114 133 36 26 68 9.4 10.6 28.0 1.2 4.0

127 132 36 5.0 50 13.8 18.8 41.6 -0.25 -8.5

122 124 24 50 78 12.1 13.6 37.0 -1.65 -5.3

114 120 27 40 61 12.4 16.0 37.6 0.75 -7.3

120 127 27 34 70 10.9 12.8 34.0 -3.3 -4.6 86Y6 g), 152 137 29.4 81 83 86’117

7.21 7.62 15.8 -1.42 -1.73 82N3 158 152 63.2 42.0 45.5 7.60 7.98 17 -1.5 -0.94 7111 140 130 60 30 20

6.78 7.29 16.0 -1.55 -1.79 82N3 175 165 62.6 54.9 56.5 6.84 7.28 16.4 -1.50 -1.83 173 166 60.9 53.1 56.8 continued

Page 141: Second and Higher Order Elastic Constants

T&ble 13 (continued)

Material s Or

c

Suffixes per Refs.

11 33 44 12 13

Lithium metaniobate (piezoel. ceramic), LiNbOs

special Purity se 11.7 89Tl co 99

doped se 9.4 co 119

sodium bismuth titanate (NBT), N%5Bi45Ti4015 + M&O3 (0.1 wt%) ordinady tired ceramic P) se 9.01 9.13 21.4 85T9

a) Selected values. b, Ckmhl f-h is pbo.~o.o2~o.65TB.35)0.9803. 4 Values calculated by inverting the compliance matrix. d, Values quoted in [81Y5] are $‘33 = l&l and $& = 58.8 GPa. =) Vatues quoted in [81Y5] are @33 = 127.6 GPa and p33 = 175.9 GPa. fl Values here are the piezoekctric stiffened elastic constants and not strictly the values fl and CD. d Composition for these ceramics not specified. h, With Mn, ferrohard. 3 Ferrosok 3 Slow heating, slow cooling. Ir) Slow heating, rapid cooling. 0 Rounded average of 3 samples. *) The general formula for PLT X/YE is (pbt~n),+ct/2>~)~it~~~3 w h ere X = 100x, Y = lOOy, Z = 1002. [82N3] uses the designation:

&MIwhereL=Laandx=0.025,y=0.01,z=0.

Page 142: Second and Higher Order Elastic Constants

Footnotes for Table 13 (continued)

n) The composition of PL*T is PbTiOa with 2.5 mole % LaOsD and 1 mole % MnO>

0) The general fommla for PNr WE is (Pbl-(3/2)x+(ln)z~il~~~~ where X = 100x, Y = lOOy, Z = 100~. [82N3] uses the designation:

N&l, where N = Nd and x = 0.10, y = 0.01, z = 0; N,,M,I, where N = Nd and x = 0.11, y = 0.02, z = 0.04.

P) ordinarily fired ceramic is hexagonal, but hot-forged ceramic is pseudo-or&rhombic (see Table 22).

Table 14. Trigonal system, 6 constants. spa in (IPa)-l cpa in GPa.

Material s Suffixes fm Milin other Figs. or refs. refs. c 11 33 44 12 13 14

Aluminum oxide, a-AlzO~ s(n=7)

s(n=7)

1825K

Na+#‘-Alumina

Aluminum phosphate, a-APO, s(n=4)

S 2.35 2.18 7.0 -0.69 -0.38 0.47 58M1,6OWl, 14.1, 14.2 0.03

496 2.4 2.35 497.3 2.88 426.0

3.43 356 16.9 0.5

67.0 2.6

0.02 0.1 499 146 3.8 2.1 2.17 6.95 500.9 146.8 2.52 9.78 431.1 106.7 3.90 20.77 274 51 12.1 26.9 0.2 0.5

87.2 42.9 1.0 0.4

0.06 159 10.0 -0.70 162.8 -1.02 158.1 -1.22 128 -3.04 0.2

9.3 1.4

0.01 114 2.3 -0.38 116.0 -0.43 98.9 -0.52 65 -2.09 0.3

0.02 -23 0.7 0.46 -21.90 0.89 -24.48 1.64 -18 5.92 0.2

-12.7 0.5

63B1,66Tl 6864,86(X, 89Gl 89Gl

C

S

c

S

c

S

C

s al

c al s(n=4)

13.1 2.1

89Gl

89L3

75c2, 81E1,

82B12, 87815

85W7,t’) 86W6,

8735

continued

Page 143: Second and Higher Order Elastic Constants

Footnotes for Table 13 (continued)

n) The composition of PL*T is PbTiOa with 2.5 mole % LaOsD and 1 mole % MnO>

0) The general fommla for PNr WE is (Pbl-(3/2)x+(ln)z~il~~~~ where X = 100x, Y = lOOy, Z = 100~. [82N3] uses the designation:

N&l, where N = Nd and x = 0.10, y = 0.01, z = 0; N,,M,I, where N = Nd and x = 0.11, y = 0.02, z = 0.04.

P) ordinarily fired ceramic is hexagonal, but hot-forged ceramic is pseudo-or&rhombic (see Table 22).

Table 14. Trigonal system, 6 constants. spa in (IPa)-l cpa in GPa.

Material s Suffixes fm Milin other Figs. or refs. refs. c 11 33 44 12 13 14

Aluminum oxide, a-AlzO~ s(n=7)

s(n=7)

1825K

Na+#‘-Alumina

Aluminum phosphate, a-APO, s(n=4)

S 2.35 2.18 7.0 -0.69 -0.38 0.47 58M1,6OWl, 14.1, 14.2 0.03

496 2.4 2.35 497.3 2.88 426.0

3.43 356 16.9 0.5

67.0 2.6

0.02 0.1 499 146 3.8 2.1 2.17 6.95 500.9 146.8 2.52 9.78 431.1 106.7 3.90 20.77 274 51 12.1 26.9 0.2 0.5

87.2 42.9 1.0 0.4

0.06 159 10.0 -0.70 162.8 -1.02 158.1 -1.22 128 -3.04 0.2

9.3 1.4

0.01 114 2.3 -0.38 116.0 -0.43 98.9 -0.52 65 -2.09 0.3

0.02 -23 0.7 0.46 -21.90 0.89 -24.48 1.64 -18 5.92 0.2

-12.7 0.5

63B1,66Tl 6864,86(X, 89Gl 89Gl

C

S

c

S

c

S

C

s al

c al s(n=4)

13.1 2.1

89Gl

89L3

75c2, 81E1,

82B12, 87815

85W7,t’) 86W6,

8735

continued

Page 144: Second and Higher Order Elastic Constants

‘Ihble 14 (continued)

Material s Suffuses po Main Other Figs. or refs. refs. c 11 33 44 12 13 14

Aluminum phosphate, Berlinite (piezoel.), a-APO,

273K

Ammonium tin fluoride,

m4sfl3 Antimony, Sb

4-V

s(n=4) Antimony-arsenic,

sb-25.5 at% As Arsenic, As

Barium borate, BaB304

SC? 17.3 12.0 26.5 -2.8 -1.6 -1-5.8 &f 64.0 85.8 43.2 7.2 9.6 -12.4 SD 16.5 12.3 27.7 -3.2 -2.3 (+)6.2 CD 69.8 87.1 42.2 10.5 14.9 (-)13.4 SD 16.42 11.90 26.82 -3.21 -2.01 5.93 co 69.3 1 88.62 43.02 10.51 13.49 -12.99 SC) 16.90 17.40 26.04 -1.536 -1.556 5.161 c+ =) 63.40 58.54 43.20 2.636 5.927 -12.09 S 48.3 49.5 343 -23.3 -8.3 14.0 C 29.6 22.7 2.% 15.4 7.5 -0.58 S 16.1 29.9 38.9 -6.1 -6.2 -12.3

0.4 1.4 1.4 0.05 0.7 0.6 c 101 44.9 39.5 32.2 27.6 21.8

3 0.2 0.3 5.0 2 1.6 S 15.4 27.0 33.3 -7.0 -5.0 -9.8 C 106 47.2 40.3 45.4 27.7 17.6 S 30.6 140 45.0 20.5 -56 1.7 c 130 58.7 22.5 30.3 64.3 -3.7 S 46.71 202.85 44.91 36.94 -88.19 1.80 C 123.6 59.1 22.6 19.7 62.3 -4.16 S 25.63 37.21 331.3 -14.85 -9.97 -63.97 C 123.8 53.3 7.8 60.3 49.4 12.3

75c2 14.3, 14.4,

81El 14.5

82B12

86WlO

76A6

65E1,66Dl, 14.6 71V1,8485

76Al

71Pl

8562

87E2

Page 145: Second and Higher Order Elastic Constants

fI Table 14 (continued) PS

Material S Suffxes po Main Other. Figs. or refs. refs. C 11 33 44 12 13 14

Benzil (piezael.), (C6H&O)2 s

Bismuth, Bi SW9

pure Bi

N [cme3] 1.11.10’9

1.21 - 1020

Bi-0.43 at% Te

Bismuth-antimony alloys, Bi-Sb Bi- x at% Sb

x=0

x=5

x=7

c

S

c

5

C

S

c

s

c

S

C

S

C

S

C

S

C

S

c

136 144 1015 -64 -29 94 10.9 8.23 1.08 5.44 3.26 -0.51 133 139 979 -62 -28 104 11.2 8.56 1.15 5.47 3.35 -0.61 25.76 41.24 113.23 -7.80 -11.37 -21.35 0.2 0.5 3.0 0.3 2.5 0.4 62.60 37.34 11.44 23.50 23.83 7.30 2.2 1.7 0.4 2.8 2.5 0.1

26.0 42.0 114 -7.9 -11.9 -21.2 63.4 37.9 11.5 24.5 24.9 7.3

26.7 41.6 118 -8.7 -11.7 -22.8 62.7 37.9 11.3 25.1 24.6 7.3 27.9 41.4 117 -10.0 -11.6 -24.2 61.4 37.7 11.6 25.5 24.3 7.4 27.9 41.5 117 -9.9 -11.6 -24.2 61.4 37.7 11.6 25.5 24.3 7.42

25.8 41.2 114 -8.0 -11.5 -21.4 63.4 37.9 11.5 24.6 24.6 7.28 24.8 40.4 110 -7.6 -11.0 -20.8 65.4 38.2 12.1 24.3 24.6 7.8 24.6 39.7 107 -7.8 -10.7 -21.4 66.1 38.0 12.7 23.9 24.3 8.4

67H5 14.7

81Vl

6OE1,65El, 14.8 66D1,72B4, 77L4,83Hll, 8562

77L4 14.9

83H7

76L2

continued

Page 146: Second and Higher Order Elastic Constants

Table 14 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. c 11 33 44 12 13 14

Bi-Sb, cont.

Bi-x at % Sb x=10

Bismuth antimony telhuide, Bil.60Sb0.40Te,

Bismuth telhuide, Bi2Tes

Cadmium iodide, CCU,

Calcite (Calcspar, Iceland spar), CaCOs

s(?l=ll)

s(?I=ll) Calcium gallogermanate

(piezoel.), Ca++e40t4

S

C

S

C

S

C

S

C

S

C

S

C

SE

CE

Calcium hydroxide, Ca(OH)z c

Calcium orthovanadate se

fi (piezoel.), Cas(VO& P

g 8

i%- I? SD CD

24.7 40.8 104 -7.7 -11.0 -20.9 66.6 38.0 13.0 24.7 24.7 8.4 24.2 40.8 101.5 -7.2 -11.1 -19.9 66.8 37.9 13.1 24.4 24.7 8.3 30.4 60.6 53.9 3.3 -25.2 -15.2 66.6 44.0 27.1 12.6 33.0 15.2 23.1 31.7 50.3 -6.4 -9.5 -14.3 68.5 47.7 27.4 21.8 27.0 13.2 30.9 50.0 182 -13.2 -7.0 (0) 43.1 22.5 5.5 20.4 8.9 (0)

11.4 17.3 41.4 -4.0 4.5 9.5 0.2 0.5 1.2 0.4 0.4 0.5 144 84.3 33.5 54.2 51.2 -20.5 2.9 2.6 0.7 4.7 3.4 0.2 10.245 5.109 23.327 -5.19 -1.538 -3.232 155.5 239.6 45.5 86.7 72.9 9.5

99.28 32.60 9.846 36.21 29.65 <6 d)

14.6 11.6 32.4 4.9 -3.9 -2.8 98.01 119.8 31.67 45.6 48.9 4.48

15.77 11.37 32.72 -6.39 -3.73 -3.65 95.61 119.01 31.73 48.75 47.36 5.23 15.85 11.61 32.62 -6.23 -3.95 -3.61 95.70 119.68 31.81 48.70 49.19 5.20

76L2 14.10

83H7

72A2 14.11

6951,72J3 14.12

7532

28vl,56hl, 63P3,68Dl, 68K1,72HlO, 87K7 84I-Z 8583

85H4

78HlO

14.13, 14.14, 14.15

9OLl

9OLl

14.16

78HlO

Page 147: Second and Higher Order Elastic Constants

II Table 14 (continued)

ifi

8i Material S Suffues po Main Other Figs.

05 or refs. refs. C 11 33 44 12 13 14

Cesium nitrate, CsNO, S

c 430K e, S

C

Chromiumsesquioxide, s cr203 c

Cobalt carbonate, &CO, c Dextrose sodium bromide

monohydrate (piezoel.), #

2(C,Ht,OdNaBr - H20 fl Dextrose sodium chloride

monohydrate (piezoel.), #

2(CsHt20dNaCl - H20 $ Dextrose sodium iodide

monohydrate (piezoel.), fi

2(CsHt20dNaI - H,O @ Ethylene diamine cobalt

bromide trihydrate, S

W~K@JH3)J3Br3 - 3H$ c

Gallium selenide sulfide, GaSet-$3, x = 0.05 S

C

0.15 S

C

43.85 47.42 103 -11.87 -14.82 30.98 29.68 9.67 13.03 13.75 57.9 67.9 130 -12.6 -24.6 25.3 24.3 7.5 11.1 13.2 3.67 4.08 6.41 -0.84 -1.37 374 362 159 148 175

271 163 52 119 87

=O =O 0

0.54 -19

5f)

56.9 52.3 158 -8.6 -16.0 -3.4

20.6 24.0 6.34 5.3 7.9 0.3

63.8 70.2 130 -26.1 -16.0 3.6 22.0 17.7 7.71 10.9 7.5 -0.3

60.2 51.6 130 -34.3 -6.2 3.8

25.8 20.6 7.71 15.2 4.9 -0.3

91 47 263 -41 -22 -24

23.1 38.2 3.98 15.2 17.2 0.73

10.46 30.34 104.56 -2.61 -2.45 3.10 105.8 34.7 9.7 ‘1 28.2 10.8 -2.3 10.36 30.60 105.40 -2.55 -2.31 2.82 106.2 34.2 9.6 27.8 10.1 -2.1

9oH2

9oH2

76A8

83B2

50ml

50ml

50ml

74Nl

85Yl

Page 148: Second and Higher Order Elastic Constants

‘lhble 14 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. c 11 33 44 12 13 14

GaSet,S,, cont. x=

0.3 S

C

0.4 S

c Guanidine aluminum selenate

hexahyw (piezoel.), s

WJ&l3~<Seo4>2 ’ 6J420 C

Guanidine aluminum sulfate s hexahydrate (piezoel.), c

C(NH~Al(SO~ * 6H20 s C

Guanidine gallium seleuate hexahydrate (piezoel.), s

c@J&),~(sfi& - (5-40 c

Guanidine gallium sulfate hexahydrate (piezoel.), s

wQ93wsQ& * fqo c

Guanidinium tetrafluodorate fl (piezoel.), C(NHd3BF4 @

Haematite, F%03 S

c Hafnium sulfide, HfS, S

C

10.17 30.40 108.03 -2.58 -1.75 1.78 107.0 33.8 9.3 28.2 7.8 -1.3 9.80 30.53 111.41 -2.31 -1.70 -1.35 109.8 33.6 9.0 27.0 7.6 1.0

48.7 123 145 -24.8 -24.2 -28.5 42.9 13.6 8.15 26.9 13.8 3.16 46.1 100 126 -26.5 -17.8 24.2 45.5 14.7 9.1 29.7 13.3 -3.04

44.9 106 123 -24.1 -195 -22.1 44.8 14.4 9.2 28.4 13.4 2.95

53.3 136 145 -25.2 -29.6 -29.5

40.4 13.5 8.1 25.4 14.3 3.04

49.0 112 125 -26.6 -21.8 -25.1

43.8 14.5 9.2 28.5 14.1 3.05

60.76 189 445 -32.6 -21.7 52.2 27.71 6.43 d 2.59 15.37 4.95 -1.45 4.41 4.43 11.9 -1.02 -023 0.79 242 228 85.3 54.9 15.7 -12.7 8.05 26.1 99.2 -2.7 -1.4 -1 143 39.4 10.1 50 10 1

59Hl

57Al

59Hl

59Hl

59Hl

89H3

28vl

9OKl

Page 149: Second and Higher Order Elastic Constants

g Table 14 (continued)

k g

aC Material S Suffixes po Main Other Figs.

25 or refs. refs. C 11 33 44 12 13 14

Iron borate, FeB03 S

Lanthanum galloniobate k (piezoel.), La3Ga#b0~0,, CE

WW Lanthanllm gallosilicate

(piezoel.), La$a$iO,, P

(LW s(nd) I9

Sk4 SE CEh)

Lead iodide, Pb12 S

c had phosphate, B-P@Q s

450K C

Lithium niobate , (piezoel.), LiNb03 sa)

s(n=lO) Cal

s(?f=lO)

2.80 4.19 10.8 -0.63 -1.00 -0.72 445 305 95 145 140 20 8.971 5.30 21.95 -4.354 -1.823 -3.012 188.7 259.0 48.57 108.6 102.3 10.99

8.76 5.22 21.0 -4.2 -1.7 -3.6 0.01 0.3 0.6 0.2 0.1 0.1 190 262 53.1 105.9 99.7 14.9 0.8 0.2 0.7 0.7 4.7 0.4 8.76 4.92 20.55 -4.42 -1.55 -3.60 190.2 262.1 53.82 106.3 93.39 14.70 53.2 75 192 -12.6 -22.7 -31.8 27.7 20.2 6.2 9.6 11.3 3.0 48 13.1 46 -38 -3.7 14.3 65 95 24 52 33 -4

5.81 0.08 202 2

P 5.23 s(n=3) 0.07

4.93 0.1 244 4.3

4.79 0.07

16.9 -1.12 -1.38 -0.98 0.2 0.1 0.1 0.1 60.2 55 72 8.5 0.6 1.8 5 0.7

10.7 0.1

-0.44 0.02

-1.44 0.05

0.84 0.02

7651

87S2

83K2, 86I2, 86Sl

86Sl

7582

75A5

67W3,69Bl, 6901,7OK5, 71C4,71S6, 73M1,73N4, 8OIA, 85WlO 67W3, 8OL4,

8732 14.18

24.14

14.19, 14.20, 14.21

Page 150: Second and Higher Order Elastic Constants

Table 14 (continued)

Material s Suffixes pcs Main Other Figs. or refs. refs. C 11 33 44 12 13 14

LiNb03, cont.

0.3 % Fe : LiNb03

Lithium niobium tantalate, L~O.lTao.903

Lithium nitrate, LiNO,

Lithium sodium sulfate, LiNaS04

Lithium tantalate (piezoel.), LiTaO, SO-9

CD

c?

218 255 96.1 36.8 76.4 1.8 4.0 0.8 0.2 2.1 5.87 5.03 11.77 -2.20 -1.06 217 226 85 93 65 4.33 5.82 7.53 -0.26 0.11 232 172 133 13.9 -4.7 4.87 4.52 10.64 -0.56 -1.29 232 267 94 48 80 11.72 15.86 60.52 -3.42 -1.87 97.06 66.59 16.75 30.09 14.96 19.5 12.9 38.8 -5.25 4.06 63.03 94.53 25.81 22.53 26.93

4.90 4.35 10.35 -0.47 -1.26 0.03 0.02 0.2 0.14 0.03

230 276 95.9 42 79 2 6 1 8 3.2 4.87 4.36 10.8 -0.58 -1.25 233 275 94 47 80 4.76 4.19 9.3 -0.50 -1.20 239 284 113 41 80

-14.4 0.5 -0.16

1.7 -0.18

5.3 -0.13 2.2 2.49 -2.75 -0.92 0.96

0.61 0.02

-11 0.8 0.64 -11 1.02 -22

85WlO

8751,

88J3

86W7

9oH2

86w8

6739,67W3, 84v2 14.22, 69Y1,71S6, 14.23,

81T2 14.24

67W3

Page 151: Second and Higher Order Elastic Constants

PE ‘pable 14 (continued)

!fg

EP Material S Suffixes po Main Other Figs.

p5 or refs. refs. C 11 33 44 12 13 14

LiTaOs, cont.

SE CE P IF

Magnesite, MgC03 s9

c Manganese carbonate, M&O, c Mercury, Hg 83K S

Mercury sulfide @iezoeL), ; a-HgS (cinnabar) CE

Potassium bromate (piezolel.), s =Q3 C

Potassium copper cyanide s (piezoel.), K3Cu(cN)4 c

Proustite (piezoel.), S

*g3m3

L CE

Pyrargyrite (piemel.), s

*g,SQ CE

4.86 228 4.68 238 4.67 258.7 216 154 36.0 42.82 35.36 31.0 43.1 61.5 25.1 28.6 59.5

30.46 56.76 25.4 52.7

J

4.36 10.5 -0.29 -1.24 0.63 271 96 31 74 -12 4.14 9.0 -0.16 -1.17 1.10 282 117 21 73 -27 7.42 19.7 -1.22 -1.31 2.05 155.5 54.8 75.5 58.8 -19.05 126 44 141 74 220 45 151 -119 -21 -100 50.5 12.9 28.9 30.3 4.7 21.11 80.75 -17.8 -4.31 -32.21 50.92 21.40 7.02 8.66 11.3 65.6 60.6 -4.0 -17.7 0.72 23.6 16.6 14.4 15.5 -0.34 45.1 186 -26.0 -14.6 18.2 30.2 5.59 13.2 12.4 -1.16 48.8 100 -7.3 -15.9 -0.6 39.8 9.97 31.7 29.6 0.18

56.0 109.5 -7.12 -19.5 0.673 37.0 9.12 30.4 30.4 -0.16 26.9 86.3 -12.5 -1.7 1.4 37.8 11.6 26.3 4.9 -0.4

69Yl

72HlO

83B2 56hl

86SlO

77Hl

67H6

81S5 82312 14.25

8203

8103 14.26

continued

Page 152: Second and Higher Order Elastic Constants

‘Pdble 14 (continued)

Material s or C

Suffixes per Main Other Figs. refs. refs.

11 33 44 12 13 14

Ag3SbS3, cont.

Quartz (piemel.), a-SiO, @ s(n=12)

s(n=w

adiabatic

isothermal

298K

598K

53.8 42.7 12.0 (26.8) 33.3 63.5 86.3 -4.7 52.7 35.6 11.6 26.3 12.8 9.73 20.0 -1.75 0.07 0.1 0.1 0.1 86.6 106.4 58.0 6.74 0.3 1.2 0.7 0.9

-22.5 1.31 28.0 -0.4 -1.30 -4.47 0.16 0.1 12.4 17.8 1.6 0.3

12.777 9.735 19.985 -1.807 -1.235 4521 86.80 105.75 58.20 7.04 11.91 -18.04 12.809 9.743 19.985 -1.775 -1.218 4.521 86.48 105.55 58.20 6.72 11.66 -18.04 12.77 9.60 20.04 -1.79 -1.22 4.50 86.74 107.2 57.9 6.98 11.9 -17.9 12.64 9.60 20.03 -1.66 -1.22 4.46 87.47 107.2 58.0 6.25 11.9 -18.1 12.73 9.48 19.86 -1.78 -1.14 4.30 86.3 109.5 59.6 7.10 11.2 17.6 12.59 9.48 19.85 -1.64 -1.14 4.26 87.0 109.5 59.5 6.30 11.2 17.8 12.39 9.62 20.58 -2.10 0.03 -4.57 88.7 103.9 56.5 8.5 -0.3 17.8

8301 8203

46B1,5Oml, 86S1, 56hl,56M3, 8752 58K3,61M3, 62M2,6221, 7OC2,7438 862% 88J2 65M5

62B3

86243

83Ul

14.27, 14.28

Page 153: Second and Higher Order Elastic Constants

f Fl Table 14 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. C 11 33 44 12 13 14

Quartz (synthetic), a-SiO, k, standard grade (RSQ) 0 298K s 12.779

Cm) 86.790 very high purity (VHFQ *)

298K Cn) 86.822 Selenium (piezoel.), Se S

s(n=6) c

SW2 Selenium-telhnium (piezoel.),

Se-Te at % Te 10 S

c 20 S

C

90 S

c 95 S

C

Sodium magnesium aluminum s oxalate (piezoel.), c

NaMgAI(c,o,)3 - gH,O Sodium nitrate, NaNOs S

s(n=4) C

s(n=4)

111 28 18.8 0.8

105.720 58.286 7.182 30.1 100 -17.5 13 24 11 80 16.5 5.9 5 2.8 (2)

-28 14 22.2 3.1

19.008 49 13 -6.3 1

79.0 19.6 96.1 -31.8 -11.5 22.1 71.2 17.1 7.2 17.2 73.2 18.3 95.8 -30.4 -10.1 23.9 74.0 17.4 7.8 17.5

58.4 25.6 59.9 -13.6 -15.1 29.4 64.9 26.1 7.7 21.9 60.3 21.8 68.9 -22.2 -11.8 31.4 68.8 27.9 8.1 21.3 104 156 423 -36 -62 35.3 22.7 6.28 16.3 20.5

145.81 t7.11 144.61 17.51

127.91 110.11 137.01 112.51 -136 6.1

28.2 40.0 121 11.5 -9.0 -26.8 0.7 1 7 0.7 0.7 0.6 57.6 33.0 11.8 21.6 17.8 8.0 1.6 0.3 0.6 0.4 1.2 0.2

9.737 19.997 -1.772 -1.250 -4.528 105.787 58.212 6.790 12.01 18.116

8852 87J2

88J2 67M8,72A6, 75F6,76KlO, 79M5,79R2

7234

79Wl

71H2,72Kl, 81K2, 9oH2

14.29, 14.30, 14.3 1 continued

Page 154: Second and Higher Order Elastic Constants

l’hble 14 (continued)

Material s Suffmes po Main Other Figs. or refs. refs. C 11 33 44 12 13 14

Sodium nitride, NaN3 O)

Strontium gallogermanate (piezoel.), Sr$a#e~O14

Tellurium (piezoel.), Te SW9

dn=Q Tin sulfide, SnS2

Titanium sesquioxide, T&O,

Titanium vanadium oxide, U~l-xVx)&+ 1 .X

x=0.02

x=0.04

x = 0.10

Tourmaline (piezoel.), P) Complex alumina- borosilicate 3

s(n=+

s z CE S

C

S

C

S

C

S

C

S

C

S

C

S

C

169 16.3 14500 -141 -6.5 32.4 75.5 0.45 11.4 17.6 10.72 6.233 21.046 -5.237 -1.986 155.5 208.6 56 81.6 75.5 54.7 24.6 52.6 -15.4 -14.2 3 0.5 2 3.7 1.6 32.8 70.7 31.8 9.1 24.5 1 3 2.5 0.7 1.5 7.65 39.5 120 -1.92 -2.80 146 27.2 8.3 41.5 13.3 4.4 5.8 9.3 -0.6 -2.1 328 2% 108 126 167

-1380 2.0 -5.056 17.8

(+)27

;:;2.4 1.5 =O -0 0.1 -2

4.61 6.48 8.99 -0.48 -2.52 0.17 327 292 111 131 178 -3.7 (4.48) (6.30) 9.33 (-0.53) -2.38 0.28 332 292 108 132 (176) -6.0 4.45 5.84 9.64 -0.90 -2.07 0.37 334 292 104 146 170 -7.2

3.92 6.46 15.7 -0.83 -0.63 0.52 0.3 0.7 0.9 0.3 0.5 0.2 277 163 64.0 64.5 31.9 -6.9 19 11 3 24 20 2.5

86K3 14.32

Mm, 85S3 63M4.64M6, 14.33, 69A7,69Vl, 14.34 72A6,75F6, 79R2 75S2

73C7 14.35

76B2

28vl,5Oml, 56hl

Page 155: Second and Higher Order Elastic Constants

g Table 14 (continued)

t? P-k EB

Material s Suffuses po Main Other Figs. 95 or refs. refs.

c 11 33 44 12 13 14

Tourmaline, cont.

Elbaite, sample 2 r,

Elbaite, sample 3 r,

Elbaite, sample 4 r,

SchZirl-elbaite s,

Sch&l-elbaite, sample 1 Q)

Schiirl u,

Uvite, sample 5 “1 CaMg,Wg~&%j -

(QOH)3&WV

Vanadium chromium oxide, Wl~xCfx~203 x = 0

0.015

0.03

S 3.97 6.13 15.98 -1.31 -0.69 0.83 C 295.8 173.3 63.6 103.2 45 -10 S 3.90 6.06 15.46 -1.30 -0.63 0.56 C 300.0 173.8 65.2 106.2 42 -7 S 3.88 6.04 15.21 -1.30 -0.64 0.55 c 301.1 174.6 65.4 106.5 43 -7 S 3.86 6.10 15.5 -1.25 -0.75 0.47 c 305.0 176.4 64.8 108.2 51 -6 S 3.86 6.10 15.57 -1.25 -0.75 0.47 c 305.2 176.4 64.6 108.4 51 -6 S 3.87 6.23 15.6 -1.26 -0.80 0.64 C 306 174 64.6 109 53 -8.0 S 3.81 6.30 15.45 -1.12 -0.74 0.68 c 301.6 169.8 65.5 96.00 47 -9

5.01 4.73 12.47 -0.54 -1.97 1.25 271 334 84 82 147 -19 4.74 4.59 17.89 -0.77 -1.80 0.29 287 339 56 105 154 -3 4.731 4.54 17.60 -0.94 -1.76 0.40 295 344 57 118 160 -4

87T3

87T3

87T3

7902

87T3

78H6

85T6, 87T3

81N2

85Y5

continued

Page 156: Second and Higher Order Elastic Constants

152 1.2.1 Elastic constants sPu, cpa. ‘Ikigonal system

m

ef.p.576

Page 157: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.1 Elastic constants spa, cpa. Trrgonal system

153

Landolt-BSmstein

New Series W29a

Page 158: Second and Higher Order Elastic Constants

154 1.2.1 Elastic constants spu, cpa. l?igonal system mef.p.576

Table 15. Compositions in wt % for the tourmalines of Table 14.

Constituent Sample 1 8) 2b) 3 4 4 4 5 4 Schorl- Schorl s)

elbaite f)

SiO, B2°3

A12o3

Fez03 MIIO Mgo Mg Na20 K20 Li20 CaO F OH Oh) cr Ni Ti Pb

35.90 36.34 37.09 35.93 37.09 10.0 11.5 11.8 11.0 11.2 35.82 44.23 44.47 45.45 30.95 6.00 1.48 0.71 2.30 0.72 1.18 1.33 1.22 1.49 1.27 0.09 0.15 0.01 0.10 12.87

4.75 2.41 2.04 2.22 1.08

2.58 1.51 2.01 1.88 0.36 0.02 co.02 CO.02 co.02 3.86

35.90 9.98 35.85 6.00 1.18

0.07 4.75 0.02 2.58 0.20

0.10

(36.9) (10.3) 24.8 10.8 0.2 0.3

4.1 <O.l 1.2 co.5 (0.51 (6.11 (2.71 0.4 0.9 0.2

al Dark blue in color, opaque in the [OOl] direction, origin Mexico. Reference [87T3]. b, Dark green (nearly black) in color, opaque in the [OOl] direction, some visible microcracks and

inclusions, origin Brazil. Reference [87T3]. c) Light yellowish-green in color, semi transparent in the [OOl] direction, origin California.

Reference [87T3]. d) Colorless, transparent in all directions, origin unknown. Reference [87T3]. e) Dark brown in color, opaque in the [OOl] direction, origin Sri Lanka. Reference [87T3]. This

sample is listed as uvite in reference [85T6]. fl This appears to be the same specimen as sample 1, origin Mexico. Other impurities are less than

0.02 wt %. Reference [7902]. s) Dark green (nearly black) in color, origin the Caterina region of Brazil. Values in [78H6] are

expressed in terms of the number of ions in a molecular unit (3 molecular units/unit cell). Results in brackets ( ) are from averages of previously reported Schorl samples by other authors; no separate analysis was made of the Si, B, OH, F or 0 ion in [78H6]. Values here are converted to wt % of the constituent for comparison.

h, Oxygen not included elsewhere in the table.

Landoh-Bhtstciu New Saiu W29r

Page 159: Second and Higher Order Elastic Constants

Table 16. Trigonal system, 6 constants. Incomplete sets of constants. spc in (TPa)-l cpa in GPa.

Material s Suffixes po or C 11 33 44 12 13 14

Main refs.

Other refs.

Figs.

c

Ammonium silicon hexafluoride, (NH4)2siF6

Bi-Sb alloys 4.2 K O%Sb c 1.2 C 4 C 4.5 C 5 c 6.4 C 6.7 C 7.7 c 12.8 C

Boron, B-B C

Carbon petiuoroalkane, c16F34 a)

Carbon perfhmroalkane, c26i42 a)

Cobalt dibromide, CoBr, b, c Copper lanthanum nitrate

hyd=% cu,L%m(&3),, - 24H20 c

Iron chloride, FeC12 C

467

57

20 66.3

4.05 4.23

4.24 4.08 3.98 4.32 4.28 4.13 473

1.09 0.97 1.03

0.99

1.03

198 241

32 7.1 5 =)

29 16.9

8 26.9

15.1

-7

1.7 4

8OHlO 16.1

85D2

7487

82S17

73H8 16.2 74Y1,75V2 86D2 16.3

continued

Page 160: Second and Higher Order Elastic Constants

lhble 16 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. C 11 33 44 12 13 14

Lead vanadium phosphate, pwv1-,042

x = 0.8 C

0.7 C

0.6 c 0.0 C

Lead zinc niobate-lead titanate 0 0.91 Pb(ZnlnNh&O~-

0.09 PbTi03

(poled 0.91 PzN-O.09 PT) # SD

Lead zirconium titanate (PZT XTY), Pbzr,Til_x03 ‘1

Lead zirconium titanate (PTzWEh PWi$qJQ@~ l)

Lithium trisodium chromate hydrate (piezoel.), S

LiNa3(CQ2 * 6H20 Lithium trisodium molybdate

hydrate (piezoel.), S

LiNa3(Mo04)2 - 6H20 Nickel telhuide, NiT% c Tin selenide, SnSq c

53.4 100.4 17.7 37.8 3.2 e, 82A4 53.7 97.1 18.6 37.7 5.2 e, 51.5 99.0 20.0 34.1 3.1 e) 70 100 22 48.0 8OTl

18 13 13.6 h, 36.9 9 17.1 EQ 7.6 h, 22.6 9

143 J) 82K4 16.4 21.83

8626 16.5

89H5 16.6

78.7 35 9m) 50ml

29.5

110 103

27.1 70.5 m) 50ml

52.6 20.4 42 10.7 7987 27.6 13.5 77BlO

Page 161: Second and Higher Order Elastic Constants

Table 16 (continued)

Material s or c

Suffixes pcs Main Other Figs. i refs. refs.

11 33 44 12 13 14

Tim&m selenide, TiSe, c 120 39 14.3 42 12 76312 Sym-Triazine, CsNsH3 82Y6 16.7 Vanadium-chromium

sesquioxide, (VI-xCr,),o, 83Y5,86Y 1 79Yl 16.8

a) Expected structure for this perfhtoroalkane is trigonal[89M2]. See Table 12 for constants in the hexagonal approximation. b, Values obtained by neutron scattering. 4 Calculated using the experimental values cs6 = 26 GPa and cl t = 57 GPa. The experimental value of cl2 is given as 14 + 8 GPa. d) calculated using c&~3 = 0.1 suggested by X-ray studies [86D2]. e) Magnitude only. fl See also Table 20. g, q111l.L. +1111 and pftt tU are determined from the resonant and antiresonant frequencies, respectively, of a bar sample elongated in an arbitrary

direction perpendicular to the [ 11 l] axis. Poling direction is the [l 1 l] axis. h, qlll]ll- +11,1, antI ~[lll,Il are determined from the resonant and antiresonant frequencies, respectively, of a bar sample elongated parallel to the

[ill] axis. Poling direction is the [ill] axis. iJ qoo1J.L- +Ml.l anci &oll.l are determined from the resonant and antiresonant frequencies, respectively, of a bar sample elongated in an arbitrary

direction perpendicular to the [OOl] axis. Poling direction is the [OOl] axis. 3 qool]ll- fl[ool,ll and +lol]ll are determined from the resonant and antiresonant frequencies, respectively, of a bar sample elongated parallel to the

[OOl] axis. Poling direction is the [OOl] axis. k, General formula for (l?ZT X/Y) is PbZrxTi,-xOs where X = 100x, Y = 10&X. 0 General formula for (P’IZ X/Y/Z) is Pb(TixZrt-&FezOs where X = 100x, Y = 100-X and Z = KlOz. ml 2Q+s&.

Page 162: Second and Higher Order Elastic Constants

Table 17. Trigonal system, 7 constants. sw in (IPa)-* cW in GPa.

Material 5 Suffiies po Refs. Figs. or C 11 33 44 12 13 14 15

Antimony iodide, Sb13 Beryllium silicate (phenacite),

Be,SiO,

Bismuth iodide, BiIs 83K Cerium magnesium nitrate

hydrate,

Cq$&WW,, - 24H20 Dolomite, CaMg(C03)2

Lead barium germanate,

Pb4.77B%.3%011 b)

Lead germanate (piezoel.), Pb&esOtt b*c)

Magnesium silicate, MgSiO, (ilmenite phase)

C 15 9.3 4.7 -5.0 4.0 S 3.84 3.16 1000 -1.31 -0.88 c 341.9 391.0 91.4 148.0 136.0 c 29 26 7.0 5.0 9.0 S 63 44.4 119 -23 -17 C 25.0 33.8 8.9 12.7 14.6

S 7.04 11.2 C 205 113 S 17.6 12.5 C 68 87.0 S 17.5 11.5

I 67.8 17.7 94.2 11.4 ce 68.4 94.3 se 17.96 11.60 I+ 67.37 92.74 S 2.6 2.7 c 472 382

31.9 -2.4 -2.3 4.6 -3.3 39.8 71 57 -20 14 45.5 -5.9 -2.6 0 0 22.0 25.4 19.3 0.00 0.00 45.5 -5.9 -2.3 0 0 22.0 25.0 17.9 0.04 0.0 44.5 -6.4 -2.2 0.0 +1.3 22.6 26.8 17.9 0.0 -1.2 45.02 -6.46 -2.17 0.0 +1.30 22.26 26.40 17.58 0.0 -1.18 10.3 -0.97 -0.30 0.92 -0.82 106 168 70 -27 +24

1.0 a) 2.5 =) -0.0 -0.2 0.1 3.5

2.0 a) 0 a) -12 13 1.2 -1.3

85K6 89Yl

85K6 7ov3

72H10, 74A3 86Al

86A1, Table 11

72Yl

87L6

85W3

17.1, 17.2

a) Magnitude only. b, Crystal structure is x [86Al] finds that the acoustic symmetry axes lie so close to the crystallographic axes that the structure is essentially Trn

symmetry with cl5 = 0 within experimental error. 4 [72Yl, 87L6] find that cl5 = -1.2 where cw = -cl9

Page 163: Second and Higher Order Elastic Constants

TE Table 18. Tetragonal system, 6 constants. spa in (IPa)-1 cpa in GPa.

Material s Suffixes po Main other Figs. or refs. refs. C 11 33 44 66 12 13

Aluminum copper, Al&u

Ammonium dihydrogen arsenate (piezoel.), NH&I+K14 (ADA)

44% deuterated

Ammonium dihydrogen phosphate (piezoel.), NH&f.$G~ s(n=7)

wm s(n=7)

Ammonium dihydrogen phosphate (deuterated), (piezoel.), QD2po4 (m*P)

Barium chloride fluoride, BaClF

Barium lanthanum gallate (piezoel.), BaLaGa& (BLGG)

s

C

S

c

S

c

S

C

S

C

S

C

SE3 19 44 110 163 2 -11 c? 62.1 29.9 9.1 6.1 -5 14 S 16.2 32.7 41.1 30.1 +0.6 -11.6 C 90.8 60.0 24.3 33.2 26.7 41.6 S 10.03 16.16 25.64 18.52 -3.30 -5.06 c 178 117 39 54 103 88

7.38 8.01 35.7 22.4 -1.97 -2.40 180 170 28.0 44.6 73 76 7.80 7.07 34.5 21.7 -2.61 -1.56 159 163 29.0 46.0 63 50 19.8 50.0 149 161 1.1 -13.0 62.2 29.6 6.69 6.22 8.6 18.4 19.3 48.5 146 156 6.5 -14.1 67.5 30.2 6.85 6.39 -10.6 16.5 24.7 74.4 105 189 +11.4 -27.1 68.3 29.7 9.5 5.3 -7.1 22.3 18.3 43.7 117 166 2.2 -12.0 0.9 1.3 2.3 1.7 0.3 1.1 67.3 33.7 8.57 6.02 5.0 19.8 2.7 0.7 0.2 0.06 1.3 0.6

75E4 18.1

79Fl

64H5

68A6

77B5

4621,51Bl, 5OP1,56A2, 64H5,7OH7, 76Fl

18.2

52Ml

79B8

85S9

continued

Page 164: Second and Higher Order Elastic Constants

‘Ihble 18 (continued)

Material S Suffixes pa Main Other Figs. or refs. refs. c 11 33 44 66 12 i3

Barium silicon titanium oxide (Fresnoite) (piemel.), Ba&TiOs

Barium titanate (piemA.). BaE03

403K

Cadmium germanium arsenide (piezoel.), CdGe&

7.6 13 30 17 -1.6 -1.7 140 83 33 59 36 24 7.33 12.0 31.5 14.4 -1.93 -2.36 166 100 31.7 69.4 58 44 8.05 15.7 18.4 8.84 -2.35 -5.24 275 165 54.4 113 179 152

7.35 14.95 18.21 8.33 -1.39 -4.94 243 147.9 54.9 120 128 123 7.25 10.8 12.4 8.84 -3.15 -3.26 283 178 80.6 113 186 142 6.24 10.00 7.36 8.33 -2.60 -3.00 328 197.8 136 120 215 163 10.40 36.25 14.85 9.61 1.15 -11.62 176.0 77.7 67.3 104 67.9 78.2 5.49 9.55 9.59 9.61 -2.40 -0.14 225 105 104 104 98.7 4.8 21.6 26.9 23.8 24.5 -7.04 -10.4 94.5 83.4 42.1 40.8 59.6 59.7 19.87 23.94 23.15 23.64 -6.79 -9.00 98.0 86.6 43.2 42.3 60.5 59.6

7m

58Bl 8711 18.3, 9.13

8637 a)

58Bl

8637 a)

8637 a)

82Hl 18.4

82H6

Page 165: Second and Higher Order Elastic Constants

f[ Table 18 (continued)

3. c a$ is

Material S Suffixes per Main Other Figs. p5 or refs. refs.

c 11 33 44 66 12 i3

Cadmium phosphide, p-CdPZ 1OOK

300K

Calcium stronthmr propionate, Ca$r(C$&O& =)

Cesium dihydrogen arsenate, (piezoel.), CsH&sG4 (CsDA)

Cesium lead chloride d), CsPbCls 318K

Cesium nickel fluoride, CsNiFs

Cobalt fluoride, CoF2

s(?l=3)

s(n=3) Cobalt platinum, CoPt h,

Dicalcium strontium propionate, Ca$r(C,H.&O& i)

S

c

S

c

S

C

S

c

S

c

S

C

S

c e)

cf)

S

c

S

C

17.7 14.8 96.2 117.6 18.7 16.0 91.6 109.7 142 147 11.6 10.1 138 172 11.7 10.3 19.4 25.1 51.6 39.9

79.4 106 24.5 26.3 29.1 11.0

44.4 94.5 44.9 96.0 19.9 7.95

2 0.3 120 188 17 15 5.70 5.39 311 299

32.6 30.65 33.3 30.0 288 3.47 289 3.46 150 6.66

192 5.19 213

4.7 4.50 27.3

1 36.6 1.5 8.00 125

24.8 -6.13 40.3 54.2 25.6 -6.48 39.0 52.0 513 -61 1.95 6.66 480 -37 2.08 6.0 588 -0.19 1.7 0.56

124 4.1 8.06 12.5 84.0 -13.1

11.9 20.7 12.4 20.1 11.3 -12.7

0.8 2.3 88.6 89 6 16 6.42 -2.47 156 188

-6.0 61.2 -6.49 58.2 -44 5.49 -61 6.3 -0.64 1.33

-50.8 17.7 -1.81

10.7

-3.0

0.4 80 18 -1.82 168

85Kl2

85K12

7386

86315 18.5

18.6

79K3

79A3 18.7

7721

83GlO

9.26, 18.8 18.9

7OH4 d, 71P5 e),

78H3 0

75R2 18.10

continued

Page 166: Second and Higher Order Elastic Constants

‘Ihble 18 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. c 11 33 44 66 12 i3

Gadolinium molybdate, Gd203 473K 3

Germanium dioxide, GeOz

Indium, In so

Indium bismuth, InBi

Indium-cadmium alloy, In-3.4 at% Cd

In-3.42 at% Cd

Indium-lead In-5 at% Pb

In-17 at% Pb

S

c

S

C

s ‘3

c

S

c

S

C

S

C

S

C

s

c

S

C

13.8 12.4 38.5 37.0 -2.4 -3.3 83 96 26 27 21 28 4.58 2.15 6.19 3.87 -2.13 -0.77 337 599 161.5 258 188 187 148.8 196.2 153.7 83.2 -46.0 -94.5 5.0 15 0.3 0.8 5.1 7.7 45.1 44.6 6.51 12.0 40.0 41.0 0.43 0.58 0.01 0.11 0.43 0.54 207 438 152 81.3 15.0 -215 45.8 43.9 6.6 12.3 40.6 42.4 52.9 88.3 50.6 62.9 -18.3 -32.1 51.1 34.6 19.8 15.9 37.0 32.0

175 171. 147 89.3 -87.8 -80.5 44.8 44.1 6.8 11.2 41.0 40.5 174 172 146 89 -86 -81 44.8 44.1 6.86 11.25 41.0 40.5

183 89 107 192 -137 -39 43.2 42.8 9.31 5.22 40.0 36.2 49 49 153 123 -16 -22 45.4 49.8 6.54 8.16 30.0 33.3

74B8

73w3

58W1,61Cl, 76Cl. 77v1, 9OFl

85F4

73Al

85F4

76Ml

79M3 Table 4 ‘1 79M3

18.11A, 18.11B, 18.11C

18.12

18.13

18.14

18.15

Page 167: Second and Higher Order Elastic Constants

‘pable 18 (continued)

Material S Suffixes po Main Other Figs. or

11 33 44 \ c 66 12 refs. refs.

i3

Indium-thallium m), In-Tl at% Tl 10

11.5

15

S 224 239 125 C 41.6 43.0 8.0 S 188 220 147 C 42.9 42.2 6.82 S 266 256 133 C 42.0 41.8 7.52

Iron fluoride, FeF2 S 21.70 10.05 27.62 c 121.11 173.22 36.20

Iron germnide, FeGe, S 4.78 54.0 17.2 c 244 249 58.3

Lanthanum strontium copper oxide, s 4.5 5.7 14.8

Lal.86Sr0.14Cu04 248 4

ii 5.8

205 4 67.4

Lead barium niobate (piezoel.), 9.6 18.2

pb0.37B%.63Nb206 pBw CE 210 120 55

t+’ 5.8 9.1 16.0 CD 190 120 63

Lead barium niobate SE 5.1 8.1 13.4 (Na, Li-doped) (piezoel.), c? 220 120 75

Pb0.346B%59N%.036~b28 - SD 5.1 7.9 13.2

m206 (LNPBN) a CD 220 130 76

93 -96 -118 10.8 38.5 39.4 95 -75 -106 10.5 39.1 39.3 93 -134 -123 10.8 39.5 39.3 12.66 -13.56 -4.18 78.99 92.75 88.81 11.4 0.18 -1.86 87.3 27 93 17.2 -0.5 -1.2 58.3 48 4 65n)

12.4 -1.7 -1.7 72 75 49

14.4 -1.7 -0.73 69 60 20 8.8 -1.8 0.14 11 78 -5 8.8 -1.6 -0.22

11 70 8

7OPl 18.16 ‘

7469 18.17

7469 18.18

82W3 18.19

7221 18.20

9oM2 89L4

88X2,90X1

88X& 90x1

88X2,90X1

88X2,90X1

continued

Page 168: Second and Higher Order Elastic Constants

Material S

or C

Suffixes po

11 33 44 66 12 13

Main Other refs. refs.

Figs.

‘fhble 18 (continued)

Lithium rubidium sulfate tri- hydrogen sulfate, LiRbs(SO&. 132K

lMH,SO, (LRSHS)

Lithium tetraborate (piezoel.), Li2B4(b s(n=4)

4-U Lutetium arsenate, LuAsO4

S 37.4 c 38.0 S 36.3

41.0

> 8.9

f+o) zo.9

26.7 143 41.7 7.0 23.4 143 46.5 7.0

24.0 17.5 1.6 0.4 55.4 57.3 1.1 1.4 3.93 14.0 323 71.4 3.25 11.8 382 84.6 6.01 17.7 0.3 0.2 201 56.5 10 0.5 9.09 32.0 0.4 0.6 165 31.3 2 0.6 15.2 134 88.8 7.45

222 4.5 1250 0.8

-18.2 -5.1 20.0 11.0 -19.3 4.0 23.0 11.0

1.2 -5.4 0.3 0.8 1.5 30 1.2 3.6 0.10 -1.32 26 102 -0.02 -1.05 36 115 -7.2 -1.65 0.2 0.1 88 62 7 4 -19.4 -3.6 1.7 0.3 81 71 2 1 -409 -9.2 15.00 18.9

89M3 88Wl 18.21

89M3

21.5 0.3 46.4 0.65 51.5 19.4 46.1 21.7 10.5 0.2 95.6 2 14.2 0.4 70.6 2 89.4 11.2

81S18,8535, 85A5,86S16, 8988,89B7, 9oSl 74A2

89S7 18.22, 18.23

Lutetium phosphate, LuP04

Maguesium fluoride, MgF2 s(n=8)

s(n=@ Manganese fluoride, MnF2

s(n=V

s(n=> Mercurous bromide, Hg2Br2

S

C

S

c

S

C

S

C

S

c

4.2 4.09 277 3.50 320 12.6 0.1 138 7 27.6

2 102 1 453 16.16

74A2

68C1,68Hl, 69A2,77D4, 77J4,78H3, 81K1,85V4 68H1,7OM5, 71P4,71P5, 72H3,78H3, 79M7,8403 77B8

18.24

18.25

18.26

Page 169: Second and Higher Order Elastic Constants

zi Table 18 (continued)

3.7 a!2 Material S Suffixes po Main Other Figs.

or refs. refs. c 11 33 44 66 12 i3

Mercurous chloride, (Calomel), P) s Hg2cl2 s(n=3)

C s(n=3)

Mercury indimn telhrride, S

HgIn2 0 Ted @ 77K C

Mercuric iodide, Hg12 S

c Mercurous iodide, Hg212 S

. C

Molybdenum disilicide, S MoSi, C

Nickel fluoride, NiF2 S

c Nickel sulfate hexahydrate S

(piezoel.), a-NiSO, - 6H2O c S c

Palladium plumbide, PdPb2 S

C Pentaerythritol tetranitrate, S

WJ32(3N%h, C

Potassium copper fluoride, S

K2cuF4 C

360 15.0 117 80 -329 -6.5 83 0 0.6 2.4 92 0.06 18.8 80.1 8.53 12.6 17.3 15.6 0.1 0.2 0.08 0.4 0.4 0.03 38.8 32.4 46.7 41.5 -17.7 -10.3 43.1 44.7 21.4 24.1 25.4 21.8 41.0 108 138 433 4.6 -33 33.0 16.3 7.23 2.31 5.6 11.7 541 15.6 171 89.5 -475 -13.8 14.26 107.1 5.84 11.2 13.27 24 2.611 2.051 4.897 5.165 -0.586 -0.330 417.0 514.5 204.2 193.6 104.2 83.8 17.2 6.41 21.5 10.1 -11.7 -2.3 145 221 46.5 99.4 110 91 65 34.3 86.5 4 56.2 4 -47 -1.3 32.1 29.3 11.6 t, 17.8 4 23.1 2.1 66.4 39.3 86.6 50.0 49.9 -9.6 46.8 35.5 11.55 20.0 38.2 20.7 1.478 1.50 7.45 4.01 -0.56 -0.51 112.02 107.20 13.43 24.94 62.91 59.55 80 139 199 254 -5 -46 17.2 12.1 5.03 3.93 5.4 7.5 (17.6) (16.2) 62.5 45.4 (+0.6) (-6.3) 67 84 16.0 22.0 8 29

7535,76Bl 18.27 77A2

76316 18.28

75Hl

77B8

9ONl

76Wl 18.29

5Oml

82813

84B6

76M5

79K5

continued

Page 170: Second and Higher Order Elastic Constants

‘Table 18 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. c 11 33 44 66 12 13

Potassium dideuterium arsenate s (piezoet), KD,As04 (KD*A) c

Potassium dideuterium phosphate, s (piexocl.), KD$O~ (KD*P) c

Potassium dihydrogen arsenate s (piezoel.), KH,$kO,t (KDA) C

Potassium dihydrogen phosphate, s (piezoet), KH$04 s(n=7) 0 C

s(n=7) Potassium Lithium niobate s

(piezoel.), CE

K28P%55m5.11015 SD

CD

Potassium sodium strontium barium 8 niobate (piezoel.), (KNSBN) cs

~1/6Nal,SrlnBal/dNbzo,~6 gg) SD

CD Potassium tetrachloroplatinate, S

K2*4 C

Rubidium dideuterium arsenate, s (PiezoeL), RbD2As04 (RbWA) c

17.3 74.6 15.8 67.4 16.4 64.8 14.9 0.5 71.2 1.4 5.99 220 5.41

221 5.3 240 5.1

230 (40.1) 31.0 24.7 49.3

23.2 101 162 69.3 9.88 6.17 20.1 79.0 168 54.5 12.6 5.94 23.5 93 151 48.2 10.75 6.63 19.7 78.4 161 0.6 0.8 3 56.8 12.6 6.22 1 0.4 0.1 11.8 14.7 14.3 109 68 70 8.58 13.0 14.3

137 77 70 8.9 16.6 15 150 60 66 6.4 14.3 13

170 70 77 (59.3) 165 214 23.2 6.04 4.68 27.1 106 246 38.6 9.48 4.08

1.2 12.4 2.1 -5.8 0.8 0.77 1.9 0.4 -5.0 1.1 -1.24 74 -1.42

74 -1.4 92 -1.7

::.9, (9.3 10.1 -19.3

-9.0 33.9 4.0 12.2 -4.9 13.6 -4.2 0.6 14.1 1.4 -2.37 59 -1.64

55 -1.9 73 0.79

-39 (-16.6) (11.3) -4.4 4.9

68A7

66s4

64H5

4621,5OPl, 64H5,71B4, 78X2,8OD3

78A5

83X1,84X1 83X1 83X1,84X1

83X1 8101

69A6

18.30, 18.31

84H9 18.32, 18.33, 18.34, 18.35

Page 171: Second and Higher Order Elastic Constants

SF Table 18 (continued) -- gy ai? EB

Material S Suffixes po Main Other Figs.

p5 or refs. refs. C 11 33 44 66 12 i3

Rubidium dihydrogen arsenate, @ iezoeL), RbH$sG, (RbDA)

Rubidium dihydrogen phosphate, (PiezoeL), RbH,pO, (RbDP)

s(n=3)

s(n=3) Scapolite (complex I

alumina-silicate) “) II

Silver gallium sulfide (piezoel.), AgGaS,

Silver sulfate, ammoniated (piezoel.), Ag2S04 - 4NHs

Sodiuh sulfide nonahydrate, Na$ - 9H20

Stishovite

Strontium barium niobate (piezoel.), Srt-xBaxNb~O~W) i.25

0.39

S

C

S

c

S

C

S

C

S

C

S

C

S

C

S

C

S

c

S

C

22.8 25.4 96.0 232 8.5 -1.8 51.0 39.2 10.4 4.31 -18.9 2.3

16.9 22.1 94.3 281 2.4 -3.9 1 0.7 7 6’ 0.2 2.5 63.2 50.0 10.6 3.56 -6.0 10.6 7 5.5 0.7 0.07 0.6 7.2 12.3 10.5 63.9 43.7 -3.37 -2.79 99 113 15.6 22.9 35.1 35.4 12.3 8.8 43.4 32.9 -3.53 -2.69 102 140 23.0 30.4 38.9 43.3 26.2 35.9 41.5 32.5 -7.7 -14.5 87.9 75.8 24.1 30.8 58.4 59.2 46.4 33.4 127 86 -19.6 -11.5 34.1 42.6 7.9 11.6 19.0 18.3 37.8 43.1 114 124 -12.2 -11.8 36.2 31.07 8.79 8.08 16.19 14.35 2.96 1.53 3.96 3.31 -1.17 -0.47 453 776 252 302 211 203

5.27 8.17 15.6 15.2 -1.44 -1.50 227 143 64 66 78 56 5.74 7.66 15.4 15.6 -2.07 -1.49 226 155 65 64 98 63

69A6

64H5,66M4, 18.36, 69Al 18.37,

18.38, 18.39

7OB4,74A3

75GlO

6oH5

84Bl

82W2

7925

continued

Page 172: Second and Higher Order Elastic Constants

mble 18 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. C 11 33 44 66 12 13

Srl,B%%06, cont.

X

0.39

0.50 x)

0.55

Strontium chloride fluoride, SlClF

Strontium lithium potassium niobate (piemel.), sr4L~loo30

Tellurium dioxide (Paratellurite) (piezoel.), TeOZ s(n=3)

s(n=3) 78K

.+ 5.32 err 227 d’ 5.21 cp 282 se 5.4 CE 210.1 S 6.44 c 188 S 12.5 C 106

se 5.55 CE %l4 S 117

1.9 c w 55.9

0.2 S 140 c 6 59.6 S 121 c dd) 59.8

10.1 15.5 14.4 -1.46 -1.73 117 64.6 69.4 79 52 7.82 15.2 14.4 -1.56 -2.21 194 65.7 69.4 134 118 9.3 15.1 14.5 -1.5 -1.2 116.6 66.3 68.9 65.7 35.5 6.34 19.23 19.23 -2.33 -0.97 170 52 Y) 52 74 =) 40 4 18.9 32.7 26.4 -1.2 -6.2 82.9 30.6 37.9 33.2 45.8

9.63 16.1 14.9 -1.9 -2.0 134 62 67 110 73 10.5 37.4 15.1 -106.1 -2.38 0.3 0.3 0.1 1.5 0.3 105.5 26.7 66.3 51.6 23.9 0.4 0.2 0.4 0.3 2.2 9.30 36.9 13.7 -131 -1.2 111.4 27.1 73.2 55.9 15.0 9.9 36.6 14.1 -111 -2.2 112 27.31 71.05 55.5 25.1

8OS19

82S19 82S6 18.40

82P5

79B8

7oF8

68A5, 18.41, 7001, 18.42, 87Sl 18.43,

18.44 79Ul

87Sl

Page 173: Second and Higher Order Elastic Constants

Qi ‘l%ble 18 (continued) =“& pg Material s Suffixes po Main Other Figs.

or refs. refs. c 11 33 44 66 12 i3

Terbium molybdate (piezoel.), 533K n2@@)d3

Thallium selenide, TlSe

Tin, Sn s(n=3)

s(n=3) Tin dioxide (Cassiterite), SnO,

Titanium dioxide (Rutile), Ti02 s(n=5)

s(n=5) Tungsten disilicide,

WSi,

Urea (piezoel.), (NHd2C0

s

c

s

C

S

C

S

C

S

c

s

C

S

C

S

c

S

c

24.1 38.2 37.7 34.8 8.0 -21.3 Table 21; 91 101 26.5 28.7 29 67 72D3

41.2 32.7 78.8 64.1 +9.1 -21.7 39 72.1 12.7 15.7 7.9 31.2 26.5 33.4 31.2 83.3 +2.7 -11.8 45 42 32 12 3 17 42.4 14.8 45.6 42.1 -32.4 -4.3 1 0.3 0.2 0.8 1.6 0.5 73.2 90.6 21.9 23.8 59.8 39.1 2 5 0.04 0.2 2 5.1 7.43 2.95 9.70 4.82 -4.41 -1.04 262 450 103 207 177 156 6.80 2.60 8.06 5.21 -4.01 -0.85 0.3 0.01 0.05 0.05 0.3 0.03 269 480 124 192 177 146 3 5 0.9 2 3.5 6 2.482 1.890 4.726 4.598 -0.632 -0.27 1 442.8 552.3 211.6 217.5 121.7 81.0

95 64 160 2220 16 -50 21.7 53.2 6.26 0.45 8.9 24 44.9 21.7 160 2000 3.2 -7.1 23.5 51.0 6.2 0.50 -0.50 7.5

67K8 18.45

72813

6OH3,6OR2 &I, 18.46, 72K3 18.47

75Cl

6OB2,6OVl, 18.48, 62W1,69Ml, 18.49 74F3,76G4, 76G9 9ONl

7OFlo

82Y2 e,

21.75

continued

Page 174: Second and Higher Order Elastic Constants

TPdble 18 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. c 11 33 44 66 12 i3

Vesuvian (complex CaMgFeAJ SiliCate)

Zinc fluoride, ZnF2

Zinc guanidinium sulfate, Zn[CN-Q&W&

Zinc phosphide (piezoel.), a-ZnP2

Zircon, ZrSiO, ae) +=3)

4-3) Zirconium nickel, Zr2Ni

S 7.55 6.80 17.9 18.5 -1.93 c 153 166 55.8 54.0 48 S 18.2 7.7s 25.5 12.4 -11.4 C 126 192 39.2 80.7 93 S 18.4 7.73 25.3 12.3 -11.6 c 130 199 39.5 81.4 97 S 45.56 72.92 81.17 182.82 6.21 C 32.00 27.40 12.32 5.47 6.59 S 8.06 10.2 22.8 32.0 -0.65 c 144 126 43.8 31.2 29.4 S 2.65 2.50 8.85 20.7 -0.18

0.00 0.01 0.02 0.09 0.01 C 423.8 489.6 113.0 48.4 70.2

0.7 0.5 0.3 0.2 0.9 S 21.6 10.8 41.7 104 -16.0 c 15s 14s 24.0 9.66 128

-1.49 74A3 44 -3.0 7752,77BS 18.50 84 -3.0 78H3 89 -30.70 84H2 16.25 -2.89 8OK16 8114 18.51 49.3 -0.75 7401,7801 7601 18.52 0.01 148.8 1.1 -3.2 7SE3 18.53 86

a) Top seeded solution grown (TSSG) BaTiO,. b, Values from [82Hl] quoted in [82H6$ c, Also called dicalcium strontium propionate. See also Table 19. Phase transition 4 + 4/mmm at 282K. d, The c values were taken from Table 2 of [77Zl], but see comment in the caption of Fig.18.8. Phase transitions mmm -+ 4/mmm at 31% 4/mmm

+ m3m at 32OK; see also Table 9, Figs. 9.23,9.24,9.26. This material is mislabelled as cesium lead fluoride in JH/ll, Table 18, p. 57. =) Brillouin scattering method. 0 Wave transmission method.

Page 175: Second and Higher Order Elastic Constants

TE Footnotes for Table 18 (continued) g+ ag ~9 Resonance method.

%I h, Ordered. For disordered CoPt see Table 5. p 5’ i) Also called calcium strontium propionate. See also Tables 19,20.

j) Above ferroelectric-paraelectric transition point. See also Table 21. k, The compliances s1 1, s33, s t2 and s13 are very sensitive to small differences in the elastic stiffksses. As a result the standard deviations of these

compliances are much greater when the data of [85F4] is included in the averages. l) Listed under Pb-In. m) See also Table 4. n, Absolute accuracies of these constants depend upon [89L4]. O) CD33 = 68.2 GPa, @33 = 56.2 GPa [8938,9OSl]. cn33 = 64.90 GPa, @33 = 54.80 GPa, fld4= 58.89 GPa, Gb4 = 57.39 GPa [89B7J P) Phase transition mmm + 4/mmm at 185K. 4 The square III indicates an ordered array of vacant sites (vacancy compound). fl $44 4 s&j. 0 CQ. 4 2&j. “1 Griginal values from [7OB4] improved by computer calculation to minimize errors [74A3]. w) Sr,-xBa+zOG is also known as SBN-X where X = 100x, or as SBN Y/X where Y = 100(1-x) and X = 100x. x) Values of @ and cn are not only sample dependent, but depend also upon whether the sample is poled or unpoled (see [82S6]). Y) cU was determined from propagation along the [OlO] axis, polarization along the [OOl] axis. For propagation along the [l lo] axis the value was

63 GPa. 4 cl2 was determined from TA propagation along the [ 1 lo] axis, polarization along the [ 1701 axis. For LA propagation along the [ 1 lo] axis the value

was 48 GPa 4 Calculated from the compliance. bb) The average value of cT =l%(c 11 - c12) from references [7OGl] and [87Sl] is 2.28 GPa 4 cT=%(cll - c12) = 1.86 GPa. w CT’M(C,, - c12) = 2.18 GPa.

continued l”r

Page 176: Second and Higher Order Elastic Constants

Footnotes for Table 18 (continued)

6e) Non-metamict. Averages of a natural (Australia), natural (India) and a synthetic zircon. Note that metamict zircon (i.e., radiation damaged zirconium orthosilicate) is natural zircon containing trace amounts of uranium and thorium which radiate alpha particles and cause radiation damage to the crystal. This natural radiation causes an increase in the porosity of the sample and a decrease in most of the elastic stiffnesses [7601]. Metamict zircons have density vahres that range from 4700 to 3900 kg/m3 [76Gl]. Elastic stiffnesses for metamict zircon are given in references [66R3,7301,74A3,7601].

@ The stoichiometry of Na, Li doped lead barium niobate as given in [88X2] is pbo.3~~.533N~,,~.~s~O~ The value given here is believed to be the correct stoichiometry.

id The stoichiometry of KNSBN as given in [88X2] is (Ko2uNao&$&3ao&)~O~ The value given here is believed to be the correct stoichiometry.

hh) Results of [6OR2] agree within experimental uncertainty with those of [72SlO] for Sn and Sn-OSat% In. See also Table 51.

Table 19. Tetragonal system, 7 constants. spin (IFa)-* cpa in GPa.

Material s or c

sllffixes pts

11 33 44 66 12 13 16

Refs. Figs.

Calcium molybdate, CaMoGd s(rr-4)

+=3 Calcium strontium propionate

(piezoel.), ca,,SrG%C 261K

s 9.90 9.48 27.1 24.4 -4.2 -2.1 4.2 =) 67A2,68Wl, 0.2 0.2 0.05 0.2 0.3 0.2 0.3 72F1,73ClO,

C 144 127 36.8 45.8 65 47 -13.5 a) 74Jl 0.6 1.1 0.1 0.3 3.3 2.4 1

S 129 168 290 489 -36 -58 28 79K3 18.6 c 12.2 9.86 3.44 2.08 6.19 6.16 -0.34

Page 177: Second and Higher Order Elastic Constants

Footnotes for Table 18 (continued)

6e) Non-metamict. Averages of a natural (Australia), natural (India) and a synthetic zircon. Note that metamict zircon (i.e., radiation damaged zirconium orthosilicate) is natural zircon containing trace amounts of uranium and thorium which radiate alpha particles and cause radiation damage to the crystal. This natural radiation causes an increase in the porosity of the sample and a decrease in most of the elastic stiffnesses [7601]. Metamict zircons have density vahres that range from 4700 to 3900 kg/m3 [76Gl]. Elastic stiffnesses for metamict zircon are given in references [66R3,7301,74A3,7601].

@ The stoichiometry of Na, Li doped lead barium niobate as given in [88X2] is pbo.3~~.533N~,,~.~s~O~ The value given here is believed to be the correct stoichiometry.

id The stoichiometry of KNSBN as given in [88X2] is (Ko2uNao&$&3ao&)~O~ The value given here is believed to be the correct stoichiometry.

hh) Results of [6OR2] agree within experimental uncertainty with those of [72SlO] for Sn and Sn-OSat% In. See also Table 51.

Table 19. Tetragonal system, 7 constants. spin (IFa)-* cpa in GPa.

Material s or c

sllffixes pts

11 33 44 66 12 13 16

Refs. Figs.

Calcium molybdate, CaMoGd s(rr-4)

+=3 Calcium strontium propionate

(piezoel.), ca,,SrG%C 261K

s 9.90 9.48 27.1 24.4 -4.2 -2.1 4.2 =) 67A2,68Wl, 0.2 0.2 0.05 0.2 0.3 0.2 0.3 72F1,73ClO,

C 144 127 36.8 45.8 65 47 -13.5 a) 74Jl 0.6 1.1 0.1 0.3 3.3 2.4 1

S 129 168 290 489 -36 -58 28 79K3 18.6 c 12.2 9.86 3.44 2.08 6.19 6.16 -0.34

Page 178: Second and Higher Order Elastic Constants

g [ Table 19 (continued)

p-g

8i Material s Suffixes po Refs. Figs.

p5 or C 11 33 44 66 12 13 16

Calcium hmgstate, CaWO, s&3)

s(n=3) chrysazin (Istizin) =)

(piezoel.), C,,HsO, Indium thiophosphate, InPS,

Lead molybdate, PbMoO, s(n=3)

s(?l=3) Lithium bismuth molybdate,

LiBi(Mo04)2 Lithium yttrium fluoride, LiyP,

Lithium yttrium-terbium fluoride, LiYO~Tbo~F~

S

C

S

c

S

C

S

C

S

C

S

C

S

C

S

C

10.5 9.3 29.7 30.2 -4.7 -1.9 6.4 =) 0.06 0.7 0.2 4.5 0.5 1.1 1.4 141 125 33.7 40.7 61 41 -178) 7 7.5 0.3 4 5.5 15.6 2.2 93 51 119 111 44 -10 6 14.0 20.4 8.4 9.2 -6.3 1.6 1.0 42.2 72.2 43.9 73.6 13.6 -36.5 -0.6 43.8 40.7 22.8 13.6 8.9 26.6 0.3 34.7 52.5 43.9 72.0 5.7 -23.7 -1.7 43.68 40.56 22.8 13.92 9.02 23.8 0.8 20.8 16.3 37.9 42.3 -11.8 -5.0 14.8 =) 0.2 0.8 0.4 2 0.6 0.5 1.2 107.2 93.2 26.4 34.8 61.9 52.0 -15.8 =) 1.9 1.3 0.3 0.8 5.5 0.8 1.8 15.1 18.2 62.9 49.6 -5.96 -4.00 8.33

94.67 67.87 15.91 23.23 40.03 29.55 -9.17 12.8 7.96 24.4 63.6 -6.0 -2.3 8.2 121 156 40.9 17.7 60.9 52.6 -7.7 22.8 7.99 25.2 204 -14.7 -2.7 49.2 117 160 39.3 13.0 45.3 54.0 -17

68W4, 19.1, 72F1, 19.2 7362

65M4

84H8

83Jl

71c10, 75G1, 87W4‘

88A5

79B5 19.3

8OB5 19.4

continued

Page 179: Second and Higher Order Elastic Constants

mble 19 (continued)

Material S Suffmes po Refs. Figs. Or

c 11 33 44 66 12 13 16

Niobium dioxide, NbO,

Pen-to1 (piezoel.), ctcH2oH),

Silver chlorate, AgC103

Sodium bismuth molybdate, NaBi(MoO~2

Sodium bismuth tungstate, NaBi(WO&

Strontium molybdate,SrMo04 s(n=3)

s(n=3)

S 2.8 3.6 10.6 17.5 -0.1 1.2 10.061 c 433 388 94 57 93 171 Ill s d) 2.82 3.70 10.6 18.1 -0.10 -1.22 0 c d) 432.2 384.5 94.2 55.2 90.0 172.7 0.1 s =) 5.90 3.70 10.6 5.85 -3.17 -1.22 0 c=) 316 384.5 94.2 171 206 173 0.07 S 91 94 365 901 -72 -15 -203 c 40.5 13.9 2.74 2.52 26.6 10.5 3.13 S 35.7 40.0 152 114 -15.6 -12.9 9.4 c 52.5 42.6 6.6 9.05 32.4 27.3 -1.65 S 13.17 16.65 39.37 30.52 4.44 -4.14 3.68 C 104.9 78.6 25.4 34.5 45.1 37.3 -7.2 S 11.9 12.7 44.2 37.9 -4.12 -2.86 6.90 c 114.11 94.02 22.63 31.30 40.02 34.59 -13.49 S 13.2 12.6 28.7 23.9 -5.7 -3.3 4.5 a)

0.7 0.3 0.04 2.5 0.9 0.2 1.3 c 117.3 103.8 34.9 46.6 58.7 46.3 -10.8 a)

1.4 0.2 0.05 3.4 3.3 1.5 1.7

76B3

82Wl 19.5

72N2

64H3

84A3

88A5

7272, 73F2, 89L2

a) The signs have ken adjusted where necessary to agree with the recommendations of [75Fll. b, See also Table 18. c) 1,8-Dihydroxyanthraquinone. d, Referred to primitive cell axes. Cl Referred to the crystallographic axes of the high-temperature rutile-structure phase of NbOp

Page 180: Second and Higher Order Elastic Constants

,2: g

Table 20. Tetragonal system. Incomplete sets of constants.

3. F et-2

spc in (TPa)-t cw in GF%.

8$ M&&al ps s S&fixes po

or C 11 33 44 66 12 13 16

Main refs.

Other refs.

Figs.

Barium calcium niobate-lead zirconium titauate, (BCN-FZT 16/45/55) *) 0. 16Ba(Ca#bU3)03-

W‘W’~(zr,.~s%.sP,l Barium sodium niobate (piezoel.),

Ba2Nm5015

adiabatic b, 582K cs 752K cs

isothermal b, 582K cT 752K cT

2 adiab.b) 582K cs 752K $

c’isohb) 582K cT 752K cT

Barium strontium niobate, (BSN)

B%.39Sr0.61Nb206 =) Barium titanate, (Fe or Cr doped)

BaTiO, Bismuth vanadate,

BiV04 (-35”) d, 593 K c

(loo) e) 593 K c Calcium lead propionate,

ca2pb(c2%co2)6

228 66.5 240 66.5 225 66.5 238 66.5 237 241 235 239

131.1 43.8 66.1 99.0 -21.0 181.0 43.8 16.0 48.9 21.0

86Y5 20.1

85El 8623

85El 8623

83Al 20.2

85Dl 20.3

83T2,82T2 24.7

78T4 20.4A, 20.4B continued

Page 181: Second and Higher Order Elastic Constants

Table 20 (continued)

Material S

or C

Suffixes per

11 33 44 66 12 13 16

Main Other rcfs. refs.

Figs.

Calcium strontium propionate c (deuterated), Ca$r(~D~CO~6 0

Cesium dihydrogen phosphate (piezoel.), CsH,pO,, (CsDP) s

170K c SE ce sp cp

Cesium lead bromide, CsPbBr,

Dicalcium strontium propionate, (deuterated), Ca$r(~D&O.& 9)

Dysprosium vanadate, DyVO, c Ethylammonium iron chloride,

(CH3CH2NH3)2Fe(J4 Hohnium vanadate, HoVO,

lndium-thallium, In*-,q Iron antimonate, FeSbOa S

Lead calcium titanate ceramic, (PCT X/Y) (cobalt-tungsten doped) Pb,Ca,_,[(Co~.5Wos)l-yT~103 ‘1

Lead oxide, PbO, S

11.7 10.1 3.50 2.10

150 6.7

pJ900 =l.l 490 =2.0

242

13.8 h, 14.3 -4.8

7.8 h, 19 -3.2 8566

6.08 87Y2 20.5

75P2

15 50

Table 9 9.22 78Hll 20.6

7282 83s 13,83N2, 85Y4 8664

83B9 85C4 86D4

20.7 22.19

20.8, 20.9 20.10

20.11

Page 182: Second and Higher Order Elastic Constants

Ti Table 20 (continued) vl& 3. 7 a!2 50

Material s Suffixes po Main Other Figs. 25 or refs. refs.

C 11 33 44 66 12 13 16

Lead samarium titanate ceramic PST), (maw== doped) Pb0.85Sm0.15~i0.98~.~3 W

Lead titanate (piezoel.), PbTiO, j? SE

Lead zinc niobate-lead titanate, k, 0.91Pb(Znt@b,~)03-0.09PbTi03

(poled 0.91 PZN-0.09 F’T) 403K $ SD

Lead zirconium- titanate (PZT X/Y), PbZr,Tit-,03 P) PZT 49/5 1 NEF’EC series d

Lead zirconate-titauate ceramic, (lanthanum doped) PUTxTy/z) Pb~&&Ti~,)~~~403 I)

PLZT lo/%/45 PLZT 9.8/55/45 PLZT 1 l/55/45 s) SE 1)

# 4 CEt) CE u) SD t) so u) CD 1) C?uJ

7.2 32.5 12.2 7.9 -2.1 71Gl

15.5 1) 10.3 m) 17.7n) 56O) 13.9 ‘1 7.3 m3 13.6 4 17.6 O)

8.31 8.73 -1.87 -1.96 -0.130 -0.146 -0.0286 -0.0280 139 116 40.8 40.4 3.70 4.40 2.72 2.70 8.12 8.51 -2.19 -1.70 -0.143 -0.190 -0.0129 -0.00813 145 134 46.6 29.8 -0.463 2.60 -1.44 6.70

86D4

82K4 16.4

89Rl 20.14 8613 20.15

86Y8 8786 85SlO

20.13

20.16 20.17 20.18, 20.19

Page 183: Second and Higher Order Elastic Constants

Table 20 (continued)

Material s Suffixes p0 Main Other Figs. or refs. refs. c 11 33 44 66 12 13 16

Manganese antimonate, MnSb204 s Methylammonium cadmium

chloride, (CH3NH-&CdC14 Neodymium vanadate, NdV04 s

C

Nickel antimonate, NiSbOb s Potassitun ammonium dihydrogen

phospha% ~d?JKAH$‘% Potassium dihydrogen phosphate, s

(deuterated) (piezoel.), C

IcD2x%(l-x~4

Potassium fluoroahuninate, c “1 m1F, c WI

Potassium fluoroaluminate, (Rubidium doped), %.94Rbo.06~4

Potassium nickel fluoride, K2NiF4

Potassium platinocyanide bromide hydrate, K2WW4Bro.3 - 3&O

Rubidium fluoroaluminate, RbAlF4

Sodium fluoroaluminate, Na+U,Ft, (chiolite)

Sodium tungsten bronze, N%.695W03 ‘) 431K c

11.6 h, 12.9

12.3 h, 299 12.3

141.6 90.1 142.3 88.3

296

24.0 79B3 41.6

-4.6 85Cl 8701

74.8 107 19 79B4

-4.2 85Cl 8OG5 20.20

20.21

20.22

68L2,8OD3 8Ql-2 20.23, 20.24

7.5 7.5 32.4 90Gl

90Gl

20.25

20.26

7665 20.27

77D8,8OC2

90Dl

81Hl 20.28

20.29

88Gl 20.30

Page 184: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.1 Elastic constants spa, cpa. Tetragonal system

179

Land&-Balmstein

New Series llItZ9a

Page 185: Second and Higher Order Elastic Constants

‘Ibble 20 (continued)

Material s or c

Suffixes pa

11 33 44 66 12 13 16

Main refs.

Other refs.

Figs.

Tungsten-bronze type solid solutions (piezoel.), XBa0.Y SrO-ZN%O-50Nb205

x Y z 30.8 11.0 8.2 IFE

f? 30.6 12.6 6.8 s

c? 32.0 13.9 4.1 s

Ii+ 21.2 22.2 6.6 se

CCJ 22.4 23.5 4.1 s

s 10.8 35.7 3.5 4 s

CE

5.3 8.0 16.1 118 62

5.1 9.0 15.4 124 65

5.3 7.8 13.7 129 73

5.3 7.0 15.2 115 66

5.5 7.4 16.1 121 62

5.4 9.2 15.9 128 63

81M9

a) General formula for BCN-FZT X/Y/Z is xBa(Cat,$b&03. (1-x)~b(Zr,,Tit,)Os] where X = 100x, Y = lOOy, Z = 100-Y. b, cs and cT are the adiabatic and isothermal elastic stiffnesses, respectively, at constant electric field. Values are given with respect to the room-

temperature orthorhombic axes. The tilde indicates values referred to the tetragonal axes and were determined from values measured with respect to the orthorhombic axes by performing a 45O rotation about the [OOl] axis. See also Table 21 and Figs21.10 and 21.11.

4 See also strontium barium niobate. d, A clockwise coordinate rotation of 35” about the [OOl] axis gives a minimum transverse phase velocity in the (001) plane along the new [lOO] axis. e) A counterclockwise rotation of 10” about the [OOl] axis gives a maximum transverse phase velocity in the (001) plane along the new [lOO] axis. rI Also called dicalcium strontium propionate [87Y2].

Page 186: Second and Higher Order Elastic Constants

Footnotes for Table 20 (continued)

@ See calcium strontium propionate. h) s11++. i) General formula for PCT X/Y (cobalt-tungsten doped) is PbxCa,,[(Co,.SW,.S),,Tiy30, where X = 100x, Y = 1OOy. j) Units not specified in original, but probably (TPa)-I. k, See also Table 16. l) qlll]L fl[lll,1 ~d+lllL are determined from the resonant and antiresonant frequencies, respectively, of a bar sample elongated in an arbitrary

direction perpendicular to the [ 11 l] axis. Poling direction is the [ 11 l] axis. m) qlll]ll- +11,11 and &ll,II are determined from the resonant and antiresonant frequencies, respectively, of a bar sample elongated parallel to the

[lil] axis. Poling direction is the [ill] axis. n, qool~ ~~ool,.L ad +JolJ.l are determined from the resonant and antiresonant frequencies, respectively, of a bar sample elongated in an arbitrary

direction perpendicular to the [OOl] axis. Poling direction is the [OOl] axis. O) Qol]ll~ ~[ool,II and +3ol,II are determined from the resonant and antiresonant frequencies, respectively, of a bar sample elongated parallel to the

[OOl] axis. Poling direction is the [OOl] axis. P) General formula for PZT X/Y is PbZr,Tit-,O, where X = 100x, Y = 100-X @ NEPEC-1, NEPEC-6 and NEPRC-63 are “hard” piezoelechic ceramics for high power transmitters; NEPEC-21 is a “soft” piezoelectric ceramic for

hydrophones. r, General formula for PLZT X/Y/Z is Pb,_~L~(Zr,Ti,-~)~-~~O~ where X = 100x, Y = lOOy, Z = 100-Y. 4 Units not specified, assumed units of m2/N for the compliances, N/m2 for the stiffiresses in Table 2 of [85SlO]. 0 Real part 4 Imaginary part. “1 Ultrasonic propagation. w) Brillouin scattering. x) See also Table 9. Y) See also barium strontium niobate. 4 Calculated from the compliances. 4 Pseudotetragonal. bb) [86D4] lists the composition as Pbo.ss Sm,,,(Tie@nc~,. The composition given here is believed to be the intended stoichiometry.

Page 187: Second and Higher Order Elastic Constants

Table 21. Grthorhombic system, 9 constants. sp in (Tpa)-1 cpa in GPa

Material s Suffiies pa Main Other Figs. or refs. refs. C 11 22 33 44 55 66 12 13 23

Acenaphthene, C1&I&H~~ s 81 93 115 377 345 541 -3 -28 -37 67M3 c *I S Cb)

Ammonium fluorobefyllate s (piezoel.), (NH&BeF4 C

S cc) S cd)

Ammonium hydrogen oxalate s hemihydrate, C

NW-Go4 - 34H20 Ammonium lithium sulfate,

NH4LiS04 (see LiNH$O4) Ammonium oxalate hydrate, s

(NH4hc204 * H20 C

Ammonium pentaborate tetra- s hydrate (piezoel.), C

mBf18 * 4H20 Ammonium perchlorate, s

NH4c104 C

13.8 12.6 11.2 2.65 2.90 1.85 2.1 4.1 4.6 110 112 133 235 271 205 +31 -47 -39 11.0 10.3 9.4 4.25 3.69 4.87 -1.9 3.3 2.3 44.0 58.5 44.9 117 149 115 -16.2 -15.8 -13.7 33.3 23.8 31.8 8.56 6.72 8.67 13.2 16.0 12.3 38.8 60.1 40.6 104 127 99 -16.7 -12.7 -15.4 38.2 24.5 35.6 9.6 7.9 10.1 15.2 17.8 14.1 38.8 40.6 60.1 104 99 127 -12.7 -16.7 -15.4 38.2 35.6 24.5 9.6 10.1 7.9 17.8 15.2 14.1 16.4 34.7 94.9 261 169 103 4.5 -4.3 -28.3 67.1 41.4 14.8 3-83 5.92 9.73 14.8 7.5 13.0

30.3 31.3 67.4 96.9 113 76.8 -7.2 -13.4 -22.2 45.6 52.6 25.3 10.3 8.85 13.0 22.2 16.4 21.7 101.62 86.44 19.73 475.06 346.38 75.06 -73.21 1.95 -5.05 25.4 30.3 51.8 2.1 2.9 13.3 21.7 3.1 5.6

78 71 38 152 213 97 -46 -17 0 25.1 24.6 31.5 6.6 4.7 10.3 16.3 11.5 7.6

81C3

76A4 88L5 21.1, 21.2

8OG4

8OG4

72K7 21.3

72K7

83K5

76Vl

Page 188: Second and Higher Order Elastic Constants

g Tktble 21 (continued)

3.7 et2 i?B

Material S Suffixes po Main Other Figs. ps or refs. refs.

c 11 22 33 44 55 66 12 13 23

Ammonium sulfate,

w4)2s04

Andalusite, A12SiOs e,

Anhydrite, CaSO,

Antimony sulfide iodide (piezoel.), SbSI

Aragonite, CaCO,

Bqrium manganese fluoride (piezoel.), BaMnF4 h,

Barium sodium niobate (piezoel.), Ba2NaNbs015

S

C

40.3 49.2 38.5 97.6 140 103 -16.9 36.1 29.8 35.3 10.2 7.17 9.74 16.5 37.9 50.3 41.6 105 143 97 -11.6 35.2 29.7 36.0 9.5 7.0 10.3 14.1

5.32 3.99 3.23 10.0 11.4 8.90 -1.04 233 289 380 99.5 87.8 112 81 11.0 5.72 9.55 30.8 37.7 108 -0.76 93.8 185 112 32.5 26.5 9.26 16.5 36.3 38.2 24.3 45.2 109 167 -8.7 30.9 32.7 49.5 22.1 9.2 6.0 9.6 36.3 38.1 22.7 44.6 101 170 -7.7 30.6 31.4 51.8 22.4 9.9 5.9 8.5 6.95 13.2 12.2 24.2 39.0 23.4 -3.04 160 87.2 84.8 41.3 25.6 42.7 37.3 17.0 27.3 33.5 58.5 28.8 50.8 +0.8 112 56.9 75.0 17.1 34.7 19.7 31.1

5.30 5.14 8.33 15.4 15.2 13.2 -1.98 239 247 135 65 66 76 104

-11.1 -12.7 15.8 14.6 -10.9 -19.1 15.7 17.3

-1.36 -0.71 116 98 -1.28 -1.52 15.2 31.7 -4.0 -10.6 9.3 15.8 -4.7 -9.2 9.7 14.4 0.43 -2.38 1.7 15.7 -14.8 -14.8 63.4 38.9

-1.20 -1.25 50 52

65H2 21.4

72L3

78Vl

65S4

7OSl

28~1

81L4

69Wl

17.2 18.8 10.8 83.7 35.5 37.2 -9.2 -2.5 -2.5 28~1, 1 1.3 0.2 1.7 1 1.5 0.6 1 0.7 46h1, 89.0 81.0 107 12.0 28.1 26.9 47.9 31.7 29.8 56h1, 3.6 8 4.3 0.2 0.8 1 3.4 6 3.3 59R2

21.5, 21.6

21.7, 21.8

86Y3 21.9, 21.10, 21.11

continued

Page 189: Second and Higher Order Elastic Constants

Table 21 (continued)

Material s Suffixes pa Main Other Figs. or refs. refs. c 11 22 33 44 55 66 12 13 23

Benzalazine, C14H12N2 S

C

Benzene, C,H, 250Ka) s C

27OKq s c

270Ka s c

Benzophenone (piezoel.), s (c&&co c

Betaine borate, S

(CH&NCH2CO0 - H3BOs c Betaine calcium chloride s

my-, c (CH&NCH2CO0 - CaC12 -

2H20 (BCCD) Betaine hydrogen maleate, s

(CH&NCH2CO0. C

vw,~~H), Bronzite (orthopyroxene). s

(MgPe)Si03 k, c

@%84F%16Si03) s

c

91 273 302 14.3 7.99 6.36 312 267 378 6.14 6.56 5.83 348 321 398 5.63 5.77 5.31 292 216 319 6.40 6.81 6.08 130 157 165 10.7 10.0 7.1 59.58 108.2 101.1 26.83 17.04 12.82 42.43 127.3 123.9 29.79 18.26 19.19

309 -55 -6 -183 3.24 5.11 3.37 4.94 654 -66 -170 -133 1.53 3.52 4.01 3.90 704 -103 -168 -143 1.42 3.41 3.61 3.52 699 -60 -163 -80 1.43 3.3 4.1 3.4 283 -72 2 -54 3.53 5.50 1.69 3.21 164 -43.88 4% -38.5 6.11 13.05 6.09 7.03 321 -10.9 -15.16 -87.01 3.12 9.69 10.45 14.01

65Hl

64Hl 21.12, 21.13

64Hl

79B2

57Cl

84H12 21.14

88Hl 21.15

943 1.06

3.78 298 3.36 256 3.9 645 1.55 518 1.93 116 8.62

417 2.40 508 1.97 617 1.62

1.83 493 2.03 2033 0.492 175 5.70

27.04 81.87 43.48 483 204 1270 -5.64 -8.98 -18.3 41.69 14.16 28.21 2.07 4.91 0.788 5.30 10.84 7.06

88H2 21.16

6.50 7.76 193 162 5.17 7.21 230 165

14.0 17.2 20.3 -2.54 -1.27 -1.49 71.5 58.1 49.3 73 53 50 12.0 13.1 12.7 -1.90 -0.98 -1.21 83.1 76.4 78.5 70 57 50

66R3,74A3

69K3

6.67 171 5.43

Page 190: Second and Higher Order Elastic Constants

‘lbble 21 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. C 11 22 33 44 55 66 12 13 23

Bronzite, cont.

@@0.8F%.2sio3) S

C

Cadmium antimoni& S

(piezoel.), CdSb C

S

C

Cadmium formate, S

Cd(COW2 C

Calcium borosilicate, S

(danburite), CaB,Si,Os c’) Calcium formate, S

Ca(COCW2 C

Calcium pallado tetracyanide s PemahYdrate, C

CaF’d(CN)., * 5H20 Carbazole-1,35-t SD

benzene, co C12%N-C6H3m02)3

Cesium biphthalate (piezoel.), s c&f4cOOHcoOCs C

Cesimn lithium sulfate, CsLiSO, (see LiCsSO$

5.25 7.45 5.23 229 160 210 13.0 11.2 12.6 79.7 95.0 84.0 20.2 17.2 17.6 70.2 82.2 76.2 54 124 40 50.0 20.5 41.1 8.52 4.81 5.20 147.5 228.6 235.5 49 85 44 49.2 24.4 35.4 41.9 25.3 55.9 36.7 59.9 22.1

88.3 176.3 111.3 255.3 713.3 463.0 -16.6 -9.5 -85.6 89E2 12.13 9.52 14.67 3.92 1.40 2.16 2.58 2.97 7.41

96 141 104 186 171 183 -70 -36 -16 73Bl 23.3 14.1 14.1 5.38 5.86 5.47 12.6 10.0 6.5

12.2 13.2 12.9 -2.05 81.8 75.5 77.6 71 79.4 33.6 53.2 -1.62 12.6 29.8 18.8 13.8 70.8 35.3 44.2 -6.7 14.1 28.3 22.6 36.8 117 158 71 -53 8.53 6.32 14.1 24.6 15.1 16.1 11.2 -1.30 66.1 62.2 89.5 50.2 95 82 35 -39 10.5 12.1 28.2 24.8 339 236 63.7 -15.6 2.95 4.23 15.7 26.1

-0.91 -1.10 72F3 55 46 -1.32 -2.34 71M7 10.9 19.1 -5.5 -5.0 78Bl 32.4 34.8 -15 -14 63H2 27.3 16.4 -2.48 -0.66 8602 76.7 59.2 -18 -8 63H2 24.5 14.5 -11.6 -7.8 82Ll 11.2 13.7

21.17

7422

21.18

8OM6 21.19

continued

Page 191: Second and Higher Order Elastic Constants

Table 21 (continued)

Material s or C

Suffixes pa

11 22 33 44 55 66 12 13 23

Main refs.

Other refs.

Figs.

Cesium sulfate, Cs$O, s C

Cesium thiocyanate, CsSCN s

Citric acid monohydrate,

C6H8% * H20

Cobalt olivine, Co#iO, (see Olivine, Cc@iO,)

copper chloride dihydrate, C&l2 * 2H20

al-14 wt% Al- 3.0 wt% Ni alloym)

Danburite, ~2Si208

Datolite, ca&Si208 *)

m-Dinitrobenzene, c6H4w02h

Ehstatite (ortho), MgSiO,

30.6 32.4 44.9 42.8 99.4 57.5 18.9 20.6 2.09 2.59 528 439

71.9 109 23.1 16.7

36.4 75.4 75.8 75.6 -9.8 -10.1 -10.7 37.8 13.3 13.2 13.2 19.6 18.2 18.0 60.6 510 137 329 -23 -47.2 -0.7 28.1 l.% 7.30 3.04 7.8 14.8 6.3 2.40 6.92 6.86 6.59 -0.49 -0.36 -0.60 466 144 146 152 125 111 128

37.9 270 350 190 -53.3 0.1 -19 30.5 3.7 2.8 5.2 12.4 6.1 8.3

49.1 33.9 52.1 156 139 59.2 -10.9 -14.9 -13.6 26.6 39.3 26.0 6.4 7.2 16.9 13 11 14 19.2 44.9 13.8 18.2 50.8 16.0 -24.7 9.6 -19.7 189 141 205 54.9 19.7 62.6 124 45.5 115 9.70 5.59 5.62 15.6 16.7 13.4 -1.98 -2.65 -0.31 131 198 211 64.0 59.8 74.9 50 64 34 4.97 6.83 10.2 25.1 18.5 11.8 -0.90 -1.95 -2.14 231 166 118 39.9 54.1 84.5 47 54 44 139.2 135.5 51.64 229 490 188 -77.2 -1.23 -13.9 10.70 11.30 20.27 4.37 2.04 5.31 6.30 1.95 3.19 5.27 6.74 5.20 12.9 13.2 12.2 -1.89 -0.87 -1.19 225 178 214 77.6 75.9 81.6 72 54 53

65H2

83I.2

75W5

83K14

8111 21.20

83Y4

7422

74A3,7423

88Sll 8OM5

78Wl

Page 192: Second and Higher Order Elastic Constants

I[ ‘fable 21 (continued)

3. 7 a!2 ifI

Material s Suffixes po Main Other Figs. refs. refs. p 5’ or

C 11 22 33 44 55 66 12 13 23

Fayalite, Fe$3i04

synthetic

Forsterite, Mg2Si04 s(?l=5)

s(n=5) 1700K

Gadolinium molybdate (piezoel.), s(n=3) Gd2(Moo&

s(n=3) Gallium, Ga

s(n=3)

s(n=3) L-Glutamic acid hydro-

chloride, CSH,oClN04

S

c

S

zb

cs

S

C

S

C

S

C

S

C

S

C

Guanidinium hydrogen L-aspartate, FWJ&&NO4 S

c

4.91 8.32 5.73 30.9 21.4 17.5 -2.01 -1.20 -2.57 267.0 173.6 239.2 32.4 46.7 57.3 95.2 98.7 97.9 4.82 9.08 5.92 31.25 21.28 17.54 -2.33 -0.87 -2.71 267 160 221 32 47 57 93 82 87 4.82 9.11 5.90 31.70 21.39 17.50 -2.33 -0.82 -2.78 265.85 160.25 222.42 31.55 46.74 57.15 92.4 80.6 88.4 3.37 5.84 4.93 15.0 12.3 12.4 -0.85 -0.71 -1.56 0.02 0.01 0.03 0.13 0.02 0.06 0.03 0.01 0.03 328.5 200.0 235.3 66.9 81.3 80.9 68.0 68.7 72.8 1.3 0.06 0.70 0.55 0.13 0.22 1.6 0.65 0.57 4.07 7.69 6.34 20.83 16.38 17.13 -0.99 -0.85 -2.30 269.77 155.57 188.19 48.01 61.04 58.37 50.99 54.87 63.31 20.1 16.0 12.0 39.8 38.7 30.3 -2.0 -4.1 -3.9 1.2 0.3 0.6 1.2 0.3 0.3 1.8 1.4 1.3 55.2 71.0 101 25.2 25.8 33.1 12.8 23.5 27.2 4 3 3 0.8 0.2 0.3 4.6 4.5 7.6 12.2 14.0 8.49 28.6 23.9 24.8 -4.4 -1.7 -2.4 0.6 0.8 0.8 0.6 0.2 0.7 1.1 0.7 1.5 100 90.2 135 35.0 41.8 40.3 37 33 31 2 3 3 0.7 0.4 1 7 11 5.9 101 72 33 108 124 120 -42 -20 4 16.2 20.2 37.6 9.22 8.04 8.37 10.0 10.9 8.6

79.66 83.96 67.19 122 76.0 127 -43.80 -18.53 -27.78 26.31 27.06 25.77 8.23 13.16 7.90 18.68 14.98 16.34

79s2 84w3 21.21

82G7

88612

69G3,69K4, 87G2 21.22 77Sll,8385, 89X2

89l2

72H8,74BS, 21.23, 78S2 21.24,

21.25

62R1, 21.26, 72M11, 21.27 71L3

75A6

87Kl

continued

Page 193: Second and Higher Order Elastic Constants

‘Pdble 21 (continued)

Material s Suffixes pa Main Other Figs. or refs. refs. C 11 22 33 44 55 66 12 13 23

Guanidiniumphthalate, S 277.0 262.9 204.2 418 307 133 -152 -108 -63.9 [a3Hd2c8b04 C 12.79 11.58 12.84 2.39 3.26 7.50 9.77 9.82 8.79

Indium selenide, In4Sej S 42.0 17.0 27.0 60.2 37.6 52.6 -0.15 -19.8 -5.86 C 38.2 66.5 64.3 16.6 26.6 19.0 ‘10.8 30.4 22.4

Iodic acid (piemel.), HI03 s 20.2 26.1 42.0 48.2 61.8 56.4 -0.2 -8.1 -9.9 So 1 0.8 2 2.4 3 3.4 (1.7) 3.0 1.6

C 57.0 42.9 30.0 20.8 16.2 17.8 6.0 14.6 11.5 s(n=4) 2 1 0.3 1 1 1.3 3 2 0.5

S 20.3 25.8 42.1 48.3 63.1 59.1 -1.1 -10.4 -8.9 C 58.0 42.9 30.1 20.6 15.8 16.9 8.0 16.1 11.1

Iodic acid (de&rated) S 20.2 25.8 41.8 48.4 62.7 59.0 -1.1 -10.3 -8.8 (piemel.), DI03 C 58.0 42.8 30.1 20.6 15.9 16.9 8.0 16.0 11.0

Iodine, I S 328 103 132 303 67.7 170 -97 -173 49 C 11.5 13.5 25.0 3.30 14.8 5.88 4.50 13.5 0.93

Iododurene S 344 359 194 302 245 254 -237 -59.1 -65.2 C 7.69 7.43 7.88 3.31 4.08 3.94 5.86 4.30 4.27

ZV-Isopropykarbamle (NIX) s 158.8 418 275 281 877 348 -130 26 -230 C 10.03 7.15 8.08 3.56 1.14 2.87-l 5.1 3.4 5.6

Lanthanum copper oxide, s 8.53 8.59 6.27 15.2 15.2 10.3 -3.8 -1.7 -1.8 La2cuo4 C 171.9 171.2 200.0 65.6 65.8 96.8 90.4 72.7 73.1

44K S 9.59 9.80 6.21 14.2 15.2 9.65 -5.1 -1.6 -1.8 C 168.8 166.8 200.0 70.5 66.0 103.6 100.0 71.4 72.8

87Kl

86Kl

5OmlO). 68H6 0). 71K1, 74M3 68H6 0)

68H60)

75B1

87820

86N3 21.28

9OMl

9OMl

Page 194: Second and Higher Order Elastic Constants

Table 21 (continued)

Material S Suffixes po Main Other Figs. or refs. refs. c 11 22 33 44 55 66 12 13 23

Lanthanum pentaphosphate, LaPa&, P) 399K

473K Lead bromide, PbBq

Lead chloride, Pbq s(n=3)

s(n=3) Lead potassium niobate

(piezoel.), Pb$Nb&

Lithium acetate dihydrak, CH$OOLi * 2Hz0

Lithium ammonium sulfate, (piemel.), LiNH$O4

Lithium ammonium tartrate (piezoel.), LiNH&~H406 - H,O &AT)

C

8.78 12.3 8.81 38.6 loo00 38.0 -1.17 -2.55 -3.73 132.1 99.6 149.4 25.9 0.1 26.3 27.9 50.1 50.3 8.85 12.53 9.05 37.7 54.6 38.2 -1.16 -2.66 -3.97 132.1 98.9 148.3 26.5 18.3 26.2 28.5 51.3 51.8 50.67 40.43 54.91 97.1 53.65 312 -4.41 -27.8 -19.2 32.54 35.32 35.63 10.3 18.64 3.21 13.6 21.2 19.2 36.6 30.1 38.6 108 48.4 170 -7.1 -15.1 -13.1 1.4 1.6 1.2 4.4 0.6 11.9 1.9 0.9 2.1 40.5 48.4 42.8 9.3 20.7 5.9 19.2 22.4 23.9 0.3 0.1 0.3 0.4 0.3 0.4 1.9 0.8 1.4 6.84 6.93 9.45 32.4 33.3 15.8 -1.01 -2.16 -1.89 166 161 124 31 30 63 37 45 41 6.68 6.92 6.09 15.2 17.7 15.8 -1.06 -1.44 -1.67 166 163 191 66 57 63 37 50 54 40.7 18.6 19.6 123 286 233 -3.8 -1.7 -5.5 25.4 60.2 56.4 8.1 3.50 4.30 6.4 4.0 17.5 38.2 31.5 33.0 65 101 64 -8.8 -16.0 -9.9 41.6 44.1 49.7 15.4 9.9’ 15.7 19.7 26.1 22.8 35.3 33.6 35.0 66.2 92.6 76.3 -17.1 -13.1 -7.3 55.2 52.2 43.8 15.1 10.8 13.1 34.1 27.7 23.6 30 25.6 35 84’) 150 4 43 r) -8.2 -2.7 -12.2 38.6 53.9 36.3 11.9’) 6.7 I) 23.3 r) 16.5 8.7 20.1 32.4 23.9 40.1 73.4 140. 60.9 -6.6 -12.5 -11.0 42.21 57.51 36.76 13.63 7.13 16.41 20.2 18.7 22.0

8OEl 24.13A, 24.13B

88A4

68M1, @ 75P3, 88A4

75Yl

72Vl

75Al a) 21.29 21.30

89Ml J)

50ml 21.31, 21.32

88Pl

continued

Page 195: Second and Higher Order Elastic Constants

‘Pdble 21 (continued)

Material S

or c

Suffixes pa

11 22 33 44 55 66 12 13 23

Main refs.

Other refs.

Figs.

Lithium cesium sulfate, (piezoel.), LiCsS04

Lithium formate (piezoet), LiCOOH * Hz0

Lithium germanate, Li2w315

S

I

ce

S

c

S

C

25.9 19.6 40.8 87.0 62.1 49.3 -6.3 -14.9 -5.14 58.9 63.7 35.7 11.5 16.1 20.3 25.4 24.7 17.3 59.92 49.37 38.25 66.58 188 205 -11.5 -5.76 -24.48 19.15 33.55 41.98 15.02 5.31 n, 4.89 8.62 8.40 22.77 6.06 7.84 7.76 22.4 29.3 30.1 -1.49 -1.82 -1.59 193 145 150 44.6 34.1 33.3 48 55 41 6.06 7.93 7.83 22.43 29.33 30.02 G1.49 -1.80 -1.50 192.27 141.97 147.16 44.58 34.10 33.31 46.26 53.08 37.80

87M3

8321

8OH6

83H5

83A6, 21.33 83F’2

21.34

21.35, 21.36A, 21.36B, 21.36C, 21.37

Lithium hydrogen selenite, LiHSeo3

Lithium metagalk (piezoel.), LiGa02

Lithium metagermanate (piezoel.), s(n=3) Li2Ge0, Q

s(n=3) ce

se 9 co Se”) flu)

48.18 17.30 32.20 82.17 %.90 68.45 29.30 63.80 43.15 12.17 10.32 14.61

7.3 9.1 8.0 17.5 21.1 14.5 140 120 140 57.1 47.4 69.0 7.2 8.8 7.1 17.0 20.0 15.0 140 120 150 59 49 68 10.29 9.29 9.26 21.4 17.4 26.9 0.01 0.03 0.2 0.1 0.1 0.5 118.1 131.1 132.6 46.7 57.3 37.3 0.1 0.1 1.2 0.2 0.25 0.7 10.27 9.28 9.02 21.40 17.43 27.07 118.21 131.24 133.8 46.72 57.38 36.94

149.37 47.13 58.10 10.4 9.43 9.46 20.6 16.8 24.8 101 112 114 48.5 59.6 40.4

-5.21 -18.95 -3.07 12.10 18.40 13.21 -0.5’ -1.4 -2.0 14 28 31 -0.6 -1.1 -1.5 14 26 27 -2.4 -2.5 -2.5 0.2 0.1 0.2 41.8 43.4 46.9 1.8 q.8 2.1 -2.59 -2.38 -2.33 43.60 42.41 45.36

-1.10 -1.79 -1.73 16 22 23.5

84Rl

72Nl

82H4, 79R1, 21.38, 85B5, 79B9 21.39, 86Tl 21.40

82H4

79R7

Page 196: Second and Higher Order Elastic Constants

lhble 21 (continued) w I M CD

Material s or C

Suffixes pa

Li2Ge03, cont. 293K SE”)

CE P”) CD

77.8K P”) co

Li$kOs+4at%Si SEU)

CEU) Lithium metasilicate a+

(piezoel.), Li2Si03 CE

co Lithium rubidium sulfate tri-

hydrogen sulfate, 1OOK s. LiRbs(SO& - 14czH,S04 c

&==S) Lithimn thallium tartrate s

monohydrate (piezoel.), c LiTlC,QO, * Hz0 (TAT)

Magnesium barium fluoride s (piezoel.), MgBaF., c

Magnesium sulfate S

heptahydrate (piezoel.), c

MgSO‘, - 7H20 S

L

11 22 33 44 55 66 12 13 23

Main refs.

Other Figs. cl

refs. d

10.29 9.3 19 118 131 9.92 9.15 118 131 9.69 8.99 122 136 10.4 9.41 100 111 8.51 7.49 137.47 155.00

9.44 21.6 17.3 133 46.4 57.6 7.92 21.44 17.06 149.3 46.64 58.62 7.63 21.16 16.89 156.3 47.26 59.42 9.42 18.9 14.4

108 52.8 69.6 8.25 17.54 13.38 142.8 57.00 74.74 154.19 57.22 74.74

56.2 60.2 23.7 139 143 455 -43.1 -0.32 -7.84 42.0 41.0 47.0 7.2 7.0 2.2 31.5 11.0 14.0

32.1 23.9 40.2 73.5 139 61.0 42.6 57.4 36.7 13.6 I) 7.2 I) 16.4 r,

14.1 14.4 11.6 31.2 18.2 40.5 -2.2 -6.3 -2.9 104 81 130 32.1 55.1 24.7 28.7 63.7 35.8 52.6 62.2 56.9 130 62.3 121 -26.8 -17.0 -24.7 48.3 37.2 35.1 7.7 16.1 8.3 26.7 23.6 24.1 52 62 57 128 64 111 -19 -19 -25 32.5 28.8 31.5 7.8 15.6 9.0 17.4 18.2 18.2

26.2 -2.09 -2.65 -2.79 38.2 39.4 44.4 49.8 26.2 -2.34 -1.90 -2.28 38.2 40.1 39.8 47.4 25.8 -2.44 -1.85 -2.25 38.8 43.9 42.6 50.7 28.1 -1.82 -0.81 -0.91

35.6 20 11 12.5 24.26 -1.76 -2.09 -1.84 41.22 43.36 44.60 45.66

-6.51 -12.4 -11.0 20.2 18.7 22.0

86Tl c :z

m E- g.

86Tl g s

79R7 B 6

s 82H4 .,

<

89M3 18.21

88Pl

74R2

58Vl

62A2 continued 5

Page 197: Second and Higher Order Elastic Constants

‘lbble 21 (continued)

Material s or C

Suffixes pa

11 22 33 44 55 66 12 13 23

Main refs.

Other refs.

Figs.

38.1 59.0 15.4 110 110 1000 -13.5 -9.2 0.2 33.9 18.7 77.0 9.1 9.1 1.0 7.7 20.2 4.4

88M14 18.27 Mercurous chloride, 123K s

I-WA w) C

3-Methyl4nitropyridine l-oxide, CeN20& (KIM) s

C Natrolite, x, S

Na+12SisOIo * 2H20 C

Nickel sulfate heptahydrate s (piemel.), NiS04 - 7H20 c

Olivine, Co$iO, S

Olivine, Fe$i04 (see Fayalitec) Olivine, (Mg93Fe&GO~ s

142.9 203.8 284.8 128 192 185 -115 130 -202 13.29 18.14 12.20 7.8 5.2 5.4 4.9 -2.6 10.6 17.2 20.8 8.61 50.8 41.5 24.3 -7.01 -1.31 -4.24 72.2 65.7 138 19.7 24.1 41.1 29.6 25.6 36.9 50 61 55 110 58 101 -20 -18 -24 35.3 31.1 33.5 9.1 17.2 9.9 19.8 20.1 20.1 4.16 7.25 5.89 21.4 15.6 15.4 -1.54 -1.18 -2.50 308 195 234 46.7 63.9 64.8 102 105 103

89SlO

-a 74A3 62A2

7982

3.44 5.99 5.02 15.5 12.7 12.7 -0.86 -0.76 -1.66 324 198 235 64.6 78.6 79.0 66 72 76 3.44 5.99 5.02 15.48 12.81 12.65 -0.86 -0.77 -1.66 323.7 197.6 235.1 64.62 78.05 79.04 66.4 71.6 75.6 3.43 5.88 4.81 15.0 12.4 12.6 -0.67 -0.89 -1.63 324 198 249 66.7 81.0 79.3 59 79 78 3.50 6.08 5.01 16.3 13.0 12.8 -0.98 -0.74 -1.6 320.1 195.4 233.9 61.3 77.2 78.0 70.1 70.1 73.6

69K4

69K4

6OVl 21.42

89B8

Olivine, natural

Olivine, (M~Fe&SQ s C

Olivine, San Carlos peridot s (Mg8&11%lNb.4- c

Mno.lhSiO4 Olivine, Mg$eO4 s 3.54 6.20 5.34 17.5 15.1 14 -0.85 -0.8 -1.6

312 187 217 57.2 66.1 71 60 65 66 83Wl

Olivine, MgzSiO4 (see Forsteri~)

Page 198: Second and Higher Order Elastic Constants

I[ ‘pdble 21 (continued) 2. F aE a

Material s Suffixes po Main Other Figs. 25 or refs. refs.

C 11 22 33 44 55 66 12 13 23

Olivine, Mn$i04 (see Tephroite) Olivine, Ni$iO,, S

c Chthoenstatite (see Enstatite) orthofelTosilite S

c Potassium barium nitrite, s

(piezoel.), K2Ba(N0,), c Potassium biphthalate S

(piemel.), c C,H&OOHCOOK

Potassium cadmium sulfate, s (piezoel.), K2Cd2(SO& c

Potassium hydrogen sulfate, s KHSO~ c

Potassium nitrate, S

mo30 C

Potassium nitrate, KN03 s C

398K Y) S

C

Potassium pen&mite tetra- s hydrate (piezoel.), C

KB50s * 4Hz0

3.7 5.7 5.3 14.0 11.5 12.9 -1.2 -1.1 -2.0 340 238 253 71 87 78 109 110 113

7.32 10.4 7.0 17 17 20 -3.8 -1.8 -1.7 198 136 175 59 58 49 84 72 55 36.0 38.69 19.97 120 104 97.1 -11 -8.0 -8.1 37.1 34.33 66.65 8.4 9.6 10.3 15 21 20 104 99 93 206 132 160 -38 -52 -6 17.6 13.3 17.0 4.86 7.59 6.23 7.4 10.4 5.0

16.3 18.2 17.6 40.8 46.5 71.2 72.4 75.5 24.5 21.5 22.0 45.4 45.6 78.7 91.2 57.0 30.6 31.4 12.7 11.0 38 42 64 149 185 35.8 30.0 20.4 6.7 5.4 37.94 49.84 64.84 147 184 37.16 29.89 20.37 6.80 5.43 42.90 56.26 72.93 167 202 33.13 26.43 18.34 5.99 4.95 23.2 73.6 98.3 614 215 58.2 35.9 25.5 16.4 4 4.63

44.3 -3.3 -3.6 -7.1 22.6 22.4 23.8 33.9 111 -6.9 -8.7 -18.4 8.99 15.6 17.2 15.3 120 -12 -16 -12 8.3 13.4 11.6 9.2 120 -17.2 -11.0 -18.0 8.35 16.80 10.96 11.14 135 -19.1 -13.4 -20.1 7.39 14.91 10.18 10.02 175 -10.6 -6.1 -60 5.7 22.9 17.4 23.1

84Bll

84B21

83L6 21.43

69B4

83A2 21.44, 21.45

7563

,71M5

9oH2

9oH2

57C2 83K5

continued

Page 199: Second and Higher Order Elastic Constants

‘l3ble 21 (continued)

Material s or C

Suffixes pa

11 22 33 44 55 66 12 13 23

Main refs.

Other refs.

Figs.

Pora!Bium selemte (piemel.), K$eO.,

Potassium sulfate, S 23.6 21.8 22.6 Kz~4 c 53.6 56.5 55.2

Potassium hihydrogen S (32.0) (58.3) (56.8) selenite, KH$kO& MI c (36.6) (23.0) (26.1)

Potassium zinc chloride, S 64.0 63.7 48.0 160 185 220 -24 -17 -8.2 8841 K2ZnC14 cc) c 21.7 20.2 25.3 6.2 5.4 4.5 9.5 9.3 6.8

Protoenstatite, ~~l.6Lb.2sc0.z)si206

Pyrazine (deuterated), (~)JN2

Resoknol (piezoel.).

c6%(om2

S (23.5) (27.3) (35.2) C 50 48 38 S X.8 25.3 32.7 c 50.5 47.9 40.7

143 63 7 16 120 70.4 8.1 14.2

51.3 53.2 19.5 18.8

(210) (58) (4.8) (17.3)

65 (4.8) (-6.8) (-12.1) 80R3J) 15.5 15.5 15 19.5 64.9 -4.3 -9.8 -8.6 82H5 15.4 15 19 17

70.2 -5.9 -6.8 -5.6 .65H2 14.2 20.0 21.0 19.9 (133) (-2.0) (-13.4) (-26.5) 77M8 (7.5) (6.6) (11.7) (12.3)

81C1, 81Sll

S 5.80 8.74 4.75 12 23 15 -2.6 -0.65 -1.9 83Vl c 213 152 246 81 44 67 76 59 70 S 52 141 224 385 345 667 -30 0 -60 73R3 C 22.7 9.3 5.1 2.6 2.9 1.5 5.5 1.4 2.45 S 190 106 150 307 230 250 -40 -34 -88 59K3 c W 8.6 28.8 19.5 3.26 4.35 4.00 9.5 7.5 19.1

83315, 21.46, 84=, 21.47, 88B4 21.48,

21.49, 21.50

2151, 21.52, 21.53 21.54, 21.55, 21.56, 21.57A, 21.57B. 21.57C 2158, 21.59, 21.60

Page 200: Second and Higher Order Elastic Constants

g ‘Ihble 21 (continued)

3. P eiz -ski

Material s Suffixes po Main Other Figs.

p5 or refs. refs. c 11 22 33 44 55 66 12 13 23

Rochelle salt (piezoel.), S

KNaC&Lt06 - s&6) 4H20 C

sow Rubidium biphthalate (piezoel.),

C&@OHCOORb S

c-1

S@

C

Rubidium hydrogen sulfate s (piezoel.), RbHSO,, C

Rubidium sulfate, Rb$O., s C

Rubidium zinc bromide, s RbZnBr4 C

Rubidium zinc chloride, s R~ZnCl4 C

S=)

cd Sillimanite, Al+iOs e, S

c Silver nitrate, AgNOs S

C

50.9 33.9 32.5 90.6 328 102 -14.7 -17.1 -6.2 2 2.4 3 35 16 15 5.4 4.8 12 39.8 55.3 63.2 11.9 3.05 9.95 24.3 31.9 23.8 16 ~~ 25 23 3.8 0.2 1.6 29 20 43.8

128 117 142 205 144 157 -47 -83 -19 19.9 13.8 15.8 4.87 6.93 6.36 10.1 13.0 7.8 131 106 143 194 140 157 45 -72 -1. 13.3 11.9 10.4 5.16 7.14 6.38 5.8 6.7 3.0 43.7 33.2 30.7 220 192 87.7 -16.3 -6.6 -2.2 29.7 37.9 34.6 4.55 5.2 11.4 15.1 7.5 6.0 25.8 25.1 27.4 61.5 62.9 71.1 -6.9 -8.0 -7.3 50.3 51.0 47.6 16.3 15.9 14.1 19.6 20.0 19.2 81.78 77.43 59.28 211 195 293 -26.3 -21.8 -18.3 17.07 17.54 22.63 4.73 5.13 3.41 7.85 8.70 8.30 68.52 62.53 45.1 164 161 272 -21.0 -15 -14 19.27 20.96 28.2 6.10 6.22 3.67 8.53 9.2 9.4 74.26 65.5 45.7 160 160 280 -26 -17.6 -12.5 19.3 21.0 28.4 6.2 6.3 3.6 9.7 10.1 9.5 4.13 6.53 3.59 8.17 13.2 11.5 -1.50 -0.27 -2.34 282 232 388 122 76.0 87.2 95 83 159 88.14 73.89 34.24 175 156 90.33 -47.5 -16.4 -16.9 30.18 36.97 57.20 5.72 6.42 11.07 25.60 27.07 30.49

5Om1, 52h1, 64B2

73Bl

74B2

79z2

65H2

89Hl

89Hl

82L5

78Vl

9oH2

21.61, 21.62

21.63

88L5 21.64, 21.65

Page 201: Second and Higher Order Elastic Constants

‘Ihble 21 (continued)

Material s or C

Suffixes pa

11 22 33 44 55 66 12 13 23

Main refs.

Other refs.

Figs.

Silver thallium selenide, s AgTlSe C

Sodium ammonium selenate s dihydrate (piezoet), C

NaNH&Q, - 2H20 260K Sodium ammonium tartrate s

tetrahydrate ii) (piezoel.), c NaNH4C&,06 - 4H20 s

Sodium cobalt germanate s (piezoel.), Na+GeO~ ij @

so co

Sodium dihydrogen phosphate s dihydrate, NaH2F04 - 2H20 c

Sodium flumborate, NaBF4 s 293K

Sodium metagermanate s (piezoel.), Na#eOs ce

co

53.4 69.3 109 69.8 45.1 72.1 60.5 57.3 70.1 14.3 22.2 13.9 44.6 35.1 67.0 187 198 191 28.6 33.8 20.7 5.36 5.06 5.23

56 38 53.1 34.1 57 38.5 36.8 50.9 20.6 25.0 105.0 94.7 20.5 24.9 105.0 94.7 59.76 34.04 25.50 40.10 25.40 33.47 43.59 35.94 15.16 11.94 92.44 110.72

37 88 360 77.8 11.8 2.9 40 94.5 r) 330 r) 55.4 10.6 3.03 16.9 w5) 27.3 99.2 (16.5) 36.6

16.4 58.6 27.2 loo.7 17.1 36.8 34.54 67.07 59.77 47.22 14.91 16.73 19.36 75.30 243 56.51 13.28 4.11 14.0 28.99 21.68 87.2 34.49 46.12 95.67 34.75 46.53

118 8.8 115’) 8.70 28.0 35.7

28.0 35.7 111 9.01 88.73 11.27 56.31 17.76

22.2 -56.7 -69.3 83Nl 32.8 M) 52.2 a) 53.4 W -4.4 -21.7 -14.7 75K4 21&A, 8.3 11.1 10.1 21&B,

21.67 -9 -34 -5 46hl 21.68 18.7 51.3 21.6 -15.5 -22 -15.5 50ml 27.2 30.8 34.7 -13.0 4.1 -7.4 78D3 71.5 57.0 59.0 -13.0 4.0 -7.2 71.5 57.0 59.0 -9.52 -20.34 -11.23 84B2 13.54 19.42 21.01 -8.76 0.15 -7.17 86G3 12.32 4.22 13.22 -5.26 -4.26 -2.25 82H4 47.45 35.65 32.12

Page 202: Second and Higher Order Elastic Constants

fF Table 21, (continued) VlB 2. F Elg

5B Material s Suffixes po Main Other Figs.

p5 or refs. refs. C 11 22 33 44 55 66 12 13 23

Sodium nitrite (piezoel.), s 39.8 20.1 18.5 86 101 202 -6.7 -8.2 -3.0 NaN02 kL) s(n=3) 1 0.6 1 8 0.6 10 1.4 3 1.3

C 30.6 56.3 63.9 11.7 9.9 5.0 12.5 15.6 14.6 s(n=3) 0.3 2 2 1 0.06 0.3 0.1 5.3 4.8

Sod@ sulfate (Thenardite), s Na2s04 C

sodium tamate dihydrate s (piezoel.), c Na2C4Q06 * 2H20

Staurolite, @dW&W~+3>~- S

O~SiO4(O,OH)2 C

Strontium formate (piezoel.), s W~~J% c

Strontium formate dihydrate s (piezoel.), C

Sr(COOHJ2 * 2H20 S

c Strontium sulfate (Celestite), s

SrS04 C

15.3 10.7 17.0 67.7 55.5 42.4 -3.6 4.9 -1.3 80.4 105 67.4 14.8 18.0 23.6 29.8 25.6 16.8 37.1 31.6 26.4 80.6 323 100 -12.0 -11.5 -10.9 46.1 54.7 66.5 12.4 3.1 9.8 28.6 32.0 35.2

3.20 13.7 17.3 21.7 343 185 147 46 51.9 49.9 23.6 72.6 34.6 37.1 50.9 13.8 28.4 31 31 65 *) 43.9 34.8 37.4 15.4 38.1 34.1 32.9 73.5 41.2 46.2 40.4 13.6 22.0 21.8 11.4 74.1 104 106 129 13.5

14.3 10.9 70 92 71.5 52.6 14.0 19.0

93 *) 58 *) 10.7 17.2

122 63.6 8.21 15.7 35.8 37.6 27.9 26.6

-0.6 -0.8 -11.7 67 61 128 -30.8 -4.7 -7.8 23.5 14.6 16.9 -8 11 -2 10.4 -14.9 -1.4

-16.6 -9.0 -8.8 24.6 17.8 19.1 -13.9 -3.7 -4.0 77 60 62

7OH6, 21.69, 7002, 21.70, 7486 21.71,

21.72, 21.73

66B2

56hl

57B3

63H4

50ml

63H4

56hl

continued

Page 203: Second and Higher Order Elastic Constants

mble 21 (continued)

Material S

or c

Suffixes pa

11 22 33 44 55 66 12 13 23

Main refs.

Other refs.

Figs.

Sulk, a-S S

C

S

C

77K S

Tellurium vanadium oxide > @ill-). T%V209 ce

Tephroite, Mn2Si04 S

c Terbium fluoride, TbFs S

c Terbium molybdate (piezoel.), fl

-%!wm3 ce ckTerpine hydrate (piezoel.), s

c10H18(oH)2 - H2° C

Tetramethyl ammonium tetra- chlorozincate. S

N~3)412~Q c O-MAT=)

Thallium nitrate, TWO3 s C

349K”“) s C

71 83 30 232 115 132 -36 -13 -15 24.0 20.5 48.3 4.3 8.7 7.6 13.3 17.1 15.9 74.6 111 75.4 121 234 229 -13.1 -7.1 -45.8 14.22 12.68 18.30 8.27 4.28 4.37 2.99 3.14 7.95 56.5 89.0 64.6 91.7 230 170 -11 -7.0 41.1 19.2 17.0 23.2 10.9 4.3 5.8 4.6 5.0 11.3 11.7 14.0 11.7 30.0 56.8 32.4 -2.3 -0.75 -2.8 90 79 91 33.3 17.6 30.9 17 10 20 5.04 8.65 6.87 22.1 18.0 17.3 -1.8 -1.5 -3.0 258 166 207 45.3 55.6 57.8 87 95 92 9.93 6.13 11.75 19.4 14.9 24.0 -3.62 -6.17 +0.15 215 235 143 51.6 67.1 41.7 1% 111 62 18.0 18.2 13.6 36.5 39.4 31.3 -2.1 -3.8 -7.7 64.0 77.6 108”) 27.4 25.4 32.0 19.5 28.6 48.9 106 120 86 411 448 289 -26 -36 -22 12.5 9.9 15.3 2.43 2.23 3.46 3.8 6.2 4.1

135.2 168.9 103.2 518 284 340 -75 -12.5 -55.0 84Bl6 21.76, 11.63 11.14 13.90 1.93 3.52 2.94 6.8 5.03 6.76 21.77

35.16 46.64 49.97 75.70 158 146 -9.0 -10.3 -25.3 36.94 36.09 34.10 13.21 6.34 6.83 15.51 15.49 21.49 38.3 51.1 54.2 82.0 175 164 -10.6 -10.5 -27.8 34.1 33.6 31.5 12.2 5.7 6.1 14.8 14.2 20.1

56hl

69H5

8635 21.74

8OJ3

7932

8lK6

Table 18; 7882 5883

21.75

9oH2

9oH2

Page 204: Second and Higher Order Elastic Constants

g Table 21 (continued)

p.g &

Material s Suffixes po Main Other Figs. or refs. refs. ps c 11 22 33 44 55 66 12 13 23

Thallium phthalic acid, s 150 91 100 190 267 Cd3404~ c 13.7 17.4 13.9 5.25 3.75

Thallium sulfate, T&SO4 s 46.0 47.6 36.1 88.9 93.6 41.1 38.8 42.7 11.2 10.7

Thallium trihydroselenite > O”) 56.6 34.6 45.4 264.0 PP) 132.0 (TITS) (piexoel.), SE 48.3 49) 47.7 d 54.4 ss) m33(sfi,)2

Thallium trideuteroselenite # ““1 53.9 48.3 40.3 162.0 90.5 (TITS) (piezoel.), m3(sfi3)2

Thiourea, SCty-I-q, s 133 42 90 453 161 s(?l=3) 11 1 13 38 13

C 10.6 26.3 15.4 2.2 6.3 tin=3) 0.4 1.0 0.7 0.2 0.6 293Kw) s 123.6 40.64 87.04 450 164

C lOA 25.95 15.03 2.22 6.08 198K-) s 110.3 38.15 95.38 389 141

c 10.95 27.90 13.36 2.57 7.09 175K =) S 110.7 36.58 85.28 365 146

C 11.20 28.95 15.02 2.74 6.83 150K YY) S 110.3 35.70 82.06 386 161

C 11.11 29.80 15.60 2.59 6.20 Tin-lead alloy; S 23.7 22.9 25.1 72.5 70.4

Sn-38.1 wt % Pb eutectic zz) c 71.2 72.9 66.2 13.8 14.2

190 -70 -63.8 21.7 5.26 8.92 6.80 1.92 133 -23.2 -12.7 -11.7 7.51 25.7 22.9 21.7 171.0 -41 -14 -74

176.0 -17 -12 -77 85818 21.79

1510 173 0.7 0.1 1750 0.57 1920 0.52 1720 0.58 1430 0.70 65.4 15.3

-9 -52 -9.5 11 14 5 3.9 6.3 4.7 2.2 0.7 0.2 -2.80 45.8 -10.9 2.23 5.67 4.43 0.48 -41.63 -13.75 1.67 5.02 4.75 -3.34 40.7 -10.4 2.64 5.67 4.80 -1.83 -39.2 -11.4 2.36 5,63 5.25 -8.5 -8.8 -8.3 40.6 38.5 38.5

84B12

65H2

85818, 21.78 8332 @

8OJ2, 21.80, 74B3, 21.81, 86Hl 21.82

86Hl

87819

continued

Page 205: Second and Higher Order Elastic Constants

liable 21 (cdntinued)

Material S

or C

Suffixes pa

11 22 33 44 55 66 12 13 23

Main refs.

Other refs.

Figs.

s-Trichlorobenzene (piezoel.), s 185

c6H3c13 c 8.03 Trinickel boride, Ni3B S 6.67

c 300 1,3,5-Triphenylbenzene S 190

(Pie=l.), GH18 C 7.20 Tris-sarcosine calcium S 79.1

chloride (piezoel.), c 21.6 9 (cH3NHcH@oH)3 * cacl2 (Tscc)

Topaz, &F,CW$iO4 s 4.43 C 281

Uranium, a-U S 4.91 C 215

Wolframite, (Fe, Mn)W04 j.iI s 7.99 C 177

Zinc antimonide, ZnSb S 13.8 C 92.2

Zinc sulfate heptahydrate s 29.5 (piezoel.), ZnSO, - 7H20 c 40.0

S 52 C 33.2

126 176 286 267 2% -53 -64 -36 11.0 7.89 3.49 3.75 3.38 4.47 3.85 3.88 6.03 5.50 7.8 13 10 -2.7 -2.6 -1.5 288 319 128 76 98 182 193 165 95 87 158 1030 540 -46 -41 -17 13.5 14.3 6.32 0.97 1.85 4.30 4.21 4.68 54.1 35.1 77.5 47.2 41.3 -40.9 5.4 -17.3 37.16 35.3 #) 12.9 21.2 24.2 18.1 5.6 15.5

3.53 3.84 9.25 7.52 7.64 -1.38 -0.86 -0.66 349 294 108 132 131 125 84 88 6.73 4.79 8.04 13.6 13.4 -1.19 0.08 -2.61 199 267 124 73.4 74.3 46 22 108 8.11 5.27 19.8 15.8 49.2 -3.25 -1.77 -1.28 168 233 50.4 63.1 20.3 84 80 69 11.4 13.4 46.8 21.5 28.9 -3.0 -4.6 -2.5 104 93.7 21.4 46.6 34.6 33.1 37.9 31.0 37.7 20.5 200 58.8 55.3 -10.8 -3.5 -6.1 32.2 54.5 5.0 17.0 18.1 13.2 10.8 11.9 63 64 128 65 120 -14 -23 -30 29.3 32.0 7.8 15.3 8.3 17.2 20.0 19.8

7539

84F5

74H3

9OPl

28~1

85H7, 21.83 86W4, 88P5

58Fl 21.84

74A3

79BlO

56hl

62A2

g kg

4 From ultrasonic transmission data. b, From diffuse X-ray scatwring data.

Page 206: Second and Higher Order Elastic Constants

Footnotes for Table 21 (continued)

4 Axes transformed x + x, y + z. It seems probable that the results of [76A4] and [8OG4] refer to coordinate systems in which the z and y axes are ilmchanged.

d, As published. =) Ideal composition; see [78Vl] for detailed analysis. fl Constant displacement values in the paraelectric phase (29X). d Constant displacement values in the ferroelectric phase (285K). h, Commensurate-incommensurate phase transition at 247K. 9 From ultrasonic transmission data Extrapolated values. J) From Brillouin scattering data. k) original data from [66R3] (III/l 1, p. 64) improved by computer calculation to minimize residual errors [74A3]. l) The values of c33 and cz3 quoted in the abstract disagree with those in the Tables. The quoted values 233.5 and 59.2 GPa for ~33 and ~23,

respectively, give the best agreement with the inverted compliance matrix. m) ‘yl martensite phase. n, Monoclinic quasi-orthorhombic. original data from [7423] (III/l 1, p. 64) improved by computer calculation to minimize residual errors [74A3]. O) Axes transformed 1 + 3,2 + 1,3 + 2. P) Phase transition 2/m + mm at 398K. See also Table 24. @ Axes transformed 2 c) 3. 9 Constant E values. s, CE, CD = 5.55 GPa. @ The following elastic stiffnesses [79B9] are in close agreement: @33 = 132, cu33 = 151; @44 = 49.3, CD44 = 49.7; $5~ = 57.8, $5~ = 58.2 GPa

when the axis is transformed 1 f) 2 to conform with data in [82H4,86Tl]. 4 Axis transformed 1 c) 2 to conform with data in [82H4,86Tl]. VI Compliance values in [86Tl] are a power of ten too large. w) Calculated from a coordinate rotation of 45” about the [OOl] axis of the elastic stiffness curves of [77A2]. The elastic stiffnesses in [77A21 are

referred to the higher temperature tetragonal axes. See caption of Fig. 18.27. x) Chiginal data from [66R3] (III/l 1, p. 66) improved by computer calculation to minimize residual errors [74A31. Y) a + p phase transition at 402K. 4 flu; SM = 64 (IPa)-‘* 4 PM; @a,,, = 15.8 GPa.

continued

Page 207: Second and Higher Order Elastic Constants

Footnotes for Table 21 (continued)

bb) The stiffiresses are labelled as in [77M8] but it appears that the axial transformation x + y is required to make the notation conform with that of later workers [7869,7968,81Cl].

ccl Axes transformed 1 c) 3 to conform with convention for RbZnC14 in [89Hl]. dd) These figures differ from those in the original paper, apparently due to conversion errors. @ Sound propagation method. @ Resonance method. SIJ) Axes transformed 1 c) 3 to conform with convention in [89Hl]. hh) Positive values chosen. 3 Rochelle salt with the K replaced by NH.,. iii Monoclinic quasi-orthorhombic. kL) See also Table 22 for incomplete sets of results. 11) &3 (=ce,,). -1 The value of tee read from Fig. 21.28 is 2.87 GPa which disagrees with the value of 3.13 given in the text. If c66 = 3.13 GPa then ~66 =

319 crpa)-’ with no change in any of the remaining compliance. m) a + j3 phase transition at 352K. 00) The values of $,, and Se23 here are far more negative then allowable for an elastically stable crystal. Pp) A value of 164.0 (IPa)-l appears more consistent with the corresponding compliance for thallium trideuteroselenate. WI se&, where s4s~-x = 34 [s~+s33+2+~+s&$‘J. =) se 4so-y where s4+ = ?4 [Sl l+s~~+2q~+sss]. ss) #4so, where sssol = wsll+s22+q2+s@J. al Measured by the resonance method on 45” cut bars. m) The value of $a here is far more negative then allowable for an elastically stable crystal. WI PhaseV. -1 Phase IV, transforms to phase IV at 202K and to phase III at 180K. n) Phase II, transforms to phase II at 176K. YY) Phase I; transforms to phase I at 169K. 4 Using a transformed coordinate system. #I Data from [85H7] and [86W4].

Page 208: Second and Higher Order Elastic Constants

$E Table 22. Orthorhombic system. Incomplete sets of constants. g+ Pkz

spa in (TPa)-1 cpo in GPa

Es p5 Material s Suffixes po Main Other Figs. or refs. refs. C 11 22 33 44 55 66 12 13 23

Ammonium Rochelle salt (piezoel.), N~1-x~&~&406 - 4H20

Ammonium sodium selenate (piezoel.), NH4NaSeOh - 2H20

Ammonium zinc tetrachloride, N4)2ZnC14

Analine hydrobromide, C6%m3Br

Barium formate (piezoel.), BaWW2

Barium germanium titanate (piezoel.), B%%TiOs

Bismuth tungstate, Bi,wO, Bis-(propyl-ammonium)

manganese tetrachloride, (C3H7NH3)2mC14

Boracites Cu-Br Cu B 0 , 3 7 13 Brash) 163K

238K (=Td

4.20 4.72 4.2 4.65 4.47 5.95 4.35 5.4

30.4 4.56

3125 0.32

78.5 60 82.5

78M5 22.1

7521

82Sl1, 22.3, 87G1,89Ll 26.1 8OS6 22.4

5oml

76Kll 22.5

87K8 86Ml 22.6

78Gll 22.7

22.2

Page 209: Second and Higher Order Elastic Constants

Table 22 (continued)

Material s Suffixes ps Main Other Figs. or refs. refs. c 11 22 33 44 55 66 12 13 23

Boracite, cont.

Cu-Cl, Cu3B,0,,Cl b, 298K

365K

(=Td Mg-cI, Mg,%O,,a d,

Ni-I, Ni,B,O,,I qb)

SE 4.35 5.1 SD 4.2 4.8 se 5.48 8.36 fl =) 6.1

se 4.00

SD 4.00 S

c Bromine-graphite, C+Br Carbon disulfide, CS, 148K Cerium copper, CeC%

Cerium nickel, CeNi Cesium manganese chloride,

dihydrate, CsMnC13 * 2H20

Chromium, Cr (single Q and multi-Q states)

Copper-aluminum-nickel alloy, 0 Cu-13.8 wt% AU.0 wt% Ni

C 1600 1600 30 C 8.79 5.28

10.6

10.3 11.5 86.7

0.18 e, 0.02 e, 5.28 2.12

S 174 123 143 c 50.1 24.3 33.6 5.74 8.14 7.00

C 190 140 220 56.7 m) 20.3 m) 60.4 m) 82Yl 22.18

78Gll 22.8

-1.08 76AlO

-1.08 78R4

86S12 82P3 85Sll,87W3, 87B4, 88G4, 8768, 8866 8766 8563,87B4 8OK2

83V2

87M2,88F4

22.9

22.10

22.11, 22.12,

22.13

22.14 22.15

22.16A.m 22.16F 22.17A+- 22.17F

Page 210: Second and Higher Order Elastic Constants

$I ‘lhble 22 (continued) P&

Material s Suffixes po Main Other Figs. or refs. refs. c 11 22 33 44 55 66 12 13 23

Ethylammonimn iron chloride, (%%m3)2Fea4

Gadolinium cobalt, Gd3Co Hydrofluoric acid, HF

+/density

( ldm2/s2) Isopropyl-ammonium

chlorostannate, 298K

N-%H,)2SncI, ‘) 313K

Lanthanum trifluoride, LaF3 LaF3 + 0.5% Nd LaF3 + 1.5% Nd LaF3 + 0.5% Pr

Lithium ammonium thallium -6

Li(NH4)1-x~~c&&, * Hz0 Manganese phosphide, MnP Methylammonium iron chloride,

(CH31QJ3)2FeC14

c g)

S

c

S

c

C

C

C

c

Methylammonium manganese chloride, (~3NH3)2mc1c+

Niobium hydride, NbHe7s S

(P-Phase) C

Phenothiazine c i

151 285 97.4 25.6 120 86L3

265 291 3.77 3.44 281 328 3.56 3.05

169.2 36.79 60.54 160.0 41.63 27.83 177.6 45.28 30.54 150.8 38.22 66.04

78B13 10.3

9.52

22.2 22.5 20.8 242 45 44.5 48

0.20

83313,83N2, 22.19 85Y4 84B20 22.20

84A2 84A2 84A2 84A2 823[(2 22.21

7511 22.22 82G2, 22.23 83N2,84Y3 79G4 8OG5 22.24

77A5 22.25, 22.26

88N2 22.27 continued

Page 211: Second and Higher Order Elastic Constants

206 1.2.1 Elastic constants sPo, cpa. O

rthorhombic system

Pef.p.576

Land&BBmsbzin

New Suim IW

29r

Page 212: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.1 Elastic constants spa, cpa. O

rthorhombic system

207

Land&-B6mstein

New Series Ill/‘Z9a

Page 213: Second and Higher Order Elastic Constants

Table 22 (continued)

Material s or C

Suffixes pa

11 22 33 44 55 66 12 13 23

Main refs.

Other refs.

Figs.

Thallium titanate phosphate, TlTiOpO,

c 155 154 161 89Al

4 These boracites are cubic at RT but are included here to bring the boracites together. b, See also Table 10. 4 4.2 I SD1 1 5 4.65 (IPa)-‘. d, See also Table 9. e, These values are interchanged in the abstract. fl y martensite phase d Values measured at a pressure of 2.54 GPa @ Monoclinic quasi-cuthorhombic. Weak martensitic transition at 313K. i) See also Table 9. 3 Pseudo-orthorhombic. Ordinarily forged ceramic is hexagonal, see also Table 13. k, See also Table 21. *) Monoclinic quasi-orthorhombic; see also Table 26. m) Averages of elastic stiffnesses obtained from shear velocity measurements by the pulse echo method along two mutually perpendicular axes. 4 Units in (GHz)~ measured by Brillouin scattering. Phase transition: 2/m + orthorhombic at T = 357 K upon heating. See also Table 26.

Page 214: Second and Higher Order Elastic Constants

TI Table 23. Orthorhombic system. Non-crystalline materials. gs 8 eg

spa in (TPa)-’ cPO in GPa

Eiz i$j g. 0 Material s Suffixes po Refs.

or c 11 22 33 44- 55 66 12 13 23

BaTiO, (piezoel.),

, (layered)a)

7.92 8.05 7.92 11.9 30.2 218 270 218 84.0 33.1 6.05 8.01 5.25 8.85 23.4 253 263 280 llj 42.7

Rocks Dunite

Zoisitic prasinite

Enstatite

Olivinite

Marble

Homblendite L

s 4.82 6.61 5.49 14.3 12.8 C 263 194 213 70 78 s 9.9 11.4 16.1 41.6 42.1 c 112 101 72.2 24.1 23.8 S 7.38 8.00 8.86 15.7 19.6 C 175 164 158 63.6 51.1 S 6.35 6.73 7.45 19.4 18.0’ C 186 179 159 51.6 55.6 S 5.85 6.25 6.61 13.7 14.2 c 232 210 199 73.3 70.9 S 11.8 12.5 13.4 33.7 32.5 c 119 110 104 29.7 30.7 S 8.66 9.39 10.2 27.5 26.3 c 144 137 125 36.4 38.0

13.6 -3.80

73.5 154 13.6 -3.95 73.5 146

14.1 -2.00 71 95 27.6 -1.8 . 36.2 25.8 22.0 -1.68 45.5 63 16.4 -1.66 60.8 60 14.6 -1.84 68.6 93 30.6 -3.7 32.6 51 23.5 -2.41 42.5 52

-1.28 -3.80

109 154 0.97 -3.51 52 148

-1.05 -1.39 74. 67 -2.6 -3.8 23.8 27.5 -2.61 -2.91 72 72 -1.55 -1.82 54 56 -1.95 -1.71 92 82

,-4.2 -3.8 52 47 -2.39 -2.98 49 52

7OT3

71C8

68A3

68A3

68A3

68A3

68A3

68A3

a) For single crystal constants see Table 18.

Page 215: Second and Higher Order Elastic Constants

Table 24. Monoclinic system. sp in (TPa)-* cpa in GPa

Material s snfflucs pa Main odm or rcfs. lefs.. c 11 22. 33 44 55 66 12 13 23 15 25 35 46 Figs.

6.88 6.53 5.09 17.3 19.9 21.5 -226 -1.59 -0.82 1.43 0.65 0.95 1.63 193 189 233 58.2 53.1 46.8 78.4 76.5 57.6 -20.1 -14.6 -18.5 -4.4 9.49 10.7 5.59 23.6 26.7 19.8 -3.95 -1.46 -1.63 1.89 5.36 0.10 0.70 154 151 215 42.5 46.8 50.5 80.2 64.3 65.8 -27.3 -36.3 -18.6 -1.5 17.9 9.1 10.2 58.5 38.5 31.6 -4.0 -4.7 -0.6 -0.8 27 5.6 4.6 74 131 128 17.3 29.6 32.0 36.4 39.4 31.0 -6.6 -128 -20.0 -2.5 38.4 81.3 38.6 125 119 154 -19.3 -8.8 -23.9 13.4 7.7 -6.4 -7.9 39.03 20.71 39.60 7.99 8.96 6.51 14.82 17.39 15.88 -4.39 -214 -0.85 0.41

11.2 6.0 7.7 427 124 205 156 23.5 (zas) (189) ww 387 0 cm 0 46 8.34 12.0 16.8 262 0.7 1.4 0.9 0.3

27.3 40.4 W2

3.16 0.9

24.2 -3.0 -24 41.5 66 50 091) t-95) C-50) (61) wo (25) 3.57 5.35 5.05 0.6 1.4 1.0

-0.7 42 (-31)

g&3) (1.9)

-3.6 -19 (-67) (1W (-0.43) (ZO)

-0.7 22 -7 -18 (108) (59)

g& g!s) W-0 (1.3

1.2 -1 -128 11 1.18 0.14

84.1 80.8 125.6 3635 315.2 715.5 -30.1 -51.2 20.3 89.5 224 14.67 10.91 0.31 4.80 1.59 6.29 5.10 -0.64 -4.84

-13.0 -1.34

3.57 -29.9 26 -0.7

-50 -0.2

-78.2 -562.3 1.23 0.25

7.41 8.30 5.42 14.3 22.7 17.0 -244 -1.95 -0.19 1.34 180 154 216 70.0 51.4 58.8 65.4 72.6 35.5 -24.7 67.2 101 71.1 160 290 150 -34 -14 -28 -17 21.1 15.2 18.5 6.4 3.6 6.7 9.0 7.6 7.6 0.6

1.18 0.54 -21.1 -22 -5 -14 0.1 0.6

144.9 100.8 49.4 182 379 235 -71.6 -12.5 -13.1 36.6 1264 17.33 35.26 5.49 4.21 4.25 9.24 8.40 7.25 -1.77

76.9 18 -7.05 -0.42

63Al. 74A3 63Al. 74A3 74z2

89B6

7422

67A3. f57p2. 68D8.

89Dl. 9oE2

63Al. 74A3 85K7

89H4

71El Figs. 24.1A 24.1B 24.1c Fig. 24.2

Fig. 24.3

Page 216: Second and Higher Order Elastic Constants

Table 24 (continued)

Material s suffixes pa Main Other

pa or ref.% I&.,

C 11 22 33 44 55 66 12 13 23 15 25 35 46 Figs.

Behnephospha& s

C-=,&N~~- =

I-P4 @PI Biphenyl (diphenyl. s

phmyl benzene), c C12% s

c dealtelated @lo) c

Bismuth vanadate, s BiVO, c

(-359 527K cd)

W=9 cd) Calciumsulfate s

dtib% c caso4-2%0 s

c Ccsimn deuterium 8

i selellite. csD(Seo~ c Cesium diidmgen s

phosphate (piezoel.).c

-904

-llmnitrate s =hydrate. c

cr(No33 ‘9l-q Cobaltsulfatehepta- s

hydrate. C

coso4-7l-$o Coesite, Si02 S

c

62.5 75.6 125 160 380 370 -5.1 -39 -37 68 29.8 19.3 13.5 6.3 3.8 27 10 11.2 8.2 -5.6

283 346 118 611 509 272 -184 19 5.95 6.97 14.6 1.83 226 4.11 4.05 288 973 312 228 275 689 256 378 -375 5.85 7.04 13.8 3.66 278 3.93 -3.94 6.55 7.58 9.01 18.1 213 220 4.59 -5 3.95 14.7 10.8 10.0 25.5 20.4 27.5 0.22 -6.2 104.5 110.3 163.8 39.3 60.0 36.4 22.2 62.0

6.11 -102 -3.66 s7.75 -3.7 52.7

9 -16 -65 132 0.40 0.94 202 -0.89 -563 -234 222 24

1.34 0.36 -0.34 -0.35 0.10 =l 1.90 -0.83 6.9 1.5 -4.8 -1.0 -22.7 -3.5 13.2 1.4

135.6 184.4 20.7 78.6 15.4

94.5 90.1 28.79 1820 28.83

27.9 20.1 62.7 72.4 29.5 32.8 65.2 50.2 140.1 73.0 30.72 30.65 103 772 26.67 65.45

44.0 625 44.0 13.5 113 49.5 9.10 26.4 117 38.2 8.6 32.4 151 287 6.64 8.62 133 450 8.1 5.2

98 -13.1 10.4 41.0 93.5 -8.6 10.8 37.9 151 -73.8 6.64 15.74 117 -219 9.17 11.4

108.2 ’ 59.6 -1.9 26.8 -22 28.2 12.9 13.76 -1170 42.87

-7.2 24.2 -15.9 32.0 -65.9 20.43 138 14.5

-29.2 29.2 5.8 -7.0 6.6 -11.0 -108 5.66 249 5.13

37.1 78.9 37.2 122 115 150 40.15 21.30 40.96 8.18 9.23 6.68

-8.4 -23 11.8 7.0 -5.6 -7.9 17.90 16.34 -4.16 -205 -0.81 0.43

55 43 42 174 217 33.5 37.8 37.1 6.0 5.8

-18 -6 -37 15 15.8 15.8 1.6 -1.8

11.3 5.3 6.2 15.1 16.2 161 230 232 67.8 73.3

103 10.1

17.4 58.8

-19 15.25

-24 20.5

-3.5 82

-3.9 0.4 3.6 -1.7

103 36 -36 3

35 -3.1

0

-20 -2

-50 0.9

-11.5 13.6 17.0 3.1 -17.4 -1.55 -128 10.2 12.0 6.9 -7.5 -1.1 146 -60.1 0 -5.45 1.18 0 -150 -181 33 8.4 7.5 -225

37 -4.7

1.4 -39

-28 1.6

-26 10

85K7

7oK9

79Y3

8OE3 82A3

8312

65H3

69rl. 7883 87L3

85F’8

89B6

62A2

77w3

Figs. 24.4A 24.4B Fig.

24.5

83D4 Figs.

24.6 24.7

Fig. 24.8

continued

Page 217: Second and Higher Order Elastic Constants

Table 24 (continued)

Malerial s suffixM pa Main olher or lcfs. refa., C 11 22 33 44 55 66 12 13 23 15 25 35 46 Pigs.

coppxfomutetura-s hydmle@ia!ael.), c wcooH),-4~0

Diallage. s wmpkxrikate~ c

Dibmyl s cl,%4 c

s

c

p-Dichlmbmzo- s

phmone, 293K c P-JJCBP 115K S

C

Diglycine dale (pi--u (NF+J%-~2-~03

Diopidc, 5 caMgs$06* c

s c

Dipomsium- s hanihydrate s(d) (DKT) (piezocl.). c K2c,H406- 4-3

05&O

I&rate s

C

Bpidote, s

complex silicate aI c

so 49 70 194 167 4s -33 -9 -16 14 -28 34 20 73Kl fig. 445 49.9 21.1 5.4 7.1 235 34.1 14.2 14.9 -o=I 27 -29 -24 24.9

7.81 8.00 5.04 16.2 16.9 19.1 -265 -0.91 -0.67 1.06 1.32 0.55 214 153 149 211 625 61.7 53.2 56.3 36.9 21.7 -15.2 -16.2 -11.6 -7.0 203 215 207 350 522 418 -65 -72 -64 151 -11 -31 -108 9.45 6.80 7.20 3.10 2.55 260 3.95 4.15 3.35 -24 -0.8 -0.7 0.8 226 248 229 334 588 414 -62 -75 115 -214 -1 97 103 9.81 7.37 8.06 3.24 272 262 4.48 4.21 4.78 291 0.92 0.27 -0.81 727 97.0 164 408 623 340 -7.0 -22.8 -60.8 365 23 14 -32 15.85 14.58 8.92 2.45 1.72 294 3.75 3.70 6.02 -1.15 -0.90 -0.64 0.23 40.4 80.6 1% 300 458 168 -9.1 -16.7 -67.4 -10 -43 156 -47 28.53 19.46 10.40 3.34 3.02 5.97 7.45 5.37 7.86 -0.47 -0.66 -267 0.93

63Al. 74A3 65Tl 71Ks

82El 7PGlO

87s20

87m

6.89 7.18 5.42 15.3 18.9 14.6 -266 -1.88 -0.65 0.97 -0.49 249 245 204 174 238 67.3 58.3 70.5 8225 90.3 526 -20.2 -6.6 -34.6 -11.3 5.7 7.2 5.6 13.7 16.9 15.4 -21 -1.4 -1.1 -0.4 05 -3.1 -1.5 223 171 235 74 67 66 77 81 57 17 7 43 7.3 44.7 34.6 23.3 111 %.6 121 -12.7 -11.4 -3.4 (-0.8) (0.3) -11.0 (-3.8) 5.4 1 1 7 14 2 4.5 4.9 3.3 4 s) 4.4 4 35.7 38.6 61.7 9.0 11.7 8.3 17.8 22.5 13.5 1.8 1.2 5.9 0.54 8.6 17 10 0.5 1.9 0.08 0.9 9.9 3.7 4 0.1 27 0.18

79v3 Rgs. 24.10 24.11

63Al. Pig. 74A3 24.12 79Ll

mm1 0). 54Bl. 58A2

352.3 350.9 112.3 543.5 531.1 137.6 -286.2 2.298 40.29 119.4 -156.1 25.92 -9.718 9.0s 10.00 10.03 1.84 217 7.27 7.75 257 3.19 0.11 1.04 -0.13 0.13 5.31 4.69 5.50 25.6 245 126 -1.30 -0.84 -0.68 0.10 0.62 227 0.74

212 239 202 39.1 43.4 79.5 65.6 43.2 43.8 -6.5 -10.4 -20.0 -23

87s20

66R3, 74A3

Page 218: Second and Higher Order Elastic Constants

g Table 24 (continued)

k g

iii Material s suffixes pa Maii Other

ps Or refs. refs.. c 11 22 33 44 55 66 12 13 23 15 25 35 46 Figs.

Etbylenediamiae J -mm = (piemel.). CJ-I14NzO~

Feldsprs 3 Labradorite s

= Mielocline. S

KAls’30s c Oligoclase s

c Feldsprs. Plagioclase m

9 (Albite) 8 c

24 (Oligoclase) s c

29 (Oligoelase) s c

53 (Labradorite) @ s C

56 (Labradorik) u s c

Feldspars. Soda-potash G.0 2(Microcline) s

c 42(Amazmite) s

C

43(olthoc~ase) s

6O(Ano~lape) s c

61 (Mkmcline) s c

33.4 365 100 192 122 191 -3 -33 -18 -17 15 -265 3.8 66B8 64.0 33.6 22.5 5.22 11.6 5.23 13.0 26.7 10.3 13.1 -0.1 7.4 -0.1

15.6 8.63 8.16 47.8 30.6 28.0 -5.63 -4.32 0.49 -213 244 278 6.% 62Al. 99.4 158 150 21.7 345 37.1 62.8 48.7 26.7 -2.5 -10.7 -124 -5.4 74A3 20.2 7.56 10.2 70.4 48.2 27.7 -5.25 -4.27 0.39 -5.21 4.10 6.58 3.68 67.0 169 118 14.3 23.8 36.4 45.3 26.5 20.4 -0.24 -123 -15.0 -1.9 19.8 7.54 11.4 53.5 45.6 28.0 -1.91 -7.51 -0.91 8.12 5.28 -264 1.35 80.8 163 124 18.7 27.1 35.7 37.9 52.9 327 -15.7 -23.7 -6.0 -0.9

16.8 9.% 9.84 57.9 46.2 31.7 -3.02 -4.59 0.67 -0.94 9.64 5.55 3.83 64R5, 74.8 137 129 17.4 30.2 31.8 28.9 38.1 21.5 -9.1 -30.7 -19.2 -21 74A3 15.9 8.06 9.61 55.3 35.4 29.9 -3.41 -3.87 -0.97 1.29 0.13 4.55 1.65 82 145 133 18.1 31.0 33.5 39.8 41.0 33.7 -8.4 -6.3 -18.7 -1.0 15.5 7.79 9.56 53.0 34.9 29.3 -3.48 -3.78 -0.79 1.22 0.20 4.54 1.71 84.4 151 132 18.9 31.4 34.2 42.1 40.9 322 -8.5 -6.5 -18.8 -1.1 13.8 7.46 8.58 49.9 321 27.8 -3.60 -3.26 -0.68 1.39 0.88 276 1.93 97.1 163 141 20.1 33.1 36.1 51.9 44.0 35.8 -9.4 -9.8 -15.0 -1.4 13.5 7.01 8.66 48.9 31.5 27.2 -3.40 -3.06 -0.78 1.67 0.09 3.47 1.72 98.8 173 141 205 34.3 36.8 52.9 43.7 37.2 -10.2 -7.4 -18.0 -1.3

24.8 7.03 9.52 68.5 55.4 27.1 -4.43 -5.11 0.33 12.0 1.84 1.33 5.31 65R2, 62.5 172 124 14.8 22.2 37.5 41.9 34.3 18.7 -15.7 -15.2 -11.0 -29 74A3 26.6 7.93 12.3 72.2 56.1 31.9 -4.67 -6.83 0.34 9.79 1.62 276 5.01 57.0 148 102 14.0 m.9 31.7 33.7 33.6 17.7 -126 -11.2 -11.4 -22 25.2 8.03 13.2 80.1 61.3 29.8 -4.83 -6.84 0.26 6.71 1.15 5.69 6.34 58.4 146 98.5 12.7 18.8 34.1 35.5 33.9 19.1 -10.2 -8.4 -13.2 -2.7 26,2 7.89 13.5 102 44.6 285 -4.53 -8.51 -0.92 5.06 -219 6.66 5.48 63.0 152 118 ‘9.9 26.9 35.4 38.4 48.5 35.7 -12.5 -22 -21.3 -1.9 25.1 7.44 12.2 72.4 58.0 27.3 -4.43 -6.21 -0.45 9.74 -0.48 3.73 5.07 59.7 158 105 14.0 20.0 37.1 36.9 35.5 26.7 -120 -6.6 -12.5 -26

Page 219: Second and Higher Order Elastic Constants

Table 24 (coiainued)

M8telirl al SlIfcxed pa Main olher Or fcfs. refs.. C 11 22 33 44 55 66 12 13 23 15 25 35 46 Fig.%.

26.4 8.00 13.01 71.5 58.8 28.2 -6.30 -7.16 0.25 9.41 -3.00 4.24 4.01 61.9 159 100 14.1 19.5 35.7 43.7 365 21.0 -10.3 -0.4 -120 -20 24.2 7.50 9.71 77.8 56.5 29.6 -3.43 -4.13 0.16 1215 3.48 288 275 59.5 157 119 129 23.0 33.9 34.2 29.6 17.2 -16.4 -17.9 -135 -1.2 618.4 249.8 907.9 7%.2 338.1 406.0 83.21 -621.9 -208.7 2299 -35.02 -120.0 -215 6.461 6.186 5.690 1.256 3.728 2.463 2428 5.203 3.303 1.659 1.648 2008 0.665

5.4 7.3 5.2 18 17 17 -15 -1.2 -20 -0.2 -0.4 -1.5 3.0 222 176 249 55 63 60 69 79 86 12 13 26 -10 15.6 7.5 15 1.6 6.4 3 -2 3 D 4 0.9 1.9 0.6

11.2 8.24 6.84 17.3 33.9 26.5 -230 -291 -1.87 -0.21 3.95 0.27 297 116 159 191 58.8 31.7 38.5 49.3 63.0 65.3 -5s -18.7 -8.7 -6.6 10.2 6.92 6.18 16.2 27.7 225 -2.69 -222 -1.08 0.89 0.89 277 0.69 129 180 206 61.7 39.4 44.5 61.7 628 59.7 -124 -13.7 -24.5 -1.9 23.8 7.50 10.9 74.2 44.9 28.5 4.95 -6.82 0.24 6.29 -0.11 3.45 3.57 67.4 161 124 13.6 25.3 35.4 42.9 45.1 25.6 -128 -7.6 -15.8 -1.7 36.8 78.0 365 121 114 148 -18.9 -8.3 -22.6 11.6 6.4 -5.6 -7.7 40.46 21.47 41.55 8.28 9.30 6.75 15.37 18.03 16.46 -4.11 -1.97 -0.72 0.43

47 43 39 157 183 105 -20 -13 -11 7 5 34.9 37.6 36.0 6.4 5.6 9.6 20.8 17.4 17.2 -20 -1.9

4.3 4.8 4.2 12 16 11 -1.4 -0.7 -1.0 0.3 -0.5 274 253 282 88 65 94 94 71 82 4 14 66.8 14.8 146 22.8 1060 18.7 16.9 -94.8 -30.8 236 91.2 242 177 212 43.9 11.8 53.6 83.8 185 49.8 4.10 -16.4

1 -1.4

-1.5 28 -373 29.3

-2 0.1

-1.7 13 3.8 -8.91

9oM3

88K12

8OK14

61A3. 74A3

74A3. 7422 89B6

62A2

88K3

86N5

Page 220: Second and Higher Order Elastic Constants

f[ ‘pdble 24 (coiainued)

p-g Material s sllflixes pm Main Other

or refs. ref.%.

C 11 22 33 44 55 66 12 13 23 15 25 35 46 Figs.

Lanthamlmpenta- c

phosphate. LapS0,4w

121 94.6 132 28.0

L=Jphosphate,

pb302 L.-lithium hydrogen # malate. (pieznel.), CB LiC4H5 * C&O5

Lithiumsulfate Ss monohydrate B ti=.=u. Liiso;~o s

C

Naphthalene. C,& s

se=+ c

d=4

109.48 83.22 82.61 129.53 194.67 175.44 -31.52 -4272 -21.66 -20.12 73.48 -79.86 -68.86 19.62 20.07 39.23 7.72 15.30 5.70 5.54 19.12 225 7.78 -6.08 17.22 3.03

22.5 21.3 18.8 73.1 52.3 37.9 -7.5 -22 -5.6 -1.6 -13.2 8.3 7.2 54.9 70.5 61.8 14.0 24.2 27.0 26.3 11.4 17.1 6.5 15.7 -5.2 -26.5

Oxalic acid s diiydrate. c (cooH)2 * 2H.p

Potassium cobalt s cyanide. q4cN), =

Potassium hydrogen s -.KHco3 c

22.9 55.2 196 12 8.46 0.93

79.3 21.7

62 21.2

67.1 46.14

Potassium hydrogen s 106 oxdate.KH~04 c 15.6

41.4’ 26.4 17.4 35.3 37.5 117.11 1131 120.91 lco.15l

22.5 22.8 71.3 64.0 36.1 -5.4 -7.5 4.6 -21 -8.3 6.3 1.4 54.2 54.7 14.0 16.8 27.7 18.4 21.3 15.3 21 6.1 -27 -0.5 (511) ((441) 304 (3320) 241 (-63) (-58) (-368) (130) om (-780) C-7)

(380) ~(400) 6 (3290) 5 c) 4 4 c) 4 Cl Cl 10.2 13.2 3.38 228. 4.26 5.33 3.73 3.24 W2) (-0.7) (-0.1) (0.1) 0.5 21 0.07 0.2 17 1.1 0.82 1.2 =) 4 C) 4

138 36.9 11.6 40.1

44 28.1

26.3 47.17

35.9 44.5

39 34.0

63.5 32.09

13.0 87.7

484 208

109 10.3

92.9 10.77

57.4 17.4

155 110 -56 -16.2 -9.0 -3.7 -26.9 324 -19.0 8.09 9.16 9.46 12.18 6.14 -0.39 O.% -7.0 0.36

113 116 -6 -24 10.8 9.7 21 13.0

-4 0

30 -7.4

1 0.1

-37 3.3

105.0 375 16.90 2.67

308 217 3.60 4.61

-6.8 40.5 18.75 26.cm

2 0

-7.4 15.59

-3.3 17.1

-51.; 0.85 m -85 17.62 5.89 6.61 244

-35 -4.8 15.5 8.24

47.0 -10.6 -13.2 -1.3 -1.50 -0.1 3.09 0.1

8OEl

75A5. 8OTl 87H4

5Oml 0, 52Bl. 57B5 52Bl. 57B5 63A2, 67T1. 69A2, 77El

75G2

7x7

86H4

73K5

Figs. 24.13A 24.13B Fig. 24.14

Figs. 24.15A 24.15B

Egs. 24.16A 24.16B

continued

Page 221: Second and Higher Order Elastic Constants

‘IBble 24 (continued)

Iualc.lial s sIlfflxed pa Main other or nfs. Ids.. C 11 22 33 44 55 66 12 13 23 15 25 35 46 Figs.

l4mstimnoulete s monohydrate, C

v204. %O

l-Fthmmscmon* s hydme (pitzod.). c c6H1205. %’

sodillmlhiosulf8tc .r

Ptrhydnte, c

N+T20, * -0 @ Spocfnmme. s

LiiS~06 c stilbme s=)

Tataricacid ; (piezoeL), C4&06 CB

Tanriae. s czH74~ c

Telluric acid 283K 4s emmoilimll phosphate, 293K”): Tc(OH)~. 2NH4- c

-4, 333Kh

(NHs,Hpo, ' PTdd.

c6%c6H4c6&

hydrogauted c@

Wl4) =

deutemd (D14) c

55.5 92.9 39.0 88 139 101 -34.4 -3.8 -31.8 -23.6 621 -14.1 28.3 29.4 31.0 45.6 12.5 10.4 10.9 17.2 16.5 23.9 -l.Cn -8.46 -3.22 -3.52

495 69.2 83.1 186 209 110 -23.8 -30.8 -124 38.2 21.9 19.8 5.37 5.02 9.11 16.0 16.6 8.88

-21.1 1.22

20.7 -1.18

-4.5 0.22

50.1 168 56.4 2&I 352 261 -39 -26 -64 326 30.2 44.3 5.6 11.9 6.0 17.3 15.7 124

-205 100 162 127 -6.6 -3.5

5.30 6.38 3.88 14.4 18.1 14.3 -1.80 -0.62 -1.08 245 199 287 70.1 62.8 70.7 aa 64 69

227 189 245 318 157 422 -80 -115 -58 9.30 9.20 7.90 3.25 6.40 245 5.70 5.7od 4.85 21.6 77 38.5 126 175 %.2 -6.1 -15 -18 93.0 19.2 46.5 8.12 8.20 10.6 20.2 36.7 13.9 55 34 153 139 Ill 100 -5 -49 -31 31.8 46.9 14.0 7.22 9.60 10.0 16.3 13.5 15.0 34.0 40.1 295 82.7 89.8 528 -195 -20 -12.5 4557 45.13 44.32 1210 11.49 18.93 26.62 14.45 21.37 34.4 40.5 29.7 84.3 90.7 53 -19.8 -21 -126 45.32 44.78 44.06 11.86 11.38 18.88 26.58 14.42 21.23 35.1 39.4 28.9 86.3 97.4 54.4 -19.4 -3.2 -10.7 43.96 45.22 43.32 11.59 11.30 18.40 25.57 14.36 18.22

1.32 0.03 1.45 -26.7 -14.2 -7.1 6 9 -65 -0.5 -0.5 0.5 27.6 -29 -16.4 -4.0 -0.4 1.4 -11 -9 1 3.9 0.9 -0.1 7.6 3.5 -21.6 -288 -256 4.94 7.4 3.9 -22.0 -271 -263 4.92

-18.3 8.2 -23.0 4.82 -1.42 4.90

7.36 8.18

8.20

8.35 9.75

9.72

20.2 26.4

26.6

3.70 3.36

294

5.82 270

248

3.55 5.13

5.29

-3.55 -5.5

-5.5

6.n 4.33

4.56

-3.70 -8.1

-8.1

1.5 -0.3

27 3.1

246 -40

5 -0.3 28 -120 14 -1.3

-5.9 0.19 -6.3 0.37

8.1 -0.08

-0.49 10

ro

-0.81 -0.91 --0.4 -3.16

9-0.4 -3.42

0.82 1.49

1.59

73K4

58Cl

61Vl

7423

65Tl

5Oml

65H4

85H5

85H5

85H5

79Y3 8OJz33

Fig. 24.17

Page 222: Second and Higher Order Elastic Constants

Table 24 (continued)

Material S sufflues pa Main Other OI

refs. refs.. C 11 22 33 44 55 66 12 13 23 15 25 35 46 Figs.

Tm fluoride, SOFT s 24.9 c 47.9

~ohe(Bthyne s* 150 diphmyl). q4Hlo = 7.85

Triglycine sulfate s 33 cr<;s). s(lpl) 0.7

mH.p-$cooH),- c* 44.6

l-L& +=4 2

328K* s c

RT SO

C

Trihydmxylamino- methanephosphate, SBo

38.9 40.7 33.8 41.7

44.0

(cH2o)I)3cNH2’ Iv-4

icimmiumoxide. s

zroz S’L)

c

3.45 3.55 5.37 3.46 3.56 5.38 358 426 240

77.3 46.7 #).6 33.6 140 188 10.85 13 6.45 61 83 9 15 328 28.7 0.7 29

48.3 67.7 324 28.4 69.3 77.2 321 33.6

43.6 57.2

60.5 93.1 72.9 -12.6 17.4 12.9 14.4 9.3 346 2m 542 -52 290 5.45 1.85 3.50 102 117 162 -7 4.3 28 26 5.4

9.9 10.4 6.2 17.1 0.4 0.7 0.1 1.4

110 9.46 106 9.40

87.0

11.4 10.1 99.1

94.8 198 -7.4 11.4 5.25 16.0 165 158 -13.3 9.39 6.31 17.3

85.0 83.9 23.8

15.3 8.73 -1.28 15.3 7.69 -1.29 78.7 130 144

-1.0 -30.6, 5.3 14.8 -1 -60 1.15 3.50 -17 -43 7.2 10 18.9 19.9 1.6 0.9

-23.1 -24.7 24I.l i6.8 -7.98 -46.7 18.1 20.7

-64.7 -3.4

-0.116 1.73 -0.11 -1.78 67.0 127

13.4 -8.2 -16.6 -14.5 -5.1 3.1 6.5 3.5 16 -52 -4 -19 0.3 25 0.9 0.1 (-0.4) 0 (-8 (2) (5.8) (26) WI (6.5) t-0.7) (-1.2) (0.4) (-0.1)

(W (0.7) (4.7) (0.4)

-1.5 15.8 -17.3 28.0 117 -21 27 -1.3 -9.1 48 -63 10 4.1 -0.6 7.7 -0.6

41.7 15.9 48.4 -73.9

-1.78 -268 242 3.42 1.73 -268 242 3.01 -25.9 38.3 -23.3 -38.8

71Al

65Tl

59K2, mr 77B5. 24.18 77H3, 24.19A 77l-3, 24.19B 84JI4 24.2OA 77H3 24.2OB

24.2OC 59K2. 77H3

9021

88Nl

a) Earlier nzsults (III/l 1, Table 24, pp. 72-m.76), improved by computer calculation to minimize residual errors [74A3]. b, These figures are reproduced as printed although they do not interconvert exactly. 4 These constants are so small and variable that the standard deviation, s, becomes meaningless. d, Transformed from z axis as L2 to the y axis as L2. Angles (-35” and loo) are the angles with respect to the [loo] axis in the (001) plane for

which the phase velocities achieve extremum values in the high temperature tetragonal phase (T 1528 K).

continued

Page 223: Second and Higher Order Elastic Constants

Footnotes for Table 24 (continued)

0) Original data transformed to new axes in [54Bl]. 0 Triclinic quasi monoclinic. e) The plagioclase felspars form an isomorphous series between albite (NaA1Si30$ and anorthite (C!aA.l$i~Os). h) Labradorite (Labrador feldspar) is intermediate between albite (N%O - AlzOs - 6SiO2) and anorthite (CaO - Al,4 - 2SiO2), with the ratio of the two

between 1:1 and 1:3. i) For compositions, see Table 25. -3 Not determined. k) See also Table 21. *) Original data transformed to new axes in [52Bl]. mh&inalaxestransformed: l-,2,2+3,3+1. n) Ct~Ofstilbeneisprin ted in [65Tl] as 6.70, and c, of tolane is printed as 8.55. These are corrected in [71K5] to 5.70 and 10.55 respectively, which

am the values tabulated above. The alterations make a considerable difference to many of the compliances of the two materials. 0) Ferroelechic phase. P) Pamelectric phase. @ 179’1131 contains a set of compliances s corresponding with the stiffnesses c, but the matrix product [c][s] does not, as it should, yield the unit matrix. r, q1. c33. C55r q3. Cl59 and c35 are SW; the remainder are c,-,u. Included in these averages are the results at RT from [77H3] included below in this

table. 4 A transiton 2 +2/m from the ferroekctric to the paraekchic phase occurs at 322.5 K. The reference axes in [59K2], [77H3], and [77L3] all differ.

The stiffuesses of [59K2] as converted in [77H3] to the axes employed there are given above, as well as the data referred to the original axes. The only effect of the change of axes between [59K2] and [7X3] on the stiffnesses is to reverse the signs of c15, cw, c35, and Q.

I) These constants as given violate conditions for elastic stability. RI Calculated from the elastic constants. “) See under calcium sulfate dihydrate.

Page 224: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.1 Elastic constants spa, cpa. M

onoclinic system

%

P m

a

or P

0 l4 00

8 2 V

Landolt-B6mstein

New Series BItZ9a

Page 225: Second and Higher Order Elastic Constants

1.2.1 Elastic constants sPu, cPu. Monoclinic system

Bef.p.576

Laud&Bthst& N

ew SaialU129a

Page 226: Second and Higher Order Elastic Constants

Table 26 (continued)

Material s Or

C

Suffixes pa

11 22 33 44 55 66 12 13 23 15 25 35 46

Main Other refs. Ids.,

Figs.

Triglycine s x212 =139 73M5 76V4 fluorotmyllate (piezml.),

wc%-~3 -

%M4 Triglycine selenate c 32.8 32.2 22.7 11.6 -7.4 -5.7 83Kl3

crc;se) . wH.+Jq-m, -

H$e04 @ Triglycine sulfate c 50.6 35.1 28.1 11.0 12.1 7.3 20.4 20.5 24.0 0.2 77v4

(deuterated) (piezoel.).

W2(-=$OW3 - D,sO, ziuctuugstate, s 5.682 6.793 4.599 14.36 14.27 40.10 -2.292 -1.117 -1.852 88P2

zlwo,~ c 240.23 214.93 287.96 69.65 70.01 24.93 108.94 102.21 112.99

a) fl is unstiffened value, p is the stiffened value. b, GIC graphite intercalation compound, Formula is iuferred from gravimetric analysis. The positions of the lacuna q Br2 are unknown.

=) 2sE23 + $44.

a) 2#13+$55.

e, 242+ d&j.

r, sE?5+&5.

d Units in (GHz)~ at T = 295.6 K by Brillouin scattering. Phase transition: 2/m + orthorhombic at T = 357 K on heating. See also Table 22. h, The range of values are indicated with the upper and lower limits entered on separate lines. i) A complete set of stiffnesses for TGSe is given in [78M2], but these violate the stability conditions. j) For the effect of gamma irradiation on some elastic properties of triglycine selenate, see [76L9]. k, Chthorhombic approximation.

Page 227: Second and Higher Order Elastic Constants

222 1.2.1 Elastic constants spa, cpa. ‘Ikiclinic system Bef.p.576

Table 25. Densities and compositions of soda-potash feldspars of Table 24.

Feldspar number 2 42 43 60 61 209 215

Density [kg/m31 2560 2540 2540 2580 2570 2570 2570 Orthoclase, KAlSi,O, [wt%] 78.5 75 66.6 53.5 64.9 74 60.7 Albite, NaAlSi,Os [~%I 19.4 22 28.6 34.6 26.6 18.9 35.6 Anorthite, CaAl,Si,Os [wt%] 2.1 9.15 3.60 1.95 1.64

‘lhble 26 see p. 219

Table 27. Triclinic system. s,,~ in (TPa)-1 cpO in GPa

Material s or c

Suffixes pa

11 12 13 14 15 16 22 23 24 25

Ammonium tear- s oxalate dihydrate, c N-&H3Q04)2. 30

Cesium trihydrogen selenite, CsH&S@&

Copper sulfate 5 pentahydrate, C cUs04 l 5H20 S

Lithium hydrogen k oxalate mono- E hydrate LiHq04 . H20

Potassium tetroxalate s dihydrate, C

KH,qO, - 2H,O Sodium hydrogen s oxalate hydrate, c NaHq04 . H20

81.9 -15.2 -13.0 9.8 -80.7 5.8 42.0 -9.8 -41.1 5.3 21.9 12.0 10.4 1.6 6.0 -1.0 45.9 16.3 11.6 2.0

27.2 -7.7 -11.5 4.9 -0.1 3.4 40.7 -12.2 4.2 -1.9 57.1 20.6 31.6 -4.3 -0.4 -2.2 35.8 23.4 -2.8 -0.1 28.6 -9.6 -9.8 2.4 0.4 9.8 49.3 -25.2 -6.2 2.2 56.5 26.5 32.1 -3.3 -0.8 -3.9 43.3 34.7 -0.7 -2.1 28.7 -4.73 -10.8 -1.3 -38.5 -11.0 14.9 -3.02 15.5 4.1 95.2 26.0 28.3 2.5 30.7 10.6 86.7 14.2 -9.3 4.7

66.2 -10.2 -12.4 2.8 -67.6 20.9 37.4 -9.8 -40.4 -4.8 25.4 11.8 9.83 0.72 6.12 -1.23 47.8 14.0 11.3 1.46

50.61 -9.71 -6.02 -9.06 10 10.7 15.21 -2.18 2.03 -7.8 24.86 16.81 11.84 1.36 -0.50 -0.60 83.42 20.85 -0.62 3.30

hdolt-Bernstein New Saiea IUt29a

Page 228: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.1 Elastic constants spa, cPcT. Triclinic system 223

Table 27.

Refs. Fig.

26 33 34 35 36 44 45 46 55 56 66

31.7 35.2 0.2 4.9 -5.4 140 1.6 -37.5 271 -20.9 254 70KlO -3.8 36.4 3.8 2.0 -0.8 10.4 0.1 0.1 5.40 0.1 4.4

-1.2 28.4 -3.1 4.7 0.8 -0.6 58.4 -0.8 -2.8 -0.8 -8.0 39.2 6.9 2.0 3.2 0.2 56.9 -4.4 -2.1 -1.6 -1.5 38.6 0.7 -0.75 2.9 1.2 35.0 -0.5 9.2 1.3

23.5 36.1 5.5 8.9 -13.1 146 32.2 -41.6 259 -59.5 232 70KlO -2.70 34.3 2.19 1.47^ 0.40 10.2 -0.82 0.53 5.69 0.70 4.99

-7.87 14.75 6.55 -2.80 -2.5 72.24 -2.8 -23.4 185 -17.0 134 85H2 4.26 78.78 -5.89 1.42 0.91 15.37 0.27 2.46 5.69 1.03 8.34

63.4, 6.5 -3.4 72.5 20.8 90.0 69H4 16.5 -1.8 1.2 15.2 -3.5 12.0 60.0 -4.3 -0.8 88.0 23.4 111 70K8 17.3 0.9 0.3 12.2 -2.6 10.0 130 -12 -26 112 16 54.5 9OH1 9.6 1.6 4.3 19.4 0.9 22.2

84Sll 27.1

Land&B6mste.h New Series IWZ9a

Page 229: Second and Higher Order Elastic Constants

224 1.2.2 Temperature coefficients Tcpa, Cubic system. Elements [Ref.p.576

1.2.2 Temperature coefficients TcP

Table 28. Cubic system. Elements. c’ = l/2 (qt - ct2).

Element T Wl Tc44 Tc,, Tc’ Main refs. Other refs.

K 10-4/K

Al 80..-300 -3.1 -4.7 -1.2 s(n=7) 0.2 0.8 0.3

s(n=3) Ar

Ba ca cs Cr

200-900 -4.3 1.8

40-77 (-120) 30-77 -95 100.~*293 -1.6 lOo--300

78 77***300 ;15) 300~m0 (-0.5) 80.-300 -2.02

0.06

-5.6 0.3 (-180) -146 -12.5 -3.6

Cl, C-1) -3.32 0.13

(-2.1) (3.6) (-65) -56 +2.6

cu s(n=8)

-13 (-15) (+6) -1.26 0.18

300800 -2.43 -3.57 -1.62 P Wal 0.0001 0.25

Diamond, C Ge

s(n=4) P PPal 0 0.2 N [cme3] 10’4 10’9 4*1013 (Sb) 910*g (Ga)

Au s(n=3)

150-300 -2.09 -3.28 -1.26 -4.2 78V4,79V2 150-300 -2.03 -3.34 -1.20 -4.2 298 -0.137 -0.125 -0.570 72M5 150~~1000 -1.15 -1.2 PO 53M1,7OB7,

0.20 0.2 @+I 74V2,8OP5

77v.298 -0.9 1 77-298 -0.91

-0.92 -0.90

-0.91 -0.90

300500 -1.01 -1.35 -0.70 300*..500 - 1.09 -0.97 -0.77 77-295 (-0.7) (-0.7) (-1.4) 77-295 (-0.8) (-0.7) (-1.1) 50-300 -1.9 -3.1 -1.6

0.1 0.1 0.1 3C0-600 -1.8 -3.3 -1.5

P Wal 0.0001 0.25

150..300 -2.01 -3.2 -1.71 -3.7 78V4,81Bl 150-300 -1.99 -3.0 -1.70 -3.7

54L1,64Kl, 64V2,68Tl, 7384,75R4, 77T2,79Tl 53s 1,6962, 79T3 68G7 7oK2

-9.3 84B8 -2.9 86H6

68K3 63B2 83V2,8622

5501,59Rl, 81L14,82W6 6OW2,61A4, 71D1,7101, 73F1,78V4, 79v2 66c.3

63M3

68Bl

7OB3

58N1,7101, 78V4,81Bl 66c3

hdolt-Bbstein New Saia lIJf29r

Page 230: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Temperature coefficients Tc,,,. Cubic system. Elements 225

Table 28 (continued)

Element T

K

31

10%

%4 %2 Tc’ Main refs. Other refs.

lr Fe

Kr La. Pb

Li

MO

Ni

Nb

Pd

Pt K

Rh Rb Si

5w300 (-1) 100-300 -1.7 100-300 (-1.6) 300-700 -2.5 300*-1000 ? 295547 S@lOO -85 300.-660 -4.8 100~~~300 -4.4 200**300 (-4.4) 300.**600 (-5.4) 78***195 (-9) 90-195 -3.5 100 -3.33

6Li low195 -3.30 ‘Li lo&195 -3.48

100.++300 (-0.8) 1w300 -1.15 18&500 -1.6 200+-1000 -1.3 8@300 (-1.8) 200***700 (-2.7) 50*-2500 0.89

s(n=9) 0.15

70**1000 (-0.6) 295 -1.66 423 -1.64 800 -1.53 100~~300 -1.7 50***300 (-1) 50-200 (-5.5) 293-336 - 11 100-300 -1.2 80**170 -12 8@300 -0.81

s(n=3) 0.41 300*-1000 (-0.84) 40@**800 (-0.83)

-2.0 -1.5 (-1.9) -1.9 (-1.8)

t-11 -0.8 (-0.7) (-3) (-1.3)

-97 -2.2 -10.6 (-10.8) (-10.5) (-10) -10.5 -9.1 -9.0 -9.2 (-0.7) -0.87 -0.93 -1.0 (-2.6) (-3.0) ?

? +0.91 +0.42 -1.42 (+0.45) (-0.3) -17 -25 -2.3 -23 -0.63 0.32 (-0.77) (-0.72)

(+0.4) -1.12 -1.18 -1.38 (-0.8)

? (-4.5) -7 (0) -11 -1.10 0.51 (-0.93) (-0.95)

(-158) 0 -2.8 (-2.8) (-3.8) (-10) -3.6 -3.26 -3.0 -3.2 (0) (+0.35) +0.26 uo.35 (-0.3) (-0.5) ?

66Ml 61Rl 65Ll 68Ll 72D2

-5.2 85S8 7 lK4,72K6 82S4,85S 13 62W2 69M8 77Vl 59Nl 6936 74Dl 77F3

63Fl 78S5 62Bl 67D2 7383 6OA2 65C 1,66A4 6952,72H9, 74H5,76M2, 77T3,77W2 66A4 74W2

7OWl 65Ml 65M2 75F5 81W2 6764 53M1,64M2, 7OM6 68E2 74B7

800**1200 (-1.05) (-0.85) (-1.20)

Jeandolt-Bhmtein New Serlea IlI/29a

Page 231: Second and Higher Order Elastic Constants

226 1.2.2 Temperature coefficients Tcpa. Cubic system. Elements pef.p.576

l%ble 28 (continued)

Element T %l Tc44 Tc,, Tc’ Main refs. Other refs.

K 10%

Si, cont. P [GW 0 0.2

N [cm -3] 1014 (As) 1014 (As)

Ag P Wal 0.0001 0.25

Na

Sr Ta

s(n=4)

s(n=4)

Thallium (/3-Tl) a) Th W

s(d) V

(0.02 % 0)

77-298 -0.53 -0.42 -0.75 77-298 -0.53 -0.41 -0.73

77-295 (-0.5) (-0.4) (-0.8) 77-295 (-0.3) (-0.2) (-1.6) m-300 -2.3 -4.0 -1.5

150..300 -2.62 -3.9 150-300 -2.58 -4.0 300...800 -2.82 -4.15 80-300 -6.3 -17

0.9 1 lOO-.293 -1 -11.5 100300 -0.89 -2.45

0.20 0.15 500~**1500 (-1.1) ? 300800 (-0.8) (-1.6) 100+00 -5.6 -7.7 100~-300 -1.93 -3.95 100~~*2000 -1.01 -0.78

0.19 0.12 100~-300 (-0.75) (-2.9) 25 -0.21 -0.98 50 -0.37 -2.14 75 -0.60 -2.90 100 -0.87 -3.10 150 -- -2.90 200 -1.02 -2.46 250 -1.03 -2.50 300 -1.03 -2.52 180~~300 (-1.1) (-3.0) 100~**300 (-1.1) (-3.0)

-1.89 -1.85 -2.1 -5.6 1.6 +0.7 (-0.4) 0.24 (-0.9) -0.4 -3.8 (+0.45) (0)

(-0.15) -0.02 -0.07 -0.09 -0.13 -0.33 -0.45 -0.46 -0.46 (-0.6) (-0.5)

64M2

70B3

58Nl

-5.0 78V4,81Bl -5.0

66c3 38Q1,66D2, 66M2,73F5

-4.6 84B8 63F1,73L4, 77S1,82Al 70A4,70A5 6632 77M.5 7703 62B1,63Fl, 67L3,82Al 6OAl 71B2

80Kl 7963

a) Obtained by extrapolation of In-T1 alloy data.

Indolt-Bbstein New Suica l&29r

Page 232: Second and Higher Order Elastic Constants

.Ref.p.576] 1.2.2 Temperature coefficients Tcpa. Cubic system. Alloys 227

Table 29. Cubic system. Alloys. c’= l/2 (Cl1 - Cl&

Alloy T %l %4 Tc,, Tc’ Main refs. Other refs.

K 10-4/K

Al-Ni d, Cr-80.4 % Ni Co-Fe at % Fe

6 8 10

Cu-Al at % Al 0 0.04 0.2 1 5 9 14 0 0.75 3.4 4.85 6.9 7.5 8.4 10.3 13.25

Cu-14wt%Al-4.lwt%Ni Cu-Au at % Au

0.23 2.8 10.0

Cu-Mn at % Mn 0 1.25 2.6 3.5 5.0 5.8

Cu-37.2 % Mn a) Cu-N at % Ni

0 3.02 6.02 933

30@**600 (-1.7) -3.4 (-0.7)

30@600 (-4.0) (-4.0) (-5.2) 30@600 (-3.7) (-3.3) (-4.5) 300-600 (-4.6) (-3.0) (-3.8)

100**300 (-1.8) (-3.1) (-0.9) IO@**300 (-1.6) (-3.4) (-0.7) 100-300 (-1.9) (-3.4) (-1.0) 100.*300 (-1.9) (-3.4) (-1.0) 100-300 (-2.1) (-3.1) (-1.3) lOO*-300 (-1.5) (-3.3) (-0.4) 10~300 (-1.8) (-3.2) (-0.8) 293 -2.13 -3.74 -1.14 293 -2.18 -3.34 -1.31 293 -2.11 -3.31 -1.24 293 -2.12 -3.28 -1.24 293 -2.09 -3.28 -1.24 293 -2.14 -3.25 -1.27 293 -2.10 -3.24 -1.31 293 -2.13 -3.22 -1.28 293 -2.10 -3.16 -1.26 250-400 -0.7 -4 -1.4 +3

80-300 80-300 80*-300

77.-300 77-a300 77-s300 77-300 77300 77-a300 100-400

100-.300 (-1.93) (-3.18) (-1.05) 71Dl lOP300 (-1.95) (-3.21) (-1.12) loo***300 (-1.95) (-3.10) (-1.11) lo@**300 (-1.82) (-3.08) (-0.96)

(-2.0) (-2.0) (-2.0)

(-4.2) (-2.8) (-3.0)

(-1.0) (-1.2) (-1.0)

(-1.9) (-3.2) (-1.0) (-1.8) (-3.2) (-0.6) (-1.8) (-3.3) (-0.9) (-1.9) (-3.3) (-1.0) (-2.0) (-3.3) (-1.1) (-2.0) (-3.3) l-l.0

77R7 81L6

73W6

76F2

71Cl

81H9

7101

6OW2

(-2.5) (-3.8) (-1.4) (-4.5) 77312

continued

Land&-BLlmstein New Series IIln9a

Page 233: Second and Higher Order Elastic Constants

228 1.2.2 Temperature coefficients Tc,,. Cubic system. Alloys mef.p.576

Table 29 (continued)

Alloy T 31 %4 Tc,, Tc’ Main refs. Other refs.

K 10-4/K

C%@XNi~zn50 x [at%] O@ -brass) 5 10 15 20 25

Cu-15 % Sn Cu-Zn (a-brass)

at% Zn 0 4.1 9.1 17.4 22.7

Cu-Zn (P-brass) at% Zn

50 48.1 43 47 44.3 48.3

p-CuZnAl c)

cu 66.5zn20.842112,7 Au-47.5 at % Cd fl A%%-xZn47

x[at%] 0 15 20 23 30 45 53

A”5+22zn28 In-Tl at % Tl

76.5 81.5

In-30 % Tl In-31 % Tl

loo*300

200+-300

(-2.0) (-6.9) (-3.6) (+5.0) 76s 14 (-2.6) (-6.6) (-4.1) (+5.3) (-2.6) (-5.6) (-4.3) (+7.3) (-2.3) (-5.4) (-4.0) (+9.3) (-2.3) (-5.5) (-4.2) (+13) (-2.5) (-5.7) (-4.4) (+15) -1.7 -3.2 -1.7 78Nl

loo**300 -2.2 -3.3 -1.5 ltxP300 -2.5 -3.1 -1.5 100+300 -2.7 -3.6 -1.8 loo**300 -2.6 -3.5 -2.1 loo**300 -2.7 -3.4 -1.7

200...700 300*~700 lOO.-300 loo**300 300 300 =300 183.e.293 333.e.368

-3.0 (-5) (-3) (-2) -1.9 -1.7 -1.55 -1.0

;i;

(-7) (-6) -5.1 -4.5 -4.0 -4.3 -1.25

-3.4 (-2) (-4) (-3) -2.8 -2.2 -2.13 -1.9

-1.65 -3.46

100~**300 100+**300 160380 260.360 200*-380 loo**300 loo**300

-2.0 -5.7 -1.2 -4.2 -1.1 -3.2 -0.4 -0.2 -1.5 -4.1 -2.1 -6.0 -1.3 -5.6 -0.4 -6.5

-2.6 -1.8 -4.3 -8.5 -4.6 +13 -2.9

loo*350 -3.1 -11 -2.2 mk.350 -3.75 -10 -2.5 150.300 -6.7 -7.2 -11 150*300 -5.3 -5.8 -12

59Rl

63Ml 71Yl 74M4

7538

7766 84Vl 7762

72M13

+2.9 82M2

77M5

78M4

86V6,88Vl

Landok-Bhstein New Saia W29a

Page 234: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Temperature coefficients Tc,, . Cubic system. Alloys 229

Table 29 (continued)

Alloy T %l Tc44 Tc,, Tc’ Main refs. Other refs.

K lo-‘4/K

Fe-Al at % Al 4.0 9.6 14.5 17.8 19.8 22.4 23.6 25.0 27.0 28.1 34.0 40.1

Fe-Ni at % Ni 48.8 58.8 79.2 89.5 29

Fe-14S%Ni-14.5%Cr- 2.5%Mo

Fe-37 % Pd Fe-28 % Pd Fe-Si at% Si

7 11 4.42 6.29 8.89 10.10 6.3 8.59 11.68 11.91 25.1

(FesSi) 25 Pb-In at % In

5.5 9.0

20.7

Land&Bhtstein New Saks IW29a

100.,300 (-1.9) (-1.7) (-0.9) loo-~300 (-1.5) (-1.5) (-0.5) 100..a300 (-1.2) (-1.4) (-0.4) 100*~~300 (-1.1) (-1.6) (-0.3) 100~-300 (-1.2) (-1.7) (-0.6) 10~**300 (-1.4) (-1.8) (-0.6) loo***300 (-1.9) (-2.4) (-0.4) 100.,300 (-1.9) (-2.1) (-0.2) lW300 (-1.7) (-2.2) (+O. 1) 100**~300 (-2.0) (-2.2) (+O. 1) loo-*300 (-3.3) (-2.2) (-0.7) loo-*300 (-3.2) (-2.0) (-1.1)

200*-300 -2.6 -2.9 -1.2 200..-300 -2.4 -3.0 -1.5 200*-300 -2.2 -3.1 -1.7 200**300 -2.0 -3.1 -0.9 2OW600 (+14) (-1.8) (+22) 300.-600 (-2.9) -4.5 (-0.9)

lo*-295 -6.1 -1.6 295-700 +4.4 -1.1

77-298 77-298 77-.300 77**300 77..a300 77.-300 80*-280 80..-280 80..a280 8W280 80-a280 100***300

(-1.3) (-1.5) (-0.3) (-1.4) (-1.4) (-0.5) -1.6 -1.6 -0.6 ? -1.6 ? ? -1.2 ?

;-1.3) ;.‘;8) ?

(-1.6) (-1.6) (-1.3) (-1.7) (-1.9) (-1.9) (-2.4) (-2.3) (-2.15) (-1.6) (-0.6)

78-a300 (-3.6) (-10.0) (-2.0) 78-a300 (-4.8) (-10.4) (+0.4) 78.e.300 (-26.5) (-10.7) (-50)

67Ll

83K9

6OA2,68S 1 81L6

+3.2 +150 82s16

66Kl

71A3

77M2

77Rl

71V2

continued

Page 235: Second and Higher Order Elastic Constants

230 1.2.2 Temperature coefficients Tcpa. Cubic system. Alloys mef.p.576

‘Ihble 29 (continued)

Alloy T

K

TCll T% Tc,, Tc’ Main refs. Other refs.

10%

Pb-Tl at % Tl 5.01 20.50 31.77 40.50 52.66 61.41 71.68 0.17 1.06 1.77 2.35 3.50 6.10 14.9 17.6

Mo-Re at %Re 7.0 16.6 26.9

Ni-Al alloy AF116A2e) . MAR-MOO2 mod N&Al yy’-105A y’-105B y’-PE16 NlMOlW 105A NlMONIC 105B

N&Co at % Co 10.11 26.35 38.45 43.50 62.00

Nb Nb+1.65 % D, Nb+2.46 % H,

100*~300 100+*.300 100~-300 100~*~300 100~*~300 lW..300 100+**300 77.e.296 77e.296 77.a.296 77*..296 77u.296 77~.296 77..296 77.e.296

-3.9 -10.0 -2.2 66S1,6738 -3.3 -9.6 -1.9 -3.5 -8.3 -2.2 -2.5 -7.7 -1.5 -2.8 -7.1 -2.1 -1.3 -6.5 -1.2 -1.5 -5.3 -1.7 (-4.4) (-10.2) (-2.7) 66A2 (-4.3) (-10.6) (-2.7) (-4.4) (-10.2) (-2.8) (-4.0) (-10.3) (-2.5) (-4.2) (-10.1) (-2.6) (-4.4) (-10.1) (-3.0) (-3.9) (-10.3) (-2.5) (4.0) (-10.3) (-2.4)

(-1.2) (-0.8) (+0.4) 68D6 (-1.2) (-0.8) (+O.l) (-1.2) (-1.0) (-1.5) (-1.54) (-2.44) (-0.79) (-2.62) 8OF5

298-873 -2.1 -2.5 -2.1 192.u.283 -1.5 -2.0 -0.7 -2.8 192.*283 -1.4 -2.5 -0.5 -3.0 19Ze.283 -1.5 -2.3 -0.8 -2.7 193***283 -0.9 -2.2 -0.7 -1.3 192-283 -1.4 -2.6 -0.5 -3.0 192.-283 -1.7 -2.4 -0.9 -3.0

100~~*300 100~**300 loo**300 100+*.300 lOO.-300 300..600

-1.8 -2.6 -0.3 -1.8 -2.6 -0.7 -1.6 -2.6 -0.6 -1.6 -2.6 -0.5 -1.4 -2.6 -0.8 -0.87 (+l.O) -0.35 -0.93 (+l.O) -0.32 -0.87 (+l.l) -0.32

88K7 87Wl

7OLl

76M2

hdolt-Bhatein New S&a IlIR9r

Page 236: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Temperature coefficients Tcpcr. Cubic system. Alloys 231

‘Ihble 29 (continued)

Alloy T %l Tc44 Tc,, Tc’ Main refs. Other refs.

K 10-4/K

Nb(outgassed) b, Nb+1.2 % Hzb) Nb+2.7 % Hzb’ Nb-MO at % MO

0 16.8 23.3 / 33.9 51.6 75.2 92.1

Nb-Zr at % Zr 0 1.4 3.6 6.0 0 10 15 20 25 30 35 40 45 50 55 70

Pd-H at % H crystal1 .o

0.26 0.84

crystal11 0 0.16 1.70

p~o.66 Pd Pd-2 at % Ag Pd-10 at % Ag Pd-lat%Rh

3001 (-0.87) (-0.23) (-1.73) 77B9 (-0.95) (-0.53) (-1.85) (-0.99) (-0.68) (-1.68)

150-350 -1.0 (-1.8) (-0.5) 150-350 -0.7 ? ? 150**350 ? -1.1 (+4.4) 150-350 ? ? (+6.4) 150-350 (-1.2) ? (-0.5) 150**350 (-1.1) (+0.6) (-0.8) 150**350 (-1.0) (-0.2) (-0.8)

5Qa.250 50-250 50.-250 5@.*250 1w300 10~300 100~-300 lOO”300 100-300 100**300 lOO*-300 lOO*-300 lOO*-300 loo*-300 100~-300 100-300

(-0.89) (-3.5) ? (-0.98) (-3.2) ? (-0.92) (-2.7) ? (-0.99) (-2.3) ? -0.80 1 (y-0.2) -0.90 ? (-0.3) -0.91 ? (-0.3) -0.90 ? (-0.3) -0.91 ? (-0.2) -0.93 ? (-0.2) -0.99 ? (-0.3) -0.95 ? (-0.2) -0.96 ? (-0.2) -1.03 ? (-0.2) -1.42 ? (-0.7) -1.08 ? (-0.1)

150*-300

15@**300 10@300 100*~*300 100~~~300 10~300

(-1.7) +1.24 (-1.1) (-1.5) +1.34 (-1.0) (-1.7) +1.25 (-1.2) (-1.6) +1.50 (-0.9) (-1.6) +1.37 (-0.8) (-1.8) +1.41 (-1.1) (-3.7) (-4.0) (-1.6) -1.7 (+0.45) (-0.8) -1.7 (+0.56) (-0.8) -1.7 -1.0 (-0.9) -1.5 (+0.7) (-0.8)

72H9

74w

77W2

80Sll

79H2 7OWl

continued

Land&BBmstein New Series llIt29a

Page 237: Second and Higher Order Elastic Constants

232 1.2.2 Temperature coefficients Tc,,. Cubic system. Alloys

‘able 29 (continued)

[Ref.p.576

Alloy T %l Tc44 Tc,, Tc’ Main refs. Other refs.

K 10-4/K

Pd-5 at % Rh Pd-20 at % Rh Ag-Zn at % Zn

42 45 47 50

Ta-H at % H 0 5 10

Tat-,W, x[at %] 0 10 30 50 67 83 100 9.62 21.50 40.04 43.30 72.66 82.68 90.43

~Co.063 Ti+4O%V+x%H

i 2.4 3.6 4.8

W-2.9 at % Re W-9.64 at % Re v-o at % 0

0.021 1.07 1.85 3.46

loo**300 100300

loo*300 100300 loo-*300 loo*-300

(300)

10@*300

loo.a300

295

-1.4 +0.07 (-1.0) -1.4 -1.5 (-1.0)

(-2) (-5) -3 74M4 (-3) (-6) t-4 (-3.5) (-6) t-4 (-1) (-7.5) (-1.5)

-0.80 -2.13 (-0.3) -1.55 77Sl -0.80 -2.13 (-0.3) -1.55 -0.80 -2.13 (-0.3) -1.55

-0.78 (-2.49) (-0.40) 82Al -0.76 -1.88 (-0.23) -0.62 -0.80 (-0.66) -0.53 (+0.54) (-0.81) (-0.78) -0.20 (-0.31) -0.78 (-0.50) (+0.13) (0.80) -0.74 (+0.26)

(-3.05) 74c4 (-2.26) (+0.4 1) (+0.46) (-0.17) (-0.85) (-0.82)

-1.87 -3.3 (+0.54) 7763

-1.20 -1.03 -0.44 -2.80 78A8 -0.71 -0.99 -0.71 -0.70 -0.30 -0.92 -0.51 +0.20 to.65 -0.70 -0.63 t3.73 (-0.94) (-0.81) (t0.92) 75A4 (-0.90) (-0.95) (tO.55) ’

(-1.1) (-3.0) (-0.5) 7963 (-1 .O) (-2.7) (-0.5) (-1.0) (-2.3) (-0.4) (-1.1) (-1.8) (-0.3)

a) ‘Solution treated’ crystal. See Fig.4.19.

Ladoh-B&hsfein New Saiu W29r

Page 238: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Temperature coefficients Tcp,,. Cubic system. Intermet. camp. 233

Footnotes for Table 29 (continued)

b, Tc,, uncorrected for thermal expansion. c, Composition [wt %]: Cu 72.7, Zn 21.4, Al 5.9. Martensitic start temperature MS = 280K. d, See Fig.4.3. e, See footnote u, Table 4. f) Martensitic transformation at 333K.

Table 30. Cubic system. Intermetallic compounds. c’ = l/2 (err - c&.

Compound T %l Tc44 Tc,, Tc’ Refs.

K 10-4/K

Cd2

CeSn3 CoPt a) CusAu b,

4 CuAuZn, d, GdCu e, AuZn

(47 % Zn) Hfco,

FeTi Ld2

MgzSn

N&AI

Ni50.4A

quenched slowly cooled

N&Fe s g) 0 0.3 0.6 1

NiTi fl AgMg UC02

loo*-300 150-300 100-300 100-~300 100-300 290 100**~300 W-300 loo*-300 150***300 2W300 100.-300 10~300 4OW 1000 200-600

-1.7 ? -1.24

-2.5 -4.2 -2.9 -3.4 -3.4 -4.0 (-2.4) -6.6 (-6) -1.2 -2.1 -0.55 -3 (-2.5) (-2.2)

(+0.5) (+3.4) -0.88

-1.2 (-2.6) -1.8 t-11 -3.0 -1.9 -1.25 -3 (-2.3) (-1.6)

-1.5 77Kl (-3.1) 81G3 -2.8 71S2 (-3) 74M4 -3.6 6933 +0.4 8OL5 (f-8 74s3 -15 67Dl (-1.6) 69Dl (-0.9) 6903

70-320 -1.23 -2.24 -1.36 7P320 -0.78 -2.51 -0.60

100***300

293***303 100*~~500 200..-300

(-2.28) (-2.84) (-0.4) (-1.82) (-2.32) (-0.8) (-1.84) (-2.64) (-0.8) (-1.84) (-2.51) -1.0 -0.81 +28.3 -3.9 -1.8 -3.9 -2.4 -1.4 -2.0 -0.6

7483 8OE2 75R2 6OFl

8OR2

78T5

+11.4 80Ml 67Cl 67Gl

continued

Land&Blmstein New Serb IIV29a

Page 239: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Temperature coefficients Tcp,,. Cubic system. Intermet. camp. 233

Footnotes for Table 29 (continued)

b, Tc,, uncorrected for thermal expansion. c, Composition [wt %]: Cu 72.7, Zn 21.4, Al 5.9. Martensitic start temperature MS = 280K. d, See Fig.4.3. e, See footnote u, Table 4. f) Martensitic transformation at 333K.

Table 30. Cubic system. Intermetallic compounds. c’ = l/2 (err - c&.

Compound T %l Tc44 Tc,, Tc’ Refs.

K 10-4/K

Cd2

CeSn3 CoPt a) CusAu b,

4 CuAuZn, d, GdCu e, AuZn

(47 % Zn) Hfco,

FeTi Ld2

MgzSn

N&AI

Ni50.4A

quenched slowly cooled

N&Fe s g) 0 0.3 0.6 1

NiTi fl AgMg UC02

loo*-300 150-300 100-300 100-~300 100-300 290 100**~300 W-300 loo*-300 150***300 2W300 100.-300 10~300 4OW 1000 200-600

-1.7 ? -1.24

-2.5 -4.2 -2.9 -3.4 -3.4 -4.0 (-2.4) -6.6 (-6) -1.2 -2.1 -0.55 -3 (-2.5) (-2.2)

(+0.5) (+3.4) -0.88

-1.2 (-2.6) -1.8 t-11 -3.0 -1.9 -1.25 -3 (-2.3) (-1.6)

-1.5 77Kl (-3.1) 81G3 -2.8 71S2 (-3) 74M4 -3.6 6933 +0.4 8OL5 (f-8 74s3 -15 67Dl (-1.6) 69Dl (-0.9) 6903

70-320 -1.23 -2.24 -1.36 7P320 -0.78 -2.51 -0.60

100***300

293***303 100*~~500 200..-300

(-2.28) (-2.84) (-0.4) (-1.82) (-2.32) (-0.8) (-1.84) (-2.64) (-0.8) (-1.84) (-2.51) -1.0 -0.81 +28.3 -3.9 -1.8 -3.9 -2.4 -1.4 -2.0 -0.6

7483 8OE2 75R2 6OFl

8OR2

78T5

+11.4 80Ml 67Cl 67Gl

continued

Land&Blmstein New Serb IIV29a

Page 240: Second and Higher Order Elastic Constants

234 1.2.2 Temperature coefficients Tcpg. Cubic system. Solid solutions [Ref.p.576

?gble 30 (continued)

Compound T %l Tc44 Tc,, Tc’ Refs.

K 10-4/K

ya2 loo-*300 -1.3 -1.75 (0) 7433 YZn So-~300 -2.1 (-3.7) (-0.4) 71S2 mo, 150-*300 -2.2 -2.8 -0.65 6933

*) Disordered. For ordered CoPt see Table 40. b, Ordered. c) Disordered. d, Martensitic transformation at 284K. e) Tc,, during heating cycle. See Fig.5.9. f) Premartensitic start temperature 293K; martensitic start temperature 268K. g) S = order parameter (approx.).

Table 31. Cubic system. Solid solutions. c’ = l/2 (Cl1 - q2).

Solid solution T 31 %4 Tc,, Tc’ Refs.

K 10%

Cdo.3W0.7Te

Cdo.21Hgo.79Te

%.8%.2S

Pb,-,Sn,Te

?I 0.15 0.20 0.25 0.35

MgCu2 -MgZn2 mole % MgZn2

10.0 19.0 22.6 27.3 36.7 50.1

Hg0.8m0.2Te

200..a300 150-250 293 SO-100

loo--300 (-1.9) (-1.4) (-2.1) 71s3 loo-*300 (-3.6) (-2.5) (-5.3) 100~-300 (-2.2) (-3.4) (-2.9) loo-*300 (-3.9) (-1.7) (-3.5) loo+-300 (-4.0) (-2.2) (-3.6) loo-*300 (-2.6) (-3.6) (-4.1) loo*300 (-3.5) (-1.7) -4.2 (-1.8) 81C5

-3.4 -4.2 +2.7

-1.6 -1.7 +0.7

-5.7 -5.7 -5.5 -6.0 -6.1 -6.6 -6.0 -6.5 -5.3 -4.8

-4.2 87V2 -5.8 87V5 -0.5 +2.9 87Sll

88V4

hdolt-Bihstein New Saks I&29r

Page 241: Second and Higher Order Elastic Constants

234 1.2.2 Temperature coefficients Tcpg. Cubic system. Solid solutions [Ref.p.576

?gble 30 (continued)

Compound T %l Tc44 Tc,, Tc’ Refs.

K 10-4/K

ya2 loo-*300 -1.3 -1.75 (0) 7433 YZn So-~300 -2.1 (-3.7) (-0.4) 71S2 mo, 150-*300 -2.2 -2.8 -0.65 6933

*) Disordered. For ordered CoPt see Table 40. b, Ordered. c) Disordered. d, Martensitic transformation at 284K. e) Tc,, during heating cycle. See Fig.5.9. f) Premartensitic start temperature 293K; martensitic start temperature 268K. g) S = order parameter (approx.).

Table 31. Cubic system. Solid solutions. c’ = l/2 (Cl1 - q2).

Solid solution T 31 %4 Tc,, Tc’ Refs.

K 10%

Cdo.3W0.7Te

Cdo.21Hgo.79Te

%.8%.2S

Pb,-,Sn,Te

?I 0.15 0.20 0.25 0.35

MgCu2 -MgZn2 mole % MgZn2

10.0 19.0 22.6 27.3 36.7 50.1

Hg0.8m0.2Te

200..a300 150-250 293 SO-100

loo--300 (-1.9) (-1.4) (-2.1) 71s3 loo-*300 (-3.6) (-2.5) (-5.3) 100~-300 (-2.2) (-3.4) (-2.9) loo-*300 (-3.9) (-1.7) (-3.5) loo+-300 (-4.0) (-2.2) (-3.6) loo-*300 (-2.6) (-3.6) (-4.1) loo*300 (-3.5) (-1.7) -4.2 (-1.8) 81C5

-3.4 -4.2 +2.7

-1.6 -1.7 +0.7

-5.7 -5.7 -5.5 -6.0 -6.1 -6.6 -6.0 -6.5 -5.3 -4.8

-4.2 87V2 -5.8 87V5 -0.5 +2.9 87Sll

88V4

hdolt-Bihstein New Saks I&29r

Page 242: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Temperature coefficients Tcpa. Cubic system. Solid solutions 235

‘Ihble 31 (continued)

Solid solution T 31 Tc44 Tc,, Tc’ Refs.

K 10-4/K

KCl-KBr mole % KBr

0 16.8 38.2 59.8 79.5 100 0 26 49 60.5 75.5 100

KCI-RbCl mole % RbCl

0 25 50 75 100

KCI-NaCl mole % KC1

0 3.8 5.6 82.4 90.0 100

KI-KBr mole % KI

0 23.5 61.5 78 100 0 20 35 65 77 100

Land&BBmstein New Series IIIt29a

300.**500 -7.5 -2.3 3OF500 -7.8 -2.4 3w500 -8.0 -2.5 300~-500 -8.0 -2.4 300+-500 -8.1 -2.5 300*;500 -8.0 -2.4 8W300 -8.3 -2.0 80+-300 -8.4 -3.4 80-300 -7.8 -2.1 80.-300 -7.5 -1.9 80**300 -7.5 -1.8 8O.a.300 -6.8 -2.1

(+5.1) 6734 +4.8 +4.1 +4.4 +4.2 +4.7 +3.3 +3.3 +4.6 +5.6 +5.1 +lO.O

71s5

300*~500 -8.1 -2.5 +0.7 7oc4 300*-500 -8.5 -2.7 +0.6 300~-500 -8.5 -2.0 +0.7 300.**500 -8.2 -2.0 +0.8 300*-500 -7.8 -2.1 +0.8

300*+.650 (-5.7) (-3.1) (+2.8) 73B4 300-650 (-5.7) (-2.2) (+2.9) 300*-650 (-5.9) (-1.1) (+2.7) 300-650 (-5.8) (-1.2) +? 300*-650 (-6.0) (-1.5) +? 300***650 (-5.4) (-2.5) +?

80..300 -6.8 -2.11 80*-300 -8.6 -1.79 80**300 -8.6 -1.41 SO**300 -9.3 -0.91 80s..300 -9.2 -0.84 300**~500 -8.2 -2.6 3w500 -8.8 -2.9 300-500 -8.9 -2.3 300*-500 -8.8 -2.2 3ow500 -8.8 -2.2 300.**500 -9.0 -2.5

+3.5 72B5 +4.8 +7.2 +7.3 +8.7 +3.0 71c5 +2.5 +2.5 +2.7 +2.8 +2.4

continued

Page 243: Second and Higher Order Elastic Constants

236 1.2.2 Temperature coefficients Tcpg. Cubic system. Solid solutions [Ref.p.576

Table 31 (continued)

Solid solution T Wl %4 Tc,~ Tc’ Refs.

K 10-4/K

~0.32Rb0.68)2Hg(C~4 a)

Sm0.5SY0.42S AgBr-AgCl

mole % AgCl 0 19.5 39.1 56.5 78.7

NaBr-KBr mole % KBr

0 7 15 83 92 97 100

NaCl-NaBr mole % NaBr

0 11.5 26 50.5 63 78.5 100

m2 -y203 mole% Y2O3

11.1 12.1 15.5 17.9 8.8

295

273.e.303 -13.7 273.-303 -13.8 273-a303 -13.8 273-a303 -13.2 273-s,303 -12.3

300.-450 (-7.1) (-2.8) (+3.8) 300+450 (-7.2) (-1.9) (+4-O) 300***450 (-6.8) (-2.8) (+7.9) 300-450 (-8.6) (-4.2) (+6.1) 30@450 (-8.8) (-3.2) (+2.8) 300-450 (-8.3) (-3.4) (+9) 3w-450 (-8) (-3.2) (+6.6)

293-573 -1.2 -2.3 -0.9 1 84K4 293-0.573 -1.2 -2.3 -0.81 293-573 -1.2 -2.1 -0.72 293-573 -1.1 -2.0 -1.06 300-*lOOO -1.0 -1.9 -2.7 87Ll

+10.7 ti.2 +34 81Wl +8.4 -10.3 84H7

-7.4 -1.22 +7.2 -7.7 -1.30 +8.4 -7.7 -1.56 +7.3 -8.0 -1.71 +2.7 -8.2 -1.97 +0.79 -8.4 -2.09 -0.46 -8.7 -2.51 -4.40

-6.6 -6.7 -6.6 -6.1 -5.6

-4.5 77Cl -4.7 -5.4 -5.2 -4.9

73B2

73A2

*) See also Fig.6.27.

Ladoh-B6mst.h New Suiu lllfZ9a

Page 244: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Temperature coefficients Tcpa. Cubic system. Binary compounds

Table 32. Cubic system. Binary compounds. c’ = l/2 (Cl1 - qz).

Compound T %l T%! Tc,, Tc’ Refs.

K 10%

237

BaFz

BaO

CdFz

s(n=3)

CdTe

CsBr s(n=4)

CsCl

CsF CSI

s(n=3)

CaFz s(n=6)

CaO

Cr$i CoSi CuCl

273 195 298 300**600 298 50***300

295 295 100**300 7F300

77***300

300***600 300*..600 273 3m600 253-293 80**300

298 -2.08 195 -1.68 298 -1.94 300**600 (-2.3) 300~~*700 (-2) 3w1100 -1.22 300 -2.45 8+300 -2.4 -200 -1.85 298 -2.2 100**300 t-11 200.**400 -1.0 298 -7.45 7p300 (-7)

-2.26 -2.88 -2.09 -2.66 -2.22 -2.86 (-2.5) (-3.1) -2.31 -2.96 -3.7 -1.16 0.9 1.0 -3.71 -5.33 -3.66 -5.90 -2.1 (-1.2) (-2.0) (-0.96) -2.0 -1.0 -3.8 -13.2 0.5 0.7 (-4.4) -11.3 (-4.5) -12.5 -4.16 -12.9 (-4.5) (-11.5) -8.7 -0.6 -4.3 -11.5 0.3 1.8 (-4.6) (-11.6) -2.05 -3.3 0.55 0.4

-3.62 -3.31 -3.62 (-3.6) -3.4 -3.04 -0.89 -3.2 (-2) -0.85 (-1.2) -1.1 -3.35 b)

;;;b:

-3.24 -3.04 -3.14 (-3.5) -3.29 (0)

-5.08 -4.45 (-2.5) (-2.3) -2.3 -8.4 2.9 , -8.5 t-8) -9.3 (-8.4) +0.2 -6.5 3.4 (-8.4) -2.0 1.1

-2.80 -2.10 -2.39 (-3) (-2) -0.6 -0.25 -0.3 (-4) +0.9 (0) (-0.6) -8.9 (-9) -1.4

63Hl 68W2

7753 2

73v1,77c3, 77P7 70A3 77P5 71v3 7366 85Wl 60H2,61Ml, 61R2,64Vl 6735 63Nl 6OH2 6735 73H6 6OH2,61R2, 64Vl 6735 60H4,63Hl, 67H4,68W2, 69A4 7753 68W2

7753 68Nl 74v3 72B 1 73Vl 77Dl 77c3 81B4 7424 74Hl 77HlO

continued

Land&Btimstein New Series IIIL?9a

Page 245: Second and Higher Order Elastic Constants

238 1.2.2 Temperature coefficients Tcpa. Cubic system. Binary compounds [Ref.p.576

Table 32 (continued)

Compound T %l Tc44 Tc,, Tc’ Refs.

K 10-4/K

cu,o

Efi2 FeSi Fe-$ GaSb

Ga As

GaP

InSb

In As

Fd2 (Pyrite) PbF,

PbSe PbS(GaIena)

PbTe LiBr

LiCl

LiD

LiF

100-300 300.a700 77***300 100-~400 Kc300

(doped) 150-300 @ure> 150-300

70**.300 lOO-*300 78-a298 78..a298 300~**900 77-e300

4 100~~~700 100~~~300 k-300 295 100~-300 300..*900 80.-750 77.-300 300*-593 298.v.373 77-298 77300 77***300 loo*300 loo***300

s(n=3) 273 m-340

s(n=3) 273 273 273 100.**300

s(d) 273 298 300700 300***1000

-1.5 +3.8 (-2.1) (+3.2) -5.8 ? (-2.3) t-4 (-2.15) (-1.6) -1.3 -1.3 -1.5 -1.6 (-1.13) (-1.19) (-3.8) (-3.8) (-1.5) (-0.4) -0.94 -0.90 (-1.2) (-1.2) (-0.72) (-0.78) -0.81 -0.67 (-1.7) (-1.4) (-1.3) (-1.2) -1.45 -1.30 (-1.5) (-0.8) (-1.1) (-1.2) -1.3 -1.4 (-5) t-4 -6 -3 -5.8

:-8, (-6) (-6.5) -9.6 1.3 -10.2 -8.9 0.8 -9.3 -6.15 -7.99 -6.9 1.3 -6.6 -6.55 -9.7 -8.5

-5.3 (-3.0) (-4 (-7) (-4.5) -4.4 0.5 -4.55 -4.0 0.3

-4.2 -3.05 -2.63 -2.8 0.6 -2.8 -2.8 (-4.3) -3.3

-2.0 (-2.2) ?

t-28) (-0.6) -1.4 -1.4 (-1.02) (-2.8) (-2.9) -0.82 (-1.0) (-0.69) -1.02 (-1.7) (-1.5) -1.43 (-1.6) (-1.4) -0.9 (-25) -8.5 -6.6 (0) (49) t-6) +19 (+a ? -1.4 (-0.5) ? -1.5 +6.7 +5.1 C-1) ? +O.l +0.2 (-10) t-1 1)

70Hl 79B7 71L2 7321 77Rl 72L2

75B5 72B3 62Gl 73Cll 73B7 75B5 8OG2 57M3 59S2 74Bl 69Rl 75B6

-1.6 8502 76S13

-4.5 84Sl -5.2 8651

71L5 76313 81P3 68H2 6OH1,69M2 73C8 6OHl 6OH1,67M2, 73C8 6OHl 69H6 8252 57B4,6OHl, 7184,7652 6OHl 76J2 61C2 61Sl

Laud&-Bhstein New Saica Ul/29a

Page 246: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Temperature coefficients Tcpg. Cubic system. Binary compounds

Table 32 (continued)

Compound T Wl l-c44 Tc,, Tc’ Refi.

K 10%

239

LiH

LiI

Mg2Ge MgO

273-298 273 273 295 100-.300 300..1500

s(n=S)

P Wal 0 0 0.8 0.8

Mg,Si

MnSi HgSe

HgTe

300 77298

300 800 300 800 150-300

200*-400 50-350

s(n=3)

s(n=3)

mco.9 KBr

s(n=3)

s(n=6)

100*~300

78 298 77-a300

80*.*300

300-1000

KC1 80-q300 s(n=6)

300-1000 s(n=7)

KF

KI

273 100~~~300 80*-300

s(n=6)

-5.8 -3.3 +6.6 7463 -5.6 -2.65 +6.2 69H6 -6.39 -3.29 +6.2 8252 -11.9 -5.6 -2.6 72Ml -3 0 -1 65C2 -2.2 -0.9 (+0.5) 36D1,61Sl, 0.1 0.2 ? 64C1,7OS8 -2.0 -0.8 +0.7 8336 (-1.8) (-0.6) (+l) 66A3

-2.04 -2.33 -1.98 -2.28 -1.4

-1.7 -4.9 0.6 -4.1 0.8 -3.52 -4.66 (-0.40)

-7.6 1.0 -8.4 0.7

-0.66 +0.77 -0.88 +O.ll -0.65 0.79 -0.87 0.14 -1.3 -3.4

-3.0 +5 -2.0 -6.1 0.3 0.4 -2.7 -4.2 0.4 1.1 -2.26 -4.28 -2.41 -5.19 (-0.94) (+0.3 1)

-2.1 +7 0.3 3.8 -2.7 +4 0.3 1.7

-8.3 0.7

-7.4 1.2

-2.1 -3.6 0.4 2.8

-2.6 (+6) 0.4 ?

-7.21 -2.07 +2.7 (-6.3) (-1.5) +0.7 -9.0 -2.1 +7 0.3 2.3 5.6

300-+1000 -9.6 -2.7 (-1.2) 3w.500 -9.0 -2.5 +2.4

7OS8

65Wl

7424 69L4,7OK6, 75K5 67A4,71R4, 71v3,75c4 75c4

77K6

60H1,70S5, 71S5,72B5 59N2,6733, 6784,69H3, 71C5,73B2 36D1,58N2, 60H1,64Bl, 7os3,71s5 60E2,62Nl, 6733,67S4, 68H4,7OC4, 73B4 60Hl 67Ml 58N2,60Hl, 64R1,7OS6, 71B1,72B5 61Nl 71c5

continued

Lund&-B&mtein New Serb IW29a

Page 247: Second and Higher Order Elastic Constants

240 1.2.2 Temperature coefficients Tc,,,, , Cubic system. Binary compounds wef.p.576

‘able 32 (continued)

Compound T l-Cl1 %4 Tc,, Tc’ Refs.

K 10%

R&3

RbBr

RbCl

RbF

RbI

AgBr

s(d)

s(n=5)

s(n=3)

AgCl s(d)

NaBr

NaCl

NZiF

s(n=4)

s(n=lO)

s(n=7)

s(n=5)

Nd s(d)

78 303 lOO-a300

KKP300

300~-500 3OOaO 273 100~-300 273.~.300

100~*300 195 300 273-a303 300-500 50-300

195 300 400+00 lOO--300

300.450 loo*a300

300~1000

loo*-300

300.-800 300-900 50-300

-2.5 -0.32 -17 -3.3 -1.13 -30 -8.9 -2.6 +6.4 1.2 0.7 1.7 -8.5 -2.0 (+6) 0.1 0.4 ?

-7.8 -2.1 +0.8 -9.3 -2.2 ? -7.73 -1.9 +1.45 -7.2 -1.3 +5.5 -9.4 -2.03 +8.6 0.1 0.04 0.2 (-9) (-1.9) (-2) -10.5 -4.88 -3.16 -11.8 -5.48 -4.54 -13.7 -6.6 -4.5 ? -5.3 ? -10.1 -4.28 -3.8 0.4 0.13 1.0 -9.5 -4.26 -3.97 -10.4 -4.15 -4.89 (-1% (-2) (-22) -8.9 -2.6 ? 0.3 0.2 ? -7.0 -2.8 +3.8 -7.8 -2.2 WI.7 0.8 0.7 2.2

-7.8 -3.2 3 1.5 0.7 ?

-6.0 -2.1 +2.0 0.6 0.6 0.7

-6.0 -2.3 ? -5.5 -2.5 t-6) -9.3 -2.5 +2.4 0.1 0.2 1.4

76T3

6OH1,67L2, 7OG1,71c3 6OH1,67M2, 7OG1,7OG4, 71c3 7OC4 71N5 6OHl 72C3 6OH1,7OGl, 71c3 67L2 7OL5

77Cl 56Tl 67H2,67Vl, 7OL5 7OL5

55Sl 6OH1,67L2, 7os4,73A2 73B2 36R1,6OHl, 64B1,67L2, 67S7,7ODl, 7OG2,7OG4, 70S3,73A2 36D1,42Hl, 55S1,67S3, 68H4,73B2, 73B4 6OH1,66V2, 67L2,72B2, 76J2 68H4 62Nl 59Dl$OCl, 6OH1,7369

Lmtdolt-Bhnstcin New Series m9r

Page 248: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Temperature coefficients Tcpa, Cubic system. Binary compounds 241

Table 32 (continued)

Compound T TCll Tc44 Tc,, Tc’ Refs.

K 10%

SlClz

SrF2

SrO

SF6 TlBr

TlCl SnTe

TiCo.91 < TiC UC

uo2

vc0.83 ZnSe

ZnS

ZnTe ZIG

2OP300 30&800 100-+300 295 298 300-+600 300 80-e300 298 187-9221 100~~300 300.a700 150.~,300 100-300 100-.300 15~300 77***300 150***300 300.~,900 400 300 150-250 77..-300 295 100-300 300**~700 1~300 100~~300 295 lsP300

(-3.1) (-2.7) (-2.4) (-3.9) -4.9 (-4.8) -1.8 -2.4 -4.2 -1.92 -2.90 -2.79 -1.89 -2.91 -2.74 (-2.1) (-3.0) (-3.0) -2.02 -1.02 +1.54 -2.0 -1.02 +1.6 -2.68 -1.13 -0.63 -134 -36 -72 -7.3 -13.5 -8.7 -7 -13 -9 -7.4 -15.3 -9.2 -5.2 (-2.6) +9 -5 -3 -4 -0.8 -0.5 (+O.l) (-0.27) (-0.54) (+0.76) -1.0 +2.0 (-0.75) -2.2 ? (-1.1) -2.24 -0.62 -1.70 -1.3 +1.8 -1.8 -1.3 +? -1.3 (-0.54) (-1.0) (+0.27) -1.66 -1.07 -1.89 (-1.9) (-2.0) (-1.1) (-1.1) -1.3 (-0.9) (-1.2) (-0.65) (-0.8) (-1.1) (-0.8) (-1.2) -1.87 -1.41 -2.03 (-1.0) (-0.6) +O.l

71L2 77Al

7oA2 7751

72Bl 73Vl 77c3 88K2 66Vl 67M4 7565 69B3 68H5 66Cl 77K6 63Gl 71Rl

76F4 67B4 77K6 7OL3 72K8 77B2 6321 71v3 7OL3 66Cl

a) T$44; the graph of $44 against T shows considerable curvature [74Hl]. b, Tc+44 . c) Carrier concentration 1-*3*1017cm-3 .

Iandolt-B6msteh New Series IUi29a

Page 249: Second and Higher Order Elastic Constants

242 _

1.2.2 Temperature coefficients Tc,,,. Cubic system. Alums iRef.p.576

Table 33. Cubic system. Alums.

Composition *) T %l Tc44 32 Refs.

K 10%

Cs AlS 293 -5.17 -4.3 -6.9 61Hl CsAlSe 293 -2.81 -6.9 +1.44 CsFeS 293 -5.34 -5.8 -6.4 CsGaS 293 -5.36 -5.4 -6.3 CsGaSe 293 -2.8 -7.0 +1.33 CsInS 293 -5.75 -5.3 -8.1 KAIS 293 +1.08 -9.5 +19.1 KAlSe 293 -5.47 -11.1 +4.95 KGaS 273 +1.7 -7.3 +16.1 NaAlS 293 -6.73 -9.85 -5.1 NH,CH,AlS 293 -4.48 -3.3 -8.3 NH3CH3AlSe 293 -3.7 -3.9 -9.6 NH&I-IaFeS 273 -3.85 -2.43 -10.3 NH,CH,GaS 293 -4.14 -3.6 -8.2 NH,NHpw 293 -0.47 -0.16 -9.1 NHaOHAIS 293 +1.5 -21.4 -10.5 NH,AlS 293 -2.3 -6.9 +5.6 NH@lSe 293 -5.2 -9.2 +0.96 NH4FeS 273 -3.2 -13.0 +11.8 NH,GaS 273 -1.38 -8.0 +8.2 NH,+GaSe 293 -3.3 -9.2 +4.45 RbAIS 293 +0.51 -6.0 +13.8 RbAlSe 293 4.05 -7.6 +2.9 RbGaS 293 +0.22 -6.9 +14.1 RbGaSe 293 -3.2 -8.9 +7.3 RbInS 273 -6.33 -8.55 -0.92 TIAlS 293 +0.73 -7.9 +14.1 TIAlSe 293 -2.7 -7.4 +7.5 TiGaS 293 +O.l -9.0 +14.1

Deuterated alms CsAlS KAIS TiAlS

273 -5.3 273 +1.57 273 +0.85

-10.1 +21.8 -7.9 +16.3

*) AIums have the general formula XY(ZG,), -12H20, where X is a monovalent atom or radical, Y is a tervalent atom, and Z is S or Se. The composition in the above table is expressed as XYZ. Order of compositions is according to alphabetical order of element symbol.

LmdobBhatein New S&w W291

Page 250: Second and Higher Order Elastic Constants

242 _

1.2.2 Temperature coefficients Tc,,,. Cubic system. Alums iRef.p.576

Table 33. Cubic system. Alums.

Composition *) T %l Tc44 32 Refs.

K 10%

Cs AlS 293 -5.17 -4.3 -6.9 61Hl CsAlSe 293 -2.81 -6.9 +1.44 CsFeS 293 -5.34 -5.8 -6.4 CsGaS 293 -5.36 -5.4 -6.3 CsGaSe 293 -2.8 -7.0 +1.33 CsInS 293 -5.75 -5.3 -8.1 KAIS 293 +1.08 -9.5 +19.1 KAlSe 293 -5.47 -11.1 +4.95 KGaS 273 +1.7 -7.3 +16.1 NaAlS 293 -6.73 -9.85 -5.1 NH,CH,AlS 293 -4.48 -3.3 -8.3 NH3CH3AlSe 293 -3.7 -3.9 -9.6 NH&I-IaFeS 273 -3.85 -2.43 -10.3 NH,CH,GaS 293 -4.14 -3.6 -8.2 NH,NHpw 293 -0.47 -0.16 -9.1 NHaOHAIS 293 +1.5 -21.4 -10.5 NH,AlS 293 -2.3 -6.9 +5.6 NH@lSe 293 -5.2 -9.2 +0.96 NH4FeS 273 -3.2 -13.0 +11.8 NH,GaS 273 -1.38 -8.0 +8.2 NH,+GaSe 293 -3.3 -9.2 +4.45 RbAIS 293 +0.51 -6.0 +13.8 RbAlSe 293 4.05 -7.6 +2.9 RbGaS 293 +0.22 -6.9 +14.1 RbGaSe 293 -3.2 -8.9 +7.3 RbInS 273 -6.33 -8.55 -0.92 TIAlS 293 +0.73 -7.9 +14.1 TIAlSe 293 -2.7 -7.4 +7.5 TiGaS 293 +O.l -9.0 +14.1

Deuterated alms CsAlS KAIS TiAlS

273 -5.3 273 +1.57 273 +0.85

-10.1 +21.8 -7.9 +16.3

*) AIums have the general formula XY(ZG,), -12H20, where X is a monovalent atom or radical, Y is a tervalent atom, and Z is S or Se. The composition in the above table is expressed as XYZ. Order of compositions is according to alphabetical order of element symbol.

LmdobBhatein New S&w W291

Page 251: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Tempkature coefficients Tcpa. Cubic system. Miscell. camp.

Table 34. Cubic system. Miscellaneous compounds. c’ = l/2 (qt - ctz).

Material T %l Tc44 Tc,, Tc’ Refs.

K 10%

243

Adamantane Nl$Br

N-H41

Bi&eO4)3 Bi,,GeO,

Bi,,SiO,,

Cyanospinels K@WN>,

K2Zn(CW4

Garnets (natural) b)

Almandine s) Pyrope s)

230.*.300 318

-27 -17.5

253-293 253.a.323 300 300 300 300 300 300 273 273***373 273 298 293 298 289-343 293

-36 -4.4 -10.5 -9.4 -6.7 -6.2 -6.4 -12.5 -10.7 -9.6 -18.6 +14 -8.0 -9.3 -1.13 -2.87 -3.06 -2.97

-0.7 -3.9 -6.6 -7.6 -9.0 -12.1 -15.6 -12.2 -30.0 +6 -7.2 -7.8 -1.17 -2.19 -2.18 -1.82

-41 75D2 -11.7 6OH2 +6.0 73H6 +23 75M3 -7.2 -6.0 85W2 -9.4 -1.5 85W2 -10.2 -1.5 85W2 -13.5 -11.4 85W2 -13.9 88K6 -11.3 88K6 -30.7 81H5 +18 75Kl -8.55 63Hl -10.7 73M6 -0.4 69Sl -3.06 7OK7 -7.89 7821 -4.39 88G6

93 -6.4 +1.80 -10.8 273 -4.7 +1.9 -7.6 473 -4.95 +1.9 -7.2 110.5 +79 +39 +180 133 +18.5 +9.9 +40 173 +2.2 i-4.3 +4.4 233 -1.6 +3.3 -2.2 323 -3.6 +2.3 -4.8 473 -4.2 +2.1 -5.4 93 -5.4 +0.4 -9.1 273 -5.25 +0.25 -8.4 473 -5.25 +0.15 -8.2

200**~500

300

-3.7 (-1.6) -6.5 64R2 -1.31 -1.28 -0.99 7888 -1.14 -0.65 -1.33 7838

76Hl

76Hl

76Hl

continued

Land&B&imstein New Series lJIf29a

Page 252: Second and Higher Order Elastic Constants

244 1.2.2 Temperature coefficients Tcpa , Cubic system. Miscell. camp. pef.p.576

Table 34. (continued)

Material T Tell Tc44 Tc,, Tc’ Refs.

K 10-4/K

Garnets (natural), cont. Almandine-pyrope

PY-1 b) AL-6 b, AL-Y b)

Almandine-spessartite

Garnets (synthetic) Gd3GaSo12

Nd3Ga5012

Sm3GaSo12

y3AISo12

y3FeSo12 Langbeinite Ni(NO& * @%

Hydrazine dichloride Pb(NO3)2

LiEhF,

Li2F%04

Hf@,Te, Nickel iron ferrite,

Ni0.77F%.l So4

Pivalic acid 280-3 10 KCoF, 150-300

298 300..400 220.*320

298-a 473

-1.1 -1.1 -1.1 -1.12 -1.11 -0.82 -1.24 -0.81 -1.42 -1.28 -1.02 -1.33 -1.33 -0.99 -1.29 -1.08 -0.92 -0.82

6786 77Bl 7838

7611

250-300 -1.13 -0.92 -0.92 . 25O.e.300 -1.26 -0.88 -0.90 250-300 -0.95 -0.36 -0.84 200*300 -0.9 -0.7 -0.52 250,.~300 -1.41 -1.17 -0.87 273 -1.8 -2.5 +0.2 243 0.6 +73 -4.6 253 -0.2 +70 -5.5 273 -1.3 +60 -6.6 293 -2.1 +52 -7.3 313 -2.9 +46 -7.9 ’ 333 -3.5 +39 -8.3 353 -4.0 +32 -8.5 373 -4.3 +26 -8.3 393 -4.6 +19 -7.6 413 -4.8 +12 -6.5 423 -4.9 +8 -5.9 273 -12.9 -15.0 -12.5 273 -13.1 -14.2 -10.6 273 -3.88 -2.59 -6.02 273 -9.4 -10.8 -9.5 298 -9.9 -11.2 -11 273 -3.87 -3.75 -2.58 m-300 -1.1 -0.9 ? 100.250 -2.4 0 -3.9

72H4 76H3 76H3 67Al 76H3 65H2 74H4

63Hl 81H5 63Hl 63Hl 73M6 72H5 76K6 71Sl

100~*300 t-18) (+3.2) (-34) 57Gl

(-20) (-0.9)

(-113) ., ., (-1.3)

73B3 75A3

Ladolt-Bhmtcin New SaicsI&291

Page 253: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Temperature coefficients Tcpo.. Cubic system. Miscell. camp. 245

Table 34. (conthed)

Material T %l Tc44 Tc,, Tc’ Refs.

K 10% ’

KCN c)

K2ptBr6 qReC1, K,SnCl, 0 KTa03 RbCN j) RbMnF,

RbNO, Rb Ait& Ag6Gel$12 b@@@‘%,

NaBrQ, s(n=3)

NaClO,

Na,SbS, - 9H20 Na,SbS, * 9D20 NaCN d,

NaH(CHjCOO)2 Spine1 b,

Sr(N03)2

200 +9.2 +180 -15.8 300 +5.2 +52 -14.0 400 +l.O +24 -12.6 175-300 +8 ? -15 100-300 -3.4 -1.4 0 298 -3.49 -1.52 0 300 -9.7 -10.8 -11.4 -7.6 300 -11.8 -3.6 -9.8 -14.4 400 -6.6 -6.9 -10.3 -2.9 300 (-3.3) h) (-0.6) h,

300 300 250-370 298 291 291 loO~*350

273 100~,350 273 273 300-400 300-340 300-,340 273 300.*400 288-308 293-423 273 !

-3.49 -3.47 ? -3.54 (-)1.5 (-)1.3 -6.9 0.6 -8.1 -11.4 -6.0 -5.95 +ll (+4.8)

-11.6 -1.1 -0.92 -0.92 -6.3

-0.89 +0.7 1 -0.84 +0.43 (+76) (-3.6), (+18)

-4.17 -3.73 (-)1.5 (-)1.3 (-)1.8 (-)1.6 (-)0.98 (-)3.7 -5.1 -5.6 1.1 1.8 -7.0 -8.2 -3.6 -25 -7.2 -7;8 1 -6.8 -7.9 (t210) -36 i (+160) (+170) -8.4 -4.3 -0.88 (-0.66) -0.57 -0.65 -0.65 -0.69 -8.9 -6.1

298 _ -6.5 -10.9 -4.4 SrTiO, 150..*300 -2.6 -1.1 -1.3 Succinonitrile 240-300 -32 +9 -25 Zn40(B02)6 293 -0.93 -6.8 -1.16 ) ,

73H7

77W4 68Rl 7951 85W2 85W2 81H5,85W2 68B7 79H3 69M5 73Nl 81H12 75G7 86Cl - 86Cl 64H3,7564, 7587

i 64H3 75s7 7OH9 7OH9 77w4 4 77L5 e) 77L5 0 86H5 7102 73C6 75L2 63Hl 73M6 . 63B3 68F2 ~ 82B

Footnotes for/Table 34 see next page.

continued

Land&B6mstein I New Series lW29a

Page 254: Second and Higher Order Elastic Constants

246 1.2.2 Temperature coefficients Tc,,. Cubic system. Miscell. camp. pef.p.576

Foomotes for Table 34

a) Phase transition at 110SK. b, For details of composition see Table 9 and Fig.9.32. c) See also Fig.9.47. Phase transitions at 83 and 168K. d, See also Fig-g.75 Phase transitions at 172 and 288K. e, Ultrasonic waves. f) Brillouin scattering. g) Extrapolated estimates. h, Not corrected for thermal expansion. 0 See Fig.9.58. Jl See Fig.9.67.

Lad&-Bhstcin New SC& Elf291

Page 255: Second and Higher Order Elastic Constants

f[ Table 35. Hexagonal system.a)

p-g “3 Material T -32

%l Tc33 Tc44 %2 Tc13 Maiu Other

p5 refs. refs. K 10%

Al(IO& - 2HI03 * 6H2O

Ba(NOd2 * H20 Be Bi2Gejo9 Cd

Cd3Mg (disordered)

tordered) C$Mg (disordered)

(ordered) CdS

caMg2 Ceramics (piezoel.),

B%75”l1017.2s PbTiO, modified ceramics

PLT 2.5/1/O c) PNT 1 O/l/O d) PNT 11/2/4d)

CeN& cscuc13

csNiF3

253-293 -4.6

-9.2 -3.8 -2.45 (-5.4) (-9.4) -3.76 -2.39 -4.33 -2.75

4.7

253-293 300~~~600 273 100-*~300 300.--600 (350) (300) (400) (300) 298 150~~~300 120...300 loo---300

-10.2 -3.0 -2.16 -4.6 -4.8 -5.05 -13.61 -4.17 -8.94 -2.16 -1.7 -1.5b) -3.2

-4.8 -3.3 -4.8

-15.0 -2.4 -1.0 -2.2 -10 -8.1 -0.28 +0.02 4.35 (-7.8) -0.8 -0.8 -14.5 K-0 (0)

72H6

78H2 71R3 7906 ffil

76K7

76K7

-1.7 -0.6 -0.85 b, -3.5

-2.0 -2.1

-4.6 t-9 (0)

63B5 6766 79D2 62Sl

273 -0.99 -0.89 -0.65 -1.15 -0.67 83H2

293 -2.32 -2.92 293 1.84 1.56 293 3.12 2.21 100--~300 (-1.4) (-1.2) 77-295 (-6.7) (-5.9) 120 -4.3 -2.4

-5.48 3.27 -0.27 -2.71 10.30 11.50 -2.08 14.60 13.90 (-2.8) (-1.0) (-0.9)

G4.6) (-2.8) t-111

82N3 82N3

8OB4 8111

8739

Page 256: Second and Higher Order Elastic Constants

Table 35. (continued)

Material T

K

Wl

10-W

T=33 %I %2 %3 Main refs.

Other refs.

GaSe c (pyrolytic graphite) co31 I-If Ice, H20

Ice Ih e, zf% [ lO-‘/K2] 2% = [1/(2c)]@%/i@)

Ice, D20 (deutemkd)

m~4~“d2 p-LiAISiO,

LiclO4 ’ 3H20

LiclO4 - 3D20

253-s-293 3OOKxO 300&00 150-~~300

-9.1 (-2.2) -2.3 -2.4 0.1 -9.8

-5.9 (-2.3) -1.3 -1.3 0.34 -16.9 97 +2.1

-10.8 -9.4 w-6) (-0.9) -3.1 +1.3 -2.8 +I.2 0.4 (1.6) -10.3 (-16.3)

-7.9 c-0.7) -0.8 +0.7 (0.73)

273 288 298 2OO&aO 300 293 150~~~300 240.s-270 NO---273 150.s-270 258-s-272 273 273

-4.0 -3.8 (-10.4) -13.6 -2.1 t-18) (-13) (-13) t-16) -21.154 -130.30

-4.8

(-12.6) -18.3 -1.6 (-18) C-16) (-13) (-10) -21.089 -128.37

(-3.6) -14.3 -3.0 t-15)

(-3.5) (-0.33) (-14) -3.9 (+W (-22)

(-530) 15.9 (+0.2) (-39)

(-12) t-16) (-24) (-15) -21.151 -21.137 -131.05 -130.17

(-19)

-21.150 -129.78

130...270 (-13) (-11) (-9) (-9) -20 293 -2.2 -3.2 +6.3 +0.3 -2.7 293 -1.4 -4.2 -2.4 1.3 -2.7

253.s.293 -12.2 -11.1 -10.7 -11.1 -12.4

253-s-293 -12.3 -11.1 -10.0 -11.3 -12.7

78H2 67Fl 67Fl 67F1,73R4, 74P1,76Dl 7033

7OR6 7462 84H3 64Fl 57Bl 6421 68D3 64B6 8764

71M8 88GlO 84Hl

78H2

8868

Page 257: Second and Higher Order Elastic Constants

fl Table 35. (continued)

2. F aE2 Es

Material T %l l-c33 T=44 %2 w3 Main Other

2% refs. refs. K 10-4/K

LiIO, Tl+

Tc Lu Mg

Mg alloys

MD2

s(n=3) at % 0 mm 0.26 Ag 0.37 Ag 1.02 In 1.35 In 1.96 In 0.21 Sn 0.46 Sn 0.67 Sn 0.94 Sn

Nd

Na,KAl&,O,, Re

253

273 ? loo---300 80~~~300

78.s-298 78-s-298 78.--298 78-s-298 78...298 78.~~298 78-m-298 78..-298 78.s-298 78..-298 m---300

loo--*300 100~~~300 298...353 loo-v-300 300~~~900

-5.9

-6.2 -7.3 -2.1 -3.03 0.24

-6.3 0

-7.5 Q -8.2 (-1.3) -3.24 0.06

-8.0 -4.6 7OHlO

(-)8.4 -5.0 -16.0 -10.0 -6.8 -19.8 (-2.4) (0) (0) -5.1 -0.7 (-0.4) 0.36 0.06 (0.4)

(-3.1) (-3.2) (-4.9) (-0.7) (-3.1) (-3.2) (-4.9) (-0.7) (-3.1) (-3.2) C-4.9) (-0.8) (-3.1) (-2.9) (-4.9) (-0.7) (-3.0) (-3.1) (-4.9) (-0.5) (-3.1) (-3.0) (-5.0) (-0.7) (-3.1) (-3.2) (-4.9) (-0.8) (-3.1) (-3.2) (-4.9) (-0.7) (-3.1) (-3.1) (-4.9) (-0.8) (-3.1) (-3.2) (-4.9) (-0.5) (-2.3) (-3.8) (-2.6) ? -3.1 -3.0 -4.2 C-1) -3.5 -2.5 -4.5 (+1.5) -3.4 -2.8 -4.5 +1.4 +4.6 -1.3 -1.2 -8.4 -1.3 (-1.2) (-1.7) ? (-1.5) (-1.4) -2.1 0

(-0.2) (-0.2) (-0.2) (+O. 1) (0.0) (+O. 1) (-0.1) (-0.2) (0)

(-0.1) ?

t-0.7) (+0.9)

-4.8 ? +0.8

77L9 71T3 57S1,61El, 71Nl

61El

6982 76Sl 7662 77Ll 75B4 64s2 67l?l

Page 258: Second and Higher Order Elastic Constants

Table 35. (continued)

Material T

K

Wl

10%

Tc33 Tc44 %2 %3 Main refs.

Other refs.

Ru Ag+ &I Tl Ti Y

Zn

ZJlO 2hS ZnS (10 % wurtzite) d

TS ZnS-MgS h,

TS zr

300--900 300~*~700 298 100~-~300 200-~~1200 100~~~300 100~--300 150.s.600 (300) 300..-800 298-373 293 293 293 293 200~~~1200 298

-1.2 (4.3) -11.6

L3.2) (-3.1) -1.9 W3) -4.0

-1.14

0.96

0.99 (-3.3) -3.49

-1.4 -3.1 -12.6 -5.1 (-2.3) (-1.8) -1.7 -3.0 -3.3 -1.2 -1.10 -1.00 0.97 -1.10 0.80 (-2.0) -1.94

-2.4 -4.5 -6.1

f4.4) (-3.9) -3.6 -8.1 -7.3 -0.7 -0.96 -0.96 0.94 -0.86 0.82 (-4.3) -5.02

zr-0 at % 0 0 7 8 24

270.-.500 (-3.4) (-2.0) 270...500 (-3.3) (-1.9) 270+00 (-3.0) (-1.8) 270...500 (-2.6) (-1.9)

0 (-3.0) -14.2 (-2)

b1.9) (+l.l) ? +0.6

-1.33 -1.48

0.95

1.02 ?

+0.8 ?

i9

:zls t-1.6)

0

67Fl 67C2 74F2 63F2 64Fl 6OS3.6382 8OS3 58Al 7os9 75T2 73c5 82D4

82D4

64Fl 7OF5

7317

Footnotes for ‘l’hble 35 see next page

Page 259: Second and Higher Order Elastic Constants

Footnotes for Table 35

a) The logarithmic temperature derivatives Ts,,, of the compliances are also in units of [10+/K].

b, TCD,, and TCD,.

c) m-(3f2)x+(ln)zLa, )(Ti,,+Mn,Jn&03; see Table 13, footnote *I.

d, m-(3/2)x+(ln) @l.J(Til~+Mn+nJ03; see Table 13, footnote O).

e, Calculated fkom least squares polynomial fit evaluated at 273K. f) TCD,,. g) See Table 11, footnote -1. h, For composition see Table 11, fohnote xx].

Table 36. Trigonal system.a)

Material T

K

Wl

10%

Tc33 Tc44 %2 %3 Tc14 Main

refs. Other refs.

a-Al203 300-900 -0.75 -0.85 -1.8

303.“310 -0.72 -0.60 -1.64 296 -0.702 -0.689 -1.68 1825 -1.18 -1.02 -2.35

a-AlFo4b) 298 -0.76 -2.18 -1.57

TCE 298 -0.778 -2.235 -1.6974 T# 298 0.155 1.40 2.10 TCE 298 -1.362 -2.223 1 -0.6513 TSE 298 1.276 2.068 1.059

(+0.4)

-0.21 +0.092 -0.27 -15

-14.090 -13.70 -53.403 -17.33

(-0.8)

-0.98 -0.72 -0.53 -4.0

-1.272 -1.66 -7.183 -1.825

w-7) 66Tl

10.921 7oH2 -2.67 89Gl +0.33 +0.72 75C2

0.624 79D4 1.34 1.590 86WlO 2.035

continued

Page 260: Second and Higher Order Elastic Constants

Footnotes for Table 35

a) The logarithmic temperature derivatives Ts,,, of the compliances are also in units of [10+/K].

b, TCD,, and TCD,.

c) m-(3f2)x+(ln)zLa, )(Ti,,+Mn,Jn&03; see Table 13, footnote *I.

d, m-(3/2)x+(ln) @l.J(Til~+Mn+nJ03; see Table 13, footnote O).

e, Calculated fkom least squares polynomial fit evaluated at 273K. f) TCD,,. g) See Table 11, footnote -1. h, For composition see Table 11, fohnote xx].

Table 36. Trigonal system.a)

Material T

K

Wl

10%

Tc33 Tc44 %2 %3 Tc14 Main

refs. Other refs.

a-Al203 300-900 -0.75 -0.85 -1.8

303.“310 -0.72 -0.60 -1.64 296 -0.702 -0.689 -1.68 1825 -1.18 -1.02 -2.35

a-AlFo4b) 298 -0.76 -2.18 -1.57

TCE 298 -0.778 -2.235 -1.6974 T# 298 0.155 1.40 2.10 TCE 298 -1.362 -2.223 1 -0.6513 TSE 298 1.276 2.068 1.059

(+0.4)

-0.21 +0.092 -0.27 -15

-14.090 -13.70 -53.403 -17.33

(-0.8)

-0.98 -0.72 -0.53 -4.0

-1.272 -1.66 -7.183 -1.825

w-7) 66Tl

10.921 7oH2 -2.67 89Gl +0.33 +0.72 75C2

0.624 79D4 1.34 1.590 86WlO 2.035

continued

Page 261: Second and Higher Order Elastic Constants

‘Pable 36 (continued)

Material T

K

%

10-W

Tc33 %4 %2 Tc13 %4 Main refs.

Other refs.

m4sfl3

Sb Bm204

(c&&co>, Bi

Tedoped N [cm-3] pure Bi 1.11*10’9 1.21~1020

Bi-10 at% Sb

Bil.60Sb0.40T% Bi2T%

CaC03 (Calcite)

-2Mg3~03)12

- 24H20 =)

ca3vod2

MO3

293 300-900 298

80-300 80-290 300+00

-7.9 -9.5 +11.2 (-10.5) -11.8 +6.5 76A6 -4.6 -4.8 -2.3 -5.2 -4.0 -2.9 71Vl -2.284 -3.86 -17 -1.50 -2.25 -6.28 87E2 -18 -24 +8.0 -16 -24 -37 67H5

(-3.7) (-3.0) (-5.6) (+2) ? (-5.2) 6OEl (-3.6) (-2.2) (-6.6) (+0.2) t-1.5) (-5.5) 76L2 -5.3 -3.2 -8.9 -1.6 -1.7 -7.8 72B4

100-300 -3.6 -2.8 -6.5 (0) 100-300 -3.6 -2.8 -6.5 (0) loo--300 -3.6 -2.8 -6.5 (0) 100-300 -3.5 -2.7 -6.75 0 77-293 W-2) (-4.4) W-8) (-1.2) lW-300 -3.35 -2.9 -5.3 ? 300--500 (-3.9) -1.64 -4.4 (4 273 -3.90 -1.46 -2.75 -5.3

-0.2 (-3.5) (-2.8)

4.7 -4.8

77-293 (-4) (-8) t-9 (-12) (-8) 273 -1.61 -1.95 -3.11 -1.23 -1.21 273 d, -11.3 -11.0 -11.2 -8.4 -7.6 430 4 -66 -23 -46 -71 -11

-6 -6 -6 -6.6 (-7.2) -5.8

-4.0 -2.8

(+23) -0.4

=O

77L4

76L2 72A2 7273

68D2 68Kl

7ov3 78HlO

9oH2

9oH2

Page 262: Second and Higher Order Elastic Constants

Table 36 (continued)

Material T

K

Wl

1o”‘K

Tc33 Tc44 %2 %3 %4 Main refs.

Other refs.

Guanidine AlSe fl Guanidine AlS f) Guanidine GaSe 0 Guanidine Gas fl GuanidineBF4 f.fd

La3Ga$iO14 Tc? h, Tsi)

7@ce J [ lOJ/K2] LiNbo,

LiNO, k)

LiNaS04

LiTaO, @)c 1)

mfl3 K,Cu(CN), .

’ Proustite, T@ *) Ag3M3

Ts 4 pyrargyrite,

Ag3SbS3 T$ O)

273.“358 -5.8 273--358 -6.9 273-.358 -6.2 273.“358 -7.1 250.“300 -50.1

293 -0.47

300 -0.587 300 -1.13 300.“400 -1.74

273 -7.0 293 -3.6

300+“400 -1.03

300--400 +0.77 253-293 -8.9 273 -2.56

293 -0.95

29; 150-300 293

-0.83

t-1.6) -1.55

-8.5 -6.8 -8.4 -8.0 -8.3 -7.1 -8.9, -8.5 -28.5 -19.6

-0.94 -0.30

-1.35 -0.797 0.65 1.02 -1.53 -2.04

-5.3 -11.8 -4.7 -4.5

-0.96 -0.43

-3.21 +1.67 -7.8 -9.5 -7.0 -3.5

4.30 10.30

-8.20 -10.10

(+?I 04 7.96 2.58

-6.9 -10.0 -10.4 -6.7 -8.8 -10.5 -7.3 -10.3 -9.9 -7.0 -9.3 -9.8 -67 -33 -17

-1.00 -1.30 -3.70

-2.18 -1.01 -1.54 10.85 -1.17 4.52 -2.52 -1.59 -2.14

-2.8 -9.7 -30 -1.5 -5.5 -21

-3.41 -0.50 +6.67

-1.18 +6.0 +16.7 -7.0 -2.4 C-67) +0.85 -5.7 -3.0

-2.50 -26.30 490.00

-0.89 (-3.4)

-12.60 490.00

59Hl 59Hl 59Hl 59Hl 89H3

86Sl

86I2

71S6

9oH2 86w8

71S6

77Hl 67H6

8203

8203 8103 8203

continued

Page 263: Second and Higher Order Elastic Constants

l’hble 36 (continued)

Material T

K

Wl

1WK

T=44 Tc12 Tc13 Tc14 Main refs.

Other refs.

a-Si02b) 298 P) -0.465 -1.776 -1.731 -26.024 -5.576 1.023 s(n=7) 0.028 0.16 0.024 0.78 0.50 0.080

synthetic RSQ 298 298

-0.436 -0.437 -0.468 -0.443 +0.155 +0.138 +0.085

-1.90 -1.91 -1.600 -1.600 +1.40 +1.397 +1.397 -3 -3 (-3) -5.0

-1.72 -1.70 -1.774 -1.754 +2.10 +2.096 +2.111 -9 -12 (-11) -135

110

-4.6 -2.01

-1.0 +5.3

-26.40 -24.77 -29.75 -26.90 -13.70 -13.58 -12.96

-5.92 1.03 0.90 +l.OO +1.17 +1.34 +1.319 +1.406

Se

s) NaN03 fi

Nfl3

Te Ti203

Uvite’)

v2°3

TP 298 Tl+ 298 Ts 298 TSD 298 TS 298

28%“308 200-300 (200-300) 273

298

loo-300 ?

80-300 150-273

;:11, -8.1

-1

-5.0 -1.49

-0.816 -7.1

-2.9 -1.89

-0.984 -1.9

-3 (-13) -4.5

+24 4

-2.7 -2.02

-0.79 -2.2

-5.50 -5.50 -1.66 -1.688 -1.688

t-7) -6.5

-5.2 -0.06

-0.76 -8.8

+16 (+17) -15.7

-38

-5.2

-5.1 -13.6

58K3,62B3, 7OA6,71Zl, 74S8,7787, 8852 88J2

7121

62B3 7121

66v5 76KlO 79M5 9oH2

86K3

64M6 74B 10,78R7

88Tl 76A2

82K10,86Sl, 8752

8752

82Rl

*) The logarithmic temperahmz derivatives Ts, of the compliances are also in units of [10-4/K].

b, See also Tables 37--39.

Page 264: Second and Higher Order Elastic Constants

Footnotes for Table 36 (continued)

c) Tc,, = (-7). d, Tc, = -13.4. =) Tcti=-61. D For fuller description see Table 14.

g) TC66 = -28.0.

'4 Tsll = Tc+~~;TCE,, = TcD,6 = 0.36. i) TcEs6= 1.39. J) Z%,,= w(zc,13m2cp3m in units of [1W7jK2]; fi2)c”66 = -15.64 [lO-‘/K2].

k, Tc,, =-8.2. 1) ‘f2c = [1/(2c&Pcp&@ [lo-WI.

m) Ts6,=0.89. 4 TS66 = -0.85.

0) Tp33 = 1.81; T$66 = -1.50, Ts,, =0.493. P) Average Tcs6= 1.808; standard deviation 0.10.

4 Suggested average values. r) Tc,, = -10.2. 4 Calculated; the measured value of Tcs6 is -14 - 10-4/K. t) Tc, = -0.83. For complete description see tommaline, Tables 14 and 15.

Page 265: Second and Higher Order Elastic Constants

Table 37. Trigod system, higher-order temperatme coefficients of stiffhesses cps

a-APO4 298 -77.8 -2235 -169.74 88.74 -1409.0 -127.2 62.4 298 -136.2 -222.31 -65.13 61.64 -5340.3 -718.3 159.0

a-SO2 298 -46.8 -1805 -172.7 177.2 -2587.8 -558.8 99.8 s(n=6) 2.9 15.0 2.4 5.7 74.4 543 5.8

298 synthetic RSQ 298

298 323 293

T[Kl= 77-443 298 ZOO-400 293 77.5-200 200 20-775 77.5 4-20 20

-50.8 -159 -169 175 -43.6 -190 -172 177 43.7 -191 -170 176 -485 -153 -158 169 -443 -188 -172 180 -485 -160 -177 178 49.2 -157.4 -171.1 173.2 -27.9 -136.1 -121.2 141.5 -5.3 -68.1 -67.8 77.8 -4.8 -15.9 4.9 3.5

-2468 -2640 -2477 -2703 -2930 -3000

-568 -592

-383 492 -550 -553.5 -386.1 -118.6 -55.2

100 103 90 105 98 101 1002 86.8 18.1 0.5

79lM 86wlO 58K3,62B3, 7OA6,74S8. 77S7,88J2 7488 8872

51M1,62B3 58K3,62B3 62B3 7488

82KlO. =% 87x2

87x2

Page 266: Second and Higher Order Elastic Constants

Table 37 (continued) ;

synthetic RSQ

TpcJ= 77-443 200-400 77.5-200 20-77.5

.4-20

298 298 298

298 298 298 323 293 298 293 200

,77.5 20

353.0 -388 -555 -885 -286.2 -25.58 -6305 -378.7 -122.3 -1895 -248.7 160.5 24.2 49.5 19.3 30.5 -164 -156 264 204 -111 -165 -254 156 -109 -169 -257 159 -75 -187 -212 -5 -407 -1412 -225 201 -107 -275 -216 118 -159.0 -151.4 (-)267.2 202.1 -170.9 427.7 -86.8 131.4 396.7 1152 -657.5 479.2 -393 -1071 -402.2 321.2

3800.0 2135.4 -33092 507.0 -4095 -3259 -3070 -1500 -7245 -3050

8419.0 2421.5 -1185.0 118.9 -1350 -1219

-2000 -596 -1150 -1303 -1995 5095 -3873

-1558 -832.5 -16.5 29.8 32 -31 25 -270 :13 -48 39.5 85.6 -33.5 38.8

79D4 86WlO 62B3,7OA6, 7488,88J2 7488 88J2 87J2

51M1,62B3 58K3,62B3 62B3 74S8

Page 267: Second and Higher Order Elastic Constants

‘Ihble 37 (continued)

K lW/K3

a-APO4 298 -1495 2138 -1603 4833 298 3837.8 2038.3 4340.8 3128.8

a-SiO, 298 -371 -243 -190 -777 298 -70 -250 -216 21 298 -74 67 -194 29 298 -320 -266 -242 127 298 -17 650 390 -850

synthetic RSQ 298 -100 -19 245 103 VHPQ 298 -91 -36 -200 916

323 -15 -410 -65 -167 293 -371 -243 -190 -777

T[Kl= 77-443 298 -70 -250 -216 21 200-400 293 -320.2 -266.0 -241.3 127.4 77.5-200 200 439.8 -875.2 821.9 -620.0 20-77.5 77.5 4641 18800 -1311 -1926 4-20 20 -10270 -25000 -10600 8906

27037 22611 4195 -1126 -1251 -5111 9416 -2488 -11250 1910 4195 -1260

67000 -71428 -5539 -750 -240 -2884 2ooQO 686

600 -5559 -750 -2876 -5064 65570 -96000

-9272 4058.4 -625 -590 -521 -468 -1400 -459 -1923 -630 -625 -590 -468.5 -990.7 -2148 -2200

79D4 86WlO 58K3 62B3 7OA6 74S8 77s7 88J2

51M1,62B3 58K3,62B3 62B3 74S8

87J2

Page 268: Second and Higher Order Elastic Constants

Table 38. Values of (c&,, and (s,,&, for use with temperature coeffkients.

T, Cl1 c33 c44 c66 Cl3 Cl4 Refs.

K Gpa

a-AIPo4 *) 298 62.99 58.22 43.15 30.51 5.808 -12.15 86wlO a-SiO, 298 86.790 105.79 58.212 40.000 12.009 18.116 88J2,87J2

293 86.600 105.40 57.600 39.600 11.910 17.500 b) 7488 200 86.900 106.88 58.395 38.991 12.416 17.350 b) 775 87.045 108.09 59.097 38.436 12.747 17.219 b, 4.2 87.103 10855 59.215 38.339 12.894 17.206 b,

Material T, 91 333 s44 S66 s13 s14 Refs.

a-APO4 a) 298 16.95 17.49 26.09 36.85 -1.545 5.187 86WlO

a-SiO, Cl 298 12.779 9.737 19.997 29.102 -1.250 -4.528 88J2

a) Evaluated from the least squares polynomial fit given in [86WlO]. Values are at constant E. b, The sign for cl4 has been changed to conform with the 1978 IEEE convention.

4 Values obtained by inverting the elastic stiffness matrix for regular synthetic quartz (RSQ fkom [88J2].

Page 269: Second and Higher Order Elastic Constants

Table 39. Trigonal system, higher-order tempera- coeffkients of compliances +.

fl’)sp = [l/spol&ps(aT. 7Qkw = [1/(2+&Ps&%2. H%w = [l/(&,&I%,,&@ ; sP and derivatives evaluated at To. N.B. ssa = 2@** - s*2). CsptyxJ = sP at T = T,.,. For (+,JO see Table 38.

Material T3 7f*hF* * fl(‘W& I<“~~ Zf*)slz, ‘I(‘)@*, Tf*<‘)Se*3 I(‘)Se*4 Refs.

K 1WK

a-APO4 298 127.6 206.8 105.9 -21.16 -1733 -182.5 203.5 86WlO a-SiO, 323 16.5 1345 201 -138 -1270 -678 139.5 SlMl, 62B3

298 15.5 140 210 -145 -1370 -166 134 62B3

K 10-9/KZa)

a-APO4 298 344.3 1585 560.8 304.5 -1605 2A87 108.1 86WlO a-SiO, 323 58.5 144 200 -18 -575 -2110 40 51M1,62B3

298 85.3 247 262 -85 -1385 -718 93 62B3

K lo-12/K3

a-APO4 298 -5011 4639.6 -42755 -3067.6 19366 -83087 -3344.7 86WlO a-SiO, 323 33 570 -26 3 -215 610 -54 51M1,62B3

298 383 300 162 -135 -1460 -823 -465 62B3

Page 270: Second and Higher Order Elastic Constants

PkT Footnote for Table 39 !a 0 Fe

!g al Power on exponent for 7@#,,0 quoted by [86WlO] is too large by 3 orders of magnitude. The value here is believed to be the one intended by z

bl [86WlO]. 2

pii

Table 40. Tetragonal system, 6 constants.a)

Material T %l Tc33 %4 %6 Tc12 %3 Main Other refs. refs.

K 10% 1

Al&u NH4H2m4

m4w4

Ba$i2TiOs b,

CdCe4

CoPt =) w2

rll

In-3.42 at % Cd Ill-Pb at % Pb

5 17

150.“300 -1.4 -2.4 -1.8 (-2.3) (+l.l) -2.9 75K4 273 -6.85 -1.1 -4.6 -7.6 -25.0 -5.4 64H5 273 -8.65 -1.1 -6.1 4.4 -22.7 -5.4 64H5

(300) -3.4 -1.5 -0.74 -1.5 -3.0 -3.7 77ID 273 -2.8 -1.2 -0.8 -1.2 -4.0 77H7 loo-300 -1.7 -1.9 -1.3 -1.9 g4) 82Hl

lOO.-300 -1.54 -1.95 -2.8 -3.25 (-0.65) W.2) 75R2 293-373 -1.25 -0.63 -0.93 -1.46 -2.44 -1.23 73w3

77-300 (-7.2) (-5.9) -7.8 -15 W-6) -3.3 61Cl 300-400 -8.0 -8.7 (-11) -18 t-3 (0) 76Cl 300-400 -7.1 -7.2 (-9.1) -18 (-1.4) (-0.3) 77vl 80-295 (-6.6) (-5.2) (-11) (-1% (-1.0) (-4.1) 76Ml

80-300 (-7.5) (-7.0) t-121 t-18) (-2.6) (-1.3) 79M3 80-300 W-2) (-4.7) (-10) (-10) (+2.2) W-8)

continued

Page 271: Second and Higher Order Elastic Constants

PkT Footnote for Table 39 !a 0 Fe

!g al Power on exponent for 7@#,,0 quoted by [86WlO] is too large by 3 orders of magnitude. The value here is believed to be the one intended by z

bl [86WlO]. 2

pii

Table 40. Tetragonal system, 6 constants.a)

Material T %l Tc33 %4 %6 Tc12 %3 Main Other refs. refs.

K 10% 1

Al&u NH4H2m4

m4w4

Ba$i2TiOs b,

CdCe4

CoPt =) w2

rll

In-3.42 at % Cd Ill-Pb at % Pb

5 17

150.“300 -1.4 -2.4 -1.8 (-2.3) (+l.l) -2.9 75K4 273 -6.85 -1.1 -4.6 -7.6 -25.0 -5.4 64H5 273 -8.65 -1.1 -6.1 4.4 -22.7 -5.4 64H5

(300) -3.4 -1.5 -0.74 -1.5 -3.0 -3.7 77ID 273 -2.8 -1.2 -0.8 -1.2 -4.0 77H7 loo-300 -1.7 -1.9 -1.3 -1.9 g4) 82Hl

lOO.-300 -1.54 -1.95 -2.8 -3.25 (-0.65) W.2) 75R2 293-373 -1.25 -0.63 -0.93 -1.46 -2.44 -1.23 73w3

77-300 (-7.2) (-5.9) -7.8 -15 W-6) -3.3 61Cl 300-400 -8.0 -8.7 (-11) -18 t-3 (0) 76Cl 300-400 -7.1 -7.2 (-9.1) -18 (-1.4) (-0.3) 77vl 80-295 (-6.6) (-5.2) (-11) (-1% (-1.0) (-4.1) 76Ml

80-300 (-7.5) (-7.0) t-121 t-18) (-2.6) (-1.3) 79M3 80-300 W-2) (-4.7) (-10) (-10) (+2.2) W-8)

continued

Page 272: Second and Higher Order Elastic Constants

Table 40 (continued)

Material T Tell T=33 Tc44 T=66 %2 %3 Main Other refs. refs.

K 10%

at % Tl 0 11.5 15

TCe

Ts

300-400 150-400 150-400 298 298

293 298

298

200-300

-8.0 -8.7 C-11) -18 (-2) (0) (-6.4) C-5.7) (4.8) (-1% (-0;7) ? (-5.1) (-5.0) (-7.2) C-18) (-0.9 ? -2.4 -3.1 -20 -3.5 -3.2 -2.6 -0.811 3.64 -0.181 -2.72 33.7 4.65

-0.8 4.0 @ +0.13 a 4.8 200 5.5 -0.65 -3.6 =) +1.08 0 -2.20 -83.90 -4.85 4.4 -18.0 5.0 4.5 -174.0 -23.0 1.97 -1.43 0.181 2.72 3.35 3.15 0.83 11.0 -5.0 5.2 5.2 -4.2 -1.46 -1.43 -1.04 -2.78 -2.22 -1.54 0.22 0.16 0.19 0.47 02 1.2

-300 -2.39 0.29

293 -3.3

400-430 -7.6

290-350 3.25 273 -5.25 273 -6.35 300-460 -7.1 290-350 3.95

-2.22 0.09

-4.3

-5.4

3.55 4.9 -4.9

-5.4 3.70

-1.15 -3.59 -3.07 -2.80 1.0 0.36 0.37 0.70

-4.2 -9.4

-2.8 -7.8

1.95 2.90 -2.8 -5.3 -5.7 -5.3

-2.8 -5.8 2.80 5.10

-4.6

-7.5 -12.0 -6.2

21.0

-4.5

3.1 -1.8 -1.85

-6.7

76cl

82W3 86S16 81S18,

89B7 85A5 9OSl 86S16 8585, 86S16 68H1, 69A2, 77J4, 81Kl 68H1, 7oM5. 79M7 75Hl

73c9

68A7 64H5 64H5

73cY 68A7

Page 273: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Tem

perature coefficients T cP,, . Tetragonal system

263

Land&BLimstein

New Series IIW9a

Page 274: Second and Higher Order Elastic Constants

‘Pable 40 (continued)

Material T TCll Tc33 T=44 %6 Tc12 Tc13 Main Other I lefs. refs. I

K 10-N I

TiO, (Rutile) 298 -1.88 -1.86 (-1.77) (-4.01) -3.26 -2.21 72M6 298 -2.01 -2.19 -1.72 (-4.95) -3.47 -2.43 74F3

=2 100-300 -1.7 -2.1 -1.3 -3.1 -3.1 -2.3 ~um&9312(s0& 293 -6.9 -3.3 -6.0 -105 -6.0 -4.8 84H2 Zr2Ni 100-300 Gl,l) GO.41 (-0.5) (+16) (-1.3 w.41 7sE3 ZrSiO, 300-600 -1.06 -0.88 -0.80 -0.47 -0.77 -0.68 7501

a) The logarithmic temperature derivatives Tspd of the compliances are also in units of [10-4/K]. b, Tc=~ 4 Odered. For disordered CoPt see Table 30. 4) Tc?33 = +4.3; TCD, = -1.2 e) Tc+‘~~ 0 TCD, = -1.35. d Phase transition at 399 K. h) zw+ = [1/(2s)]av/w. 3 7Qw = [1/(2s)]a2&3@. 3 AvemgeTcfix !4(c,,- cl3 based on several sample-s is +3.0; see [87Sl, 87SlO].

Page 275: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Tem

perature coefficients Tcpa. Tetragonal system

i

Land&B6mstein

New Serb lII129a

Page 276: Second and Higher Order Elastic Constants

Table 42. Grthorhombic system.

Material T

K

%l %2

1WK

Tc33 Tc4.3 T=ss Tc66 %2 %3 33 Reis. Figs.

(NH4.hso4

C14H12N2

c6H, (cH,),NcH,c~

- cac12* 2H20 a)

273 -5.2 -5.8 -7.0 4.0 +7.3 -3.6 273 -18.1 -20.6 -22.0 -9.9 -17.0 -22.0 170-250 -47 (-71) (-55) -150 -80 (43) 273 -2.9 -1.3 -3.4 -5.6 -5.6 4.5 169 62.0 11.0 21.2 -2.8 -18.9 -10.9 129 -6.0 -14.7 -8.0 -19.5 -16.1 -14.6 293 -9.2 -14.8 -8.1 25 -13.5 21 200 -3.9 -13.2 -7.3 1400 -10 300 300-520 -1.54 -2.04 -2.45 -1.60 -1.83 -1.87 100-300 -3.16 -3.96 -2.21 -4.8 -5 -7.42 293 -13.1 +1.5 -4.1 4.0 -3.5 +7.4 273 -5.5 -3.8 -5.0 -6.8 -7.7 -4.6 100-300 (-3.0) (-13) C-4.7) (-2.7) (-6.2) (-3.2) 293 -5.1 -5.2 -8.0 -5.7 -5.7 -5.4 300-673 -1.08 -1.09 -1.44 -1.05 -1.60 -1.56

-7.5 -102 -8.1 -20.7 -23.0 -11.5 C-17) (-28) WI -2.4 1.8 -3.3 81.4 143.5 26.4 -21.7 -12.2 -4.4 11.1 -7.4 -7.3 31 -2.5 -6.2 -3.0 -5.8 -2.3 +3.05 23.1 -3.78 -0.6 -4.6 +3.1 -5.2 -8.7 -7.2

65H2 65Hl 64Hl 88Hl 42.1

(~3)3N~&~

- K3--02(cooH)2 b, Bronzite CdSb CWWH), WC~H)2 CsMnC13 * 2H20

%Sso, Co$iO,.

Cobalt olivine &Cl2 - 2H20 Ga

88H2 42.2

76B4 63H.2 63H2 8OK2 65H2 7982

-3.7 -5.9 -5.5 -1.80 -1.30 -1.31

77-295 (-8.3) (-7.8) (-6.4) (-12.2) (-102) (-8.4) 77-273 (-4.2) (-3.9) (-3.4) (-5.2) (-3.5) (-6.4) 77-190 (-4.2) (-3.8) (-3.5) (4.1) (-2.7) (-6.0) 78-293 4.25 -5.23 -3.46 -6.54 -3.94 -6.54 253-293 -6.5 -8.8 -6.3 -122 -9.0 -8.3 293 -6.0 -15.8 -4.4 -11.9 -11.2 -10.4 293 -26.1 -9.4 -7.1 -2.0 -13.4 -20.5

(0) (-8.4) (-3.3) (+O. 1) o-0.7) (+2.1)

8111 71L3 75Ll 76B6 75446 87Kl 87Kl

+0.4 5.5 5.6 -7.0 -5.5 -15.8 -11.2 -2.1 -6.8 -13.1 -5.3 -6.0

Page 277: Second and Higher Order Elastic Constants

TF Table 42 (continued) -- p et2 Material T @

%l Tc22 Tc33 Tc44 Tess TC66 %2 %3 Tc23 Refs. Figs.

25 K 10-4/K

HI03 c)

DI03 =)

Fe.-$i04,

Fayalite Fe$i04,

synthetic fayalite

pb2KNbso15 Li2GqOts d,

Li2Ge03

Ts [X+/K] LiiGe03+4at%Si LiHseo3

MgBaF4

(M&Fes)2Si04 (Olivine) (M&3Fe$2Si04 (Olivine) Mg2Si04, Forsterite

SW) [10-W]

273 “6.2 -6.4 -7.9 -7.5 “6.6 -8.5 -5.0 -7.5 -4.4

273 -6.3 -6.6 -8.3 -7.6 “6.7 -8.5 -5.3 -7.6 “4.3

300-473 -1.53 -2.00 -1.92 -1.60 -1.03 -3.06 -1.77 -0.88 -0.55

500.“673 -1.48 -2.18 -2.00 +0.28 -0.23 -2.52 -2.04 -1.01 “0.92 298 -1.96 -3.27 -1.70 -3.1 -2.1 -3.06 -2.9 -1.5 -1.7

283-373

300

23~-370

300.“500 230-370 293 273

4oQ”700 300 >200 83 293-673 300 1200 300 300=“760 ~760

2.6 14.5

-0.35 -1.10

+1.9 +2 -1.60 -2.05 -0.65 -1.24 -0.94 -1.37

(-1.1) -1.7 -1.05 -1.44 -1.18 -1.55 -0.74 -0.77 -1.32 -1.43 -1.17 -1.43 -1.37 -1.61 -1.10 -1.38 -0.36 -0.60 -0.2

+0.007 +O.ll +0.85

14.5 -0.6 -0.3 -1.1 +19 +26 +60

-2.30 -0.80 -1.20 -2.70

+4.5 -2.75 -1.05 -1.10 -1.60 -2.94 -3.3 -5.5 -3.0 7.2 -1.8 1.0 -3.97 -2.7 -2.0 -2.7 -0.6 -2.4 -0.5

-2.0 -1.22 -1.98 -1.65 -1.99 -1.58 -1.31 -0.67 -1.13 -1.94 -1.77 -2.00 -1.77 -1.27 -1.26 -0.50 -0.94 -0.72 -0.78 -1.92 -1.36 -0.70 -1.13 -1.93 -1.64 -2.00 -1.44 -1.61 -0.56 -1.25 -1.84 -1.54 -1.74 -1.56 -2.31 -1.92 -2.22 -1.22 -2.06 -1.80 -2.03 -1.65 -1.38 -0.87 -0.42 -0.17

68H6

68H6

7982

88612

78R3

8OH6

79R7

74H6 79R7 84Rl 74R2

69El 69K4 6963 77Sll

8385

89I2 89I2

42.3

Page 278: Second and Higher Order Elastic Constants

‘Ihble 42 (continued)

Material T %I Tc22 Tc33 Tc44 Tc55 TC66 %2 =13 Tc23 Refs. Figs.

K 10-W

300-673 -1.35 -1.71 -1.38 -2.07 -2.18 -2.35 -1.87 -1.51 -1.22 79S2

405-430 325-430 288-323

(-iij (-11) C-18) 8OS8

+9.3 +4.47 -10 +9.0 +9.0 +7.0 +9.0 +1.5 +5.0 +2.0 69B4

273-293 -10.0 -6.0 -8.1 -7.8 -9.6 -12.2 -3.6 -1.6 -6.7 75G3 273 -9.9 -105 -8.4 -11.8 -8.6 -11.8 -9.4 -5.2 -7.9 9oH.2 398 -12.3 -13.0 -12.3 -12.0 -7.1 -12.6 -133 -11.3 -13.7 9oH2 273 -3.7 -5.1 -8.2 -5.3 -5.4 -1.4 -2.3 -6.4 -5.1 65H2 273 -4.6 -5.1 -8.3 -5.5 4.9 -4.2 -2.8 -6.1 -5.6 65H2 273 -9.8 -13.9 -6.0 +I.8 -4.4 -10.4 -6.8 -7.6 -8.8 9oH2 293 -5.9 -6.0 -8.7 -8.9 -9.7 -8.5 -4.5 -6.6 -7.1 84B2 293 -14.9 -12.7 -5.4 -7.6 -0.74 -8.7 -10.5 -20.4 -13.7 8663 273 -4.9 -6.0 -5.0 -1.7 -7.0 -2.6 -1.9 -3.7 +3.9 66B2 273 -2.90 -2.36 -2.95 -1.18 4.58 4.05 -2.64 -4.40 -3.95 63H4 273 -3.47 -4.05 -4.02 -4.85 4.23 -5.46 -5.38 4.25 -1.28 63H4 253-293 -15.5 -16.5 -14.0 -14.3 -8.7 -14.6 -19.9 -4.7 -13.3 69H5 283 -15.3 -15.7 -12.0 -14.6 -7.1 -13.9 -25.2 -8.66 -19.7 86% 273-343 -2.0 -2.4 -1.3 -1.2 -1.5 -1.5 (+1.7) (-3.7) (-1.3) 8OJ3 273 -13.3 -11.9 -13.0 -13.3 -16.6 -18.8 -7.8 -12.7 -9.1 9oH2 349 -16.0 -13.4 -16.4 -15.1 -23.0 -22.7 -11.1 -17.3 -13.4 9oH2

C,H&OOH- Ts [ lO%J COOK

KHSO,

mo3

sP4

Rb2SO4 At903

NaH2po4.2H20 NaBF4 N%SO4 Sr(~rn2 Sr(COOH)2 * 2H20 a-S

Page 279: Second and Higher Order Elastic Constants

‘pable 42 (continued)

Material T

K

%l %2

10-W

%3 n44 Tess TC66 Tc12 %3 Tc23 Refs. Figs.

T12s04 273

sc@w2 293 8)

273 ~3 2049 198 h, 175 i) 165B 150-i)

%IH18 253-293 a-u 108

298 473

ZnSb 80-300

-6.2

-13.8

-13.2 1 -12 -3 -6 -6 -13.7 +8.13 -0.57 -1.89 -3.1

-6.1 -9.5 -7.7 -8.1 -7.5

-8.2 -13.9 -18.2 -19.2 15.2

-8.1 -13.6 -162 -18.6 10.2 -11 67 -61 -16 0 -28 -105 ‘-29 12 -52 -6.4 -47 -24 16 -54 -13 -62 -23 0 -44 -12 -40 -23 -2 -39 -15.0 -14.0 -10.8 -0.9 -7.5

-2.51 -3.78 -5.58 -10.63 -6.23

-3.8 -1.9 -4.2 -6.3 -4.0 -2.8 +2.6 -2.5 79BlO

-5.2 -9.4 -7.7 65H2

30 -10.5 3.8 86Hl 42.4

48 -10.4 5.2 160 150 100 410 -110 10 -70 -37 -130 -80 -33 -60 40 -28 -45 -13.7 -13.3 -26.5 74H3

-12.84 6OMl +3.27 +6.30 -1.23

4 Second-order phase transitions at 169 and 129K. b, Fenoelastic phase transition mmm + 2/m with decnxsing temperature at Tc = 194K.

=kv%mnsformedA+3,2+1,3+2.~ d) See [8OHq for results at other temperatures. =) z-@c = [1/(2c)]&la@

h, Phase Iv, transforms to phase IV at 202K and to phase III at 180K. 9 Phase II, transforms to phase II at 176K. .i) Phase I; transforms to phase I at 169K.

Page 280: Second and Higher Order Elastic Constants

Table 43. Monoclinic system.

Material T Tc,, Tczz Tc~~ Tcu Tcs5 Tcs6 Tc,, Tc,, TczI Tc,, Tcu Tc~~ Tcti Refs. Hgs.

K lO-%C

250-300 -8.7 -7.9 -9.7 -13.1 -127 -11.6 -6.2 -3.4 1.1 1.2 -107.8 -6.6 -70.7 89B6

m-300 -15 t-15) t-18) (-W (-29 -13 -13 (a) C-u) ? ? -32 0 7OAl

260-300 -10.1 -9.3 -5.1 -10.8 -10.9 -10.7 -8.1 -8.8 -13.1 -0.7 C-129 -7.0 -9.3 89H4

273 -4*2 -8.6 -5.2 -13.7 -4.1 -10.5 -5.8 -0.4 4.8 +4.0 -10 -4.0 +13 65H3

250-300 -85 -8.1 -9.4 -127 -124 -11.9 -5.9 -3.4 1.2 0.9 -103.0 -6.2 -72.7 89B6

250-300 -a4 -8.1 -10.0 -122 -11.8 -121 -6.0 -29 23 -0.2 -99.2 -5.7 -69.1 89B6

293 -3.8 -3.2 -6.6 -8.3 -3.0 -7.8 -7.8 3.9 13 -1.3 -23 -4.6 -5.9 87H4

300-350 (-29) (-33) (-30) C-n) (-as) C-17) W-0 t-15) w-0 (-145) (42) (-76) +38 67Tl

loo-300 (-29) t-22) (-26) (-32) G-0 (-11) (-26) (P-0 (-40) ? (-70) +14 +30 68A2 273 -11.4 -14.5 -13.0 -22.4 -13.9 -122 -7.3 -8.6 +15.2 +39 -11.7 -6.3 -38 7562 293 -7.9 -5.5 -5.8 -5.9 -5.3 -240.5 -8.3 -3.7 -1.8 -5.2 -8.4 -3.2 -10.8 86H4

273 -7.6 -5.0 -4.2 -3.1 -8.7 -5.7 -5.8 -9.5 -5.0 -20 -13 -31

283 -5.6 -8.1 -6.6 -13.5 -7.9 -28 -3.2 -7.6 -7.8 1580 -170 120

293 -5.4 -9.7 -5.4 -14.9 -12.5 -24 -1.2 3.2 -9.2 320 -50 -16

333 3 -5.7 -6.6 -6.1 -14.9 -128 -5.1 1 0.9 -3.4 -150 7 -20 283 -6.75 -5.24 -7.23 -10.05 -7.74 -8.29 +247 -18.3 -8.37 -7.7 -17.6 -6.13 328 -13.1 -10.1 -5.6 -9.2 -6.2 +22 -4.5 -6.1 -8.9 -101 +34 -22

-4.0

-4.2 -8.3 -11.1 +loo

65H4

85H5

71Al 77H3

43.1A, 43.1B

43.2

al The paraelectric-ferroekctric transition temperature is 321 K.

g b, For fm?her details and comments see Table 24.

kc4 g

Page 281: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.2 Tem

perature coefficients Tcpa, Triclinic system

271

hdolt-B6mstein

New Series IlID9a

Page 282: Second and Higher Order Elastic Constants

272 1.2.3 Pressure coefficients Pcpa. Cubic system. Elements pef.p.576

1.2.3 Pressure coefficients PC,

Table 45. Cubic system. Elements. c’ = l/2 (ctt - ctz).

PC11 PC44 PC12 PC’

Al

(Isothermal)

cu

Diamond, C Ge

Au

s(d)

T[Kl 77.4 120 160 200 240 300 83 98 123 148 173 198 223 248 273

s(n=7)

ml 0 77 195 297 77 295

77K 298K 293K RT

s(?l=4)

0.006 0.65 1

60 74 57 69 82 68 68 78 55 10 4 17

0.4 61.1 71.7 0.4 62.3 74.4 0.4 63.0 76.4 0.4 64.5 77.1 0.4 67.2 80.8 0.4 70.8 84.4 0.25 72.2 0.25 72.9 0.25 73.9 0.25 75.1 0.25 76.7 0.25 77.6 0.25 79.2 0.25 80.8 0.25 82.2 1 36.5 31.4 1.5 1.9 1.7

59.2 60.9 62.1 64.2 66.4 70.4

41.9

0.25 0.25 0.25 0.25 ? ? 0.14 0.2 0.2 1.2 8 0.006 1

(33.7) (28.5) (38.4) 33.8 28.7 38.6 33.9 29.3 38.6 36.5 30.8 41.4 33.7 30.5 39.5 35.1 29.7 40.2 5.5 5.8 24.6 39 19 89 39 21 90 40 20 93 37.9 16.7 92.0 30 37 30 34.0 41.8 34.9 3.1 3.3 3.8

0.36 32.5 22.8 38.5 1 29 22 34

56.8 58.1 59.9 61.5 62.9 65.6 67.2 68.7 69.9

6.2

68Tl 59Sl 49LlJ9S1, 68T1,77’iY!, 79Tl

69H8

77T2

58D1,66Hl, 68S2,71Dl, 71H4,74Cl, 78V4,79V2

71Dl

71H4

72M5 63M3

59Kl 83Gl 66Hl 58D1,66Hl, 6763,78V4, 81Bl 66R2 68Gl

Landoh-Blmmin New ScriaITQ29r

Page 283: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.3 Pressure coefficients Pcpa. Cubic system. Elements

Table 45 (continued)

273

Element P max %I %4 PC12 PC’ Refs.

GPa VW-’

Kr Pb

Li

MO Ni Nb

Pd K Rb Si

160 Qcm

580 km

4s

(Isothermal)

Na

Ta

W V

RT 195K 296K 1OOK 195K 295K

195K T[Kl 4 77 4 77 77 298 RT

s(n=4)

T[Kl 77.0 120.9 160.4 201.5 242.8 260.0 301.7

TIN 100 200 300

s(n=3)

35 20 8 36 0.3 112 119 121 0.3 120 137 126 0.35 242 91 278 0.2 265 100 300 0.2 272 122 305 0.5 13.8 12.8 21.4 ? 24 20 31 0.04 33 9.8 46.3 0.5 21.4 9.4 25.9 1 23 =O 30 0.7 27 26 30 0.13 1160 860 1210 ? 1360 900 1420

0.01 0.01 0.01 0.01 0.2 0.2 8 0.006 1

24.9 10.0 62 25.3 10.0 63 24.9 9.9 62 25.3 10.1 63 25.8 9.3 65 26.2 10.1 66 25.6 6.5 69.1 42 67 40 53 55 55 7 8 10

0.4 0.4 0.4 0.4 0.4 0.4 0.4 1

0.9 0.9 0.9 0.7 0.5 0.5 0.5

55 50 60 54 50 58 54 51 59 55 50 62 56 53 61 55 50 64 57 51 61 530 550 390

640 490 400 670 580 420 710 680 440 17.4 12.6 16.0 19.2 12.1 19.5 11.8 10.0 16.4 25.6 3.5 32.5 2.0 1.3 4.9

18

-1.0

89Pl 69M8

74Dl 77m

79K4 6832 68G2,76K2 76K2 8365 74w3 6532 68Pl

70B2

64M2

83Gl 66Hl 58D1,66Hl, 69H7,78V4, 81Bl

69H7

6ODl

66M2

67C3 76K2 79K4 79A9,79K4

Land&Blmstein New Series IIl/Z9a

Page 284: Second and Higher Order Elastic Constants

274 1.2.3 Pressure coeff. Pcpc. Cub.syst. Alloys, intermet. camp., sol. solut. mef.p.576

Table 46. Cubic system. Alloys, inter-metallic compounds, and solid solutions. c’= l/2 (ct* - ct2).

Material PC11 PC44 PC12 PC’

Cd,J$Je x=0 x=0.06 x=0.45 x=0.52

Cd0.52Zn0.48Te cu- Al at%Al

3.1 5.6 7.4 10.8

Cu- Au at % Au 0 10 25 50 80

Cu-Ni at % Ni 0 9 23 100

T=OK 0 3.02 6.02 9.73

T=77K 0 3.02 6.02 9.73

T=195K 0 3.02 6.02 9.73

T=297K 0 3.02 6.02 9.73

Cu-Zn (a-brass) at % Zn 0 19 29

Cu-Zn (P-brass)

0.4 67.2 -12.1 119 0.4 67.9 -12.1 119 0.4 64.7 -23.4 117 0.4 60.8 -27.5 117 0.4 66.7 +2.9 116

0.007 35.7 32.1 40.2 0.007 35.8 31.6 40.3 0.007 36.3 31.0 40.5 0.007 36.4 30.4 40.8

0.7 39 31 45 0.7 36 32 40 0.7 37 29 42 0.7 38 37 42 0.7 35 45 37

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

35 31 33 29 31 28 24 (33.7) Fi8.5) (33.4) (27.9) (32.8) (27.5) (32.6) (27.4) 33.8 28.7 33.1 28.0 32.9 27.5 32.8 27.5 33.9 29.3 34.4 29.0 33.7 28.9 34.2 28.3 36.5 30.8 36.6 30.3 35.9 30.2 35.5 29.5

41 40 36

fi8.4) (38.4) (37.6) (37.6) 38.6 38.5 37.7 37.8 38.6 39.3 38.3 38.9 41.4 41.6 40.7 40.5

0.7 0.7 0.7 1

39.3 31.4 44.7 40.0 32.2 44.5 54.8 34.7 64.0 37 32 38

85M7 -48 -48 -56 -63 -20 85M7

73Cl

72C2

68S2,7734

71Dl

74Cl

49Ll

Land&-Bhstein New SaiesIQ29a

Page 285: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.3 FVessure coeff. Pcpa. Cub.syst. Alloys, iutermet. camp., sol. solut. 275

Table 46 (continued)

Material P max %l PC44 PC12 PC’ Refs.

E"0.8B%.2S Ge0.08Sn0.92Te Au-47.5 % Cd a)

T[Kl 338 343 348 353 358 363 368

Au-Ni at % Ni 0 2.95 9.72 24.20 42.42

In-T1 In-76.5 % Tl Hg0.8Mn0.2Te MO-16 % Re MO-29 % Re N&Al Nb-MO at % MO

0 25 31 37 44 53 72 100

Nb$n WI 13 20 30 40 47 50 60 80 100 150 200 250 300

hdolt-B6mste.h New Series IWZ9a

0.15

0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1

0.16 0.4 0.5

1.4

0.5

1

83.2 -1.5 -190 129 27 (1863)

93.8

58.7 63.9 59.0 -54.2 59.3 63.3 59.7 -50.1 59.8 62.8 60.0 -46.1 60.3 62.3 60.2 -38.9 60.8 61.9 60.5 -35.1 61.4 61.4 61.1 -31.5 61.9 61.0 61.3 -24.8

35 44 36 36 43 37 35 41 37 33 39 36 33 34 36

138 148 148 68 -15 120 13.6 12.3 20.0 13.6 11.9 18.6 25.0 19.0 31.7

52 -46

21.2 9.8 25.4 18.8 18.2 23.0 18.9 20.9 22.6 19.7 25.2 23.0 19.1 24.7 22.2 17.7 19.8 23.8 15.4 15.4 22.6 13.8 12.8 21.4

(21) (21) (22) cw 24.8 26.4 27.1 27.4 27.6

143 142 137 123 (54) (50) (45) 40.0 37.3 32.4 29.9 28.0 26.9

(34) (-2000) (31) (-374) (34) t-96) (34) (-14) 33.6 2.66 33.6 16.0 33.8 19.7 34.7 20.3 35.7 20.3

87Sll 81M4

77G2

67G3

82B5,83B9 81S8 81C5 81K7

86Fl

79K4

8OC3

Page 286: Second and Higher Order Elastic Constants

276 1.2.3 Pressure coeff. Pq,,. Cub.syst. Alloys, intermet. camp., sol. solut. mef.p.576

Table 46 (continued)

Material PC11 PC44 PC12 PC’

KCl-7.7 mole % KBr Sm0.S8Y0.42S

Sm0.S76Y0.424S AgBr-AgCl

mole % AgCl 0 19.5 39.1 56.5 78.7

Ta47Nb53+H at % H 0 4.39

Ta-W at % W 0 9.6 21.5 40.0 64 90.4 100

Ti-V at % V 29.4 38.5 53 73 100

W-11 %Re u-7.5 % Nb-2.5 % zr V-17.5 % Cr V-H at % H

0 2.04 0 2.15

m2 -y203 mole% Y2O3

9.4 15 18 21 24 8

0.2

0.2 0.2 0.2 0.2 0.2

0.3

0.5

0.5

0.5 1.8 0.5

0.3

1 1 1 1 1 0.15

322 -61 230 76C4 299 -23 -7.9 84H7,85Y6 247 -27 84H4

204 202 200 197 191

40 -44 -54 -59 -70

136 77Cl 136 138 135 131

22.3 11.4 26.6 79A9 20.9 11.2 25.1

19.1 12.1 19.3 79K4 17.9 12.5 19.0 17.3 12.6 19.6 15.5 13.2 18.7 14.7 14.2 18.2 12.5 11.2 16.9 11.8 10.0 16.4

32.1 11.7 31.0 10.5 29.2 8.5 27.8 5.7 24.4 4.2 11.8 9.7 43 40 23.8 5.4

24.4 4.3 23.8 4.3 27.8 2.1 26.9 2.1

35.7 79K4 35.4 33.8 32.6 29.7 16.3 81K7 43 72Al 31.2 79K4

29.8 79A9 30.4 37.9 36.9

20.8 25.6 9.4 86H2 15.4 16.2 7.0 13.7 17.6 6.0 15.5 16.3 2.1 11.9 16.0 2.6 52.8 62.5 94.5 40.4 82H2

a) Martensitic transition at 333K.

Iandolt-Bhskin New Saks BIf29a

Page 287: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.3 Pressure coefficients Pcpcr. Cubic system. Binary compounds 277

Table 47. Cubic system. Binary compounds. c’ = l/2 (Cl1 - Cl2 ).

Compound P max PC11 PC44 PC12 PC’ Main refs. Other refs.

GPa (TPa)-l

Bfl2 195K 298K

BaO (Adiabatic) (Isothermal)

C@2 CdTe CsBr 77K

(300K)

CsCl CSI

cap, T[Kl 77 195 273 295

, 195 298

CaO

(Adiabatic) (Isothermal)

Q3s4 CuCl

cu20 * EuS GaSb

GaAs Gi3.P

s(n=3) InSb a2cpdap2 [(TPa)-l]

InP F&2

La3S4

0.012 64 27 150 0.15 49.4 26.8 117 0.15 52.4 30.3 124 1 77.8 -14.8 62.3 1 83.0 -14.0 68.5 0.025 39 62 83 0.3 66.5 -12 119 0.3 169 328 426 0.8 190 430 520 1 204 483 596 1 185 436 570 0.8 390 470 970 1 262 582 725

0.4 34 0.4 37 0.4 / 40 0.4 40 0.4 34.9 0.4 36.9 1.2 35 0.2 47 0.6 49 1 46.0 1 .46.9

103 0.9 81

0.3 29 90

0.2 56.1 0.008 55.8 0.2 39 0.5 35.7

3.6 1.7 72 1.7 -290 0.4 41

36 0.2 74

84

33 35 37 39 37.0 39.0 38 7 12 2.15 2.44 67 -480 -11 s) -57 > 8 23.3 23.1 18.5 15.3 2.6 18 -190 7.9 17 61 100

114 105 125 136 93 99 92 63 35 36.2 37 76 123 123

46 117 78 115 115 82 84.6 14.4 140 -160 86 -14.2 84 29 41 100 64

6863 68W2

77c3

7OA3 85Wl 65Rl 65K1,65Rl 67R2,67C6 67B2,67C6 65Kl 67B2,67C6

67H4

68W2

75B7 7238 77Dl 77c3

88F7 74Hl

74M2 89B4 68M5 76R2 67M5 79G7,79Rl, 79Y2 74Bl

8ON2 89B3 8OF3 88137

continued

Landolt-Bernstein New Series IlI/,?9a

Page 288: Second and Higher Order Elastic Constants

278 1.2.3 Pressure coefficients Pcpg . Cubic system. Binary compounds pef.p.576

‘Ihble 47 (continued)

Compound Pmax %I PC44 PC12 PC’ Main refs. Other refs.

GPa (TPa)-l

PbF2

PbSe PbS(n-type)

a2cp&V WWI PbTe LiBr

WI (Adiabatic) 219

260 303 337

(Isothermal) 219 260 303 337

LiCI

(Adiabatic) %I 259 303 339

(Isothermal) 220 259 303 339

LiF

LiH LiI WO 77K

296K (Adiabatic) (Mixed) (Isothermal)

T[Kl 300 800 300 800

MS2

0.3 0.3

1.7 1.7 0.15 0.3

77 45 150 81 39 156 9 118 -0.3 28 129 117 -0.57 123 -2270 -145 -870 127 14.4 143 264 93 154

0.35 241 78.4 122 0.35 253 83.0 136 0.35 265 88.3 148 0.35 277 92.5 158 0.35 252 78.4 137 0.35 264 83.0 150 0.35 278 88.3 163 0.35 290 92.5 172 ? 200 65 118 0.2 209 65 134 0.3 211 69 136

0.35 195 61.7 112 0.35 203 65.0 118 0.35 212, 68.5 127 0.35 220 71.6 135 0.35 201 61.7 121 0.35 209 65.0 127 0.35 219 68.5 136 0.35 227 71.6 142 0.3 87 22 57 0.0015 72 15.7 54.5 0.3 89 22 62 0.16 135 44 78 0.3 381 138 218 0.2 32.6 9.1 23.1 0.2 31.9 7.4 20.9 1 30.3 7.0 19.4 1 30.9 7.2 19.1 1 31.2 7.2 19.9

0 h) 0 h) 0.8 h, 0.8 h,

29.2 7.0 14.9 32.0 7.9 13.8 28.9 6.9 14.7 31.7 7.9 13.4 78 106 91 loo

8ORl 86Jl 8Tw2 76P4

81M4 72M2

73C8

70Bl 71P6 72M2

73C8

64M4 67D3 72M2 74G3 72M2 66A3

69Cl

7OS8

89Wl

Page 289: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.3 Pressure coefficients Pcpa. Cubic system. Binary compounds 279

Table 47 (continued)

Compound P max pcll PC44 PC12 PC’ Main refs. Other refs.

GPa (TPa)-l

HgSe a) HgTe KBr

KC1 c) s(n=5)

195K 295K

KF KI

s(n=3) (Adiabatic) (Mixed) (Isothermal)

RbBr TKI

(Adiabatic) 180 220 260 300

(Isothermal) 180 220 260 300

RbCl s(n=4) TM

(Adiabatic) 180 222 260 304

(Isothermal) 180 222 260 304

RbF

0.95 1.6 1 1.8 1 2.0

30 -25 64 -66 82Fl (62) b, -5.7 110 -40 79Y2,81M6 375 -64 290 367 -63 350 -79 326 312 -68 193 9 16 42

0.4 0.4 0.0004 oh) 0.75 h) 1.5 h) 0.7 1

1 1 1 0.3

292 317 318 319 307 295 186 487 29 432 467 482 428

-65 245 -61 229 -89 221 -52 236 -63

-34 118 -64 (266) 3 (51) -68 303 -61 273 -61 360 -144 296

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6

359 -161 218 388 -161 265 390 -161 347 403 -161 314 381 -152 250 416 -156 308 425 -156 404 448 -154 379 361 -130 248 18 10 30

0.4 334 -132 239 0.4 336 -138 233 0.4 340 -139 243 0.4 356 -137 232 0.4 353 -129 265 0.4 362 -134 268 0.4 372 -134 287 0.4 395 -132 282 0.3 220 -76 163

64R4;65Rl 79Bl 85GlO 49L1,64Bl, 85GlO 67D3,69D2, 77D7 64Bl

67D3 69D2

67K2,7OR2 65R1,70R2, 85GlO 64R3,71Bl 71Bl

7OR3

70Gl

66V4,70B 1, 7OR3,71P6

70Gl

7oR3

continued

Land&Barnstein New S&.slll/29a

Page 290: Second and Higher Order Elastic Constants

280 1.2.3 Pressure coefficients Pcpa, Cubic system. Binary compounds mef.p.576

‘Ihble 47 (continued)

Compound Pmax PC11 PC44 PC12 PC' Main refs. Other refs.

GPa (TPa)-*

RbI 1 0.3

T[Kl 195 0.16 295 0.16

(Adiabatic) 180 0.4 220 0.4 260 0.4 300 0.4

(Isothermal) 180 0.4 220 0.4 260 0.4 300 0.4

SmS p = 0.6 GPa

AgBr

AgCl

NaBr

195K 300K 195K 300K

a2cpdap2 [UW1l NaCl

s(n=7)

T[Kl 195 295 298 523

(Adiabatic) 180 222 261 300

(Isothermal) 180 222 261 300

a2cp&V [crpa)-‘I NaF

a2cP$p2 [VW11

0.2 1 1 1 1 0.7 0.3 1 1.5

460 514 451 459 484 464 481 499 534 545 82 -49 204 176 211 159 183 284 295 293 -620

3.5 239 10

9 221

0.4 217 0.4 238 0.8 (230) 0.8 (250) 0.4 206 0.4 221 0.4 234 0.4 240 0.4 211 0.4 227 0.4 241 0.4 249 1.5 -940 0.3 119 0.006 132 1.5 -720

510 -170 440 64Dl 86A3 536 -183 343 7OR3

-194 -184 -191 -196 -196 -196 -186 -189 -189 -189 -3 -3 -40 -42.8 -36.0 -84.6 -81.2 42 46 40 -80 29 4 19

482 409 361 356 374 383 413 419 414 480 -133 104 -485 133 136 112 141 104 121 165 199 154 -340

7OF6

7oGl

84H4,82S 14 84H4 77Cl 7OL5

7OL5

183 42

21 (173)

67K2 7oR2 85GlO 83H8 84H15 49L1,64Bl, 85GlO 65B2,67D3, 67S7,7OG2, 76W2 79Vl

25 29 (28) (38) 25.9 24.0 27.5 29.0 25.9 24.0 27.5 29.0 -60 7.3 10.1 -20

160 165 (220) (450) 123 148 150 155 140 166 172 181 -40 81 104 +80

64Bl

65B2

7OG2

83H8 64M4 72B2 83H8

84H15

84H15

Land&-Bhstch New Suia III/291

Page 291: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.3 Pressure coefficients Pcpa, Cubic system. Binary compounds 281

Table 47 (continued)

Compound P max PC11 PC44 PC12 PC’ Main refs. Other refs.

GPa (TPa)-l

NaI (Adiabatic) (Mixed) (Isothermal) a2cpo/+2 [WWI

SrF2 SrO

(Adiabatic) (Isothermal)

TlBr TlCl SnTe e, UN uo2 V3Ge WI

10.5 17.5 30 31 55 77 200 298

VsSi WI 77 298 13.5. 20 30 77.3 221 296

ZnSe ZnTe

0.3 390 82 248 1 363 70 258 1 389 80 252 1 406 80 294 1.5 -1040 -100 -340 0.025 42 33.5 101 0.2 65 -4 73 1 60.9 -4.33 46.3 1 63.6 -3.70 49.6 0.5 240 440 410 0.4 178 324 420 0.15 134 (12) 831 0.2 23.5 -9.8 38.8 18.9 2 137 272 367

0.2 0.2 0.2 0.2 0.2 0.2 0.2 1

7.1 -2.1

5.3 9.2 15.5 21.3 19.6

12.2

11.6 48.4 13.9 14.6 26.2

0.2 19.3 10.0 30.4 1 19.0 12.7 31.2 0.25 -0.7 18 59 0.25 1.4 16 58 0.25 2.0 13 46 0.25 14 13 31 0.25 21 14 26.5 0.25 21 11 31 0.6 52 11 97 0.6 68 14 126

67R1,7OR2 85GlO 71Bl

83H8 84H15 7oA2 7288 77c3

67M4 72K5 81M4 8689 76F4

73C2

73c3

73L2

7oL4 7oL4

a) Evaluated at zero (atmospheric) pressure. The graphs of cl1 and cl2 vs. p are curved. See Fig.7.58.

b, The cl1 vs. p graph is curved at higher pressures. c, Some c vs. p graphs ‘are curved at higher pressures.

continued

Landolt-B6mstein New Series II&‘298

Page 292: Second and Higher Order Elastic Constants

282 1.2.3 Pressure coefficients P+,. Cubic system. Miscell. camp. Bef.p.576

Footnotes for Table 47 (continued)

d, If the results of [67D3] and [76W2] are omitted, the figures are: pmax = 1 GPa, Pch4 = 27 (TPa)-1 s(n=5)=4.

e) Carrier concentration = 4.5102O cmm3. 0 PCQ 8) Pl?44 h, Actual pressure [GPa].

Table 48. Cubic system. Miscellaneous compounds, including alums.

Material P max PC11 %I4 PC12 Refs.

GPa WW1

Adamantane, C,,H,, Alums b,

CsAlS CsAlSe a2cp&V WW1l a2c,J&dT [ 103K-‘1

KAlS

a2c,&dT [ 103K(-t] KAlSe a~~,~~~ [CrpaPl a2c,fipaT [ 103K<-*]

NH,CH,AlS NH3CH3AlSe

a2cpdw [VW11 NH,NH+ls

a2c,dap2 [VW*1 NH,OHAlS

a2c,&IpaT [ 103K-’ ] NH,AIS

0.02 1720 1570 a) 80Dl

0.15 0.16

187 139 393 117 226 337 200 100 600 7.1 0.6 -9.3 273 319 698 283 323 724 -16.2 2.6 -26.8 -39 232 -34 47000 100 75000 53.2 4.2 47.5 201 39.4 350 216 11 385 -200 100 -1100 230 96 375 -200 100 -1200 10 94 188 49.8 -5.1 9.93 40 207 170 40 215 172 45000 200 58000 57.9 3.1 51.6

78H4 87H2

0.16

0.16

0.16

0.16

0.16

0.16

78H4 87H2 87H2 87H2

78H4 87H2

87H2

87H2

78H4 87H2 87H2

87H2

Landoh-Bthstcin New SaiesIUf29r

Page 293: Second and Higher Order Elastic Constants

282 1.2.3 Pressure coefficients P+,. Cubic system. Miscell. camp. Bef.p.576

Footnotes for Table 47 (continued)

d, If the results of [67D3] and [76W2] are omitted, the figures are: pmax = 1 GPa, Pch4 = 27 (TPa)-1 s(n=5)=4.

e) Carrier concentration = 4.5102O cmm3. 0 PCQ 8) Pl?44 h, Actual pressure [GPa].

Table 48. Cubic system. Miscellaneous compounds, including alums.

Material P max PC11 %I4 PC12 Refs.

GPa WW1

Adamantane, C,,H,, Alums b,

CsAlS CsAlSe a2cp&V WW1l a2c,J&dT [ 103K-‘1

KAlS

a2c,&dT [ 103K(-t] KAlSe a~~,~~~ [CrpaPl a2c,fipaT [ 103K<-*]

NH,CH,AlS NH3CH3AlSe

a2cpdw [VW11 NH,NH+ls

a2c,dap2 [VW*1 NH,OHAlS

a2c,&IpaT [ 103K-’ ] NH,AIS

0.02 1720 1570 a) 80Dl

0.15 0.16

187 139 393 117 226 337 200 100 600 7.1 0.6 -9.3 273 319 698 283 323 724 -16.2 2.6 -26.8 -39 232 -34 47000 100 75000 53.2 4.2 47.5 201 39.4 350 216 11 385 -200 100 -1100 230 96 375 -200 100 -1200 10 94 188 49.8 -5.1 9.93 40 207 170 40 215 172 45000 200 58000 57.9 3.1 51.6

78H4 87H2

0.16

0.16

0.16

0.16

0.16

0.16

78H4 87H2 87H2 87H2

78H4 87H2

87H2

87H2

78H4 87H2 87H2

87H2

Landoh-Bthstcin New SaiesIUf29r

Page 294: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.3 Pressure coefficients PC,,. Cubic system. Miscell. camp. 283

Table 48 (continued)

Material P max PC11 PC44 PC12 Refs.

GPa (TPa)-l

NH4AlSe a2cpdap2 [(TPa)-‘1

NH,FeS

a2cpdap2 UJW1 I a%,dapaz- [103~-11

NHdGaS

a%,,/ap2 [VW1 a% /apaT [ 103~-t]

Rb Alie a2cpoiap2 KTpa)-ll a2cpdapaT [ 103~~11

RbGaSe a%,da$ [(TPa)-‘1

TlAlSe a2+iap2 [(TPa)-l]

TlGaS a%,dap2 [VW11

NHhBr NH@ (NH&$“&j (NH4)2SnC16 ~,),=$j

BaWO&

cscdF3 c)

a2cp,lap2 [PRO-1l CsCN CuG%P3 CuGe4P3

Garnets d, Almandine Grossularite Almandine-pyrope Almandine-spessartite

a%,dapaT [103~-‘] YAG

Land&BBmstein New Series IW29a

0.16

0.16

0.16

0.16

0.16

0.16

0.16

1.2 1.2

0.15 0.05 0.06 0.7

0.12 0.14

0.3 ? 1 0.5 1

0.15

11 210 59 12000 100 18000 -15 207 89 4300 100 2600 38.2 2.1 32.7 6 212 128 5100 100 3800

30.5 1.2 27.4 35 251 134 14000 200 14000 33.6 0.9 30.7 146 300 416 5200 -400 3500 180 302 371 100 100 300 258 293 634 -200 100 -1900 317 530 910 463 512 1720 514 382 650 421 404 638 395 275 653 658 475 1425 -89 110 -101 103 88 77 -41 -4000 -77 281 -119 481 32.2 14.0 63.2 45.6 31.9 97.2

87H2

87H2

87H2

87H2

87H2

87H2

87H2

6662 66Gl 85W2 85W2 81Pl 81H5 78Gl 8OF4

85S14,8338 84I-E 85H

24 14 39 6786 16 5.1 40 73Hl 23 16 35 77Bl 23 13.8 34 74Wl 22 13 32 7611 2.7 1.19 0 7611 19.2 5.45 33.0 8OY2

continued

Page 295: Second and Higher Order Elastic Constants

284 1.2.3 Pressure coefficients PC,,. Cubic system. Miscell. camp. Bef.p.576

‘Ihble 48 (continued)

Material P max %l PC44 PC12 Refs.

Mg(Bfi& * 6H2O

Ni(NO& - Q3-4 W-W)2 Hg+%Tes H@‘2’bj KCN K2Rec16 K$ncl,

KMgF3

rn3

@qxdap>s (acspcJ@Plr W~t$P~~ (a2cSp@~2)~ UJW1l

K2Hg(W4 WI 243 253 273 293

K2Zn(W4 =fl3

a2cp&V [VW11 RbCdF,

a2cp$p2 [O-9 RbCaF, RbCN RbMnF, Rb&,I, Ag6Gel$12

&@‘4P1 &%j

NaBrO, NaCIO, NaCN NWa3CW2

Na,SbS, * 9H20

0.15 0.15 0.12 0.15 0.15 0.15

0.15 0.15 0.25

0.03

0.03 0.3

0.3

0.3 0.15 0.005 ? 0.15 0.15

0.28 0.15

598 241 836 81H5 621 -830 791 81H5 129 158 175 78Gl 119 47.7 186 82H6 136 63.8 209 82H6 231 -76 493 79Hl 361 314 453 85W2 464 447 688 81H5 442 429 661 81Pl 64 26 69 79Jl

5.929 0.280 3.370 5.929 0.281 3.399 5.822 0.281 3.292 -1730 -80 +700

88C2

-658 -598 -475 -368 52 77 +18

(39 (40) (87) 256 87 530 86.5 52 194 243 219 625 391

-563 -1207 -561 -1086 -517 -871 -528 -681 -263 120 47 125

8OH3

8OH3 8OF4

+5.2 +0.4 (0) (-24 t-11 (14460) (37) (143) -79 509 23 55 180 670 43.5 152 33 74 77 242 77 430 -1087 414 212 881 129 376

78F2

78F2 79H3 73Nl 7507 85M5 86Cl 86H5 75F2 79Hl 86H5 86H5

hdolt-Bihrmcin New SdaJlIf29r

Page 296: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.3 Pressure coefficients P+,. Cubic system. Mtscell. camp. 285

‘Iable 48 (continued)

Material P max PC11 PC44 PC12 Refs.

Spine1 d, a2cpoh3p2 [UW -9

Spine1 d, (Pleonaste) Spine1 d, Sr(N03)2 SrTiO, TlcdF, c)

a2cp,lap2 [crpa) -9

1 18 5.8 31 73C6 1 -520 -2.9 -460 0.5 18 5.2 32 72Wl 0.2 16 5.4 25 6732 0.14 147 147 189 78Gl 2.2 32 10 34 71B6 0.7 72 62 88 8OF

-2440 -1514 +1974

a) PC, where c = Cl1 + 2c12 + 4c44.

b, See Table 8, footnote a), Order of substances not alphabetical. c) All quantities evaluated at zero pressure. There are discrepancies between some of the values

reported in [78F2] and [8OF4]. d, For details of compositions see Table 9.

Landolt-BBmstein New Series lllj29a

Page 297: Second and Higher Order Elastic Constants

Material P max %l PC33 p=44 % PC13 Main Other refs. refs.

Gpa U-W1

Table 49. Hexagonal system.

B%.7s4 1017.25 Beryl Be-Cu at % Cu

0 1.1 2.4

Cd

1 24.4 28.2 29.9 36.9 14.5 12.1 -2.7 30.7

83H2 73Yl

CdS co Co-32 wt % Ni Dy 4

0.6 0.6 0.6 0.15 0.5 0.4 0.015

23.4 25.2 14.9 107 24.1 21.7 15.4 103 41.0 37.8 14.9 256 76.0 130 86.4 103 81 142 119 104 35.6 34.4 -42.2 97 45.92 32.35 21.1 54.5 21.7 26.9 18.7 24.5 41 68 18 87 34 46 21 79 55 64 34 100 39 38 27 67

42.0 31.9

(-3300)

wm 60 141 100 30.4

7os7

86Sll 62Cl 67C9 85Y3 75W2 73F3 81J3 73F3 81J3

Fx 4

Gd

GaSe

TIKI 298 298 b, 273 c)

0.5 0.5 0.5 0.5

0.5 0.3 0.5 0.3 17.5 0.6 0.3 0.04

0.28 0.28

45 47 36.5

ig9) 80 79 =) 298

321.8 -2700

80 84 53.5 560 (175) 590 551 248

304.0 -1261

8.9 3.4 10

-126

179.7 738.3

90 96 69 51d)

140 51.9d) 885

689.3 1718

149

95

166 166 95

763

1083 -10500

73F3 7oF2 73F3 83G4 81P2 85F3 8364 69B5

87G4 88G8

Page 298: Second and Higher Order Elastic Constants

Table 49 (continued)

Material P max PC11

GPa O-W-’

PC33 PC44 PC13 Main Other refs. refs.

InSe pb5Geo40104)2

Mg

Re AgI s) Tba) Ti d Zn ZnO ZIlS

@2clap2) m-w1 1 zr

0.16 ’ 0.65 0.008 0.42 0.3 0.5 0.55 0.005 1 1

0.5 26.8 33.2

107 500 108 129.0 103 117 105 118 14.0 12.4 -40 0 36 45 30.8 27.0 46 115 18 1.. 17 34 37

-49 97 ” 98 9.3 -270 11 11.1 103 -12 -2.9 -58 -6.8

74 4 41 130 136 20.1 47 78 44.6 125 43 78 -144 47

8364 302 88GlO 118 59Sl

71Nl 14.5 74Ml

74F2 8153 71F2 7os9

45 73c4 91 73c5

64 7OF5

a) High pressure values. There is evidence of curvature in the c vs p graphs. b, Paramagnetic phase. Cl Ferromagnetic phase. d) PC&.

e, Value of Pcll from a poorer quality sample. The corresponding values of Pc33 and Pcs6 for this poorer quality sample was 629 and 56, respectively.

0 Evaluated at p = 0 and T = 237.5K using a least squares polynomial fit [8764]. g) Hysteresis effects occur during pressure cycling.

Page 299: Second and Higher Order Elastic Constants

Table 50. Trigonal system, 6 or 7 constants.

Material PmaX PC11 PC33 PC44 PC12 PC13 PC14 PC15 Main olher

refs. refs. Gpa U-l-’

6 constants a-+203

a-APO4 Sb Bi

Bi-10 at % Sb Bi-0.43 at % Te

%KL7%9.3 PplJ 4

caco3 273K

maso

a-SiO, T=?7K

298K Se NaN03 d, Te Ti203

m-m@3 pjm 4

x= 0 0.02 0.04 0.09

v,o,

1 12.4 0.15 12.5 0.3 135.5 0.16 107 0.15 101 1 117 0.14 100 0.14 110 1 7.86 0.012 21

0.16

0.1 0.34 0.34 0.8

120

39 94 38 102 520 210 171 184 378 179 17 20

0.8 0.4

0.4

0.4

10.0 10.5 140.4 180 174 186

7.60

33

154

5.9 6.0 6.5 4.3 4.7 4.2 4.1 4.9 47.6 27

15.2 20.2 15.5 20.1 38.57 1440 145 84 306 97.1 334 128 280 150 290 140 3.95 3.20 27 38

130

50 30 46 510 168 247 10

1.1 1.0 1.5 1.2 25

160

69 4 750 1200 710 195 464 38

4.5 5.6 6.1 3.4 150

31.2 32.9 228.6 230 108 220 180 200 5.70 62

200

420 500

307

15

2.6 3.6

68

-5.7 -7.7 -180.4 130 231

270

61

<lOOb)

-92 -110 -110

-292

167

-0.47 -0.47 -0.16 -0.44 105

68G4 7oH2 87815 8485 83Hll 85G2 83H7 83H7 8562 68Kl

86w8

5533 65M5

75F6 9oH2 75F6 78R7

78R7 82N4

81N2

Page 300: Second and Higher Order Elastic Constants

Table 50 (continued)

Material P max %I

GPa crpa>-’

PC333 PC44 62 PC13 PC14 %5 Main Other refs. refs.

&x%)203 x= 0 0.4 47.6 27 25 150 68 105 81N2 86Yl

0.015 0.4 -75.3 8.3 18 85Y5 0.03 0.4 -27 12 10 -82 30 430

7 consta?lts %5+3011 0.16 78.6 127.0 52.3 104 191 0.00 0.00 86Al

~4.7Bao.3Ge3011 0.16 63.7 131.3 68.6 70.5 230 0.0 0.0

al values of PF = &#p; no cpa are given.

w Magnihlde of aclfip < 0.1.

=) PC456 [c&=wc,, - Cl&l. 4 Pcsd= 156, [cM =U(c,, - cl&

=) values of PF = acJap.

Page 301: Second and Higher Order Elastic Constants

Table 51. Tetragonal system, 6 or 7 constants. cT=4cL(c,t - ~~2).

Material P max %l PC33 PC, PC& PC12 PC13 P=T Refs. Figs.

GPa UW*

6 constants ~4H2po4 a) CdGe@

cop,

Gee, In

InBif) In-3.4 at% Cd Li2B4% (adiabatic) 9)

(isothermal) d M@2

cw at 1 GPa

HgIn20Te4 i)

NS2

KD2KI4 a)

KH2KD4 a)

2 %I0 0.1 74 0.1 71.3 1.0 35.8 0.5 19.7 0.15 156

124 2.4 113 0.15 165

64.1 62.6

0.7 35 1.0 36.7 1.0 35.4 1.05 34.8 1.0 33.9 0.15 143 1 24.8 2 219

242 64 61.8 25.3 11.1 131 127 116 136 108 105 28 29.5 28.7 29.9 28.6 147 24.8 158

-28 b, -2.8 -2.8 11 11.0 150 152 55 162 34.9 34.1 14 18.4 18.1 4.4 6.9 100 6.2 53 b)

2 227 169 57 b)

12 b.4 750 25 127 24.1 125 25.5 =) 54.6 15.8 42.7 180 149 170 109 75 185 175 154 -31.07 2690 -30.4 2630 31 69 42.2 63.2 40.5 59.4 37.7 63.6 42.6 h, 57.1 93.4 210 31.2 64 30 b.4 3 kii 19 44 11 bJJ

165 103 103 49.6 21.9 165 111 164 121 374 365 66 22.0 21.6 54.6 65.8

49

-15.5 -14 -62.6

220 240

280 43.2 42.3

-68 -59.2 49

76Fl 82Hl 82H6 d, 8463 73w3 85F4 9OFl 76F3 85F4 89S8, 9OSl 77D4 85V4

79M7 84G3 82H6 77wl 76Fl

76Fl

51.1

Page 302: Second and Higher Order Elastic Constants

f[ ‘&ble 51 (continued)

3. P ag 55

Material P max %I PC33 pc44 PC66 PC12 PC13 PC-r Refs. Figs.

p5 GPa CTW1

K2pto4Bro.3 - Hz0 RbH2FQ, a)

TeO, kJ) 44

Sn Sn-0.3 at% In SnO, Ti02

ZrSiO, (non-metamict)

7 constants CaW04 LiyF,

Liyo.5mo.5F4

m2 d 0)

0.7

2

0.8

0.8 0.005 0.005 1 0.75 2 1

1.2 25.4 12.0

0.15 61 59 0.15 45 33 0.15 85 35 0.6 11 25

0.6 16 24

227

93

95 104 96 20.0 23.8 23.2 31

260 90

169 21 b)

127 -42

127 -39 112 148 129 100 13.6 8.6 17.2 8.8 16.9 8.7 27.5 13

8.8

40 11 7.9 2

2

-25 b.4

107

104 (203) 69 113 31 77 15.3 38 33.0 51.0 30.6 51.1 35 67

-6.3 47

74R7

76Fl

75Pl

30 33.5 37.6 47

42

pc16

72SlO 72SlO P) 75Cl 69Ml 74F3 7752, 77R5 7801

22 100 101 128 83B6 78 152 119 -82 82Bl -102 163 49 -195 82Bl 19 31 20 ? 78R5

-21 16 27 >O

a) Evaluated at 1 atm (=O.l MPa). b, Stiffness depends onp; see Figs. 18.2, 18.31, 18.35, and 18.39. 4 PC-$&.

continued

Page 303: Second and Higher Order Elastic Constants

Footnotes for Table 51 (continued)

d, Values of cp quoted in [82H6] are slightly different than those quoted in [82Hl]. 4 Two conflicting experimental values of &,&I are quoted in [84G3], 4.81 and 2.18, giving values of 56.3 and 255, respectively, for PC= fl Pep evaluated at low pressure; see Fig.18.12. ~9 Note all cpa are at constant E except c33 which is at constant D. h, Two conflicting experimental values of k&p are quoted in [84G3], 2.98 and 2.36, giving values of 42.6 and 33.7, respectively, for Pc~e. 9 The square Odenotes an ordered array of vacant sites. cpa from [76S16]. 3 Pcp&.

k, From ultrasonic propagation. l) SeeFigs. 18.42,18.43, 18.44. *) From Brillouin scattering. 4 Conventional axes. O) Primitive cell axes. P) [72SlO] reports that the second-order elastic constants for this alloy were the same within experimental uncertainty as those for pnre Sn.

Page 304: Second and Higher Order Elastic Constants

fF Table 52. Chthorhombic system.

p’g Material PUli3X PC11 PC22 PC33 %I4 PC55 p%6 PC12 PC13 pc23 Refs. Figs.

GPa CJJW-’

(cH,),NcH,c~ ’ 0.30

JJ3BO3

Bronzite =) 1.2 CdSb 1.7 W~~~2 0.18

Forsterite h, 1 0.2

Fe$i04 d, synthetic 3.0 fayalite

Fe$iO+ Olivine 3.0

~2c,JW [UW-ll Li2Gq0,, b, p = 0

0.055 0.06 0.062 0.07 0.075 0.15

Ppa 4 213K 0.03

Ppa =) 323K 0.03

Mg,SiO, fl 4.0 @kW2Si04, 0.2

Olivine

492.4 581 797.2 -3740 218 340 657 1070 947 84H12

(48) 96 318

25.3 25.8 27.7

-100 -450 -310 4.5 -828 -4500 -3800 4.5 -1450 -10500 -12000 4.5 -1800 -22500 -22000 4.5 1150 6300 6500 29 861 4200 3200 29 120 450 4 530 29 23 40 32 1.5

0.07 -10 -6

29.7 30.6 39.5 2.4.7 32.3 27.2

26.1 17.9 26.5 33.7 20.9 29.3

(57) (78) cw 78 77 -35 347 240 113

29.5 26.2 31.6 32.8 28.0 32.2 33.0 23.4 78.9

(39) (35) 36 26 80 49

20.3 28.6 20.4 29.3 28.9 29.8

36.57

-136

-9 39 -9 39 -9 39 -9 39 22 69 22 69 22 69 1.5 1.7

(98) (1W (190) 72F3 123 132 166 78Bl 384 558 291 81H3

68 62 48 690 73 70 56 69K4 65.8 71 39.6 88612

-860 -98 -1600 -10600 -4780 -15100 -15100 -42530 -27100 -17100 -81450 -31900 137000 11100 -2700000 31000 5990 137000 980 630 3ooO 27 24 39

72 62 50

84w3 .

83H5 52.1

83314 69K4

continued

Page 305: Second and Higher Order Elastic Constants

‘Pable 52 (continued)

Material P max PC11 PC22 PC33 p=44 PC55 p%i PC12 PC13 ‘=23 Refs. Figs.

GPa (TPC$’

49JO3 275 236 134 163 73 440 138 287 285 9oH2 NaBF4 0.16 378.8 368.1 260.8 169 -100 157 514 602 433 8663 a-S 0.15 982.4 1126 869.6 746 661 1000 776 1600 518 8685 SC@%)2 0.15 1060 360 1100 680 860 400 2300 1100 1700 86Hl

253K =) 0.15 870 983 730 1100 950 980 -11200 1300 -600

a) The c vs p relationships show some cnrvature. b, Above a pressure of about 0.0625 GPa at 293K the 6 form changes to the Q form. =) These values are Pw = acpsli)p.

d, Corrected from 420 to 450 since cz should be about 110 GPa.

=) Phase V. C~ obtained by interpolation.

6 cpa obtained from curves. - See also “Forsterite”.

8) Weighted average of measurements in [88612]. h, See also under “Mg2Si04”.

Page 306: Second and Higher Order Elastic Constants

Ref.p.5761 1.2.3 Pressure coefficients Pcpg. M

onoclinic system

295

Land&B6mstein

New Series III/29a

Page 307: Second and Higher Order Elastic Constants

296 1.3 Elastic constants sPu, cpa (Fig. 3.1) Bef.p.576

1.3 Figures

(Figures are numbered according to the tables; i.e. Fig. 3.1 is Fig. 1 of Table 3)

115 GPO 110

105

I 100

u= 95

90

65 GPa

I 60

: 55’

50 0 100 200 300 400 500 600 700 800 K 900

I-

Fig. 3.1. Al. cpa vs. T. 1 WKl], 2 4 [53Sl].

i69&], 3 [79T3],

32 iP0

30

LdOlt-BLhS!&l New Saia BIfWa

Page 308: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu , cPu (Figs. 3.2 . . . 3.4) 297

26 (TPa)’

24

7

IsA4

40 ,= ale -1

35 /

IO (TPd’ I 8

; 6

.’ 4 0 100 200 300 400 500 600 700 800 K 900

Fig. 3.2. Al. sPb vs. T. 1 [53Sl], 2 [64Kl], 3 [69G2], 4 [79T3].

I 75

*b, 70

2 65

60

55 0 50 100 150 200 250 K 300 T

Fig. 3.3. Al. PC,“, vs. T. [77T2,79Tl]. For data on the vari- ation of the isothermal pressure coefficients Pc,‘b with T, see C69H8-J. c’ = +(cII - ci2).

Fig. 3.4. Ar. cpa vs. T. 1 [66M3], 2 [68G7], 3 [70K2], 4 [71M3,72M9]: -

2.5 , \ 1.75

1.25

2.0 0.50

I

GPO 1.5

cf 1.0

0.5 0 10 20 30 40 50 60 70 K 80

Lmdolt-B&natein New Sala lB/29s

Page 309: Second and Higher Order Elastic Constants

298 1.3 Elastic constants sPu, cPu (Figs. 3.5 . . . 3.9) mef.p.576

4.5 I

GPO 4.0

,= 3.5

I

1.6 GPO

1.4 E

I I u I I I 14 crL(Sc0le-4

0.8

1.2 I I I I I II 10 20 30 40 50 60 70 K 80 I

Fig. 3.5. Ar. c,, vs. T. Mean values derived from [66M3, 6867, 70K2, 71M3,72M9].

-.c 4001 I I I I I \I I

’ 360 I I I\I. I I I \I I I E I 1 I

320 I$$..

looI

160 GPO 150

140 I

i 130

120

104 GPO

102

100 I

98 t

96

94

sol I I I I I I I I 0 100 200 300 400 500 600 700 K 800

I-

Fig. 3.6. Cr. cps vs. 7’. 1 [79K6], 2 [71P2], 3 [81L3]. c’ = f(c,, - c12). Spin-flip temperature r,r = 123 K; anti- ferromagnetic TN = 311 K. To avoid confusion, the results for c’, cr r , and cd4 from [81L3] are not plotted. Under the influence of a strong magnetic field Cr exists in a single Q-domain spin density wave state below Tn. For T,, < T < TN the crystal structure is orthorhombic, and for 2” < T,r it is tetragonal. See [83V2] for elastic constant data in the single Q-domain state. Other reference [8622]. See also Figs. 22.16A. . * F and 22.17A . . . F.

I I I I I I I

360 I c

298K 350

101.2 340 GPO

I 100.8

s cI l[

I 1298K1Y I r-i

0 0.1 0.2 0.3 0.4 GPO 0.5

Fig. 3.7. Cr. cpa vs. p. [79K6]. c’ = $(c,r - c,~). pN = N&l pressure = 0.24 GPa at T = 298 K. The numbers against the bottom curves indicate the propagation(P) and vibration(V) directions as follows: 1 P[OOl], V[lOO]; 2 P[llO], V[oOl].

$ 30

25

20 0 50 100 150 200 250 300 K 350

‘I -

Fig. 3.9. Cu. PC,, vs. 7’. 1 [71Dl] (values at 0 K extra- polated); 2 [79V2]. c’ = i(c,, - c,J.

LmdOll-Bl)madn NowSaicsBIf29r

Page 310: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cPu (Figs. 3.8 . . . 3.14) 299

175 GPa

I 170

u=165

80 GPa

75 70 I 2

125

I

GPo 120

& 115

IIOl 0 100 200 300 400 500 600 700 K 800

T- Fig. 3.8. Cu. cp, vs. T. 1 [5501], 2 [66C3], 3 [61A4], 4 [79V2]. A peak in the Young’s modulus of undeformed and deformed Cu single crystals in the temperature range 30 K to 40 K has been reported by [82W6]. Other reference [81L14].

125.0 GPO

I

124.8

c 124.6

;I:-:: 0 50 100 150 200 250 300 K 3

I-

0.02 0.02 MPa MPa

I

0 I 0

0 -0.02 0 -0.02 --G --G u” u”

; -O.Ok ; -O.Ok

3 3 -0.06 -0.06

Fig. 3.10. C (Diamond). cpa vs. T. [72M3,72M5]. -0.08 -0.08 I

0 0.2 0.4 0.6 K 0.8

For Fig. 3.12 see next page. Fig. 3.14. 3He. c,,,(T) - c,,(O) vs. T. [73W5].

I25 1 I I u I .I

68 GPa

110

66

I 642

50 GPo

I 45

&O

62

60

I I I I I 0 200 LOO 600 800 1000 K 1200

Fig. 3.11. Ge. cpa vs. T. 1 [53Ml], 2 [70B7], 3 [74V2]. Other reference [88K5].

t I 40 I-,

i .i I I

25 0 50 100 150 200 250 300 K 350

T- ,,“,” I

Fig. 3.13. Au. PC,, vs. T. [SlBl]. c’ = f(ctI - c12). 78.4

178.2

78.0

77.8

Iandolt-Bllmstein NowSticsmn9e

Page 311: Second and Higher Order Elastic Constants

1.3 Elastic constants sPu,cP,, (Figs. 3.12 . . . 3.18) wef.p.576

165

160

46 GPO 44

252’ 0 50 100 150 200 250 K 3W

l-

Fig. 3.15. Ir. cb4 vs T. [66Ml].

36

200

I 180

$160

0 100 200 300 400 500 600 700 K 800 l-

Fig. 3.12. Au. c, vs. T. 1 [58Nl], 2 [66C3], 3 [SlBl].

100 -J ? . 0 200 400 600 800 1000 K 1200

l-

2.5 GPO

2.5 GPO

I 2.0

E 1.5

Fig. 3.16. Fe. cp. vs. T. 1 [6lRl], 2 [68Ll], 3 [71A2], 4 [72D2]. Ferromagnetic Tc = 1043 K. Other reference [85S8].

250 250 GPO GPO

200 200

I I 150 150

$100 $100

50 50

0 0 10 10 20 20 30 30 GPO GPO 40 40 P- P-

Fig. 3.18. Kr. cp,, vs. p. [89Pl]. Fig. 3.18. Kr. cp,, vs. p. [89Pl].

IA&lbBlmrtdn Now SorialIJ/Wr IA&lbBlmrtdn Now SorialIJ/Wr

Fig. 3.17. Kr. t+., vs. T. [71K4].

Page 312: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPo (Figs. 3.19 . . . 3.22) 301

56 GPO

54

42

18 18

,I 16 3 3 c, c,

14 14

12 12

10’ 10’

I I

I I I I I 100 200 300 400 500 K 600

T-

Fig. 3.19. Pb. c+,,, vs. T. 1 [62W2], 2 [77Vl]. T,,, = 600 K.

480 480

I I

GPO GPO

460 460

u= u= 440 440

420 420

,3 ,3

170 170 I I . I . I

I

GPO

165 -w G E 1’ 1’ - -

0 0 200 200 400 400 600 600 800 800 K 1000 K 1000 T-

0 100 200 300 400 500 600 700 K 800

Fig. 3.21. MO. cps vs. T. 1 [62Bl], 2 [67D2], 3 [78S5]. Fig. 3.21. MO. cps vs. T. 1 [62Bl], 2 [67D2], 3 [78S5]. Fig. 3.22. Ni. c,,, vs. T. [6OA2]. Applied field 10 kOe.

15 GPO

14

8 0 50 100 150 200 250 K 300

T-

Fig. 3.20. Li. cpa vs. T. 1 [59Nl], 2 [69S6], 3 [77F3]. The isotopes 6Li and 7Li gave practically identical results [77F3]. Martensitic transition between T = 70 and 100 K [79J3,81T6].

Lmdolt-Btimstein New Saiu lWZ9s

Page 313: Second and Higher Order Elastic Constants

1.3 Elastic constants spu, cpu (Figs. 3.23 . . . 3.25)

255, , I I 1 I GPO I, 4 1 1. I I I I

250 I I I I [\\

30 GPO

1331~1.7 GPO

I 132

-131 G

130

. 129

0 100 200 300 400 500 K 600 I-

Fig. 3.23. Nb. vs. cpa TIO ... 600 K). 1 r77W21. 2 r76M21. 3 [77S83,4 [74HS]

Fig. 3.24. b

3 [72H9], Nb. c,, vs. T(O...300 4 [74H5], K). 1 [65Cl], 2 5 [7512-j.

[@J2],

260 GPO

180 . 40

GPO

I 35

4 u' 30

25 140

I

GPO 1

130 -w 3 : '\, .

120 _ 'A. I,

Y 0 500 1000 1500 2000 2500 K 3000

I-

Fig. 3.25. Nb. cp,, vs. T(0 *. 2500 K). 1 Average from Figure 3.23,2 [66A4], 3 [77T33.

251 GPO 757 -“_

I 250

z U-J,,

2L6

31.0 GPO -nr

28.5

140 -- 27.5

t bPol . I I

1135 A/' ; 1-I-Q c? 2 I

13OL4 3

0 50 100 150 200 250 300 350 K 400

Lmdolt-Bl)m&.u - NewScrlmm/291

Page 314: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cpa (Figs. 3.26 . . . 3.28) 303

230

215

210 72.0 ^_

205

180 GPO

I 175

170 c

\ 165

160 \ 0 100 200 300 400 500 600 700 800 K 900

T-

Fig. 3.26. Pd. cpa VS. T. 1 [60Rl], 2 [7OWll. 3 r74W21, 4 r79H21. Other reference r87Y61.

7'1.5

I GPO

77.0

2 76.5

I 52 I 52 Grn Grn

-2 50 -2 50 G G t t i-- 48 i-- 48

0 50 100 150 200 250 K 300 T- T- Fig. 3.27. Pt. i(cIi - Fig. 3.27. Pt. i(cIi - cIz) and cd4 vs. T. [65Ml]. cIz) and cd4 vs. T. [65Ml].

I 3.8

T3.6 u=

3.4

3.2

_ 250 3110 K 350

3.0 I I I I I 0 50 100 150 200 --- ---

T-

Landok-BGmstein NowSaiimm/29a

Page 315: Second and Higher Order Elastic Constants

304 1.3 Elastic constants sPu, cpu (Figs. 3.29 . . . 3.32) pef.p.576

i25

I

GPO

420

E 515

110 195

I

GPa

190 z u

ZlsS

180 0 50 100 150 200 250 K 300

l-

Fig. 3.29. Rh. cpa vs. T. [81W2]. b

Fig. 3.31. Si. cP vs. T. 1 [53Ml] (p-type, p = 410 Qcm), 2 [68E2] (p-type, p = 0.22 Rem), 3 [8202] based on uniaxial stress measurements and resonance method.

3.4 GPO

I 3.3

u= 3.2

2.2 GPa

3.0 2.0 I 1.8 z

1.6 - I ?.8 GPO

,2.6 u

2.4 F!EEi 0 50 100 150 K 200

Fig. 3.30. Rb. c,,, vs. T. [67G4].

“=lSO, \I 2.7 I

581 I I I 0 200 400 600 800 1000 K 1

I- 120[

82 iP0 86

I 782

76

-0.75

4 -0.50

I -0.25

0 0

0.25

I 0.75

$1.00 1.25 \

1.50 \ ‘2

1.75 0 OS 0.2 0.3 0.4 0.5 0.6 0.7 0.8 GPa 0.9

Compressive stress -

Fig. 3.32. Si. B-doped p-type. A.,., and Asa vs. compressive stress, showing splitting of the shear stiffness. T= 77 K. C73F4-J.

Aq4 = 1OOAc,.,(electron~c)/(c.&; Ae6 = 100Ac~g(electron~c)/(c.&.

Curve number 1 2 3 4

N[10’pcm-3] 0.6 2.6 7.0 16

Ldolt-Blm3toia Now !MdB/290

Page 316: Second and Higher Order Elastic Constants

.Ref.p.576] 1.3 Elastic constants sPu, cPu (Figs. 3.33 . . . 3.35)

I I I I I I

305

I I I I I r\I 200 300 400 500 600 700 K 800 T- -

Fig. 3.33. Ag. cpa vs. T. 1 [58Nl], 2 [66C3], 3 [81Bl].

0 50 100 150 200 250 300 K 350 T-

7.0 \\I I 7 \x ._ I 5.51

C&4 I SCOk ‘-)

. 1 5.0 2 u I \

4.5

I 7.0 4.0 GPO

t 6.5

6.0 50 100 150 200 250 300 350 K 400

T- Fig. 3.34. Ag. I+$ vs. T. [81Bl]. c’ = f(cII - c&. For data on the variation of the isothermal pressure coefficients PcpTd

Fig. 3.35. Na. c,, vs. T. 1 [66M2], 2 [66D2,69M4],

with T, see [69H7]. 3 [73FS]. T,,, = 371 K.

Lsndolt-Barnstain New Sorb IU/29a

Page 317: Second and Higher Order Elastic Constants

306 1.3 Elastic constants spa, cpa (Figs. 3.36 . . . 3.39) mef.p.576

560

540

'"=520 / ! I I XII-I

/ 480 / / 2ol

I / 2

/ 220 I I I I /Ys“cscore’) I

--- UPOI~

200

180

I

260

240 P I

220 I I /I I I I I

I, 2ool I I I I I I Ii I

0 50 100 150 200 250 300 350 K 400 T-

Fig. 3.36. Na. sps vs. T. 1 [66M2], 2 [66D2,69M4], 3 [73F5]. T, = 371 K. Martensitic transition between T = 36 and 70 K [88Sl].

1301 I I I I I I I 0 200 400 600 800 1000 1200 1400 K 1600

T-

Fig. 3.37. Ta. c, vs. 7’. 1 [63Fl], 2 [66S2], 3 [70A4,70AS], 4 [73L4], 5 [82Al].

1

I 260

240 u=

220

90 GPO.

80 I

70 t I 160 150 60 GPO

z 140

0 500 1000 1500 2000 2500 3000 K 3500 I-

Fig. 3.38. Ta. cPs vs. T(0 ... 3000 K). [8OW2]. Values to $00 K from Figure 3.37.

8

Fig. 3.39. jl-Tl. cpo vs. T. [77MS]. Based on extrapolation of In-Tl alloy data.

lmdolbB8nutb NewSaimIII/291

Page 318: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,,,,, cPu (Figs. 3.40 . . . 3.42) 307

t 81

GPa ‘\

0 50 100 150 200 250 K 300 T-

Fig. 3.40. Th. cpr vs. T. [77G3].

46,”

540 GPO L

164 GPO

t I t 162

,L G

lJ.Jl I 0 100 200 300 400 K 500

T-

Fig. 3.41. W. cp. vs. T(O...SOO K). 1 [62Bl], 2 [63Fl], 3 [67L3], 4 [SOSSJ, 5 [82Al].

0 250 500 750 1000 1250 1500 1750 2000 K 2250 I-

Fig. 3.42. W. cpa vs. T. 1 [62Bl], 2 [63Fl], 3 [67L3].

Lmdolt-B&mtein New Se&a lllt2,9a

Page 319: Second and Higher Order Elastic Constants

308 1.3 Elastic constants spu, cpa (Figs. 3.43 . . . 4.1) mef.p.576

I I I I 4’ 3 -.

121

t

GPO

120

z 119

118 0 50 100 150 200 250 K 300

I-

Fig. 3.43. V. I+, vs. T(O...300 K). 1 [6OAl], 2 [71B2], 3 [79G3].

225

I 175

“r 150 G -7 125 u=

lw3

501 I 45 50 55 ot% 60

Ni -

GPO

240 GPO

I 220

“=200

180 45.0 GPO

42.5 I z u

I 120 GPO

ZlOO 0

40.0

500 1000 1500 2000 K 2500 T-

Fig. 3.44. V. I+, vs. T(O... 2000 K). 1 Mean curve from Figure 3.43, 2 [78W4]. c’ = f(c,, - q2).

2.5

l.O# 0 20 40 60 80 100 120 160 K 160

T- Fig. 3.45. Xe. cpe vs. T. 1 [74L3] (neutron scattering), 2 (points) [70G5] (Brillouin scattering).

4 Fig. 4.1. AI-Ni (/?-Ni-AI). c,, vs. at% Ni between - 200 and 600°C. [77RTJ. K = f(clt + 2c12). The unlabelled ’ curves are for 0 and 400°C respectively.

b&bBbmueh Now !kaiw J.U/29r

Page 320: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sw , cw (Figs. 4.2 .: . 4.5) 309

8-u

GPO

I 134 130 2

u. s 126

122

118

250 300 350 400 450 K 500 T-

Fig. 4.2. Al-63 at% Ni. c,, vs. T. [76E2]. Martensitic start temperature M, = 278 K. c’ = f(ciI - cl*).

..,o-: K-1

I 2

B 2 I

1

0 45 50 55 60 at% 65

Ni - Fig. 4.3. Al-Ni. Tc,, vs. at% Ni at 273 K. Curves calculated from equations in [77R7].

240 I

I 300 350 400 450 500 550 K 600

135

130 295 GPa

I 360 e

350

330 0 50 100 150 200 250 300 K 350

T-;---

Fig. 4.5. Cr-V. cp,, vs. T. c’ = f(cll - clz). c. + Cl2 + 24.

Curve number 1 2 3 4

at% V 1.5 0.67 0.2 0

Reference [82D3] [82D3] [88D3] [71P2]

4 Fig. 4.4. Cr-80.4 at% Ni. cpa vs. T. [81L6]. ’

Laadolt-BUmstein Now Sorb lllL29a

Page 321: Second and Higher Order Elastic Constants

310 1.3 Elastic constants spa, cpu (Figs. 4.6 . . . 4.10) mef.p.576

325 GPO

320

128 GPO

126 I

1242

0 50 100 150 200 250 K 300 I-

Fig. 4.6. Co-14.48 at% Al-655 at% Ni. cp,, vs. T. [80BlO]. c’=f(c,, -cd CL =%c,, + Cl2 + 2c.d

160

150 GPO 140

I 130

r 120

110 250 300 350 400 450 500 550 K 600

I-

322 GPO

I 320

G 318

Fig:4.9. Co-Fe. T = 250. . .600 K. cpa vs. T. [73W6].

Symbol A B C

at% Fe 6 8 10

316 128 GPO IiS I 260

t GPO 240

I 124

GPO 35 34 220

t I 200

33 3 200 220 240 260 280 K 300 180

T- Fig. 4.7. Co-lo.58 at% AI-6.57 at% Ni. cpa vs. T. [SOBlO]. 160 c’ = fell - c12). CL = f(Cll + Cl2 + 24.

140

12.4 120 (TPO~’

I 11.6

510.8

-600 700 800 900 1000 1100 1200 1300 1400 K 1500 I-

Fig. 4.10. Co-Fe. T= 600~~*16OOK. cpa vs. T. [73W6].

Symbol A B C D

loo -0 0 mo I-

Fig. 4.8. 26.6% Co, 9.3% Cr, 16.7% Ni, 47.4% Fe (Cobalt elinvar). spa vs. T. [73M2].

at% Fe 6 6 8 10

CPU Cl1 CL CL CL

Tc = Ferromagnetic Curie temperature. cL = f(c, I + Cl2 + 2c.d.

LdOlt-B8lllll& New SaialW29r

Page 322: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s&, , cPu (Figs. 4.11 . . . 4.14) 311

I I 260

t GPO

245 140 GPO

135 I

130 3

125

160

I

GPO

155 c

150050 250 K 300 T-

170 GPO

I 165

"=I60

155 81

GPO

I

79

s 77 u

0 2.5 5.0 7.5 10.0 12.5ot%15.0 Al -

Fig. 4.11. Co-Ni. (magnetized). cpa vs. T. [7OLl]. Uncor- Fig. 4.12. Cu-AI. cpa vs. at% Al. 1 [54Nl], 2 [71Cl, 73Cl], rected for thermal expansion. Results for 26.35 and 43.50 3 [72M12], 4 [76F2]. wt% Co not plotted. For all compositions the difference between wt% and at% is less thati 0.2%.

For Fig. 4.13 see next page.

I

GPO '\ .,

143.0 . \. 92

'\ r 5142.5

142.0 125 GPO

124 2 LJ

9.8 123

i, ::: 250 275 300 325 350 375 400 425 K 450

Fig. 4.14. Cu-14 wt% Al-4.1 wt% Ni. cPb vs. T. [81H9]. Martensitic start temperature M, x 245 K. c’ = ?(ql - cIZ). Other reference [82Yl].

Lmdolt-B&m&in Ne,w Saiw lBfZ9a

Page 323: Second and Higher Order Elastic Constants

1.3 Elastic constants sP,cpa (pigs. 4.13 . . . 4.16) [Refp.576

50 100 150 200 250 300 K 3.50 I-

Cl1

Cl2

44 b

250 275 300 325 350 K 375 I-

Fig. 4.13. c&,+,A~MII,-,. c,, vs. T. [76P8]. (a) x = 0.7, water quenched. (b) x = 0.8, annealed at T= 1073 K and

176

138 GPO

82 GPO

80

I 134 72

$30

126

122 0 50 100 150 200 250 K 300

I-

Fig. 4.16. Cu-Au. cpa vs. T. [7101].

b Fig. 4.15. G-14 wt% Al-4.1 wt% Ni. cpa vs. T. [76Sll]. WQ(x) denotes water quenching at XT. Arrows indicate the apparent M, temperatures. In (c) the data points have been moved vertically to coincide at T= 300 K. c’ = f(clI - c12). cL = f(cl, + cl2 + 2~~). Other reference [8723].

236 GPO

224 104 GPc

94

1 t

b 1

.’ r T ZI

262

8.13 GPO (1

,p() Ld- - b’ , ial -- .-- 8

$A

it A W.ll(Ol 0 w.a. (10) 0 W.O.(401 . W.O.(75)

220 230 260 250 260 270 280 290 K 300 l-

Page 324: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpu (Figs. 4.17 . . . 4.19) 313

GPaI I I I I

172 5

170

I CC4

75.0 0 .

,3

72.5

70.0 : 135 GPO

I 130

2 125

0 2.5 5.0 7.5 at% 10.0 Au -

Fig. 4.17. Cu-Au. cPo and s,, vs. at% Au. 1 [7101], 2 [79R3], 3 [72C2].

b Fig. 4.19. Cu-37.2% Mn. cpa vs. T. [77S12]. 1 “Solution- treated” crystal, 2 “Aged” crystal. There is no phase trans- formation in the solution-treated crystal, but on cooling the aged crystal, a cubic + tetragonal transformation occurs at TX 300 K as a result of decomposition of the y-phase. The stiffnesses in the tetragonal’ phase are treated as pseudo- cubic. c’ = &r - qz). For further details, see [77S12].

200 GPa

180 GPa

I 160. > h

. : al

140 -A2 - 4 b 03

0 1204

a4

0 20 40 60 80 at% 100 Au -

Fig. 4.18. Cu-Au. cP,, vs. at% Au. For low Au concentra- tions, see Fig. 4.17. 1 [7101], 2 [72C2], 3 [79R3], 4 from Table 3.

I I I I I ,225

I-. I I I I lGPa -20.0

-4 I t c~(Scale-) a(17.5 I -.. I I- L

rn’“,” 130, 12.5 GPO .L.

I \

10011I90 GPa

80 I 2 u

90 70

I

GPa

80 z

7o0100 400 K 500 T-

Landolt-B&as&in NewSd~IJlfZ9r

Page 325: Second and Higher Order Elastic Constants

314 1.3 Elastic constants spa, cpa (Fig. 4.20) mef.p.576

123 GPO

121

85 GPa

83

21 . ‘, 79

::I 50 100 150 200 250 300 K 350

a

I, I I Y 93 153

“I u

151 91

I 149 89 I lf

$ 76 87 GPO

74 I I I I I ’ 85

105 GPa

I 95 * G

85

100 150 200 250 300 350 400 K 450 200 250 300 350 400 K 450

50 100 150 200 250 300 K 350 b l-

T- d l-

Fig. 4.20. Mn-Cu. cpa vs. Z’. [84T3]. (a) at% Mn. (b) 72 at% Mn, martensitic transformation at M, = 125 K. (c) 82 at% Mn, M , z 300 K. (d) 85 at% Mn, first-order transition at M, = 345 K. Below M, these alloys are antiferromagnetic and have a tetragonal structure which is pseudo-cubic. c’ = f(clt - c12). cL = i(cll + cl2 + 2~~~). Other reference [81T8].

L&ok-Blmacin New!kdaI&Z!h

Page 326: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpa (Figs. 4.21 . . . 4.24) 315

78

130 GPO

128

I. 126

lY

124

122 0 50 100 150 200 250 K 300

I-

Fig. 4.21. Cu-Ni. c,, vs. T. [71Dl].

Curve number 12 3 4

at% Ni 0 3.02 6.02 9.73

I t 100 GPa

I 90

3 u 80

70 100 150 200 250 K 300

T- Fig. 4.22. CU,~-,N~,Z~,,. c,, vs. 7’. [76S14]. c’= fhl -cd.

50 TPa)'

40

Fig. 4.23. Cu50-,Ni,Zn50. s,,, vs. x. [76S14]. 2hl - 4.

4 Fig. 4.24. Cu,o-xNi,Zn50. cp,, vs. x. [76814]. fhl - cd

hndolt-Bthstcin New Se&a UU29r

Page 327: Second and Higher Order Elastic Constants

316 1.3 Elastic constants spa, cPu (Figs. 4.25 . . . 4.27) mef.p.576

128 GPO

I 127

5126

68 GPO 1

\ C&‘(SCOl_ . \ 67

.66 t

. 113 GPO 112

180 GPO

I 170

u= 160

1 Gb-12 I I - I

Fig. 4.25. Cu-15 at% Sn. c,, vs. T. [78Nl]. 110 ivF=p==

b I I

Fig. 4.26. a-CuZn (a-brass). 0 50 100 150 200 250 K 300

c,, vs. T. [59Rl]. I-

w-0

I 15

--A 10 G I G 7 5 YN

lb0 GPO 130

80 GPO

70 I 60 t

50

I 110 120

u= A00

90

801 I I I 0 100 200 3W 400 500 600 700 800 K 900

I- Fig. 4.27. /3-CuZn (/I-brass). cp. vs. T.

Curve number 1 2 3 4

at% Zn 50 48.1 43 47

Reference 63Ml 71Yl 74M4 74M4

Lmddl-BUUlUdU Now!khI&29r

Page 328: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cw (Figs. 4.28 . . . 4.31) 317

100 38 ,= GPO 96 36

t 92

88 300 350 400 450 500 550 600 K 650

T-

Fig. 4.28. Au-47.5 at% Cd. cpr vs. T. [56Zl]. Fig. 4.29. Au-50 at% Cd. cpa vs. T. [56Zl].

60

1 130

$20

110

IOOi 30

I GPO 20------ /.6

E

IO 100 150 200 250 300 350 K 400

92

u=88

84 90 GPO

I 85 80 2

75

44 GPO

42 40 I 2

38 36

70 300 350 400 450 500 550 600 K 650

T-

T- T-

Fig. 4.31. Auo.alFeo.ls.c’ = $(clI - cJvs. Tat H = Oand Fig. 4.31. Auo.alFeo.,s.c’ = $(clI - cJvs. Tat H = Oand 5 kOe. [86S13]. 5 kOe. [86S13].

21.0 GPa

20.5

18.51 ’ ’ I I I I I 0 50 100 150 200 250 K 300

4 Fig. 4.30. Au,Cu53-xZn47. c,,, vs. T. [72M13]. Other refer- ence [82N2].

Curve number 1 2 3 4 5 6 7

x [at%] 0 15 20 23 30 45 53

T-

Lmdolt-B&n6toin Now Scrh l&291

Page 329: Second and Higher Order Elastic Constants

318 1.3 Elastic constants +,, cpo (Figs. 4.32 . . . 4.35) lRef.p.576

’ ‘170 190 210 230 250 K 270 I-

Ftg. 4.32. Au,eMn,,Zn,s. cp. vs. T. [82M2]. Cubic -+ tet- ragonal transition at T,,,,, = 200 K. Below T,,.., the stiff- nesses are domain averaged values. c’ = t(c, r - cr2).

1.5 GPO

‘-, 1.0 u’ I

5 0.5 .-IN

0

GPi 3 6

5

I GPO

47 46 G z 45

44 300 320 340 360 380 K 400

2.0 GPO

I 1.9

i 1.8

1.7

I

25 GPO

d

24

23 E 150 175 200 225 K 250

T- Fig. 4.33. Au24.5Ag28Cd47.s. c,, vs. T. [79Nl]. Alloy 28 S, slow cooling. Martensitic transition at M, = 155 K; transi- tion to Heusler type alloy at T = 480 K. c’ = !(c, r - c,r).

44 GPO

I

42

T-d 40 G u=

38 I

232K 36

160 180 200 220 240 260 280 K 3( I-

9.0 GPO

8.5 1 2

8.0

7.5

Fig. 4.34. In-4.4 at% Cd. c,,, vs. T. [77M3]. Structural phase transition (tetragonal + cubic) at T,,,,, = 380 K.

Fig. 4.35. In-6.5 at% Cd. cpS vs. T. [77M3]. Structural

Above &,,, the structure is single crystalline (FCC); below phase transition (tetragonal + cubic) at T,,,,, = 232 K.

’ T,,.,, it is a lamellar banded twin. Below T;,.,, the stiffnesses are pseudo-cubic.

LJIl&l!-B&ll#t&l Now SaiaJD&h

Page 330: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu , cpa (Figs. 4.36 . . . 4.39) 319

1.0 GPa

2 I 0.5

E i rc-4

0

42.0 GPO

41.5

I 41.0

N u E40.5

40.0

39.5 I I

1 220 260 300 i-34o K :

Fig. 4.36. In-Tl. cp,, vs. T. [65Nl].

.5 ‘a

.O I 2

.5

‘LO

Curve number 1 2 3 4

at% Tl 39.06 35.15 30.16 28.13

46 GPO

I

44

N 42 c.7 G

40

38 11

GPO I 10

,= 9

8 0 50 100 150 200 250 300 K 350

Fig. 4.37. In-30 at% Tl. cps vs. T. [78M4].

46 GPa

I 44

2 1 42 u

40

38 12

GPa I 11

IO 2

9

8 0 50 100 150 200 250 300 K 350

TM

Fig. 4.38. In-31 at% Tl. co, vs. T. [78M4].

100 150 200 250 K 3

iq II I\ \

l-

1.5 iP0

3.0 I

3.5 2

a.0

I

Fig. 4.39. In-Tl. cpo vs. T. [74G9]. Ttrans = Temperature of martensitic transformation from cubic to tetragonal. Bracketed figures: at% Tl.

hdolt-Bl)msteh New Series lIb29a

Page 331: Second and Higher Order Elastic Constants

320 1.3 Elastic constants spu, cPu (Figs. 4.40 . . . 4.42) mf.p.576

46

‘36

- 12 t GPa

10 C66

I \ 150 200 250 300 350 K COO I- - Crr

Fig. 4.40. In-Tl. c, vs. T. [77MS]. Bracketed figures indi- cate at% Tl.

6.0

5.0

4.0 -2 1.5 -2 1.5 \ \ t t ‘O 1.0 ‘O 1.0

0.5 0.5

0 0

- 0.5 - 0.5

- 1.0 - 1.0 10 10 15 15 20 20 25 25 at at % % 30 30

6

2

0 5 10 15 20 25 30 at % 35

II - Fig. 4.42. In-Tl. c,,. vs. at% Tl. [83B9]. FCC --) tetragonal transition at 22.5 at% ‘Il. Other references [SZBS, 8285, 8RF31.

TI - Fig. 4.41. In-Tl. Hydrostatic pressure derivatives dc,,,/dp vs. at% Ti. [82B5].

Lmdolt-Blmadn Now Sah m/rsr

Page 332: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cPu (Figs. 4.43 . . . 4.46) 321

240 1 I I I I I I GPa

, 220

T I I I I I I 2

I 200 u=

180

16Ot I I I I I {I40 GPO

135

130 I 2

125

140 120

1 GPO

0 50 100 150 200 250 K 300 T-

Fig. 4.43. Fe-Al. cpa vs. T. [67Ll].

Curve number 1 2 3 4 5 6

at% Al 3.97 9.65 14.50 19.83 25.05 40.11

Concentrations not plotted: 17.85, 22.45,23.57,26.97, 28.08, 34.00 at% Al; see also Table 4.

30 GPa

I 25 L

20 0 50 100 150 200 250 K 300 T-

Fig. 4.45. Feo.,oAl,,,,. cpa vs. T at H = 0 and 2.3 kOe. [85S4]. Other reference [86S13]. c’ = $(crr - cIz). cr=

Fig. 4.46. Feo.ssA10.32. cP,, vs. T. [85S4]. Measurements

lihl + Cl2 + hd. made at H = 10 kOe are almost indistinguishable from these. c’ = )(crr - cif). cr = f(cII + cl2 + 2~~).

I u=

.I 2

Fig. 4.44. Feo.74Alo.26. c,,,, vs. applied magnetic field H at 4.2 K. [8: 5S4].

175.41 Y 115.4 , I I I

GPa

175.2 125.2 125.2 GPa GPa

175.0 125.0 125.0 I I

138.2 124.8 124.8 ’ ’ GPa

138.0 124.6 124.6

137.8

137.6

137.40+ 15 kOe 20

137.4 0 5 10 15 kOe 20

H-

,jpal ......__ 1. / 1 -!-+i-ft

201 0 50 100 150 200 250 K 300

T-

Lsndolt-Bernstein Now Suico IlW9a

Page 333: Second and Higher Order Elastic Constants

322 1.3 Elastic constants spa, cpu (Figs. 4.47 . . . 4.49) Bef.p.576

106 GPa

105

J u 104

103 58

GPa

I 57

t 56

55 200 225 250 275 K 300

/- Fig. 4.47. Fe-31 at% 0-23 at% Co-O.1 at% Al. c.,,, and c’ = +(c,, - c,~) vs. T. [80B33.

I I I

12 - l).’

10 -

8-

6-

4-

2-

O-

.2 -

.4 -

.625 0 350 450 550 650 750 850 K 950 T-

Fig. 4.48. Fe-25 at% Co-30 at% Cr-3.4 at% MO. spa vs. T. rR3KR-l

25Ol

160~ I I , , , GPa

140

I 120 z

100

80 0 20 40 60 80 ot% 100

NI -

Fig. 4.49. Fe-Ni. cp. vs. at% Ni. 1 [68B4] (4.2 K\ 3 r71Wl 3 [73H4], 4 [81K8], 5 Fe from

--II - L’ ---,*

Table 3.

LUldOlt-B8UUlOiU Now S&o llV29r

Page 334: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 4.50 . . . 4.54) 323

I I I 1

~11 (Curves 2,3,6 not plotte,d 1 I

not plotteo I

T\ I

c,? ( Curves 12,5,29 not plotted) I I’ I I I

I 140

120 G 100

Fin -0 100 200 360 400 500 600 700 K 800

T-

Fig. 4.50. Fe-Ni (War alloys). c,,,, vs. T. [73H4].

Curve number 1 2 3 4 5 6 7 8 9

at% Ni 30.4 32.1 32.7 34.2 36.5 38.8 41.3 44.0 50.2

Tc WI 369 429 483 513 573 611 653 699 773

W WI 239 158 103

For Figs. 4.51 and 4.53 see next page.

Fig. 4.54. 63% Fe-32% Ni-5% Co. spS vs. T. [70M4]. Mag- netic transition point at T x 573 K.

GPO

280

240

230

I

220

_ 210 c, 2601 I I I I I I

230

200 b 0 50 100 150 200 250 K 300

Fig. 4.52. (a) Fe-Ni, (b) Fes,(NiI-,MnJj,. cL = f(cII + c12 + 2cd4) vs. T. [88S9]. Measurements done under an applied field of 5 kOe.

lyl\rr--rTl I 18 17 3

16

15

14 200 400 600 800 K 1000

T- -

L~&lt-B&hnatein Now Sob lIl/29o

Page 335: Second and Higher Order Elastic Constants

324 1.3 Ehstic constants spa, cpa (Figs. 4.51 . . . 4.56) Bf.p.576

110

t 106

250 300 350 COO 450 500 550 600 K 650 I-

Fig. 4.51. Fe-Ni. cpb vs. T. 1 [6OA2], 2 [68SlJ, 3 [71D2]. Curves 1 and 2: Magnetically saturated. Curve 3: No field. Bracketed figures indicate at% Ni. The alloy containing 29 at% Nihas a martensitictransformation at M,= 248 K and a ferromagnetic Curie temperature at Tc= 368K.

130 GPO

125

I 1x 115 GPa

c 132

130

Fig. 4 53. Fe-Ni. cpa vs. T. [83K9]. Other reference [81K8].

t 1 122.5

2

120.0

50 100 150 200 250 K 300 I-

Curve number 1 2 3 4

at% Ni 48.8 58.8 79.2 89.5

37.E

I

GPO

37.4

L 37.2

320 2 270 275 280 285 290 K 295

Fig. 4.56. Fe-5.9% Ni-4.4% Mn-OS% C. c’ = t(c,l - ~12) vs. T. [79S8].

4 Fig. 4.55. Fe-14.5 at% Ni-14.5% Cr-2.5% MO. cps vs. T. [81L6].

350 400 450 500 550 K 600 I-

LmdOlt-BllIlUdIl Now So& ml290

Page 336: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, CPU (Pigs. 4.57 . l . 4.59) 325

1601 I I I I

Gpal I I I -I

Fig. 4.57. Fe0.66Pd0.34. cpr vs. T. [83M4].

35 GPa

30

25

I

20

-cl 15

10

5

0 256 GPa 230

I 210

c; 190

170

150

70; 100 150 200 250 300 350 400 K 450

I I/ I I

r..

I 160

,140 G u=

120

n nn 7nn 300 400 500 600 K 700

Fig. 4.58. Fe-28 at% Pt. cpa vs. T. [74H2]. Disordered and magnetically saturated. Ferromagnetic Tc x 373 K. The pa- per also contains data on disordered material at zero mag- netic field, and on ordered material at zero and saturation field.

Fig. 4.59. Fe-25 at% Pt. c,,, vs. Tfor different values of the long-range order S. Applied field 0.8T. The Curie temper- atures Tc, as determined by heat capacity measurements are indicated by the arrows. [83L2]. c’ = &l - cIZ). cL= 4hl + Cl2 + 2c.u).

Lmdolt-B6m&n New SoriasrmL9r

Page 337: Second and Higher Order Elastic Constants

.

326 1.3 Elastic constants spa, cpa (Figs. 4.60 . . . 4.62) mef.p.576

135 GPO 130

I 125

z12fl 3

115

110

105

230 GPO 220

I 210

u,200

190

180

0 100 200 300 400 500 600 700 800 K 900 I-

Fig. 4.60. Fe-S.86 at% Si. cp,, vs. T. [71R2].

2351 , , I I I I I

I “220

-FFF 215

150 GPa

145

141 GPO 139 I

137u=

135

I 135 N u 3

130

125

1560--1 250 K 300 I-

Fig. 4.61. Fe-24.85 at% Si (Fe,Si). cpa vs. T. [77Rl].

4 Fig. 4.62. Fe-Si. cpa vs. T. [71A3].

Curve number 1 2 3 4

at% Si 4.42 6.29 8.89 10.10 120 1 I I I I I I

0 50 100 150 200 250 K 300

Ldolt-BI3mst.h NowSaialBf29r

Page 338: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 4.63 . . . 4.66) 327

145 GPO 140

-I 135

2 130

I I I I I I I

250 I-L I I I I I GPa 240

210 I 0 40 80 120 160 200 240 280 K 320

T-

Fig. 4.63. Fe-Si. cl1 and cd4 vs. T. [77M2].

Curve number 1 2 3 4 5

at% Si 6.3 8.59 11.68 12.91 25.

90 GPa

8C

70

I 60

“, 50 u

40

30 <

20

10

I-

I-

I-

I-

I-

l-

/-

I-

I_ 0 50 100 150 200 250 300 K 3

Fig. 4.65. Pb-25 at% In. cpa vs. T. [79M3]. See also Table 18 and accompanying diagrams, Figs. 18.14 and 18.15.

Fi. 4.66. Pb-Tl. cpa vs. T. [66Sl]. b

Curve number 1 2 3 4 5 6 7 8

at% Tl 0 5.01 20.50 31.77 40.50 52.66 61.41 71.68

Results for Pb (0 at% Tl) from [62W2].

15 GPO 70

I

65

60 u=

55

50

45

50

I

GPa 40

1 100 150 200 259 K 300 I-

Fig. 4.64. Pb-In. cpa vs. T. [71V2].

Curve number 1 2 3 4

at% In 0 [62W2] 5.5 9.0 20.7

I I

50

u= 45

40

I 2

I 45 10.0 GPa

c 40

35 0 50 100 150 200 250 K 300

T-

Landolt-Btimatein New Seriw llIf29a

Page 339: Second and Higher Order Elastic Constants

328 1.3 Elastic constants sPu, cPo (Figs. 4.67 . . . 4.70) Pef.p.576

136 GPO 35

Fig. 4.67. Mn-61.5 at% Fe. cps vs. T. [SIM]. Paramagnetic to antiferromagnetic transition at TN = 470 K. c’ = j(cll - c,2). CL = fk,, + Cl2 + kw).

480 GPO

I

470

..$60

450

I I I I I I I 110

I 200 GPO 180

2 160

50 100 150 200 250 300 350 K 400 l-

Fig. 4.70. Mo-Re. c, vs. T. [68D6].

160

120 GPa

115

I

110

z 105

95’ I I I I I I I 0 100 200 300 400 500 600 K 700

l-

Fig. 4.68. Mn-Ni. c.,., and cL = f(clI + c12 + 2~~) vs. T. [83H3]. Magnetic Ntel temperature is indicated.

Curve number 1 2

at% Mn 85 81.5

Other references [77Hll, 77815, 86Vl].

Curve number 1 2 3

at% Re 7.0 16.6 26.9

Data for 7.4 and 14.47 at% Re not plotted.

LmdOlt-Bl)QlJt& Now Ma llU2!h

Page 340: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Fig. 4.69) 329

11L GPa

112

I b, 21 u GPa

III

GPa

103 96

GPa

91

I 90 92

3 88 12 8

GPa GPa

IO 6

oc IO 50 100 150 200 250 K 300 50 100 150 200 250 K 3C

T- /- Fig. 4.69. Mn-Ni-C. c,,, vs. T. [81L2]. (a) Mn,,NiI,Cs; (b) Mn~4.7IhC6.1, i% = 123 K; (4 Mn~5.3NbG.g, MS = 174 K. c’ = $(cI1 - c12).

Lmdolt-Bimstein NewShW9r

Page 341: Second and Higher Order Elastic Constants

1.3 Elastic constants spu, cpu (Figs. 4.71 . . . 4.74)

310 1LD GPO

300 130

I

60 120 ,=

I

GPa

50 110 -xl

40

30 0 50 100 150 200 250 300 350 K 400 200 400 600 800 K 1000

l-

Fig. 4.71. Ni-AI. c, vs. T. [83PS]. c’ = j(c,, - cJ. cL= f(c,, + Cl2 + 2c.34).

Fig. 4.73. Ni-Al alloy AF 116 A2. cpa vs. T. [SOFS]. See footnote u), Table 4.

Curve number 1 2

at% AI 0 7.9

0: 300 500 700 900 1100 1300 K 1500

l-

Fig. 4.72. Alloy MAR-MOO2 mod. spa vs. T. [88K73. See footnote y), Table 4.

250 I GPa 5.83 at% Hf

: I I 240 - 11.20 9.44

230 1.3.23 u=

I 125 13.23

G” 120

115 24.85 -

0 50 100 150 200 250 K 300 l-

Fig. 4.74. Nb-Hf. cpa vs. T. [78Fl]. Numbers against curves indicate at% Hf.

h&l!-BlUUt& Now SoriwIIl/Br

Page 342: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu , cpu (Figs. 4.75 . . . 4.77) 331

250 GPO

I ‘1, 230 E

0 0.2 0.4 0.6 0.8 n=(H/Nb) -

Fig. 4.75. Nb-H. (a) cPs vs. H/Nb (at.). [81M8, 85M9]. Re- sults uncorrected for relaxation. T= 528 K. (b) c’ vs. T. C81M8-J. c’ = $(c,, - CJ. CL = & + c,, + 2c,@).

58

I GPa

56

30

I GPa

29

250 300 350 400 450 500 i550 K 600 T-

2

58 ‘a

74 [ ..2 ‘a

N- a

I5 -

I1 -

l-

31 340 380 420 460 500 K O

I-

246 GPa

244

,242

240

238 30

I GPa

29

,= 28

21 134 GPa

I 133

~132

131 250 300 350 400 450 500 550 K 600

I-

Fig. 4.76. Nb and N&H. ch4 and c’= i(cI1 - c12) vs. T. Curves 1 (Nb) and 2 (Nb2.46 at% H) from [76M2], curves

Fig. 4.77. Nb-H and Nb-D. cpa vs. T. [76M2]. 1 pure Nb, 2 Nb-1.65 at% D, 3 Nb-2.46 at% H. From ultrasonic

3 (Nb) and 4 (Nb-1.90 at% H) from [77S8]. measurements.

Lsndolt-Bllmsteia New Se.h W29r

Page 343: Second and Higher Order Elastic Constants

332 1.3 Elastic constants spa, CPU (Figs. 478,479) mef.p.576

280 GPO 260

I 240 27

1bU LLU GPa

I 140

z 120

100 60 GPa 50 I -!

80 GPa’<

I 60 ’

-LB

0 0.2 0.4 0.6 0.8 1.0 /I = (O/Nbl fat.1 -

Fig. 4.78. Nb-D. cpa vs. D/Nb (at.). T= 473 K. 1 [75R6], 2 [83B5]. c’ = :(c,, - c,J. From neutron scattering.

250

16017 j Cl2

I I ,

I GPO 150

s 140

130 50 100 150 200 250 300

T-

Fig. 4.79. Nb-MO. cpa vs. T. [72H9].

350 K 400

100 GPO 80

I 60 = u

40

Curve number 12 3 4 5 6 7

at% MO 0 16.8 23.3 33.9 51.6 75.2 92.1

LdOl!-BlhUkill NowSeloslll/Z!h

Page 344: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,,, cPu (Figs. 4.80 . . . 4.83) 333

275 GPO

270

A 7li5

I -I-

,=260

255

250

140

I

GPa

135 lY

\L

1~ 3 - T -

30.5 GPa

30.0

29.5 I

29.0 J

28.5

28.0

1301 0 50 100 150' 200 250 K 300

T-

Fig. 4.80. Nb-MO. c,,,, vs. 7’. [77K3].

Curve number 1 2 3 4 5

at% MO 0 2.04 5.09 7.13 15.33

For Fig. 4.81 see next page.

i Fig. 4.83. N&MO. c,, vs. at% MO. 1 [72H9], 2 [76K9], 3 [79K4], 4 [81B2]. To avoid confusion, some points from [81B2] are not plotted. Other reference [87D3].

8r I I I I

OO_I 80at% 100 MO -

Fig. 4.82. Nb-MO. spa vs. at% MO. 1 [72H9], 2 [76K9], 3 [79K4], 4 [81B2]. To avoid confusion, some points from [72H9] and [81B2] are not plotted.

2001. 1251 I I I I

180 GPO

I 160

540

I 40 60 80 at% Mo-

L4n&Mhmoin NowSwicaIlV.29r

Page 345: Second and Higher Order Elastic Constants

1.3 Elastic constants sPo, CPU (Fig. 4.81) mef.p.576

1 I 0 500 1000 1500 2000 K 2500

I-

50

40

30

I I I I I 0 500 1000 1500 2000 K :

I- O

Fig. 4.81. NbrMo,oO-x. cpa vs. T. [81B2]. c’ = $(c,, - c12). cL = f(c,, + cl2 + 2~~~). See also Figs. 4.79 and 4.80. On the scale to which the Fig. 4.79 is plotted the anomalous behaviour of c.,.+ is not apparent, but it was in fact observed.

Lmdolt-BBmstcin NewSaiuIW91

Page 346: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cpa (Figs. 4.84 . . . 4.86) 335

265 GPQ

260

I 255

,=

250

245 33

GPO

1

32

3 31

30

29

T- Fig. 4.84. NbW. cPS vs. 7’. [78Fl]. Numbers against curves indicate at% W.

270 GPO

250

ti 240

230

2201 I I I I

0 5o at% ‘T 50 at% 100 la V Nb

Landol+Bhstein NewSuicsIW.29o

252 GPO

250

248

I 246

E 244

242

240

238

135 GPO

I

134

,133 G

132

131 I I I I I I 0 50 100 150 200 250 K :

T-

Fig. 4.86. Nb-Zr. cpo vs. T. [74H5].

Curve number 1 2 3 4

31 GPO

30

29 I 2

28

27

at% Zr 0 1.4

cIz not measured in alloy 3. For Zr-Nb, see also Fig. 4.125.

3.6 6.0

4 Fig. 4.85. N&V and Nb-Ta. cPs vs. composition. [80F2]. c’ = i(c, 1 - CiZ).

Page 347: Second and Higher Order Elastic Constants

336 1.3 Elastic constants sPu, cPu (Figs. 4.87 . . . 4.91) jRef.p.576

I 200

-175 G

‘25 70-

100 140 140

t

GPO GPO 120 120

z “100 100

80 80 0 0 50 50 100 100 150 150 200 200 250 250 300 300 K K 350 350

l-

Fig. 4.87. Nb-Zr. cl, and cl2 vs. T. [77W2]. Numbers against curves indicate at% Zr.

250 250 GPO GPO

I I

2L5 2L5

u=2zo u=2zo

235 235

230 230 29

GPO

I 28

t 27

0 50 100 150 200 250 K 300 T-

Fig. 4.89. Nb-Zr. c,, vs. T. [78Fl]. Numbers against curves indicate at% Zr.

32

29

28

27

26 0 50 100 150 200 250 K 300

Fig. 4.88. Nb-Zr. cd4 vs. T. [77W2]. Numbers against curves indicate at% Zr.

25 -15

upor

I

-10

.I

x-5 1 alo 0

0

I 20

E 10

0 0 20 40 60 80 ot% 100

Zr -

Fig. 4.91. Nb-Zr. sp., vs. at% .Zr. 1 [72G4], 2 [74H5j (250 K), 3 [77W2], 4 [78Fl].

LmdobBOcwein New Saia WBr

Page 348: Second and Higher Order Elastic Constants

Ref.p.576] 1.3 Elastic constants spa, cpa (Fig. 4.90) 337

-l-Jl-n I I I I

0 500 1000

I 1500 2000 K 2500

I-

Fig. 4.90. Nb,Zr 100 X. cP. vs. T. [78A4]. High temperature - data. For low temperature data see Figs. 4.864.89. c’= %ll - ClZ). CL = t(cll + Cl2 + 2c44).

hdolt-Bernstein Now Swiw m/29r

Page 349: Second and Higher Order Elastic Constants

338 1.3 Elastic constants sPu, cPu (Figs. 4.92 . . . 4.94) mef.p.576

2506, GPO =o

I 0 200 0 00 Al 5 ” l 2

150 0

0 03 br*,aC

100 - 0 20 40 60’ 80 at% 100

Fig. 4.92. Nb-Zr. c,, vs. at% Zr. 1 [7264], 2 [ (250 K). 3 [77W2], 4 C78Fl-J.

1 E

163lA-l-Lx 120 160 200 210 280 K 3

I-

:74HS]

70.0 GPO

69.5

69.0 I

J 68.5

68.0

67.5

I

221 GPc

22:

I 221

u= 211

I I I

GPO ’ -----.+

168 2.

t 31

“I I

120 160 200 2&O 280 K 320

4.93. Pd-H. cpa vs. T. [SOSll].

Curve number 1 2 3 (crystal I)

at% H 0 0.26 0.84

To avoid confusion of curves, some results are not plotted.

4 Fig. 4.94. Pd-H. c,,” vs. T. [SOSll].

Curve number 1 2 3 lcrvstal II)

at% H 0 0.16 1.70

To avoid confusion of curves, some results are not plotted. At 1.7 at% H, the /?-hydride phase is formed above 300 K.

LmdOlt-BblMlCiU NOWSaialUJ291

Page 350: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 4.95 . . . 4.97)

2 GPa

I 1

2 0 v

-1 I I I I 1 Pd AC’ (scok-I GPa 0

-1 I t T

-2

2

I

GPa

0

2 -2

-4 -?YldkH 0.01 0.02 0.03 0.04 0.05

x-

Fig. 4.95. WH,, VH,, NbH, and TaH,. AC,, vs. x. [80G6] (q.v. for references). c’ = $11 - c12). B = +(cI1 + 2c,,).

230, I I I I I I

I I I I I

0 50 100 150 200 250 K 300 T-

Fig. 4.96. PdH,,,, . cpa vs. T. [79H2]. Other reference -_^- --

255

I 250 d

245

240

235 70 1 I I I I I I

0 50 100 150 200 250 K 300 T-

Fig. 4.97. Pd-H and Pd-D. cpa vs. T. 1 PdH0.67 [88N4]. Curves for PdH0.66 [79H2] are almost indistinguishable from these. 2 PdH,,,, [82G6]. 3 PdH0.76 [88N4]. 4 PdD,.,,, @XXI. c’ =&I - ~12). CL = ?(ci1 + ~12 + 2Cu 1.

Ldolt-B&hmcin New Saks llIf29s

Page 351: Second and Higher Order Elastic Constants

1.3 Elastic constants spar cPu (Figs. 4.98 . SO 4.100) Fef.p.576

I GPa

270

250 III70 GPa

68 I 2

29 66 GPa

I 27

*La 25

23’ I I I I I I 50 100 150 200 250 300 K 350

l- Fig. 4.98. PdB,,,,Ho,oos. c,, vs. T. [85B6]. c’ = ;(cI1 - cd CL = f(Cll + Cl2 + hd.

95 GPa

90

0 200 400 600 800 K 1000

250? 245 11

/24o/ G

235

230

225

220 111111 3

-

I

\ 1 c,,(Scale-1

I

I 2

I

I I II I , =E=l== H=t=+FF

1701 I I I I I 0 50 100 150 200 250 K 3

I-

Fig. 4.99. Pd-Rh. cpa vs. T. [7OWl].

Curve number 1 2 3

at% Rh 1 5 20

95 GPO

90

85 I e

80”

75

70

3

Fig. 4.100. Pd-Rh. c.,., vs. T. [77W5]. Results below T = 300 K from [7OWl].

Lmdolt-Bamndn NowSakoIU/Br

Page 352: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 4.101 . . . 4.103) 341

36

34

I 33;

t GPO

28

26

2ou 0 200 400 600 800 K 1000

T-

Fig. 4.101. Pd-Rh. c’ = l(c z 11 - C,al vs. T. r77W51 Rowlta LI .-. -. L’ ” -J. ---1---1

below T = 300 K from [7OWl].

0 50 100 150 200 250 300 K 3 T-

4.102. Pdl-,Rh,H,. cd4 vs. T. [80G6].

225 II

II I I INI

210 ,L

.

205 1 I I I I I I 78

I I I I 74 ’

q4(Scale-I d

1 72 -

175 70 GPO -

- 1 . 170 .-------L-F

Cl2

+65

0 50 100 150 200 250 K 300 I-

Fig. 4.103. Pd-Ag. c,,, vs. 7’. [7OWl].

Curve number 1 2

at% Ag 2 10

Page 353: Second and Higher Order Elastic Constants

1.3 Elastic constants .$,,,, cpu (Figs. 4.104, 4.105) Bef.p.576

78 GPO

76

/ 71

2 72

68 0 200 400 600 800 K 1000

I-

Fig. 4.104. Pd-Ag. c.,., and c’ = f(cI, - c12) vs. T. [77W53. Results below T = 300 K from [7OWl].

b Fig. 4.105. /II-Ag-Cd. c,, vs. T. [83M3]. Other reference [8lMll]. Two phase transition temperatures, /?, to marten- site (M,) and 8, to (a + j?,) decomposition (TJ. c’=+(c,, -c12). CL = fk,l + Cl2 + 2cu).

Curve number 1 2

at% Cd 46.7 47.9 Ms CKI 158 133 Td WI 470 470

5.E GPa 5.4

5.0

I

4.8

*L, 4.6

3.8 152 GPa 148

140

I 136 G

132

126

124

120 57

GPa 55

53

I 51 ”

J 49

47

45 100 150 200 250 300 ‘: j50 400 450 K 500

I-

Page 354: Second and Higher Order Elastic Constants

‘Ref.p.5761 1.3 plastic constants spu, cpa (Figs. 4.106 . . . 4.108) 343

501 . Cl 100 200 300 400 500 K t T-

Fig. 4.106. Ag-Mg. cpa vs. T. 1 [67C4], 2 [67Cl].

iPa

1 110 5

105

4d-i 5 6 100

110 GPO

I 3””

65 GPO

60 I

50 100 150 200 250 300 350 K COO I-

Fig. 4.107. Ag-Zn cpa vs. T.

Curve number 1 2 3 4 5 6

114 GPa

106

GPa

62

t

60

,= 58

56

zs zs GPa GPa

1.4 1.4

‘1.2 ‘1.2

I I

7.0 7.0

L 6.8 L 6.8

6.6

6.4

6.2 ’ I I I 150 200 250 300 350 400 K 450

T-

Fig. 4.108. j&-Ag-50 at% Zn and j&-Ag-50 at% Zn doped with 1 at% Cu, Cd, or In. cPb vs. T. [83M5]. c’ = lihl -cd

at% Zn .42 46.5 48.5 -45

[74M4,74M5] [80M3]

Land&Barnskin New Series WZ9a

Page 355: Second and Higher Order Elastic Constants

344 1.3 Elastic constants sP,,, cPu (Figs. 4.109 . . . 4.112) wef.p.576

c’iScole-+)

306 52 GPO

I

302

u” 298 I I I

294 88 GPO

86

I 84 t

I-

Fig. 4.111. Ta-4.7% MO. cpa vs. T. [70A4].

Fig. 4.109. Ta-H. cw vs. T. [77Sl]. c’=f(cr* -c,2)* cL = f(c,, + cl2 + 2~~~). Numbers against curves are at% H. cl1 and ch4 determined on crystal No. 1; cL and c’ on crystal No. 2. The steps and hysteresis on the specimens containing hydrogen are due to hydride formation. To avoid confusion, some results are not plotted.

250 300 350 400 450 500 550 K 600

Fig. 4.110. Ta-H. cb4 vs. T. [76M2].

27oh I I

260

I 250

u=240

230

0 250 500 750 1000 1250 K 1

85 GPO

80 I

753

70

IO

.-- 0 250 500 750 1000 1250 K 1500

I-

Fig. 4.112. Ta-8.25% Nb. cPV vs. T. [70A4].

Curve number 1 2 3

at% H 0 11 19

LndOlt-BbnlJtciQ Now SodaI&29o

Page 356: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cpa (Figs. 4.113 . . . 4.116)

270 GPO

260

I

250

:240

230

1001 I 0 250 500 750 1000 1250 K I!

T-

Fig. 4.113. Ta-4.25% W. cpa vs. T. [70A4].

For Fig. 4.115 see next page.

90 GPO

85 I 80 ,=

75

88 GPa

87

85

84

83 50 100 150 200 250 300 K 350

Fig. 4.114. Ta-W. cb4 vs. T. [74C4].

300

200

I 200 GPO

180 lY

150 GPO

I 100 2

50

160 0 20 40 60 80 at% 100

w-

Fig. 4.116. Ta-W. cpr vs. at% W. 1 [79K4], 2 [82Al], 3 [74C4].

Lmdolt-Bdmsteb New Saiea IWZ9r

Page 357: Second and Higher Order Elastic Constants

346 1.3 Elastic constants spa, cpa (Figs. 4.115,4.117) wf.p.576

1:I i / 3wJ E

/ Cl1

/ 1 .,

82

175

I

GPO 170

’ 165

160 0 50 100 150 200 250 K 300 0 50 100 150 200 250 K 300

550

I

GPO 525

,= 500

160 GPO 155

190 0 50 100 150 200 250 K 300

I-

120 GPO 110 I

I i1

I I \I I i 4 90 I I I I I

195 80 1 GPO Cl2

A I- 4 Fig. 4.115. Ta-W. cpa vs. T. [82Al].

Curve number 1 2 3 4 5 6 I

at% W O(Ta) 10 30 50 67 83 100(W)

85 85

I I

GPO GPO 83 83

582 582

81 81 41 41 GPO GPO

46 46 I I

45 45 t t

44 44

I I CEJ CEJ

E E 50 50

49 49 0 0 50 50 100 100 150 150 200 200 250 250 K K 300 300

I-

Fig. 4.117. ThCo.063. cpa vs. T. [77G3].

hdolt-Blauth Now Suia Eli291

Page 358: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpu (Figs. 4.118 . . . 4.120)

80 GPa

60

I 40 2

20

OOl 500 K 600 T-

Fig. 4.118. T&N&-,Fe. (curves l-6), T&Nisi (curve 7). c’ = f(cll - clz) and cd4 vs. T. [87K2].

Curve number 1 2 3 4 567

X 50 25 15 10 5 2 T&N&

b Fig. 4.120. W-Re. cpa vs T. [75A4].

/ Curve number 1 2

at% Re 2.97 9.64

41 GPa

._

45

I 44

*43 u’

42

41

40 Fi+f 53

73 38.5

391 0 50 100 150 200 250 300 K

T-

Fig. 4.119. Ti-V. cd4 vs. T. [80K5].

525 \

2 I--

2121 0 50 100 150 200 250 K 3

0

170 GPa

168

166 I d

164

162

160

Laodolt-Blmatoin .- - -.--

Page 359: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cPu (Figs. 4.121 . . . 4.124) [Ref.p.576

53 GPO

58 GPO

57

I 56 i

” ..-

52 /

511

5oI 49-

f 1-1 I l--r-r-

46

44

43 0 50 100 150 200 250 K

I-

0 50 100 150 200 250 K 300 I-

Fig. 4.122. V-H. cPS vs. T. [75F3]. c’ = +(c,, - q2).

Curve number 1 2 3 4

at% H 0 0.92 0.62 1.3 Fig. 4.121. VICrl,,r,-x. cd4 vs. 7’. [82B7]. The curve of c’ vs. T at 0.22% H is not shown. c.,,, and c’

were determined on crystals numbered 1 and 2, respectively. The anomalous behaviour is due to the formation and pre- cipitation of hydrides.

GPO

1.50

1.25

236 l-u -PI 232

52 GPO

!x

d 120

t-t . ii5 A 0.021 l-Y--v A 107 o i.46 1

0 0.5 1.0 1.5 2.0 at% 2.5 n=Hrl-

Fig. 4.123. V-H, V-D. AC’ = c’(n)-c’(0) vs. at% H or D. 1 V-H [87K4], 2 V-D [8X9], 3 V-D [87K4]. c’= !(C,l - 4. 1191 I I I I I I 1

0 50 100 150 200 250 300 K 350 I-

Fig. 4.124. V-O. cpa vs. T. [79G3].

Page 360: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,,, cPu (Figs. 4.125; 5.1, 5.2) 349

127.5 I-

I 125.0

12 2.5

u= 120.0

117.5

115.0

32.5

95 32.0 GPa

I 50 100 150 200 250 300 350 K 400

Fig. 4.125. Zr-Nb. cpa vs. T. [72G4].

Curve number 1 2 3

wt% Nb 20 25 30

See also Figs. 4.86-4.92.

39 GPO

38 I 37 ,”

36

0, 50 100 150 200 250 K 300 T-

Fig. 5.1. CaA12. cpc vs. T. [74S3].

I G 94

93

40 GPO 39

t

2g-7k-- 0 50 150 K 200 T-

Fig. 5.2. CeIn,. c,, vs. T. [85G9]. TN= 8K. c’= fh - cd

L&ok-Blmatein ,Now S&a IWC?9a

Page 361: Second and Higher Order Elastic Constants

350 1.3 Elastic constants spa, cPo (Figs. 5.3 . . . 5.6) [Ref.p.576

11 GPa

76

I 13.2 29.2 ,=

GPO

I 13.0 29.0

-u 12.8

12.6 0 25 50 15 100 125 K 150

a T-

I I I I I -0.060 1 2 3 4

I I 5 K 6

b I- Fig. 5.3. CePba. (a) c,, vs. T. c’=i(c,, -ct2). CL = f(ct, + cIl + 2c,,). (b) Au/o vs. T. u = (~,,/p)“~. Anti- ferromagnetic phase transition at TN = 1.1 K. [87N3]. Other reference [87K3].

135 GPO

130 I 125 2

120

I 150 200 250 K 300 I-

a GPO

I 7

t 6

5 0 50 100 150 200 K 250

I-

Fig. 5.4. CeAg. c,,~ vs. T. [81T4]. Ferromagnetic transition at Tc = 5.3 K. Structural transition at T= 15 K. c’= !@I, - 62). CL = ttc,, + Cl2 + kd.

83 GPO

82'

5 Cl1

81 - \

80 48

GPO

46

40 50 100 150 200 250 K 300

Fig. 5.5. C&t,. cp,, vs. T. [80E2]. Valence-type transition at T = 135 K accompanied by a minimum in the bulk modulus. See [87S13] for acoustic de Haas-van Alphen effect.

4 Fig. 5.6. CoPt. c,, vs. T. [75R2]. Disordered; for elastic constants of ordered CoPt (tetragonal) see Fig. 18.10.

LJJl&h-Bl)lIUleiU New Saia I&!291

Page 362: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 5.7 . . . 5.10)

3.2 iGPa

150 GPa

145 I

1,40 u=

L I II I I -, I

225 250 275 300 325 350 375 K

Fig. 5.7. &AuZnz. co, vs. T. [77Kl]. Stiffnesses calculated from wave velocities and a density of 11430 kgme3. Marten- sitic transition temperature M, = 284 K. Note that the wave velocities in Fig. 2 of [77Kl] are inconsistent with other data in the paper. c’ = f (cl1 - cJ.

. L I

GPO 115

I 110

u=105

100

95

85 GPa

I 80

CT75

70 0

31.5 GPa 31.0

30.5

30.0

29.5

29.0

50 100 150 200 250 300 350 K 400

r I 64 IGPat

38

I

GPa

36 G

60

34 0 50 ‘100 150 200 250 K 300

T- Fig. 5.8. GdAI,. c,,~ vs. T. 174333. Ferromagnetic transition at Tcx 170K.

29 GPa

I 27

z Ll 25

;38 GPa

I 26

L 24

22

PI I.1 l-t4 I I t 961 I I / I I , -I

“‘II I I/lCL I 1

84L I 50 100 150 200 250 K 300

/-

Fig. 5.10. AuGaz. cpa vs. T. [70Tl]. T-

Fig. 5.9. GdCu. c,,,, vs. T. [81G3]. Structural instability at T = 77 K. The hysteresis loops close at about T= 600 K. c’ = ?(c11 - cl*). CL = 3(Cll + Cl2 + 2c44).

Landol&BUmstcin New Serb Blf29;l

Page 363: Second and Higher Order Elastic Constants

352 1.3 Elastic constants spa, cpa (Figs. 5.11 . . . 5.14) [Ref.p.576

146’

I 1.u

u= 142’

140.

138. 62 GR

.5 0

t I \ I I I 60.0

I 51.5 I

z \ u

IziP0 I I \\I_ I I’, “I

55.0

“2 52.5

E I I I I k

,,,,Ilw,

127.5 n I

125.0 : 0 50 100 150 200 250 300 K 350

I-

12.5

I \ A c. I PO 10.0 132.5

7.5 130.0

I 127.5 i;

125.0

-122.5 0 50 100 150 200 250 K 300

I- ,-

Fig. 5.13. HfV,. c, vs. T. [85L6]. c’ = f(c,, - cl*). cL = f(clI + cl2 + 2c&. Structural transition from cubic to or- thorhombic (?) at 7’= 118 K. cL also exhibits a clear-cut anomaly at the superconducting transition temperature .T=9K.

4 Figure 5.11. AuZn. c,,~ vs. T.

Curve number 1 2

at% Zn 50 41

Ref. 71S2 74M4

270 270 GPO GPO

I 265 I 265

‘260 ‘260 92 92 GPO GPO

255 255 91 91 I I t t

130 130 90 90 GPO GPO

I 125 I 125 E E

120 120 0 0 50 50 100 100 150 150 200 200 250 250 K K 300 300

l- l- Fig. 5.12. HfCo,. cpa vs. T. [69S3]. Fig. 5.12. HfCo,. cpa vs. T. [69S3].

621 ’ 1 I I I 0 50 100 150 200 250 K 300

T-

Fig. 5.14. HoAl,. cpo vs. Tc = 29 K.

T. [78G3]. Ferromagnetic

Irmdolt-Bbmstein Now SalaIUR9r

Page 364: Second and Higher Order Elastic Constants

‘67&f SluaS M’N "W"JQE-W'P"@'I

“d3 01

IEWLI x ‘M +J ‘W~-I ‘91’s ‘S!d IEWLI x ‘s* +J ‘W~-I ‘91’s ‘S!d

c-f c-f OOE 1 osz OOE 1 osz ooz ooz OS1 OS1 001 OS 001 OS 0 0

S’LE S’LE r) r)

o.zc o.zc

‘Jd3 ‘Jd3 I I O’E’, O’E’, S’ZE S’ZE

771 771 3 3

9’11 9’11 I I

Od3 Od3 8’11 8’11

*[saog] .J- ‘SA (Zb - Jb)$ = ,a ‘p3q ‘L1.S %.J -1

OX )I OOE osz ooz OS1 001 OS 0 O’S

S’S

s9 I

01 Od9 S'L

SE1

0’11 (5 2

I

S’II

OSI odE SSI

/r \ I s’Z6 -- Od3 O’S6

S6Z

;‘6Z l7

SO& _ I LO& ‘d3

I’lE

Page 365: Second and Higher Order Elastic Constants

354 1.3 Elastic constants spa, cpa (Figs. 5.19 . . . 5.22) wef.p.576

126, 1

116 I I h I 41 -1 I

402

. 118 \

\ 42 GPo

72 I I I I I 139

tGPol -PM Cl2 I I I '

I I I I I I I 0 100 200 300 400 500 K 600

I-

Fig. 5.19. MgCu,. cW vs. T. [67C4].

I170 Il\l

. 130

140 GPO I 120 I 1-4~ I I

601 I I I I I 0 200 400 600 800 1000 K 1

I-

Fig. 5.21. N&AI. cpa vs. T. 1 [69Dl], 2 [6903].

40 iP0

20 I

lOO"j

80

3

146 GPO

I

144

'142

46 GPO

44

I I 42

C&‘ (Scale -1 I

40 2

38

54 GPO

36

52

I 50

c 48

0 50 100 150 200 250 K 300 I-

Fig. 5.20. NdAl,. cc” vs. T. [76G6]. Ferromagnetic Tcz77K.

210

I

GPO

205

u=200

195 140 140 GPO GPO

135 135

I I 130 130

Fl25 Fl25 3 3

120 120

115 115

110 110 0 0 50 50 100 100 150 150 200 200 250 250 300 300 K K 350 350

I-

Fig. 5.22. Ni,0,4AI. cpa vs. T. [80R2]. 1 quenched, 2 slowfjr cooled. The difference between 1 and 2 is attributed to quenched-in vacancies.

Lmdok-Bbmndn Now Sah III/290

Page 366: Second and Higher Order Elastic Constants

1.3 Elastic constants spu , cpu (Figs. 5.23 . . . 5.25) 355

I 250.0

Y \\ I

245.0 \ 13

\ ,2

160

I

GPa 155

E 150

1451 0 50 100 150 200 250 300 K

T-

130 GPO 128

126 z

124”

122

120

0

Fig. 5.23. NisFe. c,,, vs. T. [78T5].

Curve number 1 2 3 4

Order parameter 0 0.3 0.6 1

Fig. 5.25. NbsSn. cpa vs. 7’. 1 [67Kl], 2 [72Rl], 3 [8OC3]. Cubic + tetragonal transitton at T = 45 K. To avoid con- fusion, some results are not plotted.

188 GPa

I 186

6 184

182 164

I

GPa 163

u= 162

161 38

GPO I 36

3 34

32

30

I 2: 17. I I L

16 270 280 290 300 310 320 330 340 K 350

Fig. 5.24. NiTi. cpa vs. T. [8OMl]. Premartensitic effect begins at T= 293 K; martensitic transformation begins at M, = 278 K. c’ = :(cI1 - c12). cL = :(cI1 + cIz + 2~~).

260, I

Gp0 \2 240. i

I 1 !

GPa I 150

‘125

100 0 50 100 150 200 250 K 300

T-

Lwdolt-Bhxtcin NewSuie11IIf/Z9a

Page 367: Second and Higher Order Elastic Constants

356 1.3 Elastic constants spa, cPu (Figs. 5.26 . . . 5.29) mef.p.576

80 GPa

0 0 50 100 150 200 250 K 300

T- Fig. 5.26. Nb$n. c’ = t(cl, - c12) and CL = ~(CII + Fig. 5.21. Nb,Sn. (ac;,fap),, (adiaph and (aCL/adT vs. T. Cl2 + 2c*4) vs. T. [Soc31. C8OC3-J. c’ = +(c;~ - cf,). cL = +(c;, + ~$2 + 2c.w).

116 r I I I I I I

Gml\ I I I I I I r::: t#a=m G

l&O

138

1 3 u

401) I 0 50 100 150 200 250 K 300

l-

0 50 100 150 200 250 ,300 K 350 l-

64.5 GPa 84.0

83.5

t 83.0 28.5

II/I I 1 \I

82.0 II / )

I c,,Eicale -1 I I I I I I 27.5

I I I II

IGPa

81.5 27.0 1 s c,

12.0 26.5

I

GPa 11.5 26.0

‘c, 11.0 25.5

I I ‘o.5o 50

I I I I

100 150 200 K 250 T-

Fig. 5.28. PrAl*. c, vs. T. [76G6]. Ferromagnetic Tc 2 Fig. 5.29. PrPb3. cpo vs. T. [SZNl]. c’ = j(c,, - cJ. cL = 33 K. $(cl I + cl2 + 2~~). Structural transition at T = 0.37 K.

hdols-BOmstein Now Saiam/L9r

Page 368: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpa (Figs. 5.30 . . l 5.33) 357

28.8

GPO 20.4

I 28.0

'u 27.6

33.2

GPO

32.8 t z LJ

32.4

27.20- 80 K 100 T-

Fig. 5.30. SmIn,. cpa vs. T. [89El]. c’ = f(cIl - c12).

73.0 GPO 12.5 I

3 72.0

43' I I I I I 0 20 40 60 80 K 100

T-

Fig. 5.32. SmPdJ. cpi vs. T. [89El]. c’ = &I - ~12).

Fig.

GPO 15' '

I J

G 14 - 29

GPO 28

t

5.31. SmPb,. cpa vs. T. [89El]. c’ = :(cI1 - cIz).

20 40 60 80 K 100 T-

Fig. 5.33. SmTl,. c,,vs. i”. [89El]. c’ = $II - c12).

Land&B6msteh New Series IlI/‘29a

Page 369: Second and Higher Order Elastic Constants

358 1.3 Elastic constants s,, , cpa (Figs. 5.34 . . . 5.36) mef.p.576

97 GPO 96

I

Cll 95

G I

94

16.5 0 20 40 60 80 K 100 U LU 4U 00 w K 100 8

34.45,--&=+l

b

Gpah I I I I I I I

146 \r -” -

144 4 I

I I I MI

t I I/ I I

I

t-will

I 34 - 64 GPO Cl2 .

B “,;j 0 50 100 150- 200 250 300 K 350

I-

Fig. 5.35. TbAl,. cPC vs. T. [74G8]. Ferromagnetic Tc = 108 K.

841 I I I I I 1161

Fig. 5.34. SmSn,. (a) cpa vs. T. (b) cb4 vs. Ton an expanded scale showing successive phase transition anomalies. [89El]. c’ = !f(Cl, - Cld

61 I

I

GPO 59

,= 51

55 I 0 50 100 150 200 250 K 3M

73

GPO 71 I -cl 69

3 I-

Fig. 5.36. TmAlz. cP. vs. I”. [83L4]. Ferromagnetic transition at Tc = 3.6K. cI=:(cII -d CL = fhl + Cl2 + hd. cn = 3hl + hz).

L4dolbBlmuoio Now SaiaIllf2!)r

Page 370: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cpu (Figs. 5.37 . . . 5.4) 359

226 GPO

I 224

u=222

220

128

I GPO

127 N u

68 GPO

67 I 66 ,”

65

126 0 50 100 150 200 250 K 300

T-

Fig. 5.37. TmAg. cpa vs. T. [86G7]. Antiferromagnetic tran- sition at TN = 9.5 K. c’ = f(cll - c12). cB = f(cll + 2clz).

176 GPO

114

0 0 50 50 100 100 150 150 L’ L’ 200 200 250 250 K K 300 300 T- T-

Fig. 5.39. YA12. cp., vs. T. [74S3]. Fig. 5.39. YA12. cp., vs. T. [74S3].

T-

Fig. 5.38. UCo,. c,,, vs. T. [67Gl].

52 GPO 51

46

\ c,, (Scale-) I 97E

\ 96

\ \ 95

I I I I I I I I 0 50 100 150 200 250 300 K 350 r-

Fig. 5.40. YZn. cpa vs. T. [71S2].

Landok-BLlmhn New Saia lW29a

Page 371: Second and Higher Order Elastic Constants

360 1.3 Elastic constants sPu, cPo (Figs. 5.41 . . . 6.4) [Ref.p.S76

2L2, 1 I , 1 I I

I \

238

‘236

235 -1 \

88 GPO

232 86 I

842

I 11L 82 GPO

$13

0 50 100 150 200 250 K 300 T-

Fig. 5.41. ZrCo,. cpa vs. 7.. C69S3-J.

200 220 240 260 280 300 K 320 I-

121 I I I I I 100 150 200 250 300 350 K 400

T- Fig. 6.2. NHIBr,Ci, -I. c44 vs. T. [79G9]. For details of the ordering and domain status of the material, see [79G9].

Fig. 6.4. NH4Br,CII-,. c’= )(c,, -cJ vs. T. [80KfS]. 1 x = O(NH.+CI), 2 x = 0.068,3 x = l(NH.,Br).

10 GPO

9

8

6 0 0.2 0.4 0.6 0.8 1.0

Fig. 6.1. NH,Br,CI, -I. cd4 vs. x. 1 [78Pl], 2 [79G9].

200 220 260 280 300 K 320 T-

Fig. 6.3. NH4Br0.26Clr,14. ch4 vs. T. [79G9]. For details of the ordering and phase status of the material, see [79G9]. 1 kbar = 10-l GPa.

17 GPO

13 -- 3 f-l-

LdOlt-BkMtCiIl NewSahW29r

Page 372: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants SPb, cPu (Figs. 6.5 . . . 6.9) 361

1.015

I ; 1.010 4 E

u= > 1.005

1.000 0 25 50 75 K 100

Fig. 6.5. Cd1 -,Mn,Te. cI1/cI1 (95.5 K) and c/c’ (95.5 K) vs. T. [81W5]. c’= f(crr - cr2). The minima are associated with a transition to the spin-glass or antiferromagnetic state. For values of cl1 and c’ at T = 95.5 K see Table 10.

160

GPO

140

t 80

3 60

CLL 20

40 m Oo 4 8 mol% 12

Y3'F3 -

Fig. 6.7. CaF,-YF,. cpa vs. mole% Y3+F3. [81C7]. c’= fhl - 4.

Fig. 6.6. Cd,Hg, -,Se. (c,,J~)‘/~ vs. x. [83K12]. Other refer- ence [82K9]. 1 err, 2 cL =&r + ciz + 24, 3 cd.,.

110

I

GPO

105

u= 100

301 I I I I I I 50 100 150 200 250 300 K 350

Fig. 6.9. GeySnl -,Te. cpa vs. T. [75R5]. Anomalous behavi- our is assoctated with structural phase transitions. See also Fig. 6.10.

For Fig. 6.8 see next page.

Lsndolt-B&natein NewSaiaIEf.29~

Page 373: Second and Higher Order Elastic Constants

362 1.3 Elastic constants sPu, cpa (Figs. 6.8 . . . 6.11) mef.p.576

7.2 km/s 7.1

7.0

t 6.9 Se

Y

6.6 2

4.2 3.7

3.6 80 120 160 200 240 280 320 360 K 400

r- Fig. 6.8. Fe1 -;Co,Si. (c,,/P)‘/~ vs. T. [84Zl].

Curve number 1 2 3 4 5 6 7 8 9 10

x 0.50 1 0.23 0.5 0 1 0 1 0.5 %-a CL Cl1 Cl1 ? Cl1 CL CL c44 c44 c44

C~=j(Cj1+C12+24.

60.0

I

57.5

ug55.0

52.5

50.0

47.5

100 150 200 250 300 350 K 400 T-

Fig. 6.10. 20 mole% GeTe-80 mole% SnTe. c,,. vs. T. [75S3]. Cubic + trigonal transition at T = 240 K.

8

I 6

t 4

I 0 100 200 300 400 K 500

I- Fig. 6.11. LaAg,In,-,. c’=f(cll -c12) vs. T. [80K8]. 1 x = 1, 2 x = 0.89, 3 x = 0.78. Cubic -+ tetragonal transi- tions at T= 55 K (x = 0.89), and Tx 14OK (x = 0.78). See also Fig. 5.18.

Page 374: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 6.12 . . . 6.15) 363

0 1 50 I 100 I 150 I 200 I 250 I K 300 I

T- Fig. 6.12. LaAg,,,&,,, 1. c,, vs. T. [78All]. Cubic -+ tetra- gonal transition at T = 55 K.

60 GPO

50

0 100 150 200 250 K 300

T- Fig. 6.13. LaAg0,,sIn0.22. cpa vs. T. [78All]. Cubic + tetra- gonal transition at T z 140 K.

130 1 I I I I I I

I 120

65 GPa

60

55

I 50:

45

40

I I I I I 135 GPa

I

70

cc? 60

401 I 0 50 100 150 200 250 K 300

T-

57 GPa

56

20.4 I GPa

20.2 I 20.0 s u

41 19.8

I

GPa

39 19.6

2 37

35owo 7-

Fig. 6.14. MgCu2-MgZn,. c,,, vs. T. [71S3]. Fig. 6.15. Hg,,sMn,,,zTe. cps vs. i? [81C5].

Landoh-B&nstein NewScai~UIR9a

Page 375: Second and Higher Order Elastic Constants

1.3 Elastic constants sPu, cpu (Figs. 6.16 . . . 6.18) wef.p.576

35.0

32.5

30.0

27.5

25.0

22.51 5.5 I I I I I I I

GPO

5.0

2.5

0.5

Oo 50

/[//

100 150 200 250 .K 300 J-

Fig. 6.16. KBr, -,(CN),. cps vs. T. [82F2]. Other references [88FS, 82W5, 82A4, 8263, 81L5, 81K4, 8OL3, 73873.

1.0 1.0 GPO GPO 0.8 0.8

I I 0.6 0.6

2 2 0.4 0.4

0.2 0.2

0 0 110 110 120 120 130 130 1LO 1LO 150 150 160 160 170 170 180 180 K K 190 190

T-

Fig. 6.17. KBT~.~~(CN)~.,~. caQ vs. T. [86K4,85K4]. 1 ultra- sonics, 2 neutron scattering.

T-

Fig. 6.17. KBr0.27(CN),,73. caQ vs. T. [86K4,85K4]. 1 ultra- sonics, 2 neutron scattering.

45 GPO 40

I 35

=

I I I I I

iit

t

6.0

5.5 2

-- I 5.0 I u, +4

4.5 I ffj 8 , I I I L i --tlAl

, loo 200 300 ;O~O 600 K 7W

Fig. 6.18. KCI-KBr. cpa vs. T. 1 [67S4], 2[71S5].

Curve number 1A 1B 1C 1D 1E 1F

mole% KBr 0 16.8 38.2 59.8 79.5 100

Curve number 2A 2B 2C 2D 2E 2F

mole% KBr 0 26 49 60.5 75.5 100

Page 376: Second and Higher Order Elastic Constants

1.3 Elastic constants spu, cpu (Figs. 6.19 . . . 6.22) 365

0.7 GPO

0.6

0.5 // /Y LI I I

,” I I 1(///1

0.2

0.1

“.“I

is0 160 170 180 190 200 K 210 T-

Fig. 6.19. K(CN),-$1.. ca4 vs. T. [77R6].

E 45 -

40 -- - 0.05

I I ‘Oo 50

I I I I 100 150 200 250 K 300

T-

Fig. 6.21. KCl,-.(CN),. cI1 vs. T. [SSBS]. T, is the ferro- elastic transition temperature.

Fig. 6.22. KCI-NaCI. cpr vs. T. [73B4]. b

Curve number 1 2 3 4 5 6

mole% KC1 0 3.8 5.6 82.4 90.0 100

4.0 GPO 3.5

2.5

I 2.0 3 u

1.5

0.5 I

/ 0 100 150 200 250 300 K 3

T-

Fig. 6.20. KCl,-JCN),. cb4 vs. T. 1 x = 1 [73H7], 2 x = 0.85 [81K4], 3 x = 0.75 [81K4], 4 x = 0.56 [82G3], 5 x = 0.41 [82G3]. There is little or no effect of pressure up to 0.29 GPa on the temperature dependence of c,,.+. [81K4]. Other references [88F5, 82D1, 82W5].

50 GPO

I

45

z40

35

30 14

GPO

I

12

10 2

8

6

161 I I I

6 300 350 400 450 500 550 600 K 650

Land&Bbutein New Saica W291

Page 377: Second and Higher Order Elastic Constants

366 1.3 Elastic constants spa, cpa (Figs. 6.23 . . . 6.26) mf.p.576

50 GPO

I

45

E co

35

30; 141 I I I I I I I I I

,“ZLs--; ’

6 280 300 320 340 360 380 400 420 440 K 460

T- Fig. 6.23. KCLNaCI. c,, vs. T. [73B2].

Curvenumber 1234 5 6 I 8 9

mole% KC1 0 5 8 16 24 73 84 89 100

l&.5 GPO

5.0

1 GPa 4.5

z 4.0

2.00 GPO

1.95 I ,=

1.90

3.5 250 260 270 280 290 K 300

25.0 \

22.5

5.2 GPO

3.6

‘6 GPO

t 5

z 4

3 0 100 200 300 400 500 K 600

I-

Fig. 6.25. KI-KBr. c,,,, vs. T. 1 [71C5], 2 [72B5]

Curve number 1A 1B IC 1D 1E 1F

mole% KI 0 20 35 65 77 100

Curve number 2A 2B 2C 2D 2E

mole% KI 0 23.5 61.5 78 100

4 Fig. 6.26. (Ko.02Rb,,.&Hg(CN)~. c~. vs. T. [SlWl]. Cubic + trigonal phase transition at T = 254K.

LdOl!-Blmnein NewSaiaIJU29~

Page 378: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 6.24 . . . 6.29)

I 36

E 34

32

30 6.5

GPO I 6.0

5.5 2

5.0

- SO< 300 325 350 375 400 425 450 475 K 500

Fig. 6.24. KCl-RbCI. c,, vs. T. [7OC4].

Curve number 12 3 4 5

mole% RbCl 0 25 50 75 100

1.75, I I I I I I I d

Figure 6.27. (K,.,,Rb,,.es)2Hg(CN)4. Tc,, vs. T. [Sl Cubic + trigonal phase transition at T = 254K.

“loo 125 150 175 200 225 25 T

n IO 275 K 300

400

350

300

I 250

LP 200

OL I I I I J 30 40 50 60 70 K 81

T-

500 GPa 450

Fig. 6.28. KxRbl-.CN. c44 vs. T. [SSG3]. Fig. 6.29. K1 -,Li,TaO,, x = 0.056. c,,,, vs. 2’. [82Cl]. Super- scripts C and T refer to cubic and tetragonal phases, respect- ively. Other references [85S2, 8383, 83Sll].

Landolt-Bhstcin Now Saios IU/Z9a

Page 379: Second and Higher Order Elastic Constants

368 1.3 Elastic constants spa, cpu (Figs. 6.30 . . . 6.32) pef.p.576

380 GPO

I --

I 340

=3@l c,

260

I

78

= 77 u

76

751 I I I I I I 120 150 180 210 240 270 K 300

I-

170 iP0 150

130 I z

110

krn~ s2

60

I 58 F L.? n 56

?.

-240 260 280 300 320 340 K 360 I-

Fig. 6.32. KTal-,Nb,Oa (KTN). u2 = cII/p vs. T. [77C4].

Curve number

% Nb Ferroelectric Order of TcCKl transition

1 40 296 1st 2 28 250.5 2nd

Fig. 6.30. KTa,.B4Nb,.,eOl. c,, vs. T. [88T3].

12

(TPO)“

10 -

8

c 6 /

\ I \ I

‘0 10 20 30 40 50 60 70 80 K 90 T-

Fig. 6.31. KTa, -,Nb,Oa. sl, vs. T. [83R2]. Other reference [81L12].

kndOlt-Bl)mrrein Now Saio~ lBR!h

Page 380: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPcr, cpa (Figs. 6.33 . . . 6.36) 369

500 I I I I 1

- I-J I/‘? I,“/1 LO 3 *' 4.6 %Nb 200

KS /-t---i ‘OOOW 75 K 100

T-

Fig. 6.33. KTaI-.Nb,O,(KTN. (sil)-l vs. T. [77H13]. The shape of the curves is related to the composition-dependent phase transitions. See Fig. 6.32.

4.5 1 I I I I I

Fig. 6.35. Rb(CN),Br, -X. cd4 vs. T. [88F6].

T- T- - -

Fig. 6.34. Rb,-,(NH,),H2P04, x = 0.35 (RADP). cl1 vs. T. [88S6].

250, I I I I n

I I I I 1' GPa

-60 0 0.2 0.4 0.6 0.8 1.0

x- ,

Fig. 6.36. Sm,-,Y,S. cpa vs. x. [75M5]. Phase transition (black +gold) at x = 0.15. The bulk modulus K = +(cll + 2c,,) --* 0 as x + 0.15.

Page 381: Second and Higher Order Elastic Constants

1.3 Elastic constants s, , cP (Figs. 6.37 . . . 6.39) wef.p.576

“‘==“125 150 175 200 225 250 275 K 300 T-

Fig. 6.37. Sm0.s8Y0.42 S. c,Jcpa (293 K) vs. 7’. [8SY6].

1.6

0.4 \ i-: l

0.19

0 40 80 120 160 200 240 280 K 320 T-

Fig. 6.39. (NaCN)I-,(KCN),. cq4 vs. T. [89S6].

‘.I.”

GPO

24.5

23.5 -u

23.0

225

I 12.30 / \

31,25 /

I

1220

1215 / 650ppm

12.101 I I II 1

56 / \

55

51 \ -

53 - /

_^ 650ppm

10-l 1 10 10' K HO2 T-

Fig. 6.38. NaCI:OH. c,,, vs. Thor impurity concentrations of 75, 230, and 650ppm. [85K2]. Other reference [84Gl]. c’ = :(c*l - Cl&

Ldolt-B8muoin Now !kiaW291

Page 382: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,,, cpa (Figs. 6.40 . . . 6.43) 371

40 I GPO

35 5

30

IO

I

GPO

8

2 6

4

10 GPO

I 8

z6

4 280 300 320 340 360 380 400 420 440 K 460

T-

55 GPO

13 GPO

I

12

211

4

5 6-- -_

?A- --

13

I

GPO 12

10 0 50 100 150 200 250 300 K :

Fig. 6.40. NaBr-KBr. cpa vs. T. [73B2]. Fig. 6.41. NaCl-NaBr. cpa vs. T. [73A2].

Curve number 123 4 5 6 7 Curve number 1 2 3 4 5 6 7

mole% KBr 0 7 15 83 92 97 100 mole% NaBr 0 11.5 26 50.5 63 78.5 100

150 GPO

1,&O c.

30 GPO

20

IO ,

t

1 120 0 1 b, L?

u 110 -10

100 -20

90 -30

I 501 $

c, 40

30

20

“V

0 0.4 0.8 1.2 1.6 GPO 2.0T" P-

Fig. 6.42. TmSeo,s2Teo,6s. c,,. vs. p. [83W2]. Other reference [83B12].

10' I I I I I 0 0.2 0.4 0.6 0.8 1.0

x-

Fig. 6.43. Zn,CdI-,Te. cps vs. x at T= 300K (continuous curves), and 78 K (dashed curves). [83A4].

Lsndolt-Bernstein New Saier IIIj29a

Page 383: Second and Higher Order Elastic Constants

372 1.3 Elastic constants sPu, cpa (pigs. 7.1 . . . 7.5) kf.p.576

97.5’

Lg2.5\, u= 90.0

87.5

85.0 26

441 GPol I 42

40 c

38

36 0 100 MO 300 400 500 600 K 700

I-

Fig. 7.1. BaF,. cps vs. T. 1 [64Gl], 2 [7753].

140 GPO -

i, I I I I I\I I

30 0 50 100 150 200 250 K 300

r- Fig. 7.4. BaO. cpa vs. T. [77P73. Sample annealed for 240 h at T= 1500 K.

100 GPO

80

I 60

b, c, 40

"200 400 600 800 1000 1200 K 1400 T-

Fig. 7.2. BaF,. cpa vs. T. [85M8, 84M5-j.

21

I

GPO Ckk

26

.: 25 ~

C’

24 0 1 2 GPO 3

P-

Fig. 7.3. BaF,. c’ = ‘(c 2 11 -c12) and cd4 vs. p. [81H13]. Phase transition cubic + orthorhombic at p = 2.68 GPa.

200 GPO

I 190 195

u=

185

180 25 GPO 24

23

I 75 22 GPO

c 70

65 0 ,50 100 ;50 2OJl 250 K 300

Fig. 7.5. CdF,. cp,, vs. T. [77P5].

LmdOl!-Bl)mnein NewSaialIl/Z!h

Page 384: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,,, , cPu (Pigs. 7.6 . . l 7.8) 373

140 140 GPO GPO 130 130

120 120

110 110

100 100

801 300 400 500 600 700 800 900 1000 K 1100 300 400 500 600 700 800 900 1000 K 1100

Fig. 7.6. CdF2. c = i(c,, + 2c12 + 4c,,) vs. T. [85Mll].

56.5 -- GPa 56.0

20.6 I z

20.4

39 20.2

I

GPa 38

c 37

36 0 50 100 150 200 250 K 300

Fig. 7.7. CdTe (piezoel.). cpa vs. T. 1 [71V3], 2 [73G6]. Small anomalies at T = 79 K (not shown on graph). See also Fig. 6.43.

36 GPa 34

32 I 30 ,=

I 60 28 GPO

l? 50 26

40 0 100 200 300 400 500 600 700 800 900 1000 1100 K 1200

T- Fig. 7.8. CaF,. c,,,, vs. T. 1 [60H4], 2 [68Nl], 3 4 [74V3], 5 [7753].

[67H4], See also Fig. 6.7.

Land&Barnstein New Series BI/29a

Page 385: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cv (Figs. 7.9 . . . 7.13) Bef.p.576

0 50 100 150 200 250 K 300

Fig. 7.9. CaO. cpn vs. T. [67H3].

35 GPO

I

30

t 25

20

115 GPO

110 I

105 u=

100

0 50 100 150 200 250 K 300 I-

Fig. 7.11. Ce&. cp vs. T. [88F7]. c’ = j(cll - c12).

Fig. 7.13. CsBr. cpa vs. T. 1 [61Ml], 2 [61R2], 3 [63Nl], 4 C67SS-J.

250 ,, GPO

77.4 1 I I I I I I 0 25 50 75 100 125 K 150

T-

Fig. 7.10. CeBs. c.,., and c’ = j(cll - c12) vs. T. [83G8]. Similar results have been obtained by [84L3].

136, I I

I I 7.0 I I II I I _ A.. I

T- Fig. 7.12. CeTe. cpa vs. T. [88M9]. c’ = :(cI1 - c12).

26 10 GRI

25 8

t-H-t3+4 73 6 I

12 4 t

GPs” 2-’

z 4 0 100 200 300 400 500 600 700 K 800

T-

LdOll-Blmrtdn New Sak lB/29r

Page 386: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 7.14 . . . 7.17) 375

361 I I I

GPO

I

34

z32

8 GPa

7

6 t s

5

I:~~4 :a0 300 400 500 600 700 K 800

I-

Fig. 7.14. C&l. cpa vs. T. [67S5]. Fig. 7.15. CsI. cpa vs. T. 1 [61R2], 2 [67S5].

I ,= 405 I

t-t

I AI I I h

I

g”o~o T-

260 260 GPO GPO

I\ 240 220 I\ 240 220 u= u=

200 200

180 180

170 170 GPa GPa

I 160 I 160

2150 2150

140 140 240 240 250 250 260 260 270 270 280 280 290 290 300 300 K K 3 3

I- I- I

Fig. 7.16. Cr,Si. cpa vs. T. [81B4]. Fig. 7.17. COO. cpa vs. T. 1 [68Al], 2 [78Sll]. TN = 289 K.

26 Pll

24

8 GPO

I

I 6

& 5

4 100 200 300 400 500 600 K 700

T-

8 GPa

I

6 I

5 ,"

4

.,

84 GPO

82 I ,"

80

hdolt-Blmsteh New Series IW29a

Page 387: Second and Higher Order Elastic Constants

376 1.3 Elastic constants s,, cpa (Figs. 7.18,7.19) [Ref.p.576

332

"=330

328

326M I 110

GPO

z 100

90 0 50 100 150 MO 2

123 GPO

122 I

121 ,=

120

I 300 350 K LOO

F’ig. 7.18. CoSi. c,,., vs. T. [7424]. See also Figure 6.8.

a2 GPO

8.0 1

1251 -! - ! I I I I I \I I

1L GPO 13

90 0 100 MO 300 400 500 600 700 800 900 K 1000

Fig. 7.19. Cu20. cpa vs. T. 1 [70Hl], 2 [79B7] (calculated from wave velocities assuming p = 6100 kgmv3 at 273 K).

L&olL*B6uluain New SalalB/Z5h

Page 388: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 7.20 . . . 7.23) 377

80 GPO

1 70

30 0 50 100 150 200 250 300 K 350

I-

150 GPa

Fig. 7.20. DySb. cpa vs. T. [73M7]. 1st order magnetic and structural transition at TN = 9.5 K.

125 125 GPa GPa

I

120

I 120 115 115 u= u=

110 110

105 105

I 50 GPa

s 45

40 0 0 50 50 100 100 150 150 200 200 250 250 300 300 K K : :

I- I-

Fig. 7.22. EuF2. cP,, vs. T. [71L2]. Fig. 7.22. EuF2. cP,, vs. T. [71L2].

32 aI

31 I

30 ,"

29

1

1 IO 100 K 1000 T-

Fig. 7.21. ErSb. c,,. vs. T. [74M8]. Antiferromagnetic, TN = 3.5 K. (Note the logarithmic temperature scale).

I 68 GPo

2 64 I

-.60

56

24.0

423.5 I GPa

u"

23.0 0 5 IO 15 T2F5 30 35 K 40

Fig. 7.23. GdSb. cpa vs. T. [74M8].

Curve number 1 2 3

Field along [OOl] axis [kOe] 0 5 10

Antiferromagnetic, TN = 24.4 K.

Lmdolt-B(lmstoin NewS&llli29a

Page 389: Second and Higher Order Elastic Constants

378 1.3 Elastic constants sPu, cpu (Figs. 7.24 . . . 7.26) mef.p.576

44.5 GPO

44.0 I 43.5 3

(3.0

0 50 100 150 200 250 K 300 I-

I I C’(SCOk -1 ;:o 25

I -LJ

20

I5

Fig. 7.24. GaSb (piezoel.). c,, vs. T. 1 [72L2] (Pure GaSb; measurements on Te-doped material gave almost identical

Fig. 7.25. GaSb. cpo vs. p. [86Gl]. c’ = t(c,, - c12),

results), 2 [7SB5].

122, I I I I I 1 I I I GPO’-, , 120 \

GPO -1 54 . 56

Cl2

2 52

rn 3U

I

500 600 700 800 K 900

LdOlt-BthlStC& New Saia lu.t29r

rxg. 7.26. GaAs (piezoel.). cpo vs. T. 1 [73CI I], 2 [73B7J.

Page 390: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, c&Figs. 7.27 . . . 7.29)

I GPa

142

u= 140

60.0// 100 200 300 400 500 600 K 700

T-

Fig. 1.21. GaP. cpa vs. T. 1 r75m (lbtvne s-rlnnerl\ L.---d

2 [80G2]. \-- -,I--, I --r-..,,

27.7

I

GPO

27.6

2 27.5

27.4 0 5 IO 15 20 25 30 K 35

Fig. 7.28. HoSb. c,, vs. T. r74M81.

Curve number 12 3

Field in [l lo] direction [kOe] 0 14 30

Antiferromagnetic, TN = 5.25K.

I + I I 69 I I\1

I 7\ 71 I

I ,I ‘;\I, I \I c” 68 I I \I I-

1 E 67

\2 \ - 31.2

'1 \ \ GPa

31.0

30.8

30.6 I 2

30.4

30.2

I I I I 0 50 100 150 200 250 300 350 400 K 450

I-

Fig. 7.29. I&b (piezoel.). cpa vs. T. 1 [57M3], 2 [59S2].

Landolt-Bhutein New Series Ul/Z9a

Page 391: Second and Higher Order Elastic Constants

380 1.3 Elastic constants spa, cPv (Figs. 7.30 . . . 7.33) Fef.p.576

I 86

E&

82 I

80

50 GPO

40 GPO 39

446 36 -

CL . .

k2 0 100 200 300 400 500 600 700 800 K 900

I- 175 200 225 250 275 K 300

I- Fig. 7.30. InAs (piezoel.). c,,, vs. T. 1 [69Rl], 2 [75B6]. Fig. 7.31. Fe0.920. cpa vs. T. [78Sll]. TN z 200K.

330 GPO \

320

I 315

u=310

305 3 PO

140

I

GPO 1 I I I I 1352

I 30 130

f 20 125

10 50 100 150 200 250 300 350 K 400

25c GPO

I

24e

z 24E

244

I lC Gi

r 1: u

14

50 GPO

40 I 30 2

20

10 \

’ 420

125 GPO

120 I

115 t

110

I

Fig. 7.32. F&i. cp vs. T. [73Zl]. See also Fig. 6.8. Fig. 7.33. FeS2 (Pyrite, oxidised). cpa vs. T. [76S13]. See footnote h), Table 7.

LmdOlt-Blmnein New Sda W29r

Page 392: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu , cpa (Figs. 7.34 . . . 7.37) 381

312.5 5

367.5

365.0 80 120 160 200 240 280 K 320

T-

Fig. 7.34. Fe&. cp, vs. T. [89B3].

480 GPO -\

419 \

I Cl1

478 G \

0 100 200 K 300 7 I-

Fig. 7.36. LaB6. c,,,vs. T. [86W5]. cL = i(cIl + cIz + 2~~~).

0 50 100 150 200 250 K 300 T-

Fig. 7.35. LaSb. cpa vs. T. [74M8].

GI%I:Idil II-I IA I I

IO

I 5 90 G

33 80

I

GPa

32 70 3 CI

31

I 3050

I I I I I 100 150 200 250 K 300

T-

Fig. 7.37. La&. c,,, vs. T. [88F7]. c’ = &il - c12). Cu- bic + tetragonal transition at 103 K. Other references [SSKS, 85W6, 80F3-J.

LdOlt-B&I&l NowSaies~9~

Page 393: Second and Higher Order Elastic Constants

382 1.3 Elastic constants sPu, cpo (Figs. 7.38 . . . 7.41) mef.p.576

12Ol I I I 1 I

I I I I -I 115

I 110

G

105

100

I f z,

I I I I I I I , I I

I GPO

,= 30

CU

30 GPO

0 50 100 150 200 250 K 300

Fig. 7.38. La,-,( ),S,. x z 0.019. cpa vs. T. [80F3, 88K83. Displacive phase transition (43m -t 422) at T z 90 K. c’ = f(c,, - era). ( ) denotes a La vacancy [SSKS].

I

00

t? GO u=

40

30 GPO

25

I 20

2 15 t

10

5

0 50 100 150 200 250 K : l-

Fig. 7.39. LaaSe,. c’ = t(cr, - c12) and c.,~ vs. T. [76Bfl. Structural transition at T = 60 K.

I 28.6

2& L

20.2

28.0

27.8 1 I I I I I I

I 22.5

j 22.0

21.5

21.0 0 50

I I I CU B 3 150 200 250 K : 0

l-

Fig. 7.40. La,Te,. c’ = j(c,, - era) and c.,~ vs. T. [76B7]. Stiffnesses calculated from wave velocities, assuming p = 6850 kgmW3.

0 MO 400 600

Fig. 7.41. PbF,. cpa vs. T. 1 [79Dl] (from neutron diffrac- tion), 2 [84M3] (ultrasonics). Anion sublattice disorder at T 2: 7OOK. Other reference 000 K 1000 [84Sl].

Leadoh-Bl)matein New Saies IJU29a

Page 394: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,,, , cPu (Figs. 7.42 . . . 7.45) 383

140 GPO

I 135

z= u130

I 0 150 200 250 K 300 I-

Fig. 7.42. PbSe. cpa vs. T. [71L5]. Fig. 7.43. PbS. cp,, vs. T. 1 C76S.131, 2 [81P3].

.

', 15.0 GPa

, c44 (Scale -1

10

I

GPO

5

2

0 50 100 150 200 250 K 300 T-

20 18.5

I

GPa

18

'IS

0 50 100 150 200 250 300 K 350

Fig. 7.44. PbTe. cp,, vs. T. [68H2]. Fig. 7.45. LiBr. cp,, vs. T. 1 [69M2], 2 [73C8].

150 GPa

I40

1’1 5’ I I 301 I I

40 I I GPO I 24

I I 1 2 I

0 50 100 150 200 250 K 300

GPa- 1

46 \

I 44

'42

40

38

20.5 GPo

20.0

19.5 I ,"

19.0

Landolt-Bt)maein NewSerkslIb29s

Page 395: Second and Higher Order Elastic Constants

384 1.3 Elastic constants spa, cpa (Figs. 7.46 . . . 7.49) [Ref.p.576

58 I ml 1

56

I 5L 5

52

50

48

I 25 GFU

27.0 GPO 26.5

26.0 I 25.5 ,=

25.0

P 20 24.5

15 0 50 100 150 200 250 300 K 350

I-

Fig. 7.46. LiCI. cpa vs. T. 1 [67M2], 2 [73C8].

10 20 (lPo)-’

18 I 16 ,=

10.0 14 IWO)-’

I 7.5

5.0 x I

2.5

Ol 0 200 400 600 800 1000 K 1200

I-

150 GPO ,

125

I 100 G

75

75 GPO

OO200 I-

65 GPO

60 t

55 ,=

Fig. 7.47. LiF. cps vs. T. 1 [57B4], 2 [61Sl], 3 [6lC2], 4 [71S4], 5 [76J2], 6 [77HS].

Fig. 7.48. LiF. s,, vs. T. 1 [57B4], 2 [61Sl], 3 [61C2], 4 [71S4], 5 [76J2], 6 [77HS].

Fig. 7.49. 7LiH (1) and 7LiD (2). cpo vs. T. [8252]. Other reference [81V2].

Imdolt-BBmrtein New Seta III/298

Page 396: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,.,~, cpa (pigs. 7.50 . . . 7.53) 385

I 120 : u

90

60

30

I I I Cl2

Im

I I-- tl 0 300 600 900 1200 1500 K 1800

T-

Fig. 7.50. Liztic,,, vs. T. [89F2].

6.0 , A

4.4 - ’ ’

1.2 (TPo)’ 1.2 (TPo)’

7.0 4.0 7.0

2 I 3.6

2.0 - (TPd-’ I 1.6 d-

I

6.8 I ,=

6.6

6.4

9, zl.2 I

2 0.8 -

9’ 1 /

I I I I I I 0 200 400 600 800 1000 1200 K 1400 T 0 200 400 600 800 1000 1200 K 1400 T

Fig. 7.52. MgO. sps vs. T. 1 [61Sl], 2 [36Dl]. Fig. 7.53. Mg,Si. cpa vs. T. [65Wl].

I I I

160 GPa 155

150

145

300 GPa

I 280 260 u=

240

220

I 100 90 135 GPa

5’

80 0 200 400 600 800 1000 1200 K 1400

Fig. 7.51. MgO. cpa vs. T. 1 [61Sl], 2 [36Dl], 3 [64Cl], 4 [66A3], 5 [71Ml], 6 [83S6]. Other reference [83G9].

125 GPa ‘N, 124 \

41.6 GPa 41.2

I 46.8 s u

46.4

46.0

Iandolt-Barn&n New Suiw W29a

Page 397: Second and Higher Order Elastic Constants

386 1.3 Elastic constants spa, cpa (Figs. 7.54 . . . 7.56) mef.p.576

GPU

2so I+-.,.

\ Cl1 \2 u= 235

2301

225 80 GPa

70 I 60 ,=

125 50

I

GPO 120

110 100 125 150 175 200 225 250 275 K 300

63 1 I IA I I 1 GPO

62

0 50 100 150 200 250 K 300

Fig. 7.54. MnO. c,,, vs. T. 1 [77H2], 2 [78Sll], 3 [82S9]. Fig. 7.55. MnO. c’ = i(c,, - c12)vs. T. 1 [78S11],2 [8OP2], Antiferromagnetic, TN = 118 K. 3 [82S9]. Antiferromagnetic, TN = 118 K.

300 GPO

I 295

5290

285 285

130 1 \I (GPO GPO

128 I I I Y, ck4 (Scale --)I1 I

126 I rtl II,= 2

124 \ 122 122

\ 58 120

GPO

I 56

z 54

0 50 100 150 200 250 300 350 K &OO I-

Fig. 7.56. MnSi. cps vs. T. [74Z4].

Lmdolt-Bbstein Now !3aim III/291

Page 398: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 7.57 . . . 7.59) 387

u=64 I I Yi\\I

_’ I

62

60

58 55

23.5 GPa 23.0

t

I- 50 22.0

z45

4oOs0 150- ,200 250 300 K 350 T-

Fig. 7.57. HgSe. cpa vs. T. 1 [69L4], 2 [75K5], 3 [70K6]. Results in [70K6] indicate that the curves are unaltered over the electron concentration range 4. 1Or7 to 1.5 * lo’* cmv3 See also Figure 6.6.

I I I u \ 1 --I

0 0.2 0.4 0.6 0.8 GPO 1.0 P--

Fig. 7.58. HgSe. cpe vs. p. [82Fl]. Phase transition to the cinnabar structure at 0.95 GPa. c’ = 3(c,r - clz).

Fig. 7.59. HgTe fpiezoel.). cpO vs. T. 1 [67A4] (specimen annealed in mercury vapour), 2 [71V3], 3 (points) [75C4].

0 50 100 150 200 250 K 300 r-

Lsndolt-B&astein New S&m IU./Z!h

Page 399: Second and Higher Order Elastic Constants

388 1.3 Elastic constants s,, cpa (Figs. 7.60 . . . 7.63) mf.p.576

202 6Fu

200

198

196

19‘1 0 5 10 I5 II 20

141I I I , I- I I .- GE 55

I

50

,= 45

40

35

30 J 0 25 50 75 100 125 K 150

T- Fig. 7.60. NdB,. c4., and c’= !(cI1 - c,J vs. T. [85T4]. Antiferromagnetic ordering at TN = 7.5 K.

GPO

I 416 -I -\

. . Cl1 '\

u= 414 ‘\, \.

‘\ 210

50 50 100 100 150 150 200 200 250 250 300 300 K K 350 350 T- T-

Fig. 7.63. Nbt&. cpa VS. T. [77K6]. Fig. 7.63. Nbt&. cpa VS. T. [77K6].

35.0 GPO

32.5

I 30.0

b 27.5 z

25.0

1:: ‘0 50 100 150 200 250 K 300

T-

Fig. 7.61. Nd,Se,,. c.,~ and c’ = !(cl, - c12) vs. T. [88F9]. Ferromagnetic ordering at Tc = 52 K. Other reference [88F2].

320 [a f-1 I I I I 3001 I I I I

---k-H II 1 I I

I 280

27 260

120 GPO

GPa I 100

z 80

60

40 0 100 200 300 COO 500 600 K 700

Fig. 7.62. NiO. cpb vs. T. [71D4]. Antiferromagnetic, TN = 522 K.

h&k-BI3mstda New SairmW25’r

Page 400: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cpa (Figs. 7.64 ; . . 7.67) 389

25 5.5 GPO

20 5.0 15 4.5

I - u”

7 4.0 GPO

I 6 3.5

es / 2 - 3

0 200 400 600 800 1000 K 1200 T-

Fig. 7.64. KBr. c,,, vs. T. 1 [67S3], 2 [69H3], 3 [7OS5]. See also Figs. 6.16, 6.18, 6.25, 6.40.

50, I I I I I I 1

45

;;

40-

x Cl1

35 u=

7.0 GPO

30 6.5 25 6.0 I ,=

20 5.5

5.0

ffqpffq

0 0 200 400 600 800 1000 K 1200

T- Fig. 7.66. KCI. cpa vs. T. 1 [58N2], 2 [67S3], 3 [68H4], 4 [87Yl]. See also Figs. 6.18, 6.22, 6.23.

Fig. 7.67. KCl. sps vs. T. 1 [58N2], 2 [67S3], 3 [68H4].

100 (TPo)-’

nn I ! ! ! ! !./ 1

I IA J-i

260 7+2 mo1-’

240

180

LII I I I I I 0 200 400 600 800 1000 K 1200

I-

Fig. 7.65. KBr. spc vs. T. 1 [67S3], 2 [69H3], 3 [7OS5].

I I I I

I 50 / Sll

220 7 (TPoI-’

1 40 E 2 1 30

20

IO

0 0 200 400 600 800 1000 K 1200

T-

hdolt-Blmstein New Saioa llIf.?9a

Page 401: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cPo (Figs. 7.68 . . . 7.73) pef.p.576

76h , I I I I I

0 50 100 150 200 250 K 300 f-

Fig. 7.68. KF. cpa vs. T. C67Ml-J.

1001

225

1

0 200 coo 600 800 K 1000 f-

Fig. 7.70. KI. s,, vs. T. 1 [61Nl], 2 [58N2], 3 [64Rl].

CO GPO

4.5 GPO

4

T 4.0 1

ble-1 2 3.5

0

0 200 400 600 800 1000 K 1200 f-

Fig. 7.69. KI. c,, vs. T. 1 [61Nl], 2 [58N2], 3 [64Rl], 4 [7OS6], 5 [71C5]. See also Fig. 6.25.

I I I I I I I 124

I

GPa

123 u=

121

16 GPO

I 15

z 14

20.1 GPO

131 I I I I I I 0 50 100 150 200 250 K 300

Fig. 7.71. PrSb. c,, vs. T. [73L5, 74M8].

0 0 50 50 100 100 ;50 2OJ 250 K 300 ;50 2OJ 250 K 300

Fig. 7.73. PrsSe+ c,+~ and c’ = *(cl I - c,J vs. T. [76BTJ. Structural transition at T, = 40 K.

h&k-Bbmuciu h&k-Bbmuciu NlWSdllUl2!h NlWSdllUl2!h

Page 402: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cpa (Figs. 7,72 . . . 7.77) 391

Fig. 7.72. PrB,. cb4 vs. T. [85T4]. Incommensurate anti- ferromagnetic phase between 4.2K and 6.9K.

32.0

31.8

31.6

31.4

31.2 22.5 GPO

22.0

21.5

21.0

LUJ 0 50 100 150 200 250 K 300

I- Fig. 7.75. PraTed. cd4 and c’ = f(cll - qz) vs T. [76B7].

610, I \ I I I I I I

I 590 u=

580

570

15

U -) GPa

t Gd

-68.51 69.0

2 \ 68.0

l? 5 0 50 100 150 200 250 300 K 350

T- Fig. 7.77. ReO,. cpa vs. T. [76T3].

Fig. 7.74. PrsSeh and Pr,.&e4. c’/p vs. T. [76B7].

5.0 km2 - s2 4.5

I 4.0

F 3.5 l.J

2.5

2.0 I I I I I I I 0 50 100 150 200 250 K 300

T-

Curve number Material T. CKI

1 PrsSe, 40 2 Pr2.&h x30

T. = structural transition temperature. c’ = &I - c&.

36.5 I I I I I I GPa 36.0

34.0

33.5 I 26.2, I I I I I 1

T- Fig. 7.76. PrSn,. cd4 and c’ = *(cl1 - ciz) vs. T. [76B7]. Stiffnesses calculated from wave velocities, assuming p=7800kgmV3. TN=7.3K.

Landolt-Bsmstein New Saits IQ’298

Page 403: Second and Higher Order Elastic Constants

392 1.3 Elastic constants sPu, cpa (Figs. 7.78 . . . 7.81) mef.p.576

3t GPO

36

5 34 4.2 GPO

32 chb (Scale -1 .- I

t

5.0' ' I Cl, I I IL-I- GPO

4.5 :

* m 4.u 1 I I I I I 1

0 50 100 150 200 250 K 300 I-

Fig. 7.78. RbBr. c, vs. T. 1 [67L2], 2 [70Gl]. See also

45.0 GPO 42.5

I 37.5

I u= u=

35.0 35.0

32.5 5.0 5.0 GPO GPO

30.0 4.9 4.9

27.5 4.8 4.8 I I

25.0 4.12 4.12

4.6 ,.6

t.5

I GP: 4.4

6 c

5 0 100 200 300 400 500 600 K 700

I- 661 I I I I I I

GPol--L I I I I I 64\

;r-?lGrn -19.50

- 9.45 58 t-t

56

54

9.40

’ I cGG (Scale -4 I 9.35 s

GE 9.25

I 14 9.20

z 13

12 0 50 100 150 200 250 K 300

Fig. 7.79. RbCI. cpS vs. T. 1 [67M2], 2 [7OGl], 3 [7OG4], 4 [7OC4], 5 C71NS-J.

32 GPO

30

u= 28 2.95 GPO

26 2.90 I

2.85 I d

I 4.0 3.5

2.15 GPO

z 3.0

0 50 100 150 200 250 K 300 I-

Fig. 7.80. RbF. c, vs. T. [72C3]. Fig. 7.81. RbI. cpa vs. T. 1 [67L2], 2 [7OGl].

hdok-B8mudn NewSaiaWZ!h

Page 404: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,, , cPu (Figs. 7.82 . . . 7.85) 393

I 64.0 GPO

- 63.5 z

563.0 -1-J

62.5 I 2 2.8 GPa

,” 22.6

22.4 0 50 100 150 200 250 K 300

T-

Fig. 7.82. SmSb. cpa vs. T. [74M8]. Antiferromagnetic, TN = 2.11 K.

102 GPO

I

100

98 30.0

G GPO 96

44 GPO 43

42

0 50 100 150 200 250 300 K 350 T-

0 0.1 0.2 0.3 0.4 0.5 GPO 0.6 0.7

Fig. 7.84. Sm,Se4. cpa vs. T(measured by ultrasonic waves at Fig. 7.85. SmS. c$, vs. p. [84H4]. First-order isostructural 10 MHz). [85TlO, 85T5]. qv. for dispersive effects on stiff- phase transition at p, = 0.65 GPa. c’ = t(c,, - cIz). See also nesses. c’ = f(cli - c12). Fig. 6.36.

245

I 244 i

243

242

419 GPa 418

I 417

‘416

“I Y 79.00

78.75

78.50

78.25

78.00

77.75

77.50

414’ I I I I I I I 0 50 100 150 200 250 300 K 350

T-

Fig. 7.83. SmB,. cpO vs. T. [85TlO]. c’ = :(cI1 - c12). Other reference [88NlO].

Land&Bhmtein New S&u WZ9a

Page 405: Second and Higher Order Elastic Constants

394 1.3 Elastic constants spa, cpa (Figs. 7.86 . . . 7.89) mef.p.576

10 GPO

8 80

"=b GPO - 3

I

60 W. T

Cl1

4 E40 \

0 100 200 300 600 500 600 K 700 T-

Fig. 7.86. AgBr. cps vs. T. 1 [56Tl], 2 [7OL5], 3 4 [78M3], 5 [85B4].

[78D2],

I? 5

0 100 200 300 400 500 K 600 I-

Fig. 7.88. NaBr. c,,., vs. T. 1 [67L2], 2 [70Nl], 3 [7OS4]. See also Figs. 6.40, 6.41.

40 4

I

GPO 20

z.

0 100 200 300 400 500 600 K 700 I-

Fig. 7.87. AgCI. c,,, vs. T. 1 [SSSl], 2 3 [67Vl], [67H2].

60 I I I I ,

bro

13

12 I 3

5 0 200 400 600 800 K 1000

I-

Fig. 7.89. NaCI. cp. vs. T. 1 4 [87Y7]. See also Figs. [67S3], 2 3 [67L2], 6.22, [68H4], 6.23, 6.41.

LdOlt-B&lUt& NowSaiwlBf29~

Page 406: Second and Higher Order Elastic Constants

1.3 Elastic constants s,,,,, cpu (Figs. 7.90 . . . 7.93)

I I I I /I

20 iTPa)-’

I 10

x I ^ UI I I I I I 0 200 400 600 800 K 1000 T

Fig. 7.90. NaCl. spa vs. T. 1 [67S3], 2 [67L2], 3 [68H4].

(TPa)-‘1 1 1 1 1 1 p;Ubya J

60 (TPa?

I

50

s 4o 2

200 300 400 500 600 700 800 K 900 T-

Fig. 7.92. NaCI. PC,, vs. Tat different pressures. [72S9].

Fig. 7.93. NaF. c,, vs. T. 1 [62Nl], 2 [66V2], 3 [67L2], 4 [68H4]. )

-8

-9

-10 200 300 400 5

I I I

I 600 700 800 K ! T-

Fig. 7.91. NaCl. Tc,, vs. T at different pressures. [72S9].

60

25 GPa

30 GPa

28

I 262

24

Landolt-BBmstcin New S&a IBf29a

Page 407: Second and Higher Order Elastic Constants

396 1.3 Elastic constants spur cPu (Figs. 7.94 . . . 7.97) mef.p.576

22.5 (IPd

20.0

12.5

10.0 10.0

62.5 62.5 (iPa)-’ (iPa)-’

40.0 40.0 I I 37.5 37.5 ,= ,=

6 (TPO)“

35.0 35.0

I 4

2 2 I

0 0 200 400 600 800 K 1000

I-

38 GPO

I 36

u= 3L

32

30

9.0 GPO

I 8.5

$I.0

7.8 GPO

7.6 I 7.4 2

7.2

7.51 0 50 100 150 200 250 K 300

I-

Fig. 1.94 NaF. s,, vs. T. 1 [62Nl], 2 [66V2], 3 [67L2], Fig. 7.95. NaI. vs. T. 1 2 3 4 [68H4].

cpa [SSDl], [6OCl], [73G9]

GE GE

70 70

I I 60 60

z50 z50

b0 b0

30 30

0 0 200 500 600 800 1000 K 1200

Fig. 7.96. SrC12. cp vs. T. 1 [77Al], 2 [71L2]. Diffuse transition between 1050 K and T,.

I GPO 50 45 30 29

N u 40

0 100 200 300 400 500 600 K 700 I-

Fig. 7.97. SrF2. c,, vs. T. 1 [64G2], 2 [77J3].

h&lbBblJ&b New !iaia ITItZPa

Page 408: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 7.98 . . . 7.102) 397

185 185 GPO GPO

180 180

I

I 175 175

El70 El70

165 165

160 160

60 GPa

I I 55

50

z z 45

40 0 0 50 50 100 100 150 150 200 200 250 250 K K 300 300

T- T-

Fig. 7.98. SrO. cPo vs. T. [7OJ2]. Curves are least squares fit Fig. 7.98. SrO. cPo vs. T. [7OJ2]. Curves are least squares fit to rather scattered points. to rather scattered points.

I 2 I u= T .-N

701 I I I I I I

seit+t-

GPO.

69

\ 67 .

66 I I I I I

2’1.2 2’1.2 GPO GPO

I I 26.6 26.6

z z 26.4 26.4

26.0 26.0 0 0 50 50 100 100 150 150 200 200 250 250 K K 300 300

I- I- Fig. 7.101. TmSb. cPb vs. T. [74M8]. Fig. 7.101. TmSb. cPb vs. T. [74M8].

10 GPa

G ;25 8

20 I

6- u”

15 4

IO

0 100 200 300 rz 500 ,600 K 700

Fig. 7.99. TlBr. cpa vs. T. 1 [66Vl], 2 [67M4].

45 ‘. GPa

I $4 43 9.5

E GPa 42 9.0

41 8.5 I 3

18 GPO

I 17

cl6

150 175 200 225 250 275 K 300 I-

Fig. 7.100. TlCl. co, vs. T. [75G5].

44 GPO

I 36

>28

20 0 80 160 . 240 K 320

I-

Fig. 7.102. TmCd. cpa vs. T. [73L6]. Zero magnetic field. Jahn-Teller transition at T, = 3.16K. I

hdolt-B&n&n Now Saia lJlfZ9r

Page 409: Second and Higher Order Elastic Constants

398 1.3 Elastic constants sPu, cpa (Figs. 7.103 . . . 7.106) wef.p.576

122 GPa

120

50 100 150 200 250 K 300 T-

Fig. 7.103. SnTe (p-type, hole concentration 4. 1020cm-3). c,,, vs. T. [87W2].

I 106 Cl2 ---178 G"

105 I I I I I I I 0 50 100 150 200 250 K 300

I- 50 100 150 200 250 300 K 350

T I-

Fig. 7.105. TiCo.91. cpo vs. T. [66Cl]. Fig. 7.106. TiCl.o. c,,., vs. T. [77K6].

125 Cl1

110 124 I 12.2 2

12.0

11.8

41 I I I I I I 0 50 100 150 200 250 K 300

I-

Fig, 7.104. SnTe. cps vs. T. 1 [69B3], 2 [68H5].

IlQl I I I 1 L-U

Lmdolt-Bamstein NowSaiaW29r

Page 410: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 7.107, 7.108) 399

330 GPo 320

270

65.5 GPO

65.0

I 64.5 i

u”

90 64.0 GPO, , , , , .

-163.5

70 0 100 200 300 400 500 600 700 800 K 900

r-

Fig. 7.107. UC. cpa vs. T. 1 [66Cl], 2 [71Rl] (UCo.93).

400

300

80 GPO

60

200

100

200 GPO

150

0 0 500 1000 1500 2000 2500 3000 K 3500

I u’

Fig. 7.108. UOz. cpa vs. T. [85C2, 87Hl].

Landolt-Bernstein New Sorim IBr29a

Page 411: Second and Higher Order Elastic Constants

400 1..3 Elastic constants fpa, cpa (Figs. 7.109 . . . 7.112) mef.p.576

396 65 GPO

l-T+7 60

55 - I u’

402 GPO

coo

128 50 GPO

I 126 45

c 125

122 0 50 100 150 200 K 250

r- ,- Fig. 7.109. U02. cp vs. T. [67B4, 68B2]. Paramabetic- antiferromagnetic transition at TN = 30.8 K.

312 GPO

I 310

308 d

306

3tl

I

GPO 17

t 16

15 i0 100 150 200 250 300 K 350

T-

Fig. 7.111. US. cp vs. T. [79D3]. 1 Magnetic field H = 0, 2 H 11 [lOO] = 20 kOe. Exctiange magnetic distortion (FCC --) trigonal) sets in at Tc = 172 K.

GPO 1 I Al I I I 1

380

79 GPO

I 78

t 17

76

75 0 50 100 150 200 250 K 300

T- Fig. 7.110. UN. cpa TN=S3K.

VS. T. [77D3]. Antiferromagnetic,

372 GPO 370

: 368

366 196 GPO

194 I

192 2

I 111 190 GPO 110

z 109

50 100 150 200 250 300 K 350 I-

Fig. 7.112. VCo.sa. c,,. vs. T. [77K6].

L.dOlt-BlUUtOiE Now SklosIUj29r

Page 412: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpar (Figs. 7.113 . . . 7.116) 401

GPO

73

12 I

71 2

70

120 69

u 100 I I 0 50 100 150 200 250 K 300

T- Fig. 7.113. VJGe. cpa vs. T. 1 [69R2], 2 [73C2].

280 GPa

260

240 u=

220

180

180 GPO

I

160

2140

120

82 GPO

80

0 50 100 150 200 250 K 300

120 GPO

I 80

t 40

0 821 4 I I

GPi 2 80. /'

3Ou

I

GPa 250

z 200

1500W 50 100 150 200 250 K 300

/- Fig. 7.115. VBSi. cp,, vs. T. [78G5]. 1 Unirradiated. 2 After neutron irradiation to a fluence of 22.2*10’* n/cm*. c’ = :(Q - C12).

Fig. 7.

25 25 ITPaY ITPaY

20 20

I I 15 15

$ IO $ IO

5 5

0 0

-51 -51 I I I I I I I I I I 0 0 50 50 100 100 150 150 200 200 250 250 K K 300 300

T- T-

,116. V,Si. PC’ vs. T. [73C3]. c’ = i(cll -cl*). ,116. V,Si. PC’ vs. T. [73C3]. c’ = i(cll -cl*).

4 Fig. 7.114. V$i. cpa vs. T. 1 [67T2]. la [67T2]; with struc- tural transformation (T = 21 K). lb [67T2]; without struc- tural transformation. 2 [73L2]. 3 [73C3]1

T-

Land&Barnstein New Suiea I&Z9a

Page 413: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cpa (Figs. 7.117 . . . 7.120) pef.p.576

95 GPa 2

0 200

40 GPa

38 I a

36

I 600 800 K 1000 T-

Fig. 7.117. ZnSe (piezoel.). c,, vs. T. 1 [7OL3], 2 [72K8], 3 [77BZ].

32.0 GPa 31.8

I 250 300 K 350

Fig. 7.119. ZnTe (piezoel.). cPc ys T. [7OL3]. See also Fig. 6.43.

106 ----_ GPO I

66 GPa

65

I 64

z 63

621 I 0 50 100 150 200 250 K 300

I- Fig. 7.118. ZnS (piezoel.). cpa vs T. 1 [63Zl], 2 [71V3].

480 GPa

I

478

476 5

474

472

981 0 50 100 150 200 250 K 3

I- Fig. 7.120. Zr&,.+ cP,, vs T. [66Cl].

161 GPa

160 I t

159

0

LQdOlt-BhIt&l NewSaialQ29r

Page 414: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 8.1 . . . 9.2) 403

33 GPO 1 lrn ^^

z

zo GPa

6.5 I

6.0 :

20 GPa

19

:I8 YL---tl

17 l&O 160 180 200 220 240 260 280 K 300

Fig. 8.1. Alum, methyl ammonium. cpa vs. T. Normal: CH3NH3AI(S0& - 12H20. Ferroelectric-paraelectric phase transition at Tc = 176 K. Deuterated: CHsNDsAI(SO&* 12H,O. 1 [69A3]: Normal; 2 [74Zl]: Normal; 3 [74Zl]: Deuterated.

Fig. 9.1. Adamantane, CIOH16. cps vs. 7’. [75D2]. Order- disorder transition (cubic + tetragonal) at T = 208.6 K.

12 GPa

I 8

k'

t 6

I 1.23

c -5 1.22 2 II b

1.21

1.20 I b 200 220 240 260 280 K 300

Fig. 9.2. Adamantane, C1cH16. [81G4]. (a) c o vs. T. c’= fhl -c12). CL =f(c11 +c12 +24. K=~h +2cl2). (b) c’ velocity, u = (c’/JI)‘/~, vs. T on .enlarged scale near the phase transition at 208.6 K from the brittle phase (ordered tetragonal) to the plastic phase (disordered cubic). See also Fig. 9.1.

Lsndolt-Bernstein New Mea WZ9a

Page 415: Second and Higher Order Elastic Constants

404 1.3 Elastic constants sPu, cPu (Figs. 9.3,9.4) mef.p.576

44 GPO

I n

32

I p3 - 0.325 GPo T, - 216.27 K p2 = 0.188 GPO T, = 204.77 K- p, = 1 atm I, = 234.5 K

16 a I -40 -20 0 20 40 60 80 K 100

CT-T,,-

205 210 215 K 220 T-

15.0 GPO

14.6

12.6 ’ 180 200 220 240 260 280 300 K 320

./ T-

A Fig. 9.3. NH4Br. cP. vs. T. [66G2, 6865, 78673. T, is the order-disorder phase transition temperature. In (c) the transition temperature at each pressure is indicated by a ver- tical dashed line. c’ = f(cI I - CT,*). 4

8.50 GPO

8.25

8.001 x ,

7.25

5 10 15 20 25 30 35 K 40 T-T, -

Fig. 9.4. NH,Br. c,,., vs. T - TA. [84Yl]. Disordered cubic to rantiferro-ordered” tetragonal transition at TA.

Lmdolt-B8msteia New SaiaIU/Z9~

Page 416: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 9.5 . . . 9.9)

I GPa 44

12 GPa

11

I i5 10 GPO

N Y

150 170 190 210 230 250 270 290 K 310 Fig. 9.7. NHJ. cps vs. T. [75M3]. T-

Fig. 9.5. NH&I. cpa vs. T.

Curve number 1 2 3

Pressure 1 atm 0.150 GPa 0.266 GPa

TA CKI 242 256 265

Ref. 66Gl 73Gl 75Gl

(T, = order-disorder transition temperature).

11 GPO

10 I 3

45.0 GPa

42.5

32.5

30.0 200 220 240 260 280 300 K 320

T-

Fig. 9.6. ND&l and NH&I. cpS vs. T. 1 ND&l [79Zl: 2NH4C1[66Gl]. Order-disorder transitions at TA = 249.4 E (ND&l) and 242.5 K (NH&l). See also Fig. 9.5.

4.040 7 I 5 70 I 100 I 130 160 I 190 I K 220 T-

Fig. 9.8. (NH&PtBrs. cps vs. T. [89W2]. Structural trans- formation at T, = 59 K.

15.0 GPa r 13.5

I 12.0

b 7.5 LY

6.0

1.5 2001, 225 250 275 300 325 350 K 375

T-

Fig. 9.9. (NH,),TeBr,+ cps vs. T. [89W2]. Structural trans- formation at T, = 212 K.

Page 417: Second and Higher Order Elastic Constants

406 1.3 Elastic constants s,, cP (Figs. 9.10 . . . 9.14) mef.p.576

32-

21

I 26

b pj

23

20' I I I I I 50 100 150 200 250 K 300

T-

Fig. 9.10. (NH,)2TeCl,s (curve 1) and (ND4)2TeCI, (2). cr, and L$ = f(crr + 2c,, + 4~~) vs. T. [88K6, 88P3].

32

- 31

\ \ 15.0 GPO

GPO

I 2k

:22

20 0 50 100 150 200 250 K 300

18

I

11

b 10 G

9

150 175 200 225 250 275 300 K 325 T-

Fig. 9.11. (NH&SnBrs. cpb vs. T. [82NS]. Structural phase transition at T, = 157 K. Other reference [89W2].

210 GPO

I 190

El70

150 300 320 340 360 380 400 K 420

T-

Fig. 9.13. BaTiOs (piezoel.). c,r vs. T. [74SlO]. Ferroelectric Tc = 403 K. The structure is tetragonal below this temper- ature. See also Figs. 12.1, 18.3 and 20.3.

I I I I I I 0 2 4 6 8 GPO 10

P-

Fig. 9.14. BaTiOs. c,,,, vs. p at RT. [8911]. c,, = *(cl1 + 2cr2). c’ = +(cr, - cr2). Transition pressure pc = 2.35 GPa.

4 Fig. 9.12. Ba(NOs)*. c,, vs. T. [73M6]. I-

Page 418: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 9.15 . . . 9.20) 407

-- 0 2.5 5.0 7.5 10.0 GPO 12.5

P-

Fig. 9.15. BaTiOs. cl1 vs. p. [87Fl].

80 120 160 200 K 240 T-

Fig. 9.16. Cd2(NH&(S0&. cpa vs. If. [74G7]. Ferroelec-’ tric phase transition at Tc = 91 K.

8 GPO

7

3

250 275 300 325 350 375 K 400 T-

Fig. 9.18. Ca,Ba(C2H,C0,),, Calcium barium propionafe. c,,,, vs. T. [75Kl]. Phase transition at 264 K.

25.6 CD" “I ” , I

I I 25.4

2 25.2 \

25.0 \ _ \

;0 100 I I I I I I -

5 150 175 200 225 250 275 K 31 TM

I -1 (1Pd-J

lu- -’ 6 -2

125 150 175 200 225 250 K 275

Fig. 9.17. CdzTlz(SO&. [74G7]. Phase transitions at T= 98, 127, and 130 K. Upper curves: spO vs. T. Lower curve: cpe vs. T.

22 GPO

21

?75 200 225 250 275 K 300 T-

Fig. 9.20, CsCN. c,, vs. 7’. [83S8]. Structural transition m3m --) 3m at T. = 193 K. See [85S14] for information on pressure and temperature dependences.

Fig. 9.19. CsCdF,. c.++ vs. r [75R3].

Lsndolt-BLlmstoin .- - -..-

Page 419: Second and Higher Order Elastic Constants

408 1.3 Elastic constants spur cPu (Figs. 9.21 . . . 9.24) wef.p.576

lulr 1 &I I I I I I I

t 18.6 -

G18.4 n’

GPa ,1

3.0

2.5

1.5

I

GE 4.0 1.0

-- 3.5 0.5

-dn 0 *‘“175 200 225 250 275 300 K 32i

T- Fig. 9.21. C&N. cpb vs. T. [83L7). 1 ultrasonics, 2 neutron scattering. c’ = +(c,, - c12).

b Fig. 9.22. CsPbBr,. cpa vs. T. [77H16]. StitTnesses calculated from wave velocities assuming p = 4800 kgmW3. Phase

changes mmm 361 K 403K

- 4/mmm - m3m. The modes are

identified by the stithresses in the cubic phase (T > 403 K); in the other phases, the modes are quasi-cubic. c’ = f(crr - ~~2). cL = j(c, I + cl2 + 2~~~). See also Fig. 20.6.

30 GPa

28

I 26

u= c24

20 10

GPO

I 8

,=6 t

29.5 III GPa 1 I I I-I/VI I

GPa

5.09 5.08 I ,=

t 15.5 15.0 5.07 GPO

5.06 E

14.5 I I I I I I

320 322 324 326 328 330 332 K 334

Fig. 9.23. CsPbC&. cpo vs. T. [75A2]. Phase transition (tetra- gonal + cubic) at T,,,, = 320 K.

300 350 400 450 K !

60, I (TPa)‘l 1, 1 1

t 55t---k+t

4OI 310 320 330 340 350 360 K 370

36- GPa

I 34 -

c 32-

30 -

28- 300 350 400 450 500 550 K 6M1

I- Fig. 9.24. CsPbCI,. Upper curve s,r vs. T. [77H63. Lower curve c, r vs. T. [77H6]. Phase transition (tetragonal + cu- bic) at T,,.,, = 320 K. For T< 320 K see Fig. 18.8.

LWlOh-B&IlU&l NWi!kidWL%

Page 420: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cpu (Figs. 9.25 . . . 9.26B) 39

(TPo)~I 1 , i / 1 1

/

290 300 310 320 330 K 340 T-

Fig. 9.25. CsPbCl+ spa vs. T. [78Hll]. For details of phase changes, see Fig. 9.26. In Phase I, spa = 2(s,, - s&; in Phase IV, SP” x sec.

31 GPO

10 /

k 8 200 220 240 260 280 300 K 320

T- ,- Fig. 9.26A. C&Mo04. cpa vs. T. [82A5] Ferroelectric Fig. 9.26. CsPbC&. cp. vs. T. [77H6, 78H143. Stiffnesses transitions at rc = 177 K and 211 K. calculated from wave velocities, assuming p = 4160 kgmm3.

Phase changes: (?)2/m 310K 315K 320 K

-mmm-4/mmm- m3m. The modes are identified by the stiffnesses in the cubic phase (T > 320 K); in the other phases, the modes are quasi- ;$ic. c’ = :(cll - c12). cL = :(cll + cl2 + 2~~). See Fig.

. .

10.0 GPO

I 7.5

2 5.0 L

2.5

0 280 300 320 340 360 K 380

T-

T- Fig. 9.26B. CsLiW04. c,,. vs. T. [82Ml]. Ferroelectric transitions at T, = 191 K and 221 K.

Lmdolt-Barnstein Now Saios W.29o

Page 421: Second and Higher Order Elastic Constants

410 1.3 Elastic constants sPu, cPu (Figs. 9.27 . . . 9.31) mef.p.576

i 90’65 G I-+

I\Cll I I I IGPa, 85

80 -

I-

I Ctt -0 50 100 150 200 250 K 300

T I-

Fig. 9.27. CuJAsSJ. c, vs. T. [84B3].

I 169

167 69 u' GPO

165 68

67

1 GE 39 66 L

-.50 100 150 200 250 K 300 T-

Fig. 9.29. CuGe,P,. cpa vs. T. [84HS]. c’ = $c,, CL = f(c*, + Cl2 + 2c44).

1 GPol 68 I

2

67

I I IT-----I "'100 100 150 150 200 200 250 K 300 250 K 300

T- Fig. 9.30. CuGe.,P,. c,, vs. T. [85M6]. c’ = t(cl I - c12). CL = tkl t + Cl2 + 2cs4).

I

26

24 C-T

22

120 (TPOI'

I

115

,110 s

105

1ool

i,P$

10 A

I \, - s12

2 .

, 8

61 0 50 100 150 200 250 K 300

I-

Fig. 9.28. CuaAsS,. s,,,, vs. T. [8lB9]. The anomalous beha- viour is possibly due to magnetic ordering between T= 120K and 170K.

245.0

I

GPO t Gpo I I R I 2k2.5

u= I I 240.0

k--i _- 95 GPO

94 I 3 i

I 135 135

it---t

93 GPO GPO

I -I1 I u LJT 134

I I I I I I 75 125 175 225 275 K 325

I- Fig. 9.31. Li2Fe204. cpa vs. T. [76K6]. Stiffnesses calculated from wave velocities and a density of 4750 kg/m3.

Page 422: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cPu (Figs. 9.32 . . . 9.35)

295 98 GPa

96 94

I * CT

92

114 90 GPO

I 112

t 110

108

,061 50 100 150 200 250 300 K 350

360 GPa

I

340

5320

96

0 100 200 300 400 500 K 600 T-

Fig. 9.33. Garnet, natural. (Composition unspecified). cp. vs. T. [64R2].

l- Fig. 9.32. Garnets (almandine-pyrope). cpa vs. T. [78S8]. 1 PY - 1 (R =O.lS), 2 AL - 6 (R =0.48), 3 AL-Y (R =,0.58), where R is’the ratio almaddine/(almandine + py- rope). For detailed analyses, see [78S8].

275.0, 1

@ iI \ I I I

I 270.0 270 G GPO

267.5 265

265.0 260

260 4 GPO \

-.- 0 50 100 150 200 250 K 300

T- Fig. 9.34. Garnet, terbium iron, TbsFe,Ora. cpa vs. T. [88Al]. CL = :h + Cl2 + 2d. c;=f(cll+2c12+ 4c&. Magnetic compensation temperature T, = 244 K. Below 80 K a rhombohedral distortion starts to evolve very rapidly and the identification of the elastic constants above is no longer strictly valid. Other references [84Kl, 853161.

I I I I

338 GPO

1 337

‘y 336

335~t-+-t-- 116.5 GPO

116.0 I

111.01 150 175 200 225 250 275 K 300

Fig. 9.35. Garnet, yttrium aluminum, Y3A15012. cpa vs. T. [67Al].

Landolt-BBmstein New Sexled Illf29a

Page 423: Second and Higher Order Elastic Constants

412 1.3 Elastic constants sP, cpa (Figs. 9.36 . . . 9.39) mf.p.576

9.25 GPO

9.00

I

8.75

=8.50 u 2

8.25

8.00

7.75

7.50

1.4 GPO

I

1.2

,j 1.0

0.8

0.6 200 250 300 350 400 K 450

l- Fig. 9.36. Hexamine nickel nitrate, Ni(NO,), * 6NH,. c,, vs. T. [74H4]. Order-disorder transition at Tz 239 K.

I 12

Lc’z 10 v)

8

6 100 150 200 250 300 350 400 K 450

l-

Fig. 9.39. PbaMgNbzO,. s’: vs. T. [8OSlS]. Field-induced phase transition at T z 200 K.

Curve Bias field Thickness Length Width number MVm-r (field)

60 GPO __

10

0 50 100 150 200 250 K 300

l- Fig. 9.37. Fe,,csTio.ss04. cpa vs. T. [71S9]. Ferromagnetic Tc = 142 K.

160

I 150

I b 80

u”

70

60

il 301 I./ I I I I I

0 100 200 300 400 500 600 K 7 7 I-

Fig. 9.38. PbJMgNb209. cpv vs. T. Diffuse transition (cu- bic -+ tetragonal) between T z 400 K and T x 200 K. The rectangles are hypersonic data from [75S12]. 1 Brillouin scattering [76Sl5], 2 ultrasonics [SSSlZ].

: I 0.25 1 Wll Cl001 COlOl

3 1

0.1 4 0.3 co111 ~lOO1 [oii] 5 0.5 Cl 111 [ioil [i2i]

La&lbBIhuein : Now!hiooBlfBr

Page 424: Second and Higher Order Elastic Constants

Ref .p. 5761 1.3 Elastic constants sPu, cPu (Figs. 9.40 . . . 9.44) 413

0 50 100 150 200 250 K 300 0 50 100 150 200 250 K 300 T-

Fig. 9.40. Pb(N03)2. cp., vs. T. [73M6]. Fig. 9.40. Pb(N03)2. cp., vs. T. [73M6].

46 GPO

44

42

GPO

17

16

3.5 3.5 GPO GPO

I I 3.4 3.4

u= u= 3.3 3.3

1.8 1.8 I I GPO GPO 2 2

I I 1.6 1.6

?.4 ?.4

280 280 288 288 296 296 304 304 K K 312 312 I-

0 100 200 300 400 K 500 T-

Fig. 9.43. Pivalic acid, (CH,),CCOOH. cpa vs. T. [73B3]. Fig. 9.44. K,Cd(CN),. cpa vs. 7’. [76Hl].

50 GPO

25 CL4

20 100 125 150 ;75 2OJ 225 K 250

Fig. 9.41. Hg,Ga,Tes. cpa vs. T. [?lSl].

I I I Iktl I I I I I I

0 100 200 300 400 K 500 r-

Fig. 9.42. NiCr,O+ cpa vs. T. [73K2]. Ferromagnetic phase transition at T c z 72 K. Jahn-Teller phase transition at T’, z 300 K. Stiffnesses calculated from wave velocities and a density of 5250 kgme3.

20 t I GPO

I ‘81

I I I - I

cq4( Scale -1 2.

12 t I I I I I 2.4 GPO Cl7

L&elt-Bum&n Now Saieo WZ9a

Page 425: Second and Higher Order Elastic Constants

414 1.3 Elastic constants sPb, cpa (Figs. 9.45 . . . 9.49) mef.p.576

GPO 1 I I I

36 GPO

35 I 2

34

I I I I ,

150 200 250 K 300 I-

Fig. 9.45. KCoF,. cpa vs. 7. [75A3]. Tetragonal -P cubic transition at T= 110 K.

10 10-L

5

I 6

4 4

;J!

I x -16

g-14

-12

-10 150 200 250 300 350 COO 450 K 500

I-

Fig. 9.47. KCN. Temperature coefficients Tc,, vs. T. C73H7-J.

26 GPO

24

I 22

u=20

18

16 4

GPO

I

3

J 2

1

0

14

I

GPO

12

E 10

8 50 100 150 200 250 300 350 400 K 450

I-

Fig. 9.46. KCN. cp,, VS. T. 1 [73H73 [Ultrasonic transmis- sion (Schaefer-Bergmann)], 2 [76Kl] (Brillouin scattering), 3 [77R6] (3a Ultrasonic transmission, 3b Brillouin scatter- ing), 4 [77W4] (Brillouin scattering). Order-disorder transition at T= 168 K.

146 GPO

I

144

=I42 c1

140

138

\ I Gbb Cl2

G" 43 50 100 150 200 250 K :

I- Fig. 9.49. KMgF,. cpa vs. T. [68Rl].

51.2 GPO

50.8 I

50.4 t

Lmdoll-BkUteiU New Saia lllfZh

Page 426: Second and Higher Order Elastic Constants

1.3 Elastic constants s,, , cpu (Figs. 9.48 . . . 9.52)

I i 2.0

1.8 29.8 GPa

29.7 LY

29.6

26.0

I

GPO

25.5

1.75 GPO

1.74 I 3

1.73 270 280 290 300 310 320 K 330

I-

Fig. 9.48. K,PbCu(NO&. cpa vs. T. [78K4]. Jahn-Teller transitions at r, = 273 and 281 K. Stiffnesses calculated from wave velocities, assuming p = 3420 kg rnm3. c’ = !hl - cd

110 GPO

105 105 I u'

100

35 GPO

30 I -~

150 200 250 300 350 400 K 450 T-

Fig. 9.51. KMnF,. c,,,, vs. T. [88C2]. c’ = &$I - &). Fig. 9.52. K2Mn,(S04)3. cp,, vs. T. [79M4]. Phase CL = ?(CSI + cfz + 2c‘u). transition (23 + 222) at T = 195 K.

120 GPc I

110

I 100

u= 90

80

1 I I

100 150 200 250 300 350 K * T-

28 GPO

27

23

Fig. 9.50. KMnF3. cpO vs. T. 1 [66Al], 2 [71M4]. Structural phase transition at T = 186 K.

67

I

GPO

66 u=

65 26

GPO

24

16

14 100 150 200 250 K 300

I-

hdolt-B&hstch New Salea llIfZ9a

Page 427: Second and Higher Order Elastic Constants

416 1.3 Elastic constants s,, , cpa (Figs. 9.53 . . . 9.58) mf.p.576

2.1 GPO

2.2 I 2

10 2.0 GPO

I 9

E 8

1 0 100 200 300 400 K 500

I- Fig. 9.53. K,Hg(CN),. c, vs. T. 1 [76Hl, 76K8] (ultra- sonic). 2 [76K8] (Eh-illouin scattering).

17

I

GPO 16

2 15. l C

-2 14 -\”

I ‘h(c,,+2c,,I . I ._

\ I

lJA4--ulO ’ ’ I c,,lScole - . . 11 I lGPot

I I t

‘150 175 200 225 250 275 300 K 325 T-

Fig. 9.54. K2FtBr6. cp vs. T. [89W2]. Structural transition at T, = 169 K.

N l

$= 16 10 GPO

I g .?

8

Fig. 9.55. K,SeBr,. cpa vs. T. [89W2].

GPO

13

-3 w 5 12

5 11

“220 240 260 280 K 300 l-

I GP: 6

7

G T

3 l!i?H '/2 k,,-c,2)

2 380 400 420 440 K 460

T- Fig. 9.56. K2SnBr,. I+,, vs. T. [89W2]. Structural transition at T=395K.

-20 I I I I I I I 260 280 300 320 340 360 K 380

T-

Fig. 9.58. K$nCI,. Tc,, vs. T. [81H5].

Page 428: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 9.57 . . . 9.61) 417

u= 18. -1

I 9.0

C“(SCOk -1 GPO t

13 GPO 12

3 11

8.5 1 ,”

8.0

1.5

10 240 260 280 300 320 340 360 K 380

Fig. 9.57. T-

K#nCl+ cp. vs. T. 1 [SOH5], 2 [SlPl], 3 [81H5].

Structural 255 K 263 K

phase transitions: 2- 4/-o - m3m.

c’ = f(cIl - cIz). Other reference [89W2].

39olW GPol I I I I %L I

4-i

130

125

GPO

90 I

85 ; G

I 39.0 80 GPO

38.5 2

“V.”

0 T-

50 100 150 200 250 300 K 350

Fig. 9.60. KZnF3. c,,,, vs. T. [87B6]. Other reference [88T2].

3201 I I I I I I I 1 90 75 100 125 150 175 200 225 250 K 275

T-

114 GPO 110

-$360 106 I G

350 102 2 - N

340 i \\

u

I I 98 c,,(Scole -4

330 I ” Sll’

94

I GPO ’ 22

5 _-

77Ttt-t

14

I 12 GPO

3.3 GPO 3.2 I

2 3.1

50

0 100 200 300 400 K 500

Fig. 9.59. KTa03: 7.5% Li. cpo and s;; vs. T. [84S9].

T-

Fig. 9.61. K2Zn(CN)4. c,,, vs. T. [76Hl].

hdolt-B&astcin New Saks W29a

Page 429: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cPo (Figs. 9.62 . . . 9.65) mef.p.576

28 GPO \

ii- GPO

I SS.',

Cl

u'

81 90 110 130 150 170 K 190

l-

Fig. 9.62. K2Zn,(S0,),. &, c’ = t(c,, - c,~) and cL = f(c, r + cl2 + 2c4.,) vs. T. [81M5]. Phase transition 23 (para- electric) + 2 (ferroelectric) at Tc = 135 K.

19.5 (TPO )-l

I 19.0

< 18.5 k-

k 18.0

16.0

I (TPO)“ 15.5 /- 1

,= 15.0 12 r,

-3.5 (lPo)-l

I -as \ /

K -5.5 72

90 100 110 120 130 140 150 160 K 170 I-

(‘Po~‘l I I I I I I I I I

I 52 II _

"2 50 P-N- /

48 I I I I

1

I 46 4

40 60 80 100 120 140 160 180 K 200 I-

Fig. 9.64. Rb,Cd,(SO&. s,, vs. T. [80M2]. Phase transitions: 222(‘?) + 1 at ‘Ta = 68 K, 1 + 2 at T2 = 103 K, 2 4 23 at T, = 129 K. The modes are identified by the com- phances in the cubic phase.

110 GPO

105

I 100

c

95

20.5 GPO

I 75 GPO

2ao I 2

19.5

7o 2 I

5 65

60 0 50 100 150 200 250 K 300

Fig. 9.63. RbCdF,. cpb vs. T. [75R3]. Tetragonal + cubic structural phase transition at T= 124 K. Stiffnesses cal- culated from wave velocities and a density of 4980 kgme3

I LI.3 - GPO 1,

25.0 i C’

22.5 4

751 I I I I I I I I

z 65 Cl1

r, 60

100 110 120 130 140 150 160 170 K 180

Fig. 9.65. Rb,Cd,(SO,),. cpa vs. T. [SOM2]. c’ = :(c,, - c12). For further details, see Fig. 9.64.

kndolt*Blmrtdn New SaiaIllfBa

Page 430: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 9.66 . . . 9.69) 419

GPO

I

16

14 N u. c 12

GPol 1 I I I I 1.5

2 1.0

0.5

0 100 150 200 250 300 350 400 450 K 500

T-

Fig. 9.66. RbCN. cPo vs. T. 1 [79Kl] (Brillouin scattering), 2 [79H3] (Ultrasonic wave transmission). Order-disorder phase transition (m3m + m) at 7’ x 130 K.

126 126 GPO GPO

124 124

122 122 u= u=

120 120

118 118

32.5 32.5 GPO GPO

32.4 32.4 \ I

' c,(Scole- 1

32.3 32.3 I I \ 32.2 32.2 2 2

32.1 32.1

I

G bo3 32.0

41 0 0 50 50 100 100 150 150 200 200 250 K 300 250 K 300

T- /- Fig. 9.68. RbMnF,. cpa vs. 2’. [69M5], which also deals with Fig. 9.68. RbMnF,. cpa vs. 2’. [69M5], which also deals with the complex behaviour in the antiferromagnetic region be- the complex behaviour in the antiferromagnetic region be- low T, = 83 K. low T, = 83 K.

20 .1o-4 - Tcrz

K-’ I I I-

2 200

0 100 150 200 250 300 350 400 450 K 500

T-

Fig. 9.67. RbCN. Tc,, vs. T. [79H3]. See also Fig. 9.66.

14.6 I I I I I 10.8 I ^_ r IJPO I c I IX4-Ll 14.4 I Y I I I

1

I I/I I I 11.6 1

0.8

I

GPO

0.6

,= 0.4

-250 275 300 325 350 375 K 400 l-

Fig. 9.69. RbNOz. cpo vs. T. [81H12]. Order-disorder transition at T x 252 K. c’ = f(crr - q2).

Lsndolt-Bornstein New Se& llIhI9a

Page 431: Second and Higher Order Elastic Constants

420 1.3 Elastic constants spa, cpa (Figs. 9.70 . . . 9.73) pef.p.576

17.0

I

GPO 16.8

u= 16.6

16X 4.98 GPO

t

4.90

*k.82 z

4.74

150 175 200 225 250 275 K 300 I-

Fig. 9.70. RbAg,Is. cpa vs. T. [75G73. Phase transitions at 122 and 208 K. Pseudocubic below the transition point at T= 208 K.

122 122 GPO GPO

I

I 118 118

El14 El14

110 110

I I

GEJ GEJ

i i 32 32

30 30’ I I I I 50 50 100 100 150 150 200 200 250 250 K K 300 300

T- T- Fig. 9.71. Ag,Ge10P12. cpa vs. T. [85M5]. c’ = $(c,, Fig. 9.71. Ag,Ge10P12. cpa vs. 7’. [85M5]. c’ = $(c,,

65.0 GPO

62.5

I 60.0

557.5

20 GPO

19

18 N y z

17

16

15

50 100 150 200 250 300 K 350 I-

Fig. 9.72. NaBrOl (piezoel.). cpa vs. T. 1 [75G4], 2 [75S7-J.

60 GPO

1. 50

u=40

30 13 I I CU (Stole-1 I I GPO

20 GPO

15

-10 I G

5O , 100 200 300 400 500 K 600 I

I-

Fig. 9.73. NaC103 (piezoel.). c,,~ vs. T. 1 [46Ml], 2 [75S73.

LlUdOll-Btk!SkiQ NowS&dI/29r

Page 432: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants Q,,, cpa (Figs. 9.74 . . . 9.77)

I

z- GPO

5w 250 450 K 500 T-

Fig. 9.74. NaCN. cpa vs. T. 1 [77H4] (Ultrasonic wave trans- mission), 2 [77W4] (Brillouin scattering), 3 [77L5] (3a Ultra- sonic wave transmission, 3b Brillouin scattering), 4 [79S5] (Brillouin scattering), 5 [80B6] (Brillouin scattering). Order- disorder phase transition (orthorhombic --* cubic) at T z 285 K. For the effect of pressure on the cb4 vs. Trelationship, see [77Hl4, 78H7, 78H9].

281

I

GPO

280

u= 219

278 I 154.5 GPO

,I 54.0 G s

u 153.5

153.0 275 300 325 350 375 400 K 425

Fig. 9.76. Spinel, MgA1204. cpa vs. T. [75L2],

I .,0-l K-1

g 0

-5 250 300 350 400 450 K 500

T- Fig. 9.75. NaCN. Tc,,,, vs. T. [77H4].

291 I I I I I 0 50 100 150 200 250 K 300

I- Fig. 9.77. Sr(NO&. c,, vs. T. [73M6]. J

Page 433: Second and Higher Order Elastic Constants

422 1.3 Elastic constants spu, cPo (Figs. 9.78 . . . 9.81) pef.p.576

I 310

,= 300

290

130 GPO 120

t

130

I

GPO 12c

E11c

lO[

I I I I I I I 1.12 I I I I I

1uu

90

25 (TPOI-

20

I 16

R 12

24 28 32 36 40 K U

Fig. 9.79. SrTiO, (piezoel.). spa vs. T. [69S8].

Curve number 1 2 3

Applied field [kV cm-‘] 7.77 11.90 14.20

0 50 100 150 200 250 K 300 7

Fig. 9.78. SrTiOJ (piezoel.). c,, vs. T. 1 [63B3], 2 [70Rl] (Pseudo-cubic constants). Phase transition at T = 108 K.

6.0 ‘\ GPO

I 5.5 \

3.01 220 240 260 280 300 320 K :

I-

0.66 GPO

0.6L I 2

0.62

0

Fig. 9.80. Succinonitrile, C4H4N2. cp,, vs. T. [68F2].

95.0 17.6 1 2

I 65 GPO

2 , 60 t=

0 55

180 200 220 2co 260 280 K 300

Fig. 9.81. TICdF,. cpa vs. T. [75R3]. Structural phase transition (tetragonal --) cubic) at T = 191 K. Uncorrected for thermal expansion.

Page 434: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants +d, cpa (Figs. 9.82, 9.83) 423

48 GPO

I 47 46 u=

45

44

29 GPO

I 28

:27

16.10 GPO

16.08 I z u

16.06

261 I I I I I I I I 296 298 300 302 304 306 308 310 312 K 314

T-

Fig. 9.82. TlMnCl,. c,,, vs. T. [75A2].

0 50 100 150 200 250 K 300 T-

Fig. 9.83. ZnCr*O,. cpa vs. T. [71K3]. Uncorrected for ther- mal expansion, and assuming p = 5300 kgmm3. Antiferro- electric, TN = 10 K.

Lmdolt-Barnstein New Sties WZ9a

Page 435: Second and Higher Order Elastic Constants

1.3 Elastic constants s,,, , cpu (Figs. 11.1 . . . 11.4) mef.p.576

40 UPO)”

I

30

y$ 20

10

f!pf#qq z

15 125 175 225 215 K 325 I-

Pig. 11.1. Ba(NO& (piezoel.). [67G8]. Upper curves: sBpd vs. T. Lower curve cDg3 vs. T.

130 ml

I

120

110 u=

100

90

0 100 200 300 400 500 K 600 I-

Pig. 113. Cd. c,vs. T. 1: [6OGl], 2: [66C2]. .\

340 1 z

300 330” GPO

t 290

I I I hl ,

l-Y-l4 I I ‘IG!!+ I C“( Scale -)

150 I I

I 40 GPO

E - 20 c

140

0

0 100 200 300 400 500 K 600 r-

Fig. 113. Be. c,,vs. T. 1: [6CS2], 2: [71R3].

70 GPO 65

60

45

CO I 300 320 340 360 380 400 K 420

I- Fig. 11.4. Cd-Mg compounds. c vs. T. [76K73. orderdisordertransitim:~g, -35oK;c!dgg, F T= 39OK.

L&Oh-BbUUtdll Now SaMlU290

Page 436: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu , cPu (Figs. 11.5 . . . 11.6B) 425

16.0

I

GPa

15.5

,= 15.0

86 ,=

85

14.5 55 GPa

54 I 48 53 &

I

GPa

41 52

E 46

T- Fig. 11.5. Cd8 (piezoel.). c,,e vs. T. 1: [67G6]. 2: [79D2] (CD).

Landolt-B(lmstein

I 132 G

128 60 GPa

124 I % p, c,

I 50 52 GPa

z 46

Lrf 42

a

e-l 26pa

22 I 2

IILl 0 50 100 150 200 250 K 300'"

T-

Fig. 11.6A. Cdt-$nx. cPa VS. T for x = WO233. [82D2].

1.16 1.16

1.12 1.12

1.08 1.08

1.04 1.04

1.00 1.00

1.04 1.04

1.00 1.00

'1.04 '1.04

1.00 1.00

,.oo -L-m------ ------.---L

1.00 CK6

,.oo -A--------" ---.--d>-

1.00 c33

1.00

0 0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 w3: w3: x- x-

Fig. 11.6B. Cdt,Z+ R,, vs. composition x. [82D2]. RP, = c,,a(x)/c JO) averaged over the temperature range 4.2-~3OOIQwhere c&O) are the values of [6OGl] corrected for a density of 8635 kg/m? The symbols indicate different experimentsl samples.

Page 437: Second and Higher Order Elastic Constants

426 1.3 Elastic constants spa, cpa (Figs. 11.7 . . . 11.10) kf.p.576

Fig. 11.7. CaMgz. cpovs. T. [62Sl].

66 GPO 65

64

58

19

4-J de-)

18 t

17 $

50 100 150 200 250 K 300 I-

250

I

GPO

220

2.41 -- I I I I I Ifa

I C33 2.2 \

Cl1 \

2.0 - -1 I

1.8

1.6

0.6

0.4

0.2

0 62 63 64 65 66 67 K 68

l-

Fig. 11.8. B-CO. cpa vs. T using the 3 temperature points of [88A3].

37 0 50 100 150 200 250 300 350 K 400

T-

t 225 265

GPO - - CM

El I I I Ml

110 110 GPO GPO

105 105 I I

E E 100 6 100 6 u u

95 95

0 50 100 150 200 250 K 300 I-

Fig. 11.9. CeCop c,,,vs. T. [85Al]. Fig. 11.10. CeNip c,,vs. T. [8OB4].

Lmdolt-B8msteh NewSwiaI&2!h

Page 438: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,, , cPu (Figs. 11.11 . . . 11.14) 427

52 GPO

I 50

2 48 CI 46

44 32 GPO

51 0 50 100 150 200 250 K 300 T-

Fig. 11.11. CsCuCIP cPa vs. T. [8111]. Antiferro- magnetic TN = 10.4 K. cPo calculated from wave velo- cities assuming p = 3680 kg/ms.

A GP4 I I I /iilzH 53 I 100

z 95

90 zopo

45 t c,,(Scale -1 1 -1 G

4.251 I 0 50 100 150 200 250 K 300

T-

Fig. 11.13. CsNiF3. cPo vs. T. 1: CM vs. T derived from ultrasonic propagation [82G5]. 2: [82G5], 3: [82K6]. Curves 2 and 3 are derived from Brillouin scattering. For behavior below 4 K see [8789].

64.0 r I I I I I

63.0

62.5

62.0

61.5

61.0

0 50 100 150 200 250 K 3 T-

Fig. 11.12. CsNiCl? c33 vs. T. [81M71. The anomalous behavior is caused by magnetic interactions. For a more detailed plot below T = 10 K, see [81M7].

360 II

170

I

GPa 165

E 160 I I I

c,,Kcale -

75 I 2

70

65

105 t

0 100 200 300 400 500 600 K 700

Fig. 11.14. Co. c,,vs. T. [67Fl].

hdolt-B(lmstcin New Serb IIIfZ9a

Page 439: Second and Higher Order Elastic Constants

428 1.3 Elastic constants spa, cpo (Figs. 11.15A . . . 11.16) pef.p.576

310.0 GPO f

309.5 I G

309.0

15.5 GPO

359.0 GPO

358.5

:: c, 358.0

t 71.5 74.5 GPO I I I I I I I I

I 71.0 C66 III 2 ix1

70.5 0 250 500 750 1000 1250 1500 kAIml750 II

II-

75.5 75.5 GPO GPO

75.0 75.0 I I t t

x.5 x.5

r r - I - I I I

70.5;: HllX 90” 180” 270” 360

8-

Fig. 11.1% Co. cpo vs. H at room tempezimre. [8311]. The coordinates X, Y, 2 give the direction of the applied field.

Fig. 11.15B. Co. c,,,vs. 8. [8311]. 6 is the angle of the applied field with respect to the 2 axis.

80.0 GPO 77.5

I 75.0

z72.5

I I I I I I I I ,

200 300 400 500 600 700 800 K 900 7-

Fig. 11.16. Dy (high temperature). cW vs. T. 1: [67Fl], 2: [72p2], 3: [7OR4]. (To avoid confusion, the curves for cl,, cl3 and q,+ from [7OR4] are not plotted). For results below T = 300 K see Fig. 11.17.

Laudoh-Blmnsia Now !Jaico W29r

Page 440: Second and Higher Order Elastic Constants

1.3 Elastic constants spu, cpu (Fig. 11.17) 429

85.0 GPO

I

82.5

m80.0 u”

17.5

75.0

0 50 100 150 200 250 300 350 400 K 450 I-

Fig. 11.17. Dy (low temperature). c,,vs. T.

Symbol 1 2 3

Ref. 67F1,73F3 72F’2 7OR4

Ferromagnetic Tc= 85K. Antiferromagnetic Te 179K. 1

hdolt-B&mtoh Now Sorb W29a

Page 441: Second and Higher Order Elastic Constants

430 1.3 Elastic constants sPu, cPu (Figs. 11.18 . . . 11.20) pef.p.576

78.0 , GPO

I 77.5 .‘\ ‘, /y 1

UT 7zp - / /’

71.0 1 ,R

G h

y \ , / I I I 76.5 ; ZlScole -1 u

- I , \ k76.0 I Iy\lVl I, ICllI I ,

76.0. . I 75.5

75.5 170 172 174 176 178 1eo 182 184 K 186

l-

26.2 GPO

I 25.4 25.8

2 25.0

24.6 120 130 1LO 150 160 170 180 190 K 200

T-

0 '0

L 1 ( Y\t,,(S;ole T’lLJ5 1

220’2’ ‘- GPO z

215 245

210 G

240

200 110

P I 60 - 106

GPO

56 102 0 c?

t 52

0 100 200 3cu 4CU K 500 T-

Fig. 11.18. JIy. cpa vs. T. 1: cl1 and c33 vs. T before being repeatedly recycled through TN, 2: cl1 and q3 vs.

Fig. 11.20. DyCo53 alloy. cpa vs. T. [85D3]. Magnetic spin-reorientation phase transitions oaxr at

T after being recycled repeatedly through TN, 3: c, vs. T. TN = 177.3 K. [82Vl].

temperature-s T1 = 326 K and T, = 368 K.

85 GPO

-- 3

125 150 175 200 225 250 K 275 T-

Fig. 11.19. JIy. c33 vs. T. [89Vl]. 1: H = 0, 2: H = 73232 A&, 3:H = 0 acconiing to [7OR4],4: H = 0 according to [7811]. Magnetic transition temperatures: TN=180K,TC=85K.

Ladoh-Bhstein New SaiaIW29r

Page 442: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,,,, , cpa (Figs. 11.21, 11.23) 431

88 GPO

I

86

z 84

82

80

II 50 100 150 200 250 K 300 T-

Fig. 11.21. Er. cpa vs. T.

Symbol 1 2 3

Ref. 67F1,73P3 74Pl 73R4

1 I I I I

76 I I I I GPO F 74 \ I

1 I c” I \ I I I

I 72

u= 70

68

26 t I I I I I I I FKhIVI I 1 2

24 I

I N I I

181 0 50 100 150 200 250 300 350 K

T-

- 72

-68

I a

I E

Fig. 11.23. Gd. cPa vs. T. 1: [67F2,73F3], 2: [74Pl], 3: [69W]. Ferromagnetic Tc = 289 K.

For Fig. 11.22 see next page.

Other reference [76Dl]. (This reference gives detailed data on the temperature variation of all the stiffnesses up to 300 K, but to avoid confusion with other curves the results are not plotted here). Magnetic transitions at T=53and80K.

Landolt-B6mstein Now Suioo IBf29o

Page 443: Second and Higher Order Elastic Constants

432 1.3 Elastic constants sPu, CPU (Figs. 11.22 . . . 11.25) mef.p.576

76.5

I 76.0

:: u 75.5

75.0

7c.5 \ I

74.0 \,

73.5 120 140 160 180 200 2M K 240

I-

Mognefic field H II z

Fig. 11.22. Gd. c d vs. T. [69LS]. Figures on curves hlkate the applkffield in kGe (250/n kA/m).

G6b I

75 zx

73 71

E I

71 72 u=

69 I N*

70

67 9%. -61 I 26.5 GPO h,

--\ . I I \ c,,(Scole-1

_ 26.0 1

I 16.5 GPU 16.0

E 155

15.0 0 50 100 150 200 250 K 300

I-

-I--U105 5 \ I I I-.. 1SmlP-I I I PO+

38 CD”

100 1

9gE

90

200 250 300 350 400 450 500 550 K 600

Fig. 11.25. GaSe (piezoel.). c,,,., vs. T. [7OR6].

4 Fig. 11.X ad-40 at % Y. cw vs. T. [77P3]. Points: tempature decreasing; circles: temperature increasing. Fenomagnetic T, = 294 K. Antiferromagnetic TN = 190 K.

LJdOlt-BthUCdU Now S&o IIt/

Page 444: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,, i cpa (Figs. 11.26 . . l 11.30) 433

1120 \ GPO Cl1

t

!“OO III

50 GPO

0.2801 1 '\J 0 50 100 150 200 250 K 300

Fig. 11.26. C (pyrolytic graphite, compressed- annealed). cpu vs. T. 1: [74G2,7OB5], 2: HOPG using phase sensihve ultrasonics. [83H9]. (HOPG: highly oriented pyrolytic graphite).

0 25 50 15 100 125 K 150 0 50 100 150 200 250 K 300 T- T-

Fig. 11.30. Ho (high purity), ~33 vs. T. [86P3]. Ferro- magnetic Tc = 20 K. Antiferromagnetic TN = 133 K. Between 20 and 133 K it exhibits a heli- magnetic phase; below 20 K displays a c axis spiral structure; above 133 K is paramagnetic.

2.5 GPO

2.0

t 1.5

2 1.0

0 50 100 IOae/m2 200 Electron dose -

Fig. 11.27. C (graphite). & vs. electron dose. 1: [79Al], 2: [8ON3].

185

,801 80, I I I I

GPO

75

Fig. 11.28. Hf. c,,vs. T. [64Fl].

For Fig. 11.29 see next page.

hdolt-Blimsth New Saica IQZ9a

Page 445: Second and Higher Order Elastic Constants

1.3 Elastic constants sPu, cpa (Figs. 11.2% 11.31) pef.p.576

Pi ,g. 1129. Ho. c,,,vs.Z’.

76 I‘Bd I

I I I I I I I

I I I

20

18 0 50 100 150 200 250 K 300

I-

2

Ref. 72FC2 73Sl 74R4

I 78.6

z -77.4

76.2

28.2 GPO

I 28.0

'27.8

77.6

29 GPO

28

27 2

26

25

_. ._ 0 50 100 150 200 250 K 300

T-

Fig. 11.31. Ho. ~33, CM, and c~ VS. T. [88B3]. Perro- magnetic TC = 17.8K, antiferromagnetic 7’~ = 133K.

Ferromagnetic 7’~ 20K. htifezmmagnetic Z’p 133K.

Laodolt-Bbmstoin Now !kiaIll/2!h

Page 446: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpa (Figs. 11.32 . . . 11.34) 435

81.001 I I I I I I

GPO1 I I I n\I I 80.75 ’ ’ I \\I

i? 1

80.001 1 I

1 I I f,‘iil

I II I,

80.50 --~-

t

79.501 0 5 10 15 20 25 K 30

a T-

28.8 GPa -

28.7

3

t I I r i\,II f

28.6

---- cooling - warming

‘I 3, L

I ,

10 15 20 25 30 35 K 40 b T-

400 (1PaI-l

0 50 100 150 200 250 K 300 T-

Fig. 11.33. Ice, HzO. ET,,,, vs. ‘I’. 1: [68D3], 2: [66P2].

350

I 3002

250

28.3 GPO

I 28.2 3 CI

28.1

85 90 95 100 K 105 c T-

4 A Fig. 11.32. Ho. c33 and CM vs. T. [88B3]. (a) ~33 vs. T for 7-s~30 K, (b) CM vs. T for lo-38 K, (c) CM vs. T for 88-105 K. The special spin struchms occurring at temperatures of 97.4,40.5,24.5, and 19.8 K break the hexagonal symmetry. T, = 17.8 K, TN = 133 K. Arrows show the direction of temperature change.

c,,(Scale-1 2 - 1

-- -

0 50 100 150 200 250 K : T-

9 Pa

8

7 I SC

8 5us

--- Fig. 11.34. Ice, HzO. c,,e vs. T. 1: [68D3], 2: [66P2]. Other references [57B 1,64B4,64B6].

Lutdolt-Blmstcin New Saim lW29a

Page 447: Second and Higher Order Elastic Constants

436 1.3 Elastic constants sPu, CPU (Figs. 11.35 . . . 11.39) mef.p.576

100 125 150 175 200 225 250 K 275 I-

Fig. 11.35. Ice (deuterated), &O. cP,vs.,T. [71M8].

2,0,*l

I 3

501

vw 0 100 200 300 400 500 K 600

T-

Pig. 11.37. La& CPU VS. T. [83L8]. Elastic proper- ties were detennined using the hexagonal approxima- tion. There is strong evidence that the trlgonal structure (3m) is more appropriate. The heavy frifluori&s of lan- thanumttreorthorhombicatRT[83L8].

118

301 I I I I I IT- 1 16

50 100 150 200 250 300 350 K /,o;’ I-

Fig. 1136. InSe. cpo vs. T. p7Il].

300 400 500 600 700 8W 900 K T-

G6poO

55

50 I N

45 &

10

$

Fig. 1139. LiKSO,+ pv2 vs. T. [87Pl]. 1: pv2 for lon- gitudinal waves along the [llO] direction, 2: pv2 for longitudinal waves along the [lOO] direction, 3: pv2 for longitudinal waves along the [OOl] direction. Phase changes: 6 + 1 at T= 708 K,? + hexagonal atT= 943 K. Between 708 and 943K the symmetry may be orthorhombic. For hexagonal struchues, curves 1 and 2 give cll, curve 3 gives c33. Measurements by Brillouin SCattering.

Page 448: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spaI cpa (Figs. 11.3&l 1.40)

0’ I I I I I I I I 140 160 1’30 200 220 240 260 280 K 300

68 GPa

67

66

56

15

14 290 300 310 320 330 340 350 K 2

T-

Fig. 11.38. LiKS04. cPa vs. T. 1: [89M4], 2: [86Pl]. Phase changes for decreasing temperature: 6 + 6mm at T==250K;6mm+ rnnQatT=190K.Forthehexa- gonal phases cz = Cll. Measurements by Brillouin scattering. Arrows show the direction of temperature change. Other references [82M4, 83D1, 85G8, 85W8, 87T1,88Dl].

G

82

80

34 GPO -

I - Cl2 32

I

32 1

30 6Pa

29

I 28,”

27

- .1-,

2 26

0 50 100 150 200 250 K 300

Fig. 11.40. Lu. c o vs. T. 1: Lu 0.6 at % H, [71T3], 2: Lu 1.5 at % Hz [‘!kIJ], 3: Lu 0.7 at % H, [87G3], 4: Lu 1.3 at % Hz [87G3]. Curve 3 for C~ (not shown) lies between curves 2 and 4 at lower temperatures, but slightly below curve 2 at mom temperature. See [87G3] for the concentration of other interstitial elements for all four samples.

Ldolt-BBmstoin New Sotier WZ9a

Page 449: Second and Higher Order Elastic Constants

438 1.3 Elastic constants spa, cpa (Figs. 11.41 . ..11.44) Bef.p.576

60 -19 I c.. lSCfllP -1 1GPo

t 26.0 GPO

z 25.5

22.0

I

GPO 21.5

E21.0 0

18 I 172.

c, ! 16

50 100 150 200 250 K 300 I-

Fig. 11.41. Mg. c,,o vs. T. [57Sl]. Other reference [61El].

250 GPO -.-I \ I

0 M 100 150 200 250 300 350 K 400

Fig. 11.43. Mn$$ cW VB. T. [8011]. phase changes: fir8t-order transition to an antiferromagnetic state at T = 98 K (antiferromagnetic vector in the basal plane); first-older crientation tram&n at T = 64 K in which the imtiferromagnetic vector has a nonzero component perpendicular to the bad plane.

0 50 100 150 200 250 K 300 l-

Fig. 11.42. MgZnP c,,vs. T. 1: [6932], 2: [76Sl].

25 GPO

2L I z

23

1. ( -4-r 16.5

---- - Cl3 (Stole -1 I GPO

I I 16.0: 0 50 100 150 200 250 K 300

l-

Fig. 11.44. Nd. c gvs. T, 1: [76G2], 2: [77Ll]. Minor minimaatT=7. KandT=19K,andothersmaU P irregularities on the curves are not shown here.

LdOI!-B(lUllfOiO New SddIb29r

Page 450: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,, , cPi (Figs. S I-45, . . . 11A9) 439

222

8 214

206

I 106 GPa

41.6 46.8 ’ GPa J

I 40.8 46.0

3 40.0 , ‘39.2

38.4 0 50 100 150 200 250 300 K 350

T-

Fig. 11.45. NdCop cpo vs. T. [84D3]. Temperatures Tl and T, are defined in Fig. 12.9 [84Dl]. Spin orientation phase transitions are similar to those in Fig. 12.9. See [84D3] for velocity changes in this temperature range as a result of an applied magnetic field.

2.15 GPa

2.50

1 1.50 ::

c, 1.25

1.00

0.75

a50 I I cu 0.25 I

35 40 45 50 55 60 K 65 7 /-

Fig. 11.47. B-N2 cpo vs. T. [88A3]. Curves are based on the 2 or 3 experimental points of 1884933. Values at 37 K based on neutron scattering [83P8].

Land&-Bernstein New Suit IW29a

180 GPa 1

50.0 GPa 49.8

49.6

2 49.4

49.2 I I I I I I I I

49.0’ I I I I I I I 170 190 210 230 250 270 290 K 310

T-

Fig. 11.46. NdCop cll, c33, and cM vs. T. [86P5]. The minima in ca occur at T = 248 and 285 K. See Fig. 12.9 for phase changes.

For Fig. 11.48 see next page.

300

I

GPa

250

N > 200

150 I 0 200 400 600 800 1000 K 1200

T-

Fig. 11.49. Re. cpovs. T. 1: [6432], 2: [67Fl].

Page 451: Second and Higher Order Elastic Constants

440 1.3 Elastic constants sPo, cpa (Figs. 11,48 . . 11.51). mef.p.576

I 1 I - I.-58

I I IA I r\_lGPo

1C.O

13.5 I 0 50 100 150 200 250 K 300

l-

Fin. 11.48. Pr. c-VS. T. 173G71.

52 46 GPO I

1

I

GP

1

E 1

9 44

'0

8

20 GPO

19 1 p u

18

I

I

GP: ‘U

2-

a 0 / 180 200 220 240 260 280 300 320 K 340

I-

Fig. 11.50. RbMnCl,. cPa vs. T. [79A4]. Dispersive type structural phase transition 6/mmm + 2/m at T = 272K.

c?rso

I 76

z 14

12 0 50 100 150 200 250 K 300

Fig. 11.51. RbNiCl,. c33 vs. T. [83M6]. Antiferro- magnetic TN - 11 K.

Page 452: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpa (Figs. 11.52 . . . 11.55) 441

640 GPa

620

580 580

I I

GPO GPO

560 560

27 27 540 540

520 520

190 190

I I

GPa GPa

180 180 E l?

:I70

600

580

180 GPO

170 170

160 160

150 150

0 0 200 200 400 400 600 600 800 800 K K 1000 1000 T- T-

Fig. 11.52. Ru. c,,vs. T. [67Pl]. Fig. 11.52. Ru. c,,vs. T. [67Pl].

I z u

GPI

4i

I

3t

3f s

s; 9 34 G

32

26

4.2 GPO 4.0 I

“,=

3.8

0 50 100 150 200 250 300 350 K 400 r-

2i!8 GPO

27.6 I 27.4 2

27.2

0 50 100 150 200 250 K 300 T-

Fig. 11.53. SC. cpovs. T. [68F3]. For effect of impuri- ties on the stifhesses see [68F3].

I 90 25 GPO

o 80 G s 7.

0 100 200 300 400 500 600 K 700 T-

Fig. 11.54. Ag$l. c,,,vs. T. [67C21.

4 Fig, 11.55. AgI (piemel.). cPo vs. T. [74F2]. Phase transition at 420 K.

Lmdolt-Bhmtain Now Serb lIIf29a

Page 453: Second and Higher Order Elastic Constants

1.3 Elastic constants sPo, cpa (Figs. 11.56 . . . 11.58) wef.p.576

300 320 340 360 380 400 420 K 440

Fig. 11.56. RAgI. c33 vs. T at different frequencies. [8OP4]. The dispersion is attriiuted to piezoelectric interaction.

160 160 GPO GPO 150 150

120 120

130 130

I

I 80 70 80

70 & & u u

60 60

50 50

40 40

C66 30 30

20 20 m 0.65 0.70 0.75 0.80 0.85 0.65 0.70 0.75 0.80 0.85

x- Fig. 11.57. AgI$?r+ cpo vs. composition x for the E phase. [84M6].

85 GPO

I

80

-75 z

70

65 75

GPO

I

70

u= 65

60

55

I 25 GPU f

zy -20 - u'

30 GPO

I 25

E20

15 0 50 100 150 200 250 300 K 350

I-

Fig. 11.58. Tb. cPa vs. T. 1: [72Sl], 2: [74Pl], 3: [71Jl]. Ferromagnetic Tc = 215 K. Antiferromagnetic TN-225 K.

IA&lbBBlllUdll NowSaiuIIW90

Page 454: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cPu (Figs. 11.59A . . . 11.6OB) 443

14.5 GPO 74.0

I 73.5

2 73.0

72.5

72.0

71.5 220.0 2225 225.0 227.5 230.0 232.5 K 235.0

T-

Fig. 11.59A. Tb (high purity). ~33 vs. T. [86P3]. Ferromagnetic Tc = 221 K. Antiferromagnetic TN = 230 K.

“200 205 210 215 220 225 230 K 235 T-

Fig. 11.59B. Tb (impure sample). c33 vs. T. [86F3]. Arrows indicate the direction of heating and cooling.

75.0 GPO 74.5

I 74.0

3 73.5

73.0

72.5 205 210 215 220 225 230 K 235

T- Fig. 11.6OA. Tb (high purity). ~33 vs. T at zero B. [84Jl]. Ferromagnetic T, = 220 K. Antiferromagnetic TN=229.5 K.

I 72.5 I I I\\\ I

u 72.0

70.51 I I I I I I I I 215.0 217.5 220.0 222.5 225.0 227.5 230.0 232.5 K 235.0

T-

Fig. 11.6OB. Tb (high purity). c33 vs. T and B. [84Jl]. Ferromagnetic Tc = 220 K. Antiferromagnetic TN = 229.5 K.

Land&Barnstein New Set& IU/29a

Page 455: Second and Higher Order Elastic Constants

1.3 Elastic constants sPu, cpa (Figs. 11.6OC . . . 11.62) mef.p.576

73.0

I 12.5

:: c, 72.0

Fig. 11.6OC. Tb (high purity). ~33 VS. B and T. [84Jl]. Ferromagnetic Tc = 220 K. Antiferromagnetic TN = 229.5 K.

260, I I I I I

43 GPO

GE 30

t 75

P 70

65

60 I I I I-I I ii,

GPoi I 1 I

1 I I/ _ I 1 I’+\

I 70 GPO

76 y, ! r,; ( 5cole -1

I I LI 4-i I I 68

1 5 66

lLLER?H 140 160 180 200 220 210 260 K 280

l-

Fig. 11.61. Tb. cI1, ~33 vs. T. 1: H = 0,2: H = 15920 A/m [89Vl], 3: H = 0 [84Jl], 4: H = 0 [72+X]. Anti- ferromagnetic TN = 230 K, ferromagnetic Tc - 220 K.

GPO

250-

210 I I

4 A

I 230

:: >220

h 1 IT, Ii

210 -

411

110 GPO

106

I 102 z

I I I lil J 0 100 200 300 400 K 500

l- Fig. 11.62. TbCo5.t. cpo vs. T. [85D3]. Magnetic spin- reorientation phase transitions occur at temperatures Tl =410KandT2=418K.

Ldol!-mIutoin Now SaiaID,Z9r

Page 456: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, c,, (Figs. 11.63 . . . 11.66)

82

I

GPO

78

2 ,= 74

26.5 GPO

I 25.5

,= 24.5

23.5 23.5

1 GPO

1 22.5 ‘12

N

I GE z 12

0 50 100 150 200 250 K 300 T-

Fig. 11.63. Tb-50 at % Ho. cpo vs. T. [77I2]. Ferro- magnetic Tc = 82 K, antiferromagnetic TN = 187 K. a) Temperature decreasing. 6) Temperature increasing.

200 I , , 1 t , ,

Gpo14 I I I I I 180

160

80

60

20 0 200 400 600 800 1000 K 1200

T-

8.5 GPO

8.0 I 7.5 2

7.0

0 50 100 150 200 250 K 300 T-

Fig. 11.64. Tl. cpa vs. T. [63F2].

322 GPO

320 I

293 318’ GPO

I 292 316

z 291

2goOW 150 K 200 T-

Fig. 11.66. UPb. ~11 and 93 vs. T. [85Y9]. For the effect of an applied B field on the velocity associated with cl1 at low rempedures see [87K3,88T5].

Fig. li.65. Ti. cPa vs. T. [64Fl].

Ldolt-BOrnstein Now so$ioon7/29a .

Page 457: Second and Higher Order Elastic Constants

446 1.3 Elastic constants spar cpa (Figs. 11.67 . . . 11.70) mef.p.576

84 GPO

I 82

’ 80 LF

78

76 .

t-t

82 GPO

80 I 78 B

76

27 GPO

26 1

25 3

15 0 50 100 150 200 250 300 350 K LOO

Fig. 11.67. Y. c d vs. T. 1: [6oS3, 63821, 2: [8OS3] (q-v. for the efkct of impurities on the elastic WIWIltS).

180 GPO

I

170

160 E

150

0 100 200 300 400 500 600 K 700 T-

Fig. 11.68. Zn. c,vs. T. 1: [58Al], 2: [58Gl].

'1.9 I 1

7.8 ---'

3.55 (lPo)-’

I 3.50

Y3.45 0

3.40 0 100 200 300 COO 500 600 700 K 800

I 45 GPO

b-t u* 44

43 0 200 400 600 K 800

T-

Fig. 11.70. ZnO (Zncite) (piemel.). cpo vs. 2’. [73T5, 751‘23.

4 Fig. 11.69. ZnO @ incite) (piezoel.). sBPa vs. T. 1:

I [7OG3]. 2: [73T5,751‘2] (constant field).

LdolI-Bamstein NewSaiultW!h

Page 458: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spur cpa (Figs. 11.71 . . . 11.74) 447

129 1 I I I I I 1

113

I

GPO

112

E 111 48

GPO I .- :

30 GPO '

29

26

251 0 50 100 150 200 250 K 300

T-

Fig. 11.71. c%-ZnS (Wutzite) (piezoel.). cpo vs. T. [67K7].

b, u 80

Cl2 -

1 --F

60 -

"3t-t

0 200 400 600 800 1000 K 1:

Fig. 11.73. Zr. c,,~vs. T. 1: [64Fl], 2: [73T7].

45 (TPo)-l

I

40

y35

30

-0 IO 20 30 mol% 50 MgS-

Fig. 11.72. ZnS-MgS. sBp,, vs. composition. [7884].

LJ”

GPO 240

230

210

I 200

a190 LY

180

170

160

130 I 250 300 350 400 450 I‘h K': 500 550 T-

Fig. 11.74. Zr-0. cPa vs. T. [73T7J Bracketed figures are at % oxygen.

hdolt-Bhstcin NewSorimJ&29r

Page 459: Second and Higher Order Elastic Constants

448 1.3 Elastic constants sPu, cpa (Figs. 12.1 . . . 12.4) kf.p.576

30 UPal-’

25

I

20

-15 c-7

Gl

o- 50 100 150 200 250 K 300 T-

EP,B

6

I 4

t 2

, 280 300 320 340 360 380 K 400

T-

Fig. 12.1. BaTiO, @iezoel.). spa vs. T for hexagonal form. [88Yl]. Ferroelectric T, = 54 K. Phase transi- tions at T = 54 K and 215 K. See also Figs. 9.13.*#9.15, 18.3 and 20.3.

Fig. 12.2. Ct&+ approximation.

cPa VS. T. [89M2]. Hexagonal

280 300 320 340 360 380 400 420 K 440 T-

Fig. 12.3. czop42. approximation.

c,,,, vs. T. [89M2]. hexagonal

0 25 50 75 100 125 K 150 T-

4 Fig. 12.4. CePdIn. c33, CM and cti vs. T. [9OS3]. Anti- ferromagnetic TN = 1.8 K. cti = ‘A@,, - c&.

Landoh-B8msmh New SaiaUIf29r

Page 460: Second and Higher Order Elastic Constants

Ref.p.576] 1.3 Elastic constants spu, cpu (Figs. 12.5 . . . 12.7)

cl1 Kale -1 WILY) 305.0

I, I I I GPO 4

71.5 GPa

71.0 1 2

70.5

63.51 ‘A’I I I 0 250 500 750 1000 1250 kA/m 1750

H-

Fig. 12.5. Co-l.37 at C Fe. ccc vs. H at room tem- perature. [83X1]. The coordinates X, Y, 2 give the direction of the applied field. The structure changes to dihexagonsl cp (dhcp) above 1.25 at % Fe.

76 GPa

--I (Scale -) - 75 \

79 GPO

78

I I I I k I I I j7,

I 76 z

75

75 100 125 150 175 200 225 250 K 275 T-

Fig. 12.7A. Gdes~Y3r.t. 93 vs. T. 1: [82B3], 2: [82Bll]. Phase changes: unknown magnetic + anti- ferromagnetic at T = 205 K, antiferromagnetic + un- known intermediate phase at T = 185 K, unknown intermediate + ferromagnetic at T = 165 K. Arrows show the direction of the temperature change.

hdolt-B6matc.h Now Sab W29a

’ 68 0 :: CI

GE -100

69 -200

68

“I

0 40 80 120 160 200 240 K 280 T-

Fig. 12.6. Gdas.dY34.6 ~33 and CM vs. T. [82SlO]. 1: c4 vs. T, 2: c33 vs. T, the arrows showing the dire&m of the temperature change, 3: ~33 VS. T about TN, 4: the temperature derivative dc3&T about TN. Phase changes: paramagnetic + antiferromagnetic at TN = 205 K, antiferromagnetic + ferromagnetic at Tc = 131.7 K.

76 I GE 74 LF 80 72

I 78 70

?76

721 I 75 100 125 150 175 200 225 250 K 275

T-

Fig. 12.7B. Gd7,-,3Y~.7. c33 vs. T. 1: [82B3], 2: [82Bll]. Phase changes: paramagnetic + or&red magnet& at T = 220 -K, ordered magnetic + ferro- magnetic at TN = 208 K. Arrows show the direction of the temperature change.

Page 461: Second and Higher Order Elastic Constants

450 1.3 Elastic constants spu, cpa (Figs. 12.8 . . . 12.10) [Ref.p.S76

5. C66 ---

0 t 4

-75 100 125 150 175 200 225 K 250 T-

Fig. 12.8. (CH$H,)NaSe0,~6Hz0. cpa vs. T. [89M5]. Second-order phase transition ooxrs at 136.9 K.

1.9765 f 1

(Tpa)-’ I I I I I I / I I 1.9760

-0.dlB5 (TPa)e’

UT -0.4190

2.0575 -0.5195

2.0570 I

\ 2.0565 -0.4355

0 25 50 75 100 125 150 K 175 T I-

Fig. 12.10. SE. sll and ~12 vs. T. [89Kl]. 1: polytype 4H, 2: polytype 6H. The 4H modification is slightly more packed in the direction of the c axis than 6H.

255, I I

255 - I

GPa 250

‘. 230

225

55.0 GPa

51.5

46.01 I I I I I 0 50 100 150 200 250 300 K 350

T-

Fig. 12.9. N&YIIC!o~. c33 and c, vs. T for various compositions, x. [84Dl]. Phase changes: below Tl the basal plane is the easy direction of magnetization: between Tl and T2 the resulting spontaneous magneti- zation changes smoothly from being peqendicular to thecaxis(atT=TI)tobemgparalleltothecaxis(atT = Tz); above T2 the c axis is the easy direction of magnetization. Both spin-orientation phase transitions are second order.

Curve1 2 3 4 5 6

X 0 0.25 0.35 0.5 0.75 1.0

Ldok-Bbmdn NewSdcaIB/Z9r

Page 462: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spur cPu (Figs. 12.11 . . . 14.1) 451

100 150 200 250 300 350 LOO 450 K 500 T-

Fig. 12.11. (CH&NCdCl,. cl1 and c33 vs. T. [88L2]. Phase changes: structural phase change 6/m + 6/m at T = 154 K, order - disorder transition 6/m + 2/m at T = 118 K, 2/m + 2/m at T = 104 K, quadrupling the unit cell. Above 405 K the tetramethyl ammonium mole- cules are believed to behave like nearly isotropic rotators instead of plane rotators.

23 23 GPO GPO

22 22

21 21

I I 20 20

b b 19 19 u" u"

38 38

37 37

36 36

35 351 I I I I I I I I 0 0 25 25 50 50 15 15 100 100 125 125 150 150 175 175 K K 200 200

T- T-

Fig. 12.12B. (CH3)$lMnC13: Cu?+. cl1 and c33 vs:T. Fig. 12.12B. (CH3)$lMnC13: Cu?+. cl1 and c33 vs:T. [86Ll]. The intermediate phase between 130 and 123 K [86Ll]. The intermediate phase between 130 and 123 K is unknown. is unknown.

21 GPO

32

0 100 200 300 400 500 K 600 T-

Fig. 12.12A. (CH#MnC13. ~11 and ~33 vs. T. [86Ll]. Known phase changes: order-disorder transi- tion 6/m + 2/m at T = 126 K, quadrupling the unit cell.

I 0.8 (TPa)-’

; 0.6 I_

x c 0.4

0 200 400 600 800 K T-~ -

8.0 (TPa)’

6.5

Landolt-B&k& Now Saioa WZh

Fig. 14.1. Alz03 ( Corundum ). s,,,, vs. T. [66Tl].

Page 463: Second and Higher Order Elastic Constants

452 1.3 Elastic constants sPu, cPu (Figs. 14.2 . . . 14.5) [Ref.p.S76

-20

L!l&iw

--- 1 h 2

-40 0 0 400 400 800 800 1200 1200 1600 K 2WO 1600 K 2WO

T-

Fig. 14.2. .A& (Corundum). c,,,, vs. T. 1: [66Tl], 2: [88(37,89Gl].

36.6 26.1

17.8 26.2

17.6 11.2

I 17.4 l%O

I

4b, w 5.3 16.8

+i

5s I 1.7

1.8 1.5

1.6 1.3

1.4

1.2 240 280 320 360 400 K 440

T-

Pig. 14.3. a-AIPO, (Berlinite) (piemel.). spa vs. T. [SaWlO].

90 GPO

50 200 300 400 500 600 700 800 K 900

I-

Pig. 14.5. APQ (Berlinik). $33 vs. T. [81El]. Hex- agonal + trigonal transition at T, = 861 K, analogous to the a + 8 transition in quartz. If the results are scaled so as to plot c(T)/c(294 K) vs. T/r,, the curve is almost identical to the comsponding curve for quartz [81El].

Iandolt-Blmdn Now Saia IUfZ9a

Page 464: Second and Higher Order Elastic Constants

.Ref.p.576] 1.3 Elastic constants spg, cPu (Figs. 14.4,14.@

65.0 GPO

64.0

64.5 w

\ - a7 GE 62

56 43.2 \, a6

a5 54 43.0 I $%

31.0 42.8

-43.5 u 30.8 C I , c , / 42.6

t 9 I\ I I I I 143.0 1 30.61 I I

/ -rf I -irnlP .

7 12.5 7

10.5 12.0 5

10.0 3

9.5 1 60 100 140 la0 220 260 K 300 '240 280 320 360 400 K 440

T-

Fig. 14.4. a-APO4 (Berlinite) (piezoel.). cpo vs. T. 1: [75C2], 2: [86WlO]. @‘LB.: c33, cl3 and cl2 of [86WlO] differ considerably ftom the results of other experi- ments ( see Table 14 )).

T-

100

I

GPO

90 u=

a0

28 GPO

I 26 30

c 24

e22 z

20

ISI 1 300 400 500 600 700 a00 K 900

T-

Fig. 14.6. Sb. c,,,vs. T. [71Vl].

hdolt-B(lmmin New Saiea lBf29a

Page 465: Second and Higher Order Elastic Constants

454 1.3 Elastic constants spu, cPu (pig. 14.7) mef.p.576

GC 12

I 9

b, 6 I c,

3

0 Cl1

-3 -a- 0 50 100 150 200 250 K 300

T-

16 GPO

70 80 90 100 110 120 K 130

12.0 1 I I I I I I 75 75 80 80 85 85 90 90 95 95 100 100 K K 105 105

I- I-

d&. 14.7. Benz& (C,+$O~. c vs T. 1: [81Vl] 2: [82Y73,3: [82YS], 4: [83Y8], S,ppsSi2]. Fenoelecko and femelastic transition 32 + 2 at T = 83.5 K cti = WC11 - Cl& cq = H((C& + cd - [(c&j - c44p + 4q421Kl.

LdOlI-BbUUtOiLl Now SaiaIBfBr

Page 466: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 14.8, 14.9) 455

I- I‘c’2 I I c1 - ’ 2[

4+ I I I P 2 2 2

I I I I I

IO

5

0 100 200 300 400 500 K 61

Fig. 14.8. Bi cPc vs. T. 1: [6OEl, 72K33,2: [72B4], 3: [76L2]. To avoid confusion with other CUIWS, cl2 and cl3 from [76L2] are not plotted here.

I 66 u=

64

62 41

I GPa

9 8 11

z 7

0 50 100 150 200 250 K 300 I-

Fig. 14.9. Bi (Tedoped). c,,vs. T. [77LA].

Curvenumbex 1 2 3

N [ 1019 cm-31 PureBi 1.11 12.1

Lundolt-Bimstoin New Se&a BUZ9a

Page 467: Second and Higher Order Elastic Constants

456 1.3 Elastic constants sPo, c,, (Figs. 14.10 . . . 14.13) Pef.p.576

Fig. 14.10. Bi-10% Sb. c,,vs. T. [76L2].

0 50 100 150 200 250 K 3[ I-

Fig. 14.11. Bila&bo.aT%. c,,,vs. T. [72A2].

18.0 UPaT' 1

17.5 E

9 -

#-' ti I /

/ 42

/' / CO

I Lr 4 h

VT I3 250 300 350 COO 450 K 500 .

Fig. 14.13. CaCQ (Calcite, cakspar, Iceland spar). s,,,vs.T. [68D2,68D4].

hIdOlt-Bbmaoin Now Suia lB/2!h

Page 468: Second and Higher Order Elastic Constants

1.3 Elastic constants spu, cpa (Figs. 14.12, 14.14)

52 GPO

I

51

550

15

I

GPO

14 ,’

Fig. 14.12. BizT%. cpcr vs. T. [72J3].

Fig. %cf

31 GPO

1 c12(Scale-1 1 ,

14.14. CaCO, (Calcite, calcspar, vs. T. [68D2,68D4].

Iceland

It i 150 I

- Cl1

88 GPO

135 86 I ::

AL lJ

55 I Ii \\ .

.? \ A \ ‘13 - \ a

c,, ---I

IL

I 22 GPO

) q 2o spar). 18

150 200 250 300 350 400 450 500 K 550

34 ’ GPO 32

I 30 2

28

Landolt-Blmstoin New Sorim Ill/298

Page 469: Second and Higher Order Elastic Constants

458 1.3 Elastic constants spur cpa (Figs. 14.15 . . . 14.17) mef.p.576

16Or

I

100

90 t

u 80

60

10 0 0.25 0.5 0.75 1.0 1.25 1.5 GPol

P-

1 1.75

Fig. 14.15. Caq (Calcite). cpo vs. p. 1: [84V2], 2: [68D5]. pressure induced phase transition trigonal + 2/m forp 2 1.46 GPa.

Pig.

0 0 200 200 400 400 600 600 800 800 K K 1000 1000 T- T-

14.16. CQVO& CBS3 and CB, vs. T. [9OLl]. 14.16. CQVO& CBS3 and CB, vs. T. [9OLl].

5

0 0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8 l.0 GoSe x- GoS

3

Fig. 14.17. GaSel&. cpo vs. comp$tion x. [8!5Yl]. = H(cll - cl& The E phase is 6x112, the y phase

gz, and the B phase 6lmm.m.

h&l&B6mctsin Now !kr&o Ill&

Page 470: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 14.18 . . . 14.21) 459

270 GPO 265

260

IO 101 I I I I I I I 50 50 100 100 150 150 200 250 300 200 250 300 350 350 K 400 K 400

T- T- Fig. 14.18. $GagSi014 (piezoel.). spa, $11 and CD& vs. T. [86Sl]. c&5 = M(c,, - CQ).

Gp0l I I I I I

T-

Fig. 14.20. LiiO, (piez,oel.). cPPd - c&PO vs. T. [85Tl].

26On:

L I I I I\I ’

I \I I I I I .O I h

c,t; ( Scale -1 5%5

I \I 5: i.0

200 400 600 800 1000 K 1200 T-

Fig. 14.19. LiNbO, (piezoel.). cPo vs. T for single domain (SD) and multi-domain (MD) crystals. 1: [87T41, [85Tl], 2: [83Tl]. The bar indicates a MD crystal. Phase changes: below Tc_= 1410 K, ferro- eleceic 3m; above Tc, paraelectric 3m.

250 GPO

I

'240

R 230 u

220

210' 100 200 300 400 500 K 600

T- 73.75

I

GPO

73.50

73.001 280 300 320 340 360 K 380

T-

Fig. 14.21. LiNbO, (piezoel.). c33 and cM vs. T. 1: [71C4], 2: [86W31. For evidence of a change in axial ratio (c/u) near 348 K due to possible impurities, see [86W3]. cti = H(c,, - cl&.

Latdolt-B6mstein Now Saia llltZ9r

Page 471: Second and Higher Order Elastic Constants

460 1.3 Elastic constants +,, cpa (Figs. 14.22 . . . 14.25) pef.p.576

L

3

I 2

5,

Ill I I I I I I ” I

I I I I I I

I 512 I I

-111 200 300 400 500 600 700 800 K 900

I-

Fig. 14.22. LiTa (piezoel.). s,,,vs. T. [69Yl].

GPO 60

58

40

38

36

t j2-

12H-+f3+

1 I I I 0 50 100 150 200 250 K

I- 3oc

240 GPO

235

285 GPO 280

275

270 265

$260

230

225

220

215 I t c,

105

“a..”

300 400 500 600 700 800 900 loo0 K 11W f T-

Fig. 14.23. LiTa@ (piezoel.). cpa vs. T. [82Tl]. The sdffnesses of single domain (SD) crystals are denoted by cEpo and cp po, whereas those of multi-domain (MD) crystals by $c. Phase changes: below_Tc = 883 K, fer- roelectric 3m; above Tc, paraelectric 3m.

GlP: GlP: 0.8 0.8

I I 0.6 0.6

“,= “,= 0.4 0.4 Q ‘* Q ‘* u” u”

0.2 0.2

0 0 300 300 400 400 500 500 600 600 700 700

l- l-

Fig. 14.24. Liia03 (piemel.). Cpp,, - CBpo vs. T. [82Tl]. Tc = 883 K. See Fig. 14.23 for phase transi- tiOllS.

Fig. 14.24. Liia03 (piemel.). Cpp,, - CBpo vs. T. [82Tl]. Tc = 883 K. See Fig. 14.23 for phase transi- tiOllS.

Fig. 14.25. Proustite, Ag&S~. c o VS. T. [81S51. Phasetrartsitions:3m+matT=5 ;m+triclinicat d T=%IK.

lAUdOh-BiblIlt& Now hia J&290

Page 472: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPg, cpu (Figs. 14.26 . . . 14.29) 461

I

28 53 GPa

G" 21

GPO

42

I

12.0 41 GPO

11.5 2

""n I I.U I I I I I

150 175 200 225 250 275 K 300 T-

Fig. 14.26. Pyrargyrite, Ag$bSp cPa VS. T. [8103]. cpu calculated from wave velocities, assuming a den- slty of 5860 kg/m3.

-101 250 300 350 400 450 500 550 K 600

Fig. 14.29. NaNOp spa vs. T. [57Kl, 68C2, 7OK4, 71H3]. Phase transition at T = 548 K,

I 0 -c,, (Scale -1

L

Fig. 14.28. a-SiOz (Quartz) (piezoel.). cpa vs. T. T = O--300 K.

Symbol 1 2

Ref. 7488 65M5

For Fig. 14.27 see next page.

Ldolt-B&haein New Soria BIf29a

Page 473: Second and Higher Order Elastic Constants

462 1.3 Elastic constants sPu, cP, (Fig. 14.27) Bef.p.576

130 GPO

90

a0 70

140 GPO

120 I 100 g

a0

60 I 50 60 GPO

30

60 GPO

I 40 20 27 z 0

-20 GPO

-10 I z

0

-20

-40 0 100 200 300 COO 500 600 700 900 900 1000 K 1100

I-

Fig. 14.27. SiO, (Quartz) (piemel.). cpo vs. T. T = @**lo50 K. a - 6 (trigonal-hexagonal) transition at T = 853 K. 1: [41All, 2: 162211, 3: [7488], 4: [48Kl], 5: [7OHll]. Other references [83Ul, 84Ul].

LmdOlt-Bl)mrtdn Now SoriaIB/29r

Page 474: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 14.30 . . . 14.33) 463

GPa \ I I I I 45 \

-5

250 300 350 -400 450 500 550 K 600 I-

Fig. 14.30. NaNO,. cpa vs. T. [57Kl, 68C2, 7OK4, 71X%3]. Phase transition at T = 548 K.

1.2, I I I I”/ I GPO

1.0

I 0.8

t 0.6 0s u

0.4

n w280 -300 320 340 360 380 K 400

T-

Fig. 14.32. NaN,. ceff vs. T for a pair of soft modes. [84K3]. cti=(caacM- c142)/(ca + cM) for both soft modes when cacti - cl42 + 0 [86K3].The ferroelastic transition at T, = 293 K (arrow) occurs as a result of the instability associated with COCK - ct42 = 0. Below 293 K the structure is monoclinic. Open circles: tram+ verse mode with propagation vector parallel to the (1 axitq full circles: transverse mode with displacement v&or parallel to the (I axis.

GPa

t 65

,= 60

40 GPa

25 30

I

GPa ----

20

51 50 100 150 200 250 300 K 350

T-

Fig. 14.31. NaN03. cpovs. T. [82Rl].

65

60

55

50

55

50

1 45

$40

I

35

30

25 I/’ /

25&------ 1 -s12

100 200 300 400 . 500 600 700 K 800 I-

Fig. 14.33. Te (piezoel.). sPa vs. T. 1: [64M6], 2: [7OV2].

Landolt-Bbmaein Now Sraiw W29r

Page 475: Second and Higher Order Elastic Constants

464 1.3 Elastic constants spa, cPa (Figs. 14.34 . . . 14.36) mf.p.576

80 ml-L. -’ 70 -

t . c33 3

>I I I IX -

I so-

30 \I -\ 1

25 .‘-, >

-

0 100 200 300 JOOI 500 600 700 K I _

Fig. 14.34. Te (piezoel.). cpo vs. T. 1: [64M63, 2: Fig. 14.35. Tii03. cPa vs. T. [7x7]. Electrical trmi- [7OV2], 3: [68K2]. t iOIl lXhVCZIl4OOIUld5OOK.

340 GPO

I 320

z300

E 280

260 200 GPO

180

160

I 140 E

E 120 3

0 100 200 300 400 500 K 600 I-

350 GPO

300

250

-501 I I I I I I I I 100 200 300 400 ,5=0 700 800 K 900

Fig. 14.36. V+JO~ cw vs. T. 1: [SlNl], 2: [76A2]. 3: [8OA3]. Broad electrical transition without symmetry change between T = 350 and 700 K.

LdOll-Bl)lUSt& Ncw!kdaIlJ&‘r

Page 476: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants Q,,, cPcr (Figs. 16.1 . . . 16.3) 465

50 GPO

I 45

o.2 z

40

35

30 0 50 100 150 200 250 K 300

T-

Fig. 16.1. (NH&SiI$ (metastable). ~33 vs. T. [8OHlO]. Phase transition (type unknown) at T LJ 37-e 38 K.

GPO

38

I

34

E 30

G 26

22

18I 100 140 180 220 260 K 300

T-

Fig. 16.2. Cu&&NO3)~~-24H~O. c,,~ vs. T. [73H8]. Stiffnesses calculated from wave veIocities and a den- sity of 2350 kg/ma.

I 21.5

; 21.0

20.5

GPa

17.65

17.60

bro

29.0

I

28.5 c33

8 28.0 I Y I

50 100 150 200 250 K 300 T

Fig. 16.3. FeClp c o vs. T. [76G8]. There is a slight anomaly in c33 at 23 k not shown.

Land&-BtJmstcin New S&a mf#?%

Page 477: Second and Higher Order Elastic Constants

466 1.3 Elastic constants spur cpa (Figs. 16.4 . . . 16.6) [Ref.p.S76

6 GP

4

I tl

-2

- l!

- II

I 50

0

275 300 325 350 375 400 425 450 K 475 T-

16r I I 1 4 I I (lpo)-‘I I I I I /l-J

l!!l3BT 0 50 100 150 200 250 K 300 T-

4 Fig. 16.4. 0.91 PZN-O.09 PT (piezoel. ceramic). SB, #, and l/s vs. T. [82K4]. The chemical formula for FZN is Pb(zn~#b&O~, and for PT is PbTiOa. Fhase transitions: below 341K trigonal; between 341 and 451K, tetragonal; above 451 K cubic. sBtoot]tI and dfttttlll are determined from the resonance frequency of a bar sample elongated in the [OOl] or [ill] direc- tions, respectively. # cr,t)1 and #tttt)l are determined from the resonance 6 equency of a bar sample elon- gated in an arbitrary direction perpemhcular to the [OOl] or [ill] directions, respectively. The [OOl] or [I 111 axes are the principal axes of the pseudocubic, tetragonal or trigonal phases, and also the poling direc- tions for each sample. So = (l-&2)# where k is the coupling coefficient.

I -w 9 -

/ I 0.025

0.04 (TPO)

I

0.03

I 0.02 w

0.01 I I I I I I-

nl I I I I I I I -0 50 100 150 200 250 300 350 K 1

T-

Fig. 165. Pb&Tit,~ (FZT X/Y) (piezoel. ceramic). Fig. 16.6. F%(TiiZrt~JtzF~O~ (FTZ XMZ) (piezoel. sBlt vs. T for several values of X/Y. [8626]. X = 100x, poled ceramic). s’ and b’ vs. T for x = 0.42, y = l-x = Y = 100-X. For x S 052 structure is tetragonal for x 2 0.58 and different iron doping z. [89HS]. The single 0.52 trigonal. For C,t vs. T for tetragonal phase see and double prime on s indicate the real and imaginary Fig. 20.13. parts, respectively, of the compliance.

LJlldolt-Blmmoia Now SabJiIfBr

Page 478: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 16.7, 16.8) 467

0 190 210 230 250 270 K 290

T-

Fig. 16.7. Sym-Triazine, C3NSHS. R, vs. T. [82Y6]. RT = c#)/c,(295 K). RTt and R, refer to the elastic con- stant for each of the transverse waves, respectively, along the 3-fold axis. Ferroelastic phase transition 3m + 2/m at T = 197.1 K.

"300 350 400 150 500 550 600 K 650 T-

100 GPO

80

I 60

," 40

20

0 0 100 200 300 400 500 600 K 700

T-

Fig. 16.8. (V1J!rx~03. cPc vs. T. 1: x = 0.015 [86Yl], 2: x = 0.015 [83Y5], 3: x = 0.030 [83Y5]. For x = 0 see Fig. 14.36. Broad electrical transition without symmetry change between T = 350 and 700 K. When x = 0.03, a transition to the antiferromagnetic phase 2/m ocmrs at TN = 180 K. For x = 0.015 an additional tran- sition to a metallic u-corundum phase occurs at T = 250 K.

Landok-Blmstain Now Sorisr IlI/29a

Page 479: Second and Higher Order Elastic Constants

468 1.3 Elastic constants sPu, cpa (pigs. 17.1, 17.2) pef.p.576

190 UPor’

I 185

Y 180

300 400 K 500 I-

Fig. 17.1. Pb@qOtt @ iemel.). SBtt vs. T. Ferroelectric phase transition at Tc = 450 K.

68

27

25

4b,22

96 GPO

94

I 924 Ll 90

88

-11 I I I I I I I 275 300 325 350 375 400 425 450 475 500 K 525

T-

Fig. 17.2. PbGqOtt (piemel.). clfppvs. T. 1: [75B2], 2: [87M]. Ferroelectric phase transltron at Tc = 450 K. Hexagonal above 45OK. CM = %(qt - ct$, cs = - cl5

LQldOl!-B&Ill&h NowSerloolW29r

Page 480: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPc, cPq (Figs. lg. 1 . . . 18.4) 469

Fig. 18.1. Al$u. c,,,vs. T. [75JN].

0.85

0.80

l!k!?id R4

0 0.5 1.0 1.5 GPO 2.1 I P-

Fig. 18.2. NH4H2po4 (ADP) (piemel.). A d vs. p, [76Fl]. R = 6.02 GFt

= cpa(p)lcpo(O). c&O) = 8.64 08% c&j(O)

88 I I GPO

82

44

I

GPO 43

100 150 200 250 K 300

62 GPO 60 I

E

58

For Fig. 18.3 se-e next page.

Fig. 18.4. CdGeAsp c,,vs. T. [82Hl].

Iandolt-Bbstein Now Sorioa IW29a

Page 481: Second and Higher Order Elastic Constants

470 1.3 Elastic constants sPu, cPu (Fig. 18.3) mef.p.576

2.5 (TPO)"

5.0 12.5

2.5 I 10.0

0 9-5 1.5

2.5 5.0 0

0 12.5

12.5 10.0 1.5

Q&10.0 1.5 5.0 40 w

-2.5

I 50 km%

1.5 2.5 30

5.0 I 22.5 20

2.5 20.0 10 $%

1'1.5 5

T- 15.0

12.5

A 50 Fig. 18.3. BaTi&. sBW and gDPo vs. T. [8687]. The b samples were top seeded solution grown (RUG). 2.5 Above T (J 401 K the crystals are cubic. See also Figs. 9.13-9.15,12.1 and 20.3. OI

275 300 325 350 375 400 K 425 T-

hdoltBlmaeh ’ Now SedaW29r

Page 482: Second and Higher Order Elastic Constants

‘Ref.p.5761 1.3 Elastic constants spu, cpu (Figs. 18.5, 18.6) 471

0.005 0

0 0 -0.005

-0.005 -0.005 -0.010

I

I -0.010 -0.010 -0.015 I I

2 2 -0.015 -0.015 -0.020 kc

II I -0.020 -0.020 II \I \ -0.025

II I

\ -0.025

-0.025 -0.030

0.005 0.005 0 0

0 -0.005 I’! IIi\I I III IIP I

-0.005 -0.005 I -0.010

-0.010 -0.015 I

I -0.015 -0.020 QF

g -0.0 20 -0.025

-0.025 -0.030

-0.030 -0.035 75 100 125 150 115 200 225 250 K 275 _

T-

Fig. 18.5. D-CdPp Rs3, R4, RcL and Rq vs. T. [8984]. R,, = [c &“) - c,J78 K)l/cpa(7g K). RcL and RcT are simila& defined where CL = [cl1 + cl2 + &,jj/2 and cT = [Cl1 - ~~$2. Temperature ranges I through IV: 97-101-105 K, 125-130-134 K, 193-194- 199 K and 234-239 K, respectively, mark anomalous changes in the elastic constants.

13

Fig. 18.6. Ca$r(CzH$!O;), (piezoel.) (Cal&& slrontium propionate). cPa vs. T. [79K3]. Phase tran- sition (4 + 4/mmm) at (ferroelectric) Tc = 282 K.

1

YOC

I I

I 225 250 215 300 325 K 350 T-

Land&Bhme.in New Se&z lQ29a

Page 483: Second and Higher Order Elastic Constants

472 1.3 Elastic constants spa, cpa (Figs. 18.7 . . . 18.10) mef.p.576

50

7.0

I

GPO

6.8 t

6.6

42 GPO

40 I 38 k

36

2 GPO 1 I

z c, - 0 s

150 175 200 225 250 275 K 30: I- ,-

.Fig. 18.7. C!sH&Q. c,,o vs. T. [79A3]. Ferroelectric TC a 150 K.

0 50 100 150 200 250 K 300 0 50 100 150 200 250 K ? I- T-

Fig. 18.9. CsNiis. cpo vs. T. [83010]. 1: Bdlouin scattering, 2: ultrasonic data.

Fig. 18.10. CoR (ordered). cpo vs. T. [75R2]. For @3stic constants of disordered CoPt (cubic) see fig. 5.6.

30 GPO

25

I Cl3 1

is Cl2

h ‘12

10 ‘-

5-r m 1 CT

CCL tetrog. 1 cubic .-

0 315 320 325 330 K 335

I- Fig. 18.8. cd%& CPU VS. T. [7721]. CT = %(C,, - ~~2). Phase changes: 2tm + mmm at 310 K, mmm + 4/mrnm at 315 K, 4/mmm -+ m3m at 320 K. Fig. 18.8 is based on Fig. 1 of [77Zl], but there are discrepancies behveeen Fig. 1 and Table 2 of that reference. See also Figs. 9.23-9.26.

320 GPO

310 $ Z u

300

h&k-Blluutein NOWSdt4l&2!h

Page 484: Second and Higher Order Elastic Constants

Ref .p. 5761 1.3 Elastic constants sPcr, cPO (Figs. 18.11A, 18.11B) 473

52 GPa 50

54 GPa 52

50

48

c46

44

40 0 50 100 150 200 250 300 350 K 400

I-

Fig. 18.11A. In. c o vs. T. 1: [61Cl], 2: [76Cl], 3: [77Vl]. T,=429.7 It.

I I I I I I I I / 146 GPO

-\ 1 .- . 44

. 1 q3 (Scale -1 I I I - -- 2 42E

\ ^

PI I I , I I I clZ L I - I - T- -I 40 --- t-3- f t i r-y-< 1

-- 3 .I

\ . 16

GPa I I I .I I I I 1

cKc (Scale -) I -4

,GF?j+..- 1 1

‘44

I I I I I I I L \

0 50 100 150 200 250 300 350 K 400 T-

Fig. 18.llB. In c Q vs. T. 1: [61CI], 2: f76Cll. 3: [77Vl]. T,=429.7 It.

L.nndolt-B(lmstoin New Serica llW9a

Page 485: Second and Higher Order Elastic Constants

474 1.3 Elastic constants sPu, cpu (Figs. 18.11C . . . 18.13) mef.p.576

45 44

I 43 42

b 41

40

39

Fig. 18.11C. In. C~VS. T. 1: [77Vl], 2: [9OFl]. Curve 1 for ~33 (not marked) is above but very close to curve 2 for cl1 at temperatures below 350 K. T, = 429.7 K.

65r I I I I 1 GPO! 1 1 I,-.. ‘4

u 45

40

35 22 GPU

30 21 1 20 2

/jf#$$q 15

0 0.5 1.0 1.5 2.0 GPO 2.5 P-

Fig. 18.12. InBi. cPa vs.p. [76F3].

6 75 125 175 225,275 325 375 K 425

Fig. 18.13. In-3.4 at % Cd cPa vs. T. [77&X3].

IAQdOlt-BOmrtdn NowSaksI&29r

Page 486: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 18.14 . . . lg.171 475

41 I I I I I I 50 100 150 200 250 300 K 350

T-

Fig. 18.14, In-5 at % Pb. cpo vs. T. [79h43]. See Fig. 4.65.

dS0

I GE 44

<42 G s ,40 G

38

36 14

GPa

I 12

,10 u" 2 8

6 50 100 150 200 250 300 350 400 K 450

T-

Fig. 18.17. In-11.5% ‘Il. c,,~ vs. T. [76Cl]. T,,, = 426K.

Fig. 18.16. In-lo% Tl. cpo vs. T. [7OPl, 72Pl]. b

bandolt-BOrnstein Now Sotioa W29r

50 100 150 200 250 300 K 350

Fig. 18.15. h-17 at % Pb. cpa vs. T. [79hl3]. See also Fig. 4.65.

12.0 GPO

I 11.6

E11.2

8.0

I

GPa ”

7.6

2 1.2

6.8 40 80 120 160 200 240 K 280

I-

Page 487: Second and Higher Order Elastic Constants

476 1.3 Elastic constants sPu, cpa (Figs. 18.18 . . . 18.21) pef.p.576

co GPO 39 I

I u 38

L I I I I I 1 J

280 300 320 340, 360_ 380 400 K 420

Fig. 18.18. In-15%Tl. c,,,,vs. T. [76Cl]. T, ~425 K.

2 /

0 100 l25 150 175 200 225 250 T-

275 K 300 I-

I I I I ’ 26 m-m--T

98l‘t\Il

94 I I I I u-12

90 37.5

I 88 37.0

b, 86 36.5 u

84

82

80

78 162

14.0

100’325DK30013.8 0 50 T-

Fig. 18.19. FeF,. cpa vs. T. [82W3]. TN = 78.4 K. Antiferromagntic below TN. CT = ?h(Cll - qi).

Fig. 18.21. LiRb~(SO,&lXHpO,p cpavs. T. [89M3]. Para-to-ferroelastic transition : 4mm 3 mm2 at To II 132K (isrow) with decreasing temperature. Other reference [88Wl].

IAldOlbB8mrrsin NowsaiaIUR9o

Page 488: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu , cpu (Figs. 18.20, 18.22) 477

265 GPO

260

I I I\\. - 255 r..lScale-1

\ \ 250 -: c

GE 245

94 240

I 92 I\ I I I I I 235

z 90

88

86

I GE 30 56

N u 20

150 175 200 225 250 275 300 325 350 K 375 T-

Fig. 18.20. FeGep cPa vs. T. [72Zl]. Phase transitions atT=265and287K.

Fig. 18.22. Li$I& (piezoel.). S,,. vs. T. [8535, 868163.

L 8 .U

iTPa)“ 21.4

1.26

1 *‘(ScaleL

240 260 280 300 320 K 340

Landoh-B6mstth New Sarisr W29a

Page 489: Second and Higher Order Elastic Constants

478 1.3 Elastic constants spu, cpa (Figs. 18.23, 18.24) mef.p.576

129 129 GPO GPO

128 128

127 127 76 76 GPO GPO

72 72

65 65 68 68

6L 6L

63 63 58 58 56 56 I I

I I

k. k. CI CI 49 49 5L 5L

>co >co

47 47 27 27

46 46 26 26

25 25

2 2 2L 2L

1 1

0 0

-1 -1 0 0 50 50 100 100 150 150 200 200 230 230 K K 300 300

I- I-

Fig. 18.23. Li&$$+ (piemel.). spa and cDpa vs. T. [8938]. Other reference [8937&

Fig. 18.24. MgF2. cpO vs. T. 1: [69A2], 2: [77J4], 3: [79R4], 4: [81Kl].

I I\ I I I I

210 GPO

205 I

200 z

195

I I t

100 A GPO

801 I I I I I 0 100 200 300 400 500 600 K 700

I-

Lmdolt-Blmucda Now Ma llJ/&

Page 490: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 18.25 . . . 18.28) 479

174 GPO 172

110 GPa

I 108

Id6 u=

170 I ::

168 "

166

164

104

102 32.1 GPO

32.0 I 31.9 2

I 85 31.8 GPa

E 80

F 75 8

7b 0 50 100 150 200 250 300 K 350

18 GPO

16

8 \

C66 6

\

4 75 100 125 150 175 200 K 225

T-

Fig. 18.26. Hg$rz. c cvs. T. [SlLl]. Phase transition mmm+4/mmmat 4 = 143 K. Stiffnesses calculated from wave velocities assuming a density of 7500 kg/m3.

T-

Fig. 18.25. MnFp magnetic TN = 67 K.

cpo vs. T. [7OM5]. Antifetro-

45 GPO

44

I

42

25

ui 24

23

L"50 100 150 200 250 K 300 I T-

‘Fig. 18.28. HgInz Cl Te+ cpo vs. T. [76816]. square indicates an ordered array of vacant sites.

The

85 GPO 80

I 185K c33

20 GPO

15

I IO

$5

$ GPo

15

10

5 125 150 175 200 225 250 K 275

T-

Fig. 18.27. Hg$12. cpa vs. T. [77A2]. Second-order phase transition at Tmcx w 185 K. The tilde indicates the constants in the orthorhombic phase which are referred to the axes of the high-temperature Wagonal phase. The [lOO], [OlO] and [OOl] principle axes of the low- temperature orthorhombic phase are aligned along the former [llO], [ilO] and [OOl] axes, respectively, of the tetragonal phase.

Lmdolt-Blmstein NewSmimIWZ9a

Page 491: Second and Higher Order Elastic Constants

1.3 Elastic constants sPu, cpa (Figs. 18.29 . . . 18.32) Eef.p.576

50 100 150 200 250 K 300 I-

Fig. 18.29. Nip c vs. T. [76Wl]. Antifeno- magnetic TN = 73 K. & the effect of magnetic field see [76Wl]. Phase transition at T = 291.5 K

0 0.5 1.0 1.5 GPO 2.0 P-

Fig. 18.31. KD.$t& (deuterated KDP) (piemel.). R o VS./L [76Fl]. R o = $66 (0) = 5.90 4Pa.

c a@&,(O). c&O) = 12.5 Glk c& (0) = 6.20 GPa

70 tia GPa

65 65 u= u=

60 60

13.0 13.0 GPa GPa

12.5 12.5 I I z z u u

12.0 12.0

250 250 300 300 350 350 400 400 450 450 K K 500 500 I- I-

Fig. 18.30. KD$G~ (deuterated KDP) (piezoel.). cw Fig. 18.30. KD$G~ (deuterated KDP) (piezoel.). cw vs.T. [73C9]. vs.T. [73C9].

GPal T\I I I I

352 u

13.0 GPa

12.5 I 3

i 6.0 j~‘66+

Fig. 18.32. KH$G~ (KDP) (piezoel.). cnn vs. T. [73C9].

Ldoll-Blmnsin New S&I lU/2!h

Page 492: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpu (Figs. 18.33, 18.34) 481

f! GPO

7

6

I

5

E4

3

2

1

0 1 120 125 130 K 135

T-

Fig. 18.33. KI$PO,+ c, vs T. [68B6,6905,74Bll]. Ferroelectric Tc = 122 K. See also Fig. 18.34.

GPO6

5

0 106 110 114 118 122 126 K 130

I 0.3GPa 0.2 0.1 0

Land&B(lmaein

16 GPO

14

-106 110 114 118 122 126 K T-

0

0.3 GPO 0.2 0.1 0

A 4 Fig. 18.34. KH2P04. c&66, cp66 and l/(flti - $4 vs.

T for various pressures. [84H9]. Ferroelectric TC = 122 K at zero pressure. Above T, the structure is 42m, below TC mm2. The pressure scale on the abscissa illustrates the transition temperature of that pressure. The hicritical point (TCP) occurs at a pressure of 0.24 GPa. See also Fig. 18.35.

Page 493: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cpa (Figs. 18.35 . . . 18.38) [Ref.p.576

1.04

1.03

I 1.02

b, Ql.ol

1.00

0.99

0 0.5 1.0 1.5 GPO 2.0

Fig. 18.35. KH2PGd (KDP) (piezoel.). R d vs. p. [76Fl]. Rpo = cp&)/c a(O). ~~(0) = 14.9 GPa. CBS (0) = 6.28 GPa. tpaS (0) = 6.25 GPa.

1.50 GPO

1.25

UI I I I I I I

120 125 130 135 140 145 K 150 I-

Fig. 18.37. RbH2po4 (RbDP) (piezoel.). ca vs. T. [71P3]. Effect of field strength and temperature. Ferro- electric Tc = 147 K.

20000 (TPOY

15000

I 10000 h

5000

0

,Pili S13

-5 '- -93

k Iiil%a

100 150 200 250 K 300100 150 200 25O'K 300 I- T-

Fig. 18.36. RbH2PQ (RbDP) (pietiel.). spa vs. T. Left-hand curves: [71P3]. Right-hand curves: [66M4]. Ferroelectric Tc = 147 K.

4 GPO

3

0 10 20 30 40 50 K 60 T-T, -

Fig. 18.38. RbH2PGd (RbDP) (piemel.). && vs. T - Tc. [88Cl]. Ferroelectric Tc = 147 K.

LdOlt-BlHMdIl NowSaiaIQ29r

Page 494: Second and Higher Order Elastic Constants

Ref.p.5761’ 1.3 Elastic constants sPu, cpa (Figs. 18.39 . . . 18.41)

0 0.5 1.0 1.5 GPO 2.0 P-

Fig. 18.39. RbHzP04 (RbDP) (piezoel.). R,, vs. p. [76Fl]. R d = cpo@)/cpa(0). c&O) = 10.3 GPa. cEaa (0) = g.58 GPa.

1 ---- 0.02

b& Q 0.01

0

-0.01

-0.02

-llll? -.-- 0 5 10 15 20 25 30 K 35

T-213 -

Fig. 18.40. Sro.sBa&$06 (SBN 50/50) (piezoel.). RR,, vs. T - 273K. [8286,82319]. REP, = [d&,(T) - cQ(273 K)]ldpd273 K).

Constant @ll 43 44 46 42 43 Wal

108

106

69

67

65

63

I

61

59

l.F 57

26

.

.

2oL I\

100 150 200 250 300 350 K 400 T-

Fig. 18.41. TeO2 (Paratelhnite). cpa vs. T. 1: [87SlO], 2: [7OGl]. The two plots (curve 1) for both cl1 and c33 show results for two different samples.

T=293K 210.1 116.6 66.3 68.9 65.7 35.5

Lmdolt-Bkmein NowScdasIUt29a

Page 495: Second and Higher Order Elastic Constants

484 1.3 Elastic constants sPu, cpa (Figs. 18.42 . . . 18.45) mef.p.576

60 GPO

58 I u=

56

0 0.2 0.4 0.6 0.8 1.0 1.2 GPO 1.4 P-

Fig. 18.42. TeO, (Paratelhuite). cPa vs. p at T = 293 K. [75Pl]. Pressure-induced phase transition at p = 0.9 GPa

2.32 GPO

2.30

I

2.26

I I $I$ 2.18 I-4 2.16

2.20

2.14 175 200 225 250 275 300 325 K 350

T- Fig. 18.44. Te& $5(clt -c12) vs. T under compressive S~KSS U. [87Sl, 87SlO]. 1: Q =O, 2: u = 4.9.. l 9.8 MPa along [IlO], 3: u = 19.6.. -29.4 MPa along [llO] under heating, 4: same as 3 but under cooling, 5: u = 58.8 MPa along [l’io] under cooling.

1.050 1.050

1.025 1.025

1.000 1.000

q q 0.975 0.975 CT CT

0.950 0.950

0.925 0.925

0.90011 0.90011 0 0.05 0.10 0.15 0.20 GPO 0.25 0 0.05 0.10 0.15 0.20 GPO 0.25

U- U-

Fig. 18.43. TeO,. CT/c, vs. compressive stress Q. T = Fig. 18.43. TeO,. CT/c, vs. compressive stress Q. T = 77 K. [79u1]. CT = %(C,, - Cl;); Co= CT at Zero Stress. 77 K. [79u1]. CT = %(C,, - Cl;); Co= CT at Zero Stress.

90 GPol N CII + 52+ 2~66

851 AI I H I I IA I 80 uk

75

m

65 35

I

GPO

30

725 u=

220

10 100 150 200 250 300 350 400 K &SO

I-

Fig. 18.45. TlSe. cPa vs. T. [7OR6]. There are some internal inconsistencies in the data.

LJdOlt-Blmndn New Sala lJIR9r

Page 496: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,, , c,,,~ (Figs. 18.46 . . . 18.48) 485

Fig.

110 (TPo)’

100

60

30

20 -512 533

10

L!EEEi

-513

0 100 200 300 400 K 500 T-

18.46. Sn. spa vs. T. [6OH3].

I I I I

60 s

50

40 I I

12

0 100 200 300 400 500 K 600 I-

Fig. 18.47. Sn. c,,,vs. T. 1: [6OR2], 2: [72K3].

I I I 200 200 400 400 600 600 800 800 1000 1000 1200 1200 K K 1400 1400

T- T-

(TPod I .I/l I

Fig. 18.48. TiOz (Ruth). s,,vs. T. [6485]. Paper also contains data for temperature variation of (2.~ + Q) and(ql -qz-ti&

Lmdolt-Bern&n Now Sorica IB./Z9r

Page 497: Second and Higher Order Elastic Constants

486 1.3 Elastic constants sPu, cPu (Figs. 18.49 . . . 18.51) mef.p.576

I 1 1 ,510 210, I i I 1 I 1

I Y\ I 480 t? \

G270 I-

t I ' \. 460

2 260 ?\=:

I 200 GPO

I

190

180

G 170

160

,I \ 220

GPO fSrnb -1

I 200

I‘ I t I

I\ 180;

Cl7

1 \I, I IGPo 1

130 t k GPO

., q3(ScoleL) \ 150 I

\I z

1140

I ,jl20

I I I I I I I

0 100 200 300 400 500 K 600 T-

Fig. 18.49. Ti02 (Rutile). cpo vs. T. 1: [72hI6], 2: [74F3].

Fig. 18.51. a-Znp,. cp vs. T. [85Sl]. The anomalies are due to a series of pain of commensurate- incommensurate-commensurate phase tlxnsitim. CL=H(cl*+cl2+2c66XCT=H(CII-C12).

I GPO

200 z c,

190 I 135 GPO

130 I u=

125 100 GPO

I 95

&AZ 90

$i 85

80 40.5 GPO 40.0 I

t 39.5

0 50 100 150 200 250 K 300 I-

Fig. 18.50. ZnF,. c,,,vs. T. [77193.

116 114 t ,B

115

t

I 111,

b u-42.7

118 U’\

. 118 GPO 117 ,

112

32.3

32.1

42.3

41.7 50 100 150 200 250 300 350 K UN

r- -

Page 498: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 18.52, 18.53) 487

I I . 490 \ CzJ Scale - I GPa t

485 1 2

480 425 GPa 420

G I I

1 I I I I 250 300 350 400 450 500 550 K 600 T-

Fig. 18.52. ZrSiO, (Zircon, non-metamict). cpa vs. T. [744x, 75011.

147 I GPa,

I I 159 c,, (Scale-1 GPa

-157

I 85

GPa 127.5

I 24.2 GPa

f24.0

135.0 GPa

132.5

I 130.0 E

0 50 100 150 200 250 K 300 I-

Fig. 18.53. ZrzNi. cpavs. T. [75J33].

Latdolt-Bimatch New S&w IlI/Z9r

Page 499: Second and Higher Order Elastic Constants

488 1.3 Elastic’ constants s,,., , cPu (Figs. 19.1, 19.2) mef.p.576

152 -- GPO 2

-

I

150 \ 1 ' Cll

+3 I I\ I\ I \\

116

136 GPO

I 132

2 130

1261 I I I I I 0 50 100 150 200 250 K 3

r-

Fig. 19.1. CaWO4. [72Fl].

cpo vs. T. 1: [6889, 72711, 2:

.

i7.5 iP0

c5.0

1 42.5 D u

- Cl2 , 65--==

GPO

60

3i.5 GPO

-20 GPO I 45 E

33.5 0 50 100 150 200 250 K 300

I-

Fig. 19.2. CaW04. [72Fl].

cpa vs. T. 1: [68H9, 72711, 2:

LdOlt-B8CIUtdIl NowSaiaIBJ29a

Page 500: Second and Higher Order Elastic Constants

1.3 Elastic constants spu, cpu (Figs. 19.3, 19.4)

I

12.6 GPO

126

:12,2

65

I

GPO

63

z 61

59 20

I

GPO 19

17 9%

GPO I - -cl6

8 \, .

t ' 7

GPO/ I I I I I I

44 GPO 43

41

40 0 50 100 150 200 250 K 300

T-

122

I

GPO 120

5 118

116 54

GPO

I

52

50

2 48

46

170 GPO

I

168

166 ::

u 164

162

160

42 GPO 41

39 0 50 100 150 200 250 K 300

19.4. LiYo.s‘$,sF,+ cpavs. 2’. [SOBS]. 19.3. LiYF+ c,,,vs. T. [79B5].

Landok-Bllmstcin New Setia IB/29r

Page 501: Second and Higher Order Elastic Constants

490 1.3 Elastic constants +, cPu (Figs. 19.5 l l . 20.3) mef.p.576

I 445

\ c,, (Stole-I GPO I I

\! 440

t

380 176 GPO

55.5dI72

I GPO

55.0 C66 ,

/ I u -

54.5 c,, (Scale -

94 I t

92 g

I

1.0 90 GPU

s OS

01 I I 1 I I 0 50 100 150 200 250 K 300

I-

Fig. 195. NbOp cpo vs. T. [82Wl]. Referred to primi- tive cell axes.

10.0 (TPor' 4

nr 3\ 1 pure Y.D

an

1 5 0.23wt%Cr

..”

395 400 405 410 415 420 425 430 K 435 T-

Fig. 20.3. BaTiO,, Fe or Cr doped. sBll vs. T. [85Dl]. Results given for the paraelectxic phase.

11.0 UPO)“

10.5

I 10.0

"m= 9.5 . bz= w

9.0

8.0 275 300 325 350 375 400 K 425

Fig. 20.1. BCN-PZT 16/45/55 (piezoel. ceramic). sgll and sDll vs. T [86Y5]. Chemical formula for BCN-PZT x/y/z: x[Ba(Cal~)O~.(l-x)[Pb(ZryTil_r>031 where X = 100x, Y = 1OOy and Z = 100-Y. Below Tc (J 332 K, tetragonal and ferroelectric; above Tc cubic and paraelectric.

- 11.00 11.00 (TPOI-' (TPOI-'

- 10.98

10.96 10.98 I I -10.96 g g ul ul

-10.91, 10.91,

5.10 280 300 320 340 360 K 380

Fig. 20.2. B%.JJr,,,I%OG (BSN) (piezoel. ceramic). sDpo and sBpu vs. T. [83Al]. The small anomaly in SD* is apparently due to domain effects, whereas the one in df4 is due to wafer orientation errors.

LJdOlt-B8lIlJt& Now Seh J&290

Page 502: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpu (Figs. 20.4A . . . 20.7) 491

(TPa I-’ 350

,001 175 200 225 250 275 300 325 350 K 375

T-

Fig. 20.4A. Ca$b(C,H$!O& (annealed). sco vs. T. [78T43. Ferroelectric-paraelectric phase transition 4 + 4/mmm atTc = 327 K, another phase transition occurs about T = 185 K.

204 UPa)“

200

I 198

:: * 196

300 305 310 315 320 325 K ? 3

14 GPa

12

-260 270 280 290 K 300 T-

Fig. 20.5. C!a.$r(C~D$!O& (deuterated). cc0 vs. T. [87Y2]. phase changes: paraelectric-femebctric tran- sition 422 + 4 at T, = 279.5 K with decreasing temperature.

Fig. 20.4B. C%Pb(CzH$O;)e (annealed). s33 vs. T neat the phase transition at T = 327 K. [78T4]. See Fig. 20.4A. (The discrepancies between Fig. 20.4A and Fig. 20.4B are in the original paper.)

Fig. 20.6. CsPbBr3. se vs. T. [78Hll]. phase transi- tion mmm + 4/mmm at 361 K. See also Fig. 9.22.

80 80

74 74 “7 60 “7 60 27 27

5 40 5 40

20 20 /

0 0 IO IO 20 20 30 30 40 40 50 50 60 60 70 70 K K 80 80 I---, I---,

120 GPa 100

Fig. 20.7. DyVO.,. cpo vs. T. 172321. Jahn-Teller phase transition at T, = 14 K.

hdolt-Barnstein New [email protected]

Page 503: Second and Higher Order Elastic Constants

492 1.3 Elastic constants spa, cpu (Figs. 20.8 . . . 20.10) mef.p.576

80.0 245.0 . 17.5 242.5

I I ( b,

75.0 240.0 c,

& CI 72.5 49.6

’ L-l 48.8

0 50 100 150 200 K 250 T-

Fig. 20.8. HoV04. cPo vs. T. [86G4]. The anomaly around 13.5 K is due to quadrupolar-strain interactions in the singlet ground state system.

0 2.5 5.0 7.5 10.0 12.5 1 15.0 B-

F&20.9. HoV04. CT,,,, vs. B. [86G4]. The magnetic field is applied parallel to the tetragonal c axis. Tem- perature is 1.7 K. The anomalies about 11 T are due to level crossing of the ground state. $, 4 give the polari- zation and wave vector components, respectively, for the cAA mode.

41 I I I

0.05 0.10 035 0.20 0.25 0.30 0 x-

Fig. 20.10. In,-,Tl,. c o vs. composition x. [83B9]. Phase transition FCT + % CC at room temperature for x = 0.225. For x Z 0.225 the phase is FCC. The superscript S denotes adiabatic stiEness.

Page 504: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 20.11 . . . 20.16) 493

7.70 (TPa)-’

7.66

I 7.62 -F v, 7.58

7.54 50 100 150 200 250 300 350 K 400

T-

Fig. 20.11. ~x~al,[(~00.5~0.s)l-~~~l~3 WV (piezoel. ceramic). stt’ vs. T for x = 0.76, y = 0.96. [86D4]. The prime on slt indicates the real part of the compliance. Poling field is 60 kV/cm.

8

61 0 50 100 150 200 250 K 300

T-

Fig. 20.13. PbZr,TiI-x03 (PZT X/Y) (piezoel. ceramic). sSll vs. T for several values of X/Y. [8626]. X.= 100x, Y = 100-X. For x 5 0.52 the structure is tetragonal, for x > 0.52 trigonal. For Sstt vs. T for the trigonal phase see Fig. 16.5.

11.0 ITPa)-’

10.5

9.5

I 9.0

G= 8.5

7.0 250 275 300 325 350 375 400 425 K 450

7.7 5 ITPa)-’

7.70

I 7.65

-z= v, 7.60

12 ITPaT’ 10

8 I

6 ‘,=

4

50 100 150 200 250 300 K 350 T-

Fig. 20.12. PbxSmI,(Tii~-y)03 (PST) (piezoel. ceramic). sit’ and slla vs. T for x = 0.85, y = 0.98. [86D4]. The single and double prime on sll indicate the real and imaginary parts, respectively, of the compliance. Poling field is 30 kV/cm.

0.20 (TPa)-’

0.16

I 0.12

=- c 0.08

14 (TPaI”

01 I 0 100 200 300 400 500 600 K 700

T->

Fig. 20.14. PbZrxTiIBx03 (PZT X/Y) (piezoel. ceramic). sll’ and sI1” vs. T for x = 0.49, y = 0.51 (PZT 49/51). [89Rl]. The single and double prime on stt indicate the real and imaginary parts, respectively, of the compliance.

For Fig. 20.15 see next page.

Fig. 20.16. Pbl,La&,Ti~- )1-x1403 (PUT X/W) (piezoel. ceramic). 41 J &I vs. T for PLZT 10/55/45. [86Y8]. x = i-00x, Y.=-iOOy, z = 100-Y. The stable phase above transition temperature Tl = 327 K is cubic, below 7’t the stable phase is tetragonal.

T-

hdolt-Bhmtoh NowS&tmlUfZ9r

Page 505: Second and Higher Order Elastic Constants

494 1.3 Elastic constants sPu, cPu (Figs. 20.15 . . . 20.18) lRef.p.576

0 0 30 60 90 120 150 MPa 180 0 30 60 90 120 150 MPa 180

Stress 0, -

Fig. 20.15. PbZrxTit-xQ (PZT X/Y) (NEPEC series) (piezoel. ceramic). sB33 and & vs. compressive stress 03. [86I3]. Compressive stress parallel to the polar axis. Composition unspecitied. (a) NEPEC-1, (b) NEPEC-6, (c) NEPEC-21, (d) NEPEC- 63. Arrows indicate the dire&on of the change in stress.

I 54 50

t 46

-‘200 225 250 275 300 325 350 K 375 l-

Fig. 20.17. Pb&a#r~Tit~ )i-x/403 (PUT X/Y/Z) (piezoel. ceramic). cBpo an di cDp(r vs. T for PLZl’ 9.8/55/45. [8736]. Phase transition temperatures are Tl- 293 K (on cooling), and T, - 343 K (on heating). The superprefix on the elastic stiffness denotes the structure. Phase I is cubic, Phase II is tetragonal. CD,, and cB33 were estimated assuming t?33/cD33 = 0.75 and 41/41 = 0.95. The unpoled samples are poly- crystalline.

12 (TPal-’

I 10

“2 *

12 (IPal” 10

8 t Gs w

0.4

I 0.2 $

’ 0 210 230 250 270 290 310 K 330

T-

Pig. 20.18. Pbt,La#$,Tit,)t-~O3 (PIZI’ X/Y/Z) (piezoel. ceramic). Real and imaginary parts of SBtt and sD33 vs. T for PLZI’ 1 l/55/45. [SSSlO]. The single and double primes indicate the real and imaginary parts, respectively. Phase transition at T = 299K. Fenoelectric below 299% uncertain phase above 299K.

Lmdoh-Bllmuin NowSaio1BIJ29r

Page 506: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cpa (Figs. 20.19 . . . 20.24) 495

100 1

0-o 210 230 250 270 290 310 K 330

T-

Fig. 20.19. Pbt,L~(~~Tit,)t-~~O~ (PLOT X/Y/Z) (piezoel. ceramic). Real and imaginary parts of r& vs. T for PLZT 1 l/55/45. [85SlO]. The single and double primes indicate the real and imaginary parts, respectively. See Fig. 20.18 for phase transition.

310

I

GPa 306

2 302

J I I I -74 I ‘4

0 50 100 150 200 250 K 300 T-

Fig. 20.21. NdVO+ c,,,, vs. T. [79B3].

6 GPa

31 I 160 180 200 220 240 K 260

T-

Fig. 20.24. ICD~H~t-.$O,+ ce vs. T. [8OD3].

Curvenumber - 1 2 3

I 3 \

l? 2.

1 \

01 I I I I I 1 150 175 200’ 225 250 275 K 300

T-

Fig. 20.20. Methylammonium cadmium chloride, (CH$JH.@dCl‘,n cti vs. T. [8OG5]. Phase transition mmm+LMmmmatT=279K.

195 200 205 210 215 220 225 K 230 T-

Fig. 20.23. KD2p0, @mtially deuterated). caa vs. T. [ 68L2]. Ferroelectric Tc = 206 K.

For Fig. 20.22 see next page.

0 0.414 0.573 0.704 122 166 183 197

h&It-Btrmstoin Now Saio~ IDf290

Page 507: Second and Higher Order Elastic Constants

1.3 Elastic constants spu , cPu (Fig. 20.22) pef.p.576

800 lTPo~-'

700

600

I 200 150

4s UPor' v;

0 100

60 I

50 y tu-z

55 OW

45 0 25 50 75 100 125 150 175 200 K 225

T-

Fig. 20.22. K+JNH~)xH$‘O~ #wI vs. T for several values of x. [8701]. s45+ is the compliance of 45’ &cut bars measured by the resonance method. sg 45’-2 = U[2rlt + 2q2 + SE&~. Data for curve 8 was measured using an NH4H2P04 (ADP) crystal. ADP undergoes a paraelectric-antiferroele-ctric (PE-AFE) transition at 133 K, whereas KDP undergoes a paraelectric-ferroelectric (PE-FE) transition at 122 K. For samples x S 0.25 there is a PE-FE at TC; for samples x 2 0.85 there is a PE-AFE transition at TN.

Curveno 1 2345678

iN,Tc [K] 0 122 0.05 104 0.11 86 0.17 65 42 0.25 0.85 108 0.97 128 1.0 133 (approx>

Page 508: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 20.25 . . . 20.28) 497

145 GPO

98 GPO

96 1 z u

94

135 60 u=

130

125 200 250 300 350 400 450 500 550 K 600

T-

Fig, 20.25. KAlFJe cl; and c33 vs. T. [9OGl]. 1: Brillouin scat&ring, 2: ultrasonic propagation. Phase transition 4/mmm + 2/m at T = 260 K upon cooling.

46, I I I I I I GPO

44

I

42

z 40

u= 38

n 366

I I I/l”“1 I I-1 L CD

u”

1

cl

I

7.4 GPO

1.2

I

zc

2 6.E II I I I I I

6.E

6.4

27.0 GPO

17.0

I

26.5 GPO

16.5 K u

16.00W 150 K 200 T-

Fig. 20.27. K#P,+ cpa vs. T. [76G5]. Antiferro- magnetic, TN = 97.2 K. Stiftiesses calculated from wave velocities and a density of 3370 kg@.

145 I xole -1 IGPo GPO

140

I I I t 135

G 130 G

z 70 125 u

100 GPO

90

I 80

60

40 175 200 225 250 275 300 K 325

T-

Pig. 20.26. ~.WR$.&lF~ ~11, CD and ~33 vs. T. [9OGl]. 1: Brillouin scattering, 2: ultrasonic propa- gation. Phase transition 4/mmm + 2/m at T = 205 K upon cooling. [9OGl] does not indicate which curve is CD

Fig. 20.28. K$t(CN)~Br0~3~3H~0. cPo vs. T. 1: [77DS], 2: [8OC2]. Broad metal-nonmetal transition nearT= 1OOK.

Land&Blmstoin New Swies Illf29a

Page 509: Second and Higher Order Elastic Constants

498 1.3 Elastic constants sPu, cPu (Figs. 20.29 . . . 20.31) pef.p.576

I 53 I I I I lGPo

70 100 200 300 400 500 600

T- Fig. 20.29. RbAlF& cl1 and c33 vs. T. [9ODl]. Anon- ferroic phase transition occurs at Tcl = 553 K; an improper ferroelastic phase transition occurs at Tc2 = 282 K.

100 35

95 30

I 90 25 I

$85 20 3

SO 15

75 10

7l-l 5 ‘-75 100 125 150 175 200 225 250 275 K 300-

T-

Fig. 2030. Na+&Ft+ cpa vs. T. [88Gl]. Isotrans- lational ferroelastic phase transition (4/mmm+ 2/m) at To P( 15OK. The tilde indicates the constants in the monoclinic phase using the axes of the tetragonal phase. 10.5

I

10.0

E 9.5 v,

9.0

8.5

8.01 I I I I \ 280 300 320 360 360 380 K 1

Fig. 20.31. Sr0,6tB%.39Nb206 (SBN 61/39) (piezoel.). 93 vs. T. [79A8]. Ferroelectric-pamelectric transition (4mm + 4/mmm) at Tc = 344 K. Arrows indicate the direction of temperature change.

Lmdolt-Bbmin Now SaidQZ9r

Page 510: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 20.32 . . . 20.35) 499

2.2 2.2 GPO GPO 2.1 2.1

2.0. 2.0.

1 0.5 t 0.5

1 bs oA OA bs L.3 L.3

0.3 0.3

0.2 0.2

0.1 0.1

0 0 282 282 284 284 286 286 288 288 290 290 292 292 294 294 296 296 K K 298 298

T-

Fig. 20.32. Tansne. 86 vs. T. [82L6]. Order- disorder ferroelastic and ferroelectric phase transition at Tc = 286 K. 1: high-fkquency (via neutron scattering) elastic stiffness at constant E = 0, 2: low- frequency (via acoustic resonance) elastic stiffness at constant E = 0. Below Tc an additional resonant frequency gives rise to a second set of values for cae.

T-

Fig. 20.32. Tansne. 86 vs. T. [82L6]. Order- disorder ferroelastic and ferroelectric phase transition at Tc = 286 K. 1: high-frequency (via neutron scattering) elastic stiffness at constant E = 0, 2: low- frequency (via acoustic resonance) elastic stiffness at constant E = 0. Below Tc an additional resonant frequency gives rise to a second set of values for cae.

I

IO

8 B Ll

6

J I 0 50 100 150 200 250 K 300

T-

Fig. 20.34. TbVOk cPa vs. T. [7232]. 1: cM from ultrasonic data. 2: ca from Brillouin scattering data.

I Jahn-Teller phase transition at T, = 34 K.

e-o.02 200 220 240 260 280 K 300

r T-

Fig. 20.33. (TaSe&. R,, vs. T. [88SlO]. Peierls tran- sition Tp at 237 K. R,, = [c,,&r’)-c,c(RT)]/c,c(RT) where the RT values in GPa are: cl1 = 25.4, c33 = 11.5, cqq = 13 and C~ = 18.3.

104 GPO

I 102

;z 100 1

’ 2 98

96

94 0 1 2 3 4T 5

B- Fig. 20.35. Tm,,s,LucrsVOb %(crr - ~12) vs. magnetic induction B. [77P4]. Jahn-Teller transition at T, = 1.12 K.

Land&Bthmein Now SaicolBfZ9r

Page 511: Second and Higher Order Elastic Constants

500 1.3 Elastic constants spa, cpa (Figs. 20.36A . . . 20.38) mf.p.576

0 50 100 150 200 250 300 K 350 I-

15 GPO

I 70

3 65

60 0 50 100 150 K 200

I-

Fig. 2036A. TmPO,+ CM vs. T. [78H5]. Jalm-Teller Pig. 20.36B. TmFQ,. c,+, vs. T. [78H5]. See Pi. effectsnearT=20K. 2036A.

16

t 14 IiiiiMiLiii ii il I12 v

El0 I /

k/ 8 I/

6. :' 4

4 5 6 8 10 15 20 Xl CO 60 80100 200K300 I-

Fig. 20.37A. TmV04. cti vs. T. [73M4]. Jahn-Teller transition at TJ = 21 K. Note logarithmic temperature scale.

GPoi 1 I I I lllll

.~ 2 3 4 5 6 78910 15 K 20

I-

Fig. 20.37B. TmV04. H(cll - cl;) VB. T. [73M4]. Jahn-Teller transition at TJ = 2.1 K. Note logarithmic temperature scale.

I 105 GPO

'-, 100 G

495 >

90 15

I

GPO 10

0 0 12 3 4 516

Fig. 20.38. TmV04. cPO vs. magnetic induction B. [77P4]. J&n-Teller transition (orthorhombic-tetra- god) at T, = 2.15 K.

Ldok-Bbmmiu Now SodosIlIt29~

Page 512: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants Q,,, cpa (Figs. 20.39A . . . 20.39C) 501

Pig. 20.39A. TmV04. Z’J vs. stress 0,. [86’T2]. Jahn- Teller phase transition 4/mmm + mmm at TJ = 2.1 K at zero stress with decreasing T. Phase I is 4/mmm, phase II mmm. The coordinate system in Figs. 20.39A, B,C has been rotated 45’ about the [OOl] axis to bring the results into better agreement with those of Fig.2038.

105 95; A k

I I- 100 90 -& ; 95

3 90

I I I I I 0 0.2 0.4 0.6 0.8 1.0 GPO 1.2

Fig. 20.39B. TmVO,. !4(cII - c13 vs. stress Q, and T. [86T2]. See caption Fig. 20.39A for phase transition.

Symbol 1 2 3 4 5

TKI 0.85 1.49 1.87 2.1 3.15

110 GPO

105

I -22

15.0 - /'

x , y/

12.5 tr -G I-

\ '

90

2.5

Fig. 20.39C. TmVO+ CM and !4(ql- ~13 vs. T and stress uxx. [SsrZ]. See caption Fig. 20.39A for phase transition.

Symbol 1 2 3 4

0, Wal 0.36 0.30 0.20 0

hdolt-B&hnstsin Now Sdoa lllf29a

Page 513: Second and Higher Order Elastic Constants

502 1.3 Elastic constants spa, CPU (Fig. 21.1) wef.p.576

32- 120 170 175 180 185 K 190 t

T- 110 -

loo-

90.

80 -

-251 100 150 200 250 3Ul 350 400 K 4

60

55

50 I &

- 55

40

35

30

IO

Fig. 21.1. (NH&BeF4. zpu vs. T. 1: [8OS7], 2: [8992]. See Fig. 21.2 for &tads of phase transitions.

hdOlbB8lIldJl Now !JaicoIIK!!h

Page 514: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpa (Fig. 21.2) 503

I b 35 G

30

25 z- \ -

20 -7 c22

16 GPO 14

200 225 250 275 K 300 T-

A

25

c22 20- I I * I I I I

51 I I I I I I

Fig. 21.2. (NH&BeF,+ cPa vs. T. 1: [76A4], 2: ) u [78K3], 3: 189821. Ferroelectric Tc = 176 K; another

reference [83815]. 5.01 ‘-tti I I I I 100 150 200 250 300 350 400 K 450

T-

phase transition at T = 183 K. Below 176 K the point group is mm2, above 183 K, the point group is mmm. Incommensurate interphase from 176 to 183 K. Other

Land&-Bernstein New Scriea IBfZh

Page 515: Second and Higher Order Elastic Constants

1.3 Elastic constants sPu, cpu (Figs. 21.3 . . . 21.7) pef.p.576

18 18 GPO GPO

16 16 I I 3 3

14 14t-+-+t-l ii0 6.0

I 5.4

9 GPi

3 c55 c55 2 2

1 1 l+lY 0 k!imkH im 150 200 250 K 300

T-

0- im 150 200 250 K 300 T-

Pig. 21.3. NH4HC20&H@, cPo vs. T. [86B7, Pig. 21.3. NH4HC20&H@, cPo vs. T. [86B7, 89B2]. Ferroelastic transition at T, = 145.6 K Below 89B2]. Ferroelastic transition at T, = 145.6 K Below T, 2/m, above T, mmm. The axes used below T, are T, 2/m, above T, mmm. The axes used below T, are those of the high temperature phase, and are those of the high temperature phase, and are transformed 1 + 2, 2 + 1 from those of reference transformed 1 + 2, 2 + 1 from those of reference [72K7]. [72K7].

1 130 (TPOF

f 110 P 7 90 I 110 ~ (TPOI-’ : 90 P s-w -

70 100 125 150 175 200 225 250 275 K 300

I J

3 3 220 220 260 260 300 K 340 300 K 340

Fig. 21.4. (NH&SO,+ s o vs. T. [7311]. Ferroelectric- Daraelectric transition at f F = 223 K.

0 i 3 220 240 260 280 300 320 K 340

I-

Fig. 21.6. (NH&SO4 (Rbdoped). cl1 vs. T. [78Ul]. Fig. 21.7. SbSI (plezoel.). s3p33 VB. T. [72Hl]. Ferro- electric Tc = 290 K.

Page 516: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s,,&, cPu (Figs. 21.5 . . . 21.10) 505

40 GPO

GPO

5 180 220 260 K 300

T-

45 GPO

I 30

z u 15

179 45

GPO

I 30 $ 5 I 177

.o 01 I I I I 175 175 200 200 225 225 250 250 275 275 K K 300 300

T- T-

171' I I I I I I 60 100 150 200 250 300 K 350

T-

Fig. 21.8. SbSI. c33 vs. T. [64B3]. Ferroelectric Tc m 290 K.

6.5=

- __ 5.0 1'

,r I I

20 iTPa)-' r

t 15

ho

I 51

300 400 500 600 700 800 K 900 I-

Fig. 21.9. Ba$GNb& (piezoel.). s,,o vs. T. [7OYl]. Presubscript 0 indicates orthorhombic phase. Presub- script T indicates tetragonal phase. phase transition at T = 573 K. Fwelectric-paraelec&ic transition at Tc = 833 K.

Fig. 21.5. (NH&SO,+ c,,o vs. T. [78Ul]. Results not corrected for thermal expansion. Ferroelectric Tc = 223 K.

181 GPO

Fig. 21.10. B%N*O,s (BSN) (piezoel.). c d vs. T. [8623]. Phase changes: Above 833% 4/mmm; between 573 and 833 K, 4mm; the normal incommensurate phase begins at 573 K and terminates at a lock-in temperature of 543 K, between 543 and 105 K, mjn2; below 105 K, 4mm. A second incommensurate tetra- gonal;phase has been suggested between 105 K and 12 K. Other reference [86Y3].

hdolt-B&mtc.in Now Soda Ill/&

Page 517: Second and Higher Order Elastic Constants

506 1.3 Elastic constants sPo, cPa (Figs. 21.11 . . . 21.13) kf.p.576

I

230

40

210

fin

GPO

240

230

200 200 300 400 500 600 700 K I300

Fig. 21.11. BqNmOts (BSN) (piezoel.). cpe vs. T. [g5El]. cTpo are the isothermal and $P the adiabatic elastic constants, respectively, at constant electric field ET Pa and L?, are the elastic stiffnesses referred to the higher-temperature tetragonal axes. These values were determined from values measured with respect to the orthorhombic axes by performing a 49 rotation about the [OOl] axis. Arrows indicate the direction of heat- ing and cooling. Actual composition: Ba 2.06-2.10, Na 0.83-0.88. Nh 4.99-5.00.

0 160 180 200 220 250 K 260

I-

Fig. 21.12. Benzene, C!&. s,,,vs.T. [64Hl].

9 GPO

8

6 5

I GPO

A

1 5

3 4

4 I z

3-

160 180 200 220 2LO K 260 I-

Fig. 21.13. Benzene, C&IQ c,,vs. T. [64Hl].

LJdOlt-Bl)UUt& New SdmIB/Z9r

Page 518: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sP4, cPu (Figs. 21.14, 21.15) 507

I I c,, ( Scale -1

26

I I8

16 :

4,

I

GP: 6

2

& - 1

I I n I -125 150 175 200 225 250 275 K 300

T- -

Fig. 21.14. Betaine borate, (CH&NCH$OO*H3BO,. c,,,, vs. T. [84H12].

10.0 GPa

9.5

6.5 GPa

6.0

5.5

9.0

3.6

3.4

3.2

3.0

I 2o b

u"

31

30

29 I9

10.0 I8

9.5

15.0 8.0

14.5 7.0

14.0

13.01 I I I I I I I I 100 125 150 175 200 225 250 275 K 300

T-

Fig. 21.15. Betaine calcium chloride dihydrate, (CH,hNCH$OOCaC12~2H~0. c d vs. T. [88Hl]. Second-order phase trensitiom at 169 and 129 K.

Land&Bimatch New Serica llW9a

Page 519: Second and Higher Order Elastic Constants

1.3 Elastic constants q,,,, cPu (Figs. 21.16, 21.17) Bef.p.576

12 GPO

6 I I I I I I I 1 Cl2

2

0 SO

65

I 32 k3

3 30 18

28 16

2.5 14

2.0

1.5

1.0

0.5

n I I "140 160 180 200 220 240 260 280 K 300

T- Fig. 21.16. Betaine hydrogen maleate, (CH3hNCH2- COO~(CH)$OOH~. cpo vs. T. [88H2]. Ferroelastic phasetransitionmmm+2JmatT=lMK.

100 GPO

I 20 GPO

z'5 u c 10 s

5 0 50 100 150 200 250 K 300

I-

30 GPO I

20 e b

10 s

Fig. 21.17. C&b (piezoel.). cpavs. T. [76B4].

L&ok-Bl)masin Now SdmllIfBr

Page 520: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 21.18 . . . 21.20) 509

70, I I I I I I I GPO

68 c22

66 I \I I I I I

64 \

\

,1 17.5 J

17.0 __

16.5

2.51 I I I I I I I

125 150 175 200 225 250 275 K 300 T-

32 GPa

! 30

z

u= 28

26 9

GPa

I 8

2 j7

6 0 50 100 150 200 250 K 300

Fig. 21.20. C!uC1~+2Hz0. cpo vs. T. [81Il]. Antifeno- magnetic TN = 4.3 K. cpo calculated from wave veloci- ties assuming a density of 2550 kg/m?

Fig. 21.18. CaPd(CN)&H~O. c,,vs. T. [82Ll]. Phase transition at T = 203 K.

17.5 GPO

15.0

12.5

2.5 - 75 100 125 150 175 200 , 225 250 275 300 K 325

T-

Fig. 21.19.’ Carbazule-1,3,5 thnitrobenzene. ~11, czz, ~33 vs. T. 1: [8OM6], 2: [89E2]. Phible phase transi- tionat T-295 K.

Ladok-BOrnstein New Sorim lIK?9a

Page 521: Second and Higher Order Elastic Constants

510 1.3 Elastic constants sPu, cPu (Figs. 21.21, 21.22) mef.p.576

Fig. 21.21. Fayalite, F@iO,. c,,,vs. T. [7982].

340 GPO

330

250 320 GPO

240 310 230

I t?

220 210 GPa

85.0 2w

t 82.5 80.0 190

Lii 17.5

67.5

65.0

62.5

60.0 - 0 100 200 300 400 500 600 K 700 I-

Fig. 21.22. Forsterite, Mg#iO,+ 2: [8385],3: [8912]. c,,,vs. T. 1: [77Sll],

Fig. 21.22 further parts see next page.

LdOll-BBmruin NowSaiaIQ29~

Page 522: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 21.2Z21.23) 511

200

e 190

180

90 170

-“250 400 550 700 850 1000 1150 K 1300 T- /

80, 1 (TpajA I I I I I I I l-

I 60

bfg 40

-- v, 20.

3020 340 360 380 400 420 440 K 460 T-

225

GE 200

80 175

75 150

70

65 ,

60

55

““II

-200 400 600 800 1000 1200 1400 1600 K 1800 T-

.&. 21.22 For Fig. caption see page 510

4 Fig. 21.23. G%(MoO& (piezoel.). fl o vs. T for E applied along the [OOl] axis. 1: SBtr [7&, 77353. 2: $22 [7335, 77S5]. 3: sQj+ [73SJ, 77853. 4: $11 [81N3]. 5: ~‘3~ [81N3]. For curves 1, 2, 3: El = 1000 kV/m; for curves 4,5: IEI = 800 kV/m. Curves 2 and 5 have the same crystal orientation as curves 1 and 4, respectively, but opposite directions of applied B field. Results show that reversing the direction of E in the ferroelectric phase interchanges the [lOO] and [OlO] axes of the orthorhombic phase. phase changes: below Tc = 432 K, mm2 (ferroelectric); above Tc , &III (psraelectric). Results from [7335, 77853 have been transformed so that all compliance6 are specified using the othorhombic axes of the ferroelectric phase even though the principal axes of the tetragonal phase are rotated 45’ about the [OOl] direction with respect to those of the orthorhombic phase. ,$J.,sl is the compliance of a 45’ Z-cut or [llO] specimen using the orthorhombiti axes. See also lrigs. 21.24,21.25. s4s-z =‘/4[s11+s~+2s1~+s&$

L.andolt-B8zmtcin New Se& I&29r

Page 523: Second and Higher Order Elastic Constants

512 i 1.3 Elastic constants s,, cpu (Figs. 21.24 . . . 21.26) [Ref.p.576

85 6Po

t 80

u= 15

70

COO 600 800 lOfl0 K 1200 I-

Fig. 21.24. Gd2(Moo4)3 (piemel.). cl1 vs. T. Pamelectric phase. V6L4].

30

50

I

GPC 40

z 30

20

I -1

I

60

t I I

I c,,(Scole- I I

1 C&( (Scole 4

- 1

I

1 Cl3 _-s-w----.-- ---

s L.- ‘-- c23

4 .

-l $ 0 G ----d

: z

-20 I 300 325 350 375 400 425 450 475 K 500

I-

45 GPO

40 I z u t

I 30 35

GRI I E 25 Q3 -- L!?

20 . 0 50 100 150 200 250 K 300

I-

Fig. 21.26. Ga. T. c,,,vs. 1: [75Ll], 2: plL3].

Fig. 21.2!j. Gd.#oG& (piezoel.). cpo vs. T. 1: [72H81,2: [72333,3: [74C3], 4: [71C6] (cl1 calculated from wave velocity and a density of 4550 kg/m3). Fmwlectric-paraelectric transition (orthorbmbio tetragod) at Tc = 432 K.

L.dOlbBbUUl&l Now SaialBf29r

Page 524: Second and Higher Order Elastic Constants

‘.

Ref.p.5761 1.3 Elastic constants sPu, cpu (pigs. 21.27,21.28) 513

145 16

I

GPO GPO

140 15

2 135 14

130 110 13 GPO

-- 1 f

45.0 GPO

50 100 150 200 250 300 K 350 T-

Fig. 21.27. Ga cPa vs. T. [76B6].

12 9 GPO

11 11

10 10 I

6 6'

I 5 5 I

4 4 I--t- I 1 3 Pig. 21.28. N-Isopropylcarbazole. cPa vs. T. [86N3]. First-order phase transition: mm2 + mm2 at T = 137 K. C&es 1 and 2 represent different experimental runs. Definitions of the effective stifhesses c~ and CT for the quasi-L and quasi-?‘ modes, respectively, are given for the [Oil], [loll and [llO] directions in the caption of Fig. 22.16D. 01 I I I I I I I I I

75 100 125 150 175 200 225 250 275 K XXI

I”,r,a~ I I 11

10 4, I I I I

01 -2

8

7

I d-

I qT[0ll1lScole -1

I I 0

L I I I I I I I I PO 13

12 I

11 $

I I I I I I I II0

Land&B6mstein NcwSaier~9a

Page 525: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cpa (Figs. 21.29, 21.30) mef.p.576

140 UPa)-’

120

260 280 300 320 340 360 380 400 420 440 K 460 I-

Fig. 21.29. LiNH$O,+ spa vs. T. [79V4]. See also Fig. 21.30.

IL3-,

36 “,,.“,.A -1

t

GPa - 44

- 40

- 36

1

t

1111 I I' I IA .16 I I :: I I

14 14 3

12 12

15 10

13 El

11 ..250 300 350 400 450 500 K 550

T- Fig. 2130. LiNH$O,+ cPa vs. T. 1: [86Wl], 2: [89Ml], 3: [81H8], 4: [85Ll, 85L5], 5: [83H4], 6: [8384], 7: [87312], 8: [87Sl2]. Curves 2, 3, 4, 5 are measurements from Brillouin scartering whereas awes 1,6,7,8 are ultrasonic measurements. Curves 7 end 8 are measurements made along the [loll and [OlO] directions, respectively. phase changes: mmm + mm2atTC=460ICmm2-,2imatT2=285K.The mmm phase is paraekchic, the mm2 phase is ferro- electric and the 2qtn phase is ferroelastic.

LdOll-BthlUdU Now SodaIB/25b

Page 526: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpu (Fig. 21.30) 515

46 \ -I - "311e+ 41 GPO -. I

44 37

42 33

39 29

37 25

35 I\ \ r IG"l,

15. \

14

13 u 16 I 15

I ; I LF

21 I I I I\ I cm

a 12

11

24

i

25qpjqq 23t--yy+

I i-VI 1

21 \.

19. \

171 I I I I 1 \] 250 300 350 400 450 500 K 55[

23

60 GPa

50

40 40

t

GPa

30 I

Lb L.P 20 20

15 IO

IO

5 210 274 218 282 286 290 K 294

T-

I I I

cz2 ( Scale -1 45 I

b

351 250 300 350 T y50 500 K 550

17,

Gpol I I I I I I

250 300 350 400 450 500 K 550 T-

,

Fig. 21.30. For caption see page 514 T-

Land&Bhmin NewScriwHI/Z9~

Page 527: Second and Higher Order Elastic Constants

516 1.3 Elastic constants spa, cPu (Figs. 21.31 . . . 21.33) [Ref.p.576

JO0 1

(TPO)“

2000

uz In 1000

0

60 I I I I I I I I

40 (TrnY

I 30

,g 2o

10

0 15 100 125 150 175 200 225 K 250 _

I-

Fig. 21.31. LiNH4C4&06~H20 (MT). sPo vs. T. [77M4]. Penoelectric, Tc = 98 K.

70r 70 I I I I I I

I

GPO

60

R 5 50

E E Cl1

CO CO I

93 -

301 30

EL2 EL2

I I 10 10

z z LJ LJ 25 25

0 0 80 120 160 200 240 280 K 320 80 120 160 200 240 280 K 320

I- I-

70 GPO

1 Cl1

60 F-1 Cl1

50

2opO

16

12 I

8 $

4

0 150 175 200 225 250 275 K 300

T-

Fig. 21.33. LiCsS04 cpa vs. T. 1: [81A3], 2: [87h43, 88M13], 3: [82AlO]. Fenoelastic phase transiticm (mmm+2/m) at T,=202K(arrow).Other references [83A6,83I9]. 4 Fig. 21.32. Lii4C4H40~~H~0 (TAT). c o vs. T. [78U2]. Phase transition 222 + 2 (ferroe&ctric + paraelectric), at Tc = 98 K.

LdOlt-B8UlUOlXl New SaiaIBt29r

Page 528: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 21.34 . . . 21.36C) 517

9- u" 5.2

lu$

u 4.0 200 225 250 275 300 K 325

T-

Fig. 21.34. LiCOOH~HzO. $5~ and cJ& [8321].

vs. T.

‘:I- 250 260 270 280 290 300 K 310

T- Fig. 21.36A. LizGqOtp ctl, CZZ, 93 vs. T. 1: [8OH6], 2: [87A3]. See Fig. 21.35 for phase transition.

60 GPO

50

1 40

2 30

G 2 20

IO

0

-'Y

I

I L-l-1 I I ,I A I

1 300 K 311 T-

Fig. 21.36B. LizGqOIs. See Fig. 21.36A.

3

cl2 cl31 c, vs. T. [8OH6].

6

5 271 273 275 277 279 281 283 K 285

T-

Fig. 21.35. Li2Ge,015. sPO vs. T. [87Vl]. 1: ~45’~~ 2: s4p-,,. Ferroelectric phase transition mmm + mm2 at TC = 283.6 K. mmm and pamelectric above Tc. s45’-x = W[s, + s33 + 2sz + s4q1,

S4Y-y =‘A[sll+s33+2s13+scJ.

2 33.5 I I I

33.01 1 250 260 270 280 290 K 300

T-

Fig. 21.36C. Li2GqOIS. c,, cs5, cM vs. T. [8OH6]. See Figs. 21.36A, 2136B.

hdolt-BBmstdn Now Sala lBfZ9a

Page 529: Second and Higher Order Elastic Constants

518 1.3 Elastic constants sPu, cpa (Figs. 21.37 . . . 21.40) mef.p.576

I I

75

50 & u

25 50 GPO

100

I-+

0 25 50 75 100 125MPo150 0 100 200 300 400 500 600 K : P- T-

Fig. 21.37. L,izGe&. cpo vs. p at 293 K. [83HS]. Paraelectric-fenoelectric phase transition mmm + mm2 for p .? 63 MPa.

58.5

58.0 5% 5 I QW Ll

57.0

55.5 0 100 200 300 400 500 600 K 700

I-

Fig. 2139. LizGe. $33 and $55 vs. T. [86Tl].

10.31 I I / l//l __

I I

'0.2 TPOY'

10.1

10.0

9.9

9.8

I 9.7 b

2

9.6

9.5

9.4

9.3

9.2

I

Fig. 2138. L&GeO, (piezoel.). s,,,vs. T. 1: [76I2], 2: [8ql]. Axes of [7611] have been transformed 1 c) 2 so that the data can be compared with results from [86Tl]. Values of spa in [86Tl] have been reduced by a factor of ten to be consistent with other results.

153

I

GPO

152

3 151

150

-130.0 0 50 100 150 200 250 K 300

Fig. 21.40. L,i2GeOp cl1 and c33 vs. T. [81B71. Calcu- lated from wave velocities assuming a density of 3500 kg@.

Page 530: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 21.41,21.42) 519

mo UPa)"

I

1 1000 --0.55k&+x

hdolt-Barnstein

401 0 5 IO 15 20 25 30 : 35 40 45 K 5U

T-

Fig. 21.41. UTlC,&O~~H~O (45’ X-cut). s&4s’-, VS. T. [71Sll]. Ferroelectic-paraelectric transition at Tc = 10k The biassing field-E is in the [NO] direction. Note the logarithmic scale for sB4y+. Curves corresponding to negative bias are shown dashed. The asymmetry between the curves for positive and negative bias is due to structural changes under non- zero bias in a lower symmetry monoclinic phase. For E=O:S~~L~=%[S~+S~~+~S~+S~~].

320 GPO

318

t

316

314 u=

312

$11 I I ItdN 72 . \

70 300 350 400 450 500 550 600 650 K 700

T-

Fig. 21.42. Olivine, (Mgo.~~Fq-,.&$iO~ cpa VS. 2’. [69El].

Page 531: Second and Higher Order Elastic Constants

520 1.3 Elastic constants sPu, cpa (Figs. 21.43, 21.44) mef.p.576

70

65

60

55

14

$ 13

c, 12

11

10

47.5 GPO 45.0

42.5

40.0

37.5

35.0

32.5

30.0

31.0 GPO

30.5 I k u

30.0

300 325 350 375 400 425 K 450 T-

Fig. 21.43. K$a(NO&. cpcr vs. T. 1: [83U], 2: [8OS8].Phase changes:? +mmm at T=209K,mmm + 6/mmm at T = 428 K. In the hexagonal phase c6 = H(cll -cl& The 6/mmm + mmm phase change is an impmper fenoelastic mnsi tion.

. lOO 150 200 250 300 350 400 K 450 T-

so nPo)-’

70

I 60

x & 50

40

30 400 420 440 460 K 4

T-

80 (TPOY

70 I

60 ’

Fig. 21.44. K&!d.#O,& sa and ql - s12 vs. T. [81A2]. Phase transition 222 + 23 (ferroelastic + paraehstic)atT,=436 K.

LdOh-BS& Nowsaianm9I

Page 532: Second and Higher Order Elastic Constants

1.3 Elastic constants sib, cpa (Figs. 21.45, 21.46)

80r I 1 I I I GPal I I I I I

65

60

250 300 350 400 450 500 K 550 T-

20 50 75 100 125 150 175 200 K 225

T-

Fig. 21.45. K2Cd#04h. c,,o vs. T. [83A2]. Phase transition 222 + 23 (ferroelastic + paraelastic) at T, =

Fig. 21.46. K2Se04 sPa VS. T. [8OK4]. Tc = 93 K, Ti = 127.5 K. Below T, the phase is orthorhombic and

430 K with increase in T. The ehstic constants cT1, cn fermelectric; between Tc and Ti it is incommensurate; and cn associated with qT modes [Oil], [loll, and and above Ti orthorhombic. There is a further phase [llO], respectively are defined in Pig. 22.16D. (hexagonal 6/mmm) above T = 745 K.

175 UPa?

150

125

100 100

(TPor' 75 A

b3+s55

50 Y

t

iTPa)' 50 1 2512+%6

I -i-l I I I I I

I 401 I ' 25 :(TPd c

60 (TPa)-'

50

hdolt-Bbmtein New Saica W29r

Page 533: Second and Higher Order Elastic Constants

522 1.3 Elastic constants Spa, cpa (Fig. 21.47) [Ref.p.576

GPO1 I, l/l I’..1 1 1 L. 20’ I --P-Ll lc:I

m 161 ! I

25

20 0 50 100 150 200 250 300 K 350

120.0 122.5 125.0 127.5 130.0 132.5 135.0 K 131.5

GE

55

I 45 50

lF 40

35

30

25 0 50 100 150 200 250 300 K 350

T-

T-

Fig. 21.47. K$eO,,. c vs. T by Brillouin scattering. 1: [8OR3], 2: [82H5]. fi elastic constantn 31 and w amdated with qT modes [Oil] and [loll, respectively are defined in Fig. 22.161). Phase changes: 6/mmm + mmm at 745 K, mmm + incommensurate phase at Ti = 1275 K; incommensurate phase + mm2 at Tc = 93 K. Below Tc the phase is ferroelectric. Other references [83315,&W& 9OG2].

LdOlt-Bbmadn NowSaiosItb290

Page 534: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants +a, cpa (Figs. 21.48 . . . 21.50) 523

32, 32 I I I I GPO GPO

30 30

I

I 28 28

26 26 u= u=

24 24

22 22

20 680 700 720 740 K 760

2oLLL.L.l 680 700 720 740 K 760

T-

Fig. 21.48. K2Se04 cl1 vs. T. [SlC6]. Point symmetry:T>745 K,6/mmm;T<745K,mmm.

I 158

50 -. -

16 46

14 42

12 38

I 10 34

b, u 8 30

6 26

50 100 150 200 250 K 300 T-

Fig. 21.49. K&M& c,,o vs. T by ultrasonic attenua- tion. [8OR3]. See Fig. 21.47 for phase changes. Ferro- electric. Other references [83915,84R2].

4 0.15 GPO 20 I I

114 118 122 126 130 134 K 138 T-

Fig. 21.50. K2Se04. c& vs. T andp. [84L5, 85B3]. Phase transition mnun + incmunensurate phase at Ti = 129 K with decreasing T at zero pressure. Other reference [88B4].

Lutdolt-B&mein New Series IlJ/29a

Page 535: Second and Higher Order Elastic Constants

1.3 Elastic constants sPu, cpa (Figs. 21.51 . . . 21.53) jRef.p.576

6 GPa

5

I 4

E $ 3

2

0 MO 220 2LO 260 280 K 300 T-

Fig. 21.51. KH#eO&. C~ vs. T. 1: [78CI9] and 2: [7908] low frequency torsional vlkation. 3: [81Cl] Brillouin scatteriq. Second-order structural (ferro- elastic) phase transition mmm + 2/m at T, = 212 K.

GPO . 38

\a .

\ \

L33 GPO1 I I -l--t-u I I

I

22

0 20 u”

18

GPO 12

8

I 1 n I I f-4

4 160 180 200 220 240 260 280 300 K 320

I-

Fig. 21.52. KI$(SeO&, css vs. T and stxss. [81Cl].

Curveno 1 2 3 4

Shear stress 0 0.000163 0.000325 O.ooo442 ~5 WV

Shear stress produced by application of a uniaxial stress along the [112] direction. See also Fig. 21.51.

/ ,

Fig. 21.53. KH&SeO&. c o vs. T. [77hf8]. The stiffnesses are labelled as in [7!kM8], but it appelas that the axial transformation x + y, y + x is required to make the notation agree with that of later workers [78(39,79(38,81Cl]. See also Figs. 21.51,21.52.

T-

Page 536: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpa (Figs. 21.54 . . . 21 S6) 525

160 200 240 280 K 320 T-

Fig. 21.54. KI$(SeO&, deuterated. css vs. T. [81Cl]. Brillouin scattering measurements on material containing “a significsnt amount of hydrogen im- purity”, with a phase transition temperature T = 283 K. Ulealow-frequency measurements between 273 and 303 K on material containing 80% KU&MI& gave a curve practically indisdnguishable f&n that shown above [79G8]. - -

0.5

0 270 275 280 285 290 295 K :

T-

_ _ I-I, -

Fig. 21.55. KH@C&, 97% deuterated. c T,), where T, is the temperature of the erroelastic P

o vs. (T -

Dhase transition 2/m + mmm. 181Slll. (“fhe actual hue of T, is not ~specified in [8iSll].)a) ctt and c, vs. (T - T,). The curves are not affected by a change in applied normal stress component a3 from 0 to 0.007 GPa. b) cz (extended scale) vs. (T - T,).

Curvenumber 1 2 3 4

05 PPal 0 0.0012 0.00204 0.00376

Fig. 21.56. KH3(SeG3)2, deuterated. c55 vs. T. [81Cl].

Curveno 1 2 3 4 5

Shear stress 0 0.00071 0.0014 0.0024 0.0038 0~ KN

o5 is the applied shear stress in the xs plane. Note the relative vertical shift of the cy~ scales.

0

For further details of deuteration and stress application, ’ see Figs. 21.52,21.54,21.55.

L&dolt-Bfhstrin Now S&o lW29o

Page 537: Second and Higher Order Elastic Constants

526 1.3 Elastic constants Q,,,, cpa (Figs. 21.57A . . . 2157C) lRef.p.576

39.5 GPa

39.0

I

31.5

37.0 z

c, 36.5

36.0

-30 -25 -20 -15 -10 -5

38.5 GPa

38.0

36.0 I ::

35.5 -

39.5 GPa

36.5

36.0

r-r, - Fig. 2157A. K@J,D,)#eO& c, vs. T- To. (T, = ferroelastic phase transition temuerature.) Effects of composition-x. [8232]. For x = 0, ?c = 21118 K; for x = 1.0, T, = 302 K. Values of T, for other values of x nre tuupcified. Above TC the structure is mmm; below To 2/m.

Symbol 1 2 3 4

X 0 0.81 0.87 0.97

36.5 GPa

36.0

34.5

34.0 b I -10 -8 -6 -4 -2 0 K 2 r-r, -

Fig. 21.57C. K(HIIDXh(SeO& a vs. T - T,. Effects of irradiation. [8282]. See also Fig. 21.57A. (a)x=O

symbol 1 2 3 4 5 6

DoseWgl 0 25.8 77.4 129 258 387

(b) x = 0.87.

Symbol 1 2 3 4 5

Dose K/kg1 0 25.8 77.4 2.58 516

Fig. 21.57B. K(HI,,DXh(SeO&. css vs. T - T,. Effects of composition x. [8232]. See also Fig. 21.57A.

Symbol 1 2 3 4

0 5 10 15 20 25 K 30 I-7, - X 0 0.80 0.85 0.87

Ldolt-El& Now SuiulU/29r

Page 538: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPcr, cpa (Figs. 21.58 . . . 21.60) 527

1.07 km

&

5. 1.03

1.62 1.01

I

km

&

h 1.58

1.56 2 s

1.44 1.12 I h

1.40

3g 1.38

1 3.;0 3.16 1

3.12

3.08

t9m2 2.72

I *5

Ir 2.84

2.80 320 3'+0 360 380 400 420 440 K 460

T-

Fig. 21.58. K$nCh. Ultrasonic velocities, Y = (c/p)%, vs. T. [8OH9]. Phase changes: below T = 400 K, mm2 (ferroelectric); between T = 400 K (= Tc) and 553 K, incanmensurate; above 553 K, mmm. COM = com- mensurate, INC. = incommensurate. Axes transformed l-3 to conform with convention used in Table 21.

2.65

I 2.60 L

2.55

2.50

I 2.45

450 475 500 525 550 575 K t T-

O

Fig. 21.59. K&N&. Sound velocity, v = (c&p)n, VS.

T. [8OH9]. See also Fig. 21.58.

25 GPO

24

16 300 350 400 450 500 550 K 600

'T-

I

6.2

w 6.1 u

6.0

325 350 375 400 425 450 K 475 T-

Fig. 21.60. K$nCG. c Ip

o vs. T. 1: [SSQl], 2: [81H15]. Fhase changes: below c = 407 K, mm2 (ferroelectric); between Tc and Ti = 561 K, incommensurate; above 561 K, mmm. Axes transformed l-3 to conform with convention used in Table 21.

Lutdolt-Blmstsin NowS&~91

Page 539: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cPu (Figs. 21.61 . . . 21.63) mef.p.576

-290 294 298 302 306 K 310 I-

Fig. 21.61. Rochelle salt, KNa(C4H40,$4H20 (piezoel.). $3~ and &3 vs. T (expanded scale). [84B17]. See also Fig. 21.62.

40 ‘\ C33

38 ', \

1 cm I ,

I\ I

32

281 I I I

6

2 150 175 200 225 250 275 300 K 325

10.5 GPO

10.0 I 2

I 3.5 9.5 GPO 3.0

t!f

2.5 220 240 260 280 300 K 320

Fig. 21.62. Rochelle salt, KNa(C4H40&4H20 (piezoel.). c o vs. T. Top curves: [SOJl]; bottom curves (~5 and q$: [74Sl]. Ferroelectric, Tc: lower 254 K; upper 296 K.

Fig. 21.63. RbHS04. c ,., vs. T. [7922]. Monoclinic, quekrthorhombic, 2 rs 4-I e polar axis. F%ase transition atT=2645K.

LJdOl!-BbUUt& Now SaialB/2!h

Page 540: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpa (Figs. 21JX21.65) 529

I 2.02 kn? -c

e2.00

J 1.98

1.52 b$

I 1.50 e

I I’I I

G 5.1 7.3

&I2 s.2

7.2 y

c? I 7.6 7.1

I$

F 1.5 z

I I I I I 290 300 310 320 330 340 K 350

T-

Fig. 21.64. Rb&Q. c &I vs. T. [79H6]. Phase changes: below Tc = 195 K orthorhombic, ferro- electric; between T = 192 and 302 K, incommensurate; above 302 K, mmm. Axes transformed l-3 to con- form with convention used in Table 21.

32 GPO

31

30

29 I.2 CD"

I ~qT[lOll(Scale ---I 1 \I ( lUr"

26

I 25

b u" 24

6

4.1 b u”

23

161 I I I I I I 175 200 225 250 275 300 325 K 3

T-

J 15

3.9

3.1

3.5

0

Fig. 21.65. Rb$nClk cpo vs. T. 1: [82L5], 2: [82Y4]. Phase changes: mmm + incommensurate phase at Ti = 302 K; incommensurate phase + mm2 at Tc = 192 K. Perroelectic below 192 K. The elastic constants for the qL and qT modes for the [ 1011 direction are defined in Fig. 22.16D. Axes in [82L5] transformed l-3 to con- form with convention tied in Table 21.

hdolt-B6mste.h New Sah IUf29a

Page 541: Second and Higher Order Elastic Constants

1.3 Elastic constants sPu, cPu (Figs. 21.66A . . . 21.68) wef.p.576

16 , GPc I

it3 I I 1 I

0 200 220 240 K 260 7~ I-

I cl1 (icole’-l I I

itI I

36

" 28

20

Fig. 21.66A. NaNH4Se0.q2H20 (piezoel.) (T > 180K). cpo vs. T. [75K4]. Pa~aelectric above Tc = 180 K.

I

I InI I I I I I”” 36

32 30

1 &

u 22 28

20 8

0 125 150 175 200 225 250 275 K 300

T-

Fig. 21.66B. NaNH$e04~2H20 (piezoel.). (T < 210 K). cpa vs. T. [75K4]. Ferroelectric below T, = 180 K. Calculated from wave velocities and a density of 2205 kg/m%

500 (TPo)-l

I 400

E 300

200 140 nPoI-' --

I 120 j

z Y) 2 100 -- S&b

140 nPoI-'

I 120 z Y) 2 100

80 801 I I I I I 100 100 125 125 150 150 175 175 200 200 225 225 K K 250 250

I-

Fig. 21.68. NaNH&~H~O~4H~O. s Q vs. T. [78(32]. Phase transition 2(?) + 222 at T = 11fK.

Fig. 21.67. NaNH$e04*2H20 (piezoel.). cpo vs. T. [88Ml, 88M12]. 6% is the aiffness of an unplated crystal. Pareelectric-ferroeletric phase transition 222 +2atT-= 179.9 K with decreasinn T.

LdOl!-BblUt& Now!MaIW29r

Page 542: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpa (Figs. 21.69 . . . 21.71) 531

65

60

300 325 350 375 400 425 450 475 K 500

Fig. 21.69. NaNOz (piezoel.). s,,c vs. T. [63H3]. The upper loops 1 and 3 correspond to sBll and sBs3. The upper loop 2 corresponds to the unpoled crystal. The lower loop on each curve corresponds to So. Ferro- electric T,‘ = 427 K. Antiferroelec~ic TN = 437.5 K.

70 GPO

60

0 0 433 433 435 435 437 437 4?9 439 441 441 443 443 445 445 447 447 K K 449 449

T- T-

Fig. 21.70. NaNOP Adiabatic (# o) and isothermal Fig. 21.70. NaNOP Adiabatic (# o) and isothermal ($‘,,J compliances vs. T. [78H8]. bee Fig. 21.71 for ($‘,,J compliances vs. T. [78H8]. bee Fig. 21.71 for further details. further details.

4 Fig. 21.71. NaNOp c o vs. T. 1: [7002], 2: [78Hl]. Tc = 437 K, TN = 431 K. Phase transition mm2 + mmmatT=437K.BetweenTCandTNthephaseis inmmmensurate. Other reference [84H14]. See also Figs. 21.69,21.70,21.72,21.73.

250 300 350 400 450 K 500 T-

Ldolt-B6mstein New Sake lB/29e

Page 543: Second and Higher Order Elastic Constants

532 1.3 Elastic constants sPo, cpu (Figs. 21.72 . . . 21.74) mf.p.576

I 7.0 GPO

2 u 6.5

6.0

rGPol \ 1

435 440 445 K 450 I-

Fig. 21.72. NaNOz c ,, vs. T. [78Hl]. Heating rate (0.02-0.04) K/r&. See big. 21.71 for further details.

b Fig. 21.74. a-S. c,,,, vs. T. [86SS]. The labels on css and csa have been interchanged to make the data consi- stent with [8635] in Table 21.

0 20 40 MHz 60

3ob I 300 350 400 450 K 5

I-

Fig. 21.73. NaNOp (a) css vn. fiequencyf; (b) % v8. T. [8OHl]. See also Figs. 21.69***21.72.

14

I

12

"

4.3

4.1

3.9

“..

280 300 320 340 360 K 3;

8.5 GPO

3.0

I 7.5 uk

Lmdolt-BBmuein NewSdaI&29r

Page 544: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpa (Figs. 21.75,21.76) 533

GPO 70

I

c22 //' c11=c22

60 :-=>,

2

$50 ‘--

201 I 250 300 350 400 450 500 550 600 650 K 700

T-

4 Pig. 21.75. Tb#oO4)3. c,,a vs. T. 1: [81Y2], 2: [82F5]. Phase transition mm2 + a2m at ferroelectic Tc = 432.2 K. 41 is the elastic stiffness for longi- tudinal waves along the x-direction of the paraeleceic crystalline axes: cl1 and ~2 sre the stiEnesses for prop- agation along the x- and y-directions of the ferroektxric crystalline axes. The ccordkate axes of the paraelectric phase is rotated 45” about the z axis with respect to the low temperature ferroelectric crystalline axes.

1275, I I I I I I I ,I175 m/s m/s

.,v1 1250 .\ 1150

1225

1125

1125

1025

-270 275 280 285 290 295 300 305 K 3Id--- T-

1500 m/s

1400 Y ‘-, e 1300 3

,” 1200

IIOOL I I I I I I I I 240 250 260 270 280 290 300 310 K 320

T- 2860 m/s 4

2840 Fig. 21.76. Ultrasonic velocities, v ~(CH3)&ZnC!b. = (C/P)', VS. Tat 10 MHZ. [86BlO]. Ti = 296.7 K. Tc =

:: -s 2820

281 K, T1 = 277.4 K, T2 = 177.8 K, T3 = 159 K. Phase changes: below 159 K, 222; between 177.8 and

&t= 277.4 K, 2Em, between 277.4 and 281 K, mm2, ferro- ” 1 2800 electric; between 281 and 296.7 K, incommensurate

phase; above 296.7 K, mmm. There is also a phase 2780

295.6 295.8 296.0 296.2 296.4 296.6 296.8 297.0 K 2922 transition of unknown type at 170.7 K.

T-

Landok-B(lm&n how Saim W29a

Page 545: Second and Higher Order Elastic Constants

534 1.3 Elastic constants sPu, cPu (Figs. 21.77 . . . 21.79) [Ref.p.S76

13

12

11 ----Cl2

I I I - 2

Cl1 2 y--T-

I 1ot1--t ”

23.5 11.0 GPO

23.0 10.5 I

& 22.5 10.0

22.01 I I I I I 260 270 280 290' 300 310 K 20

T-

Fig. 21.77. [N(CH&&&CL+, c,,c vs. T. 1: [83K4], 2: [84Bl61,3: [84B16]. Curves 1 and 2 are results from Brillouin scattering at 582.7 THz and 15 GHz, respectively; curve 3 are results fkom ultrasonic data at 8 MHz. See Fig. 21.76 for phase changes.

-- E

% ’ (lid-’

82. / 143

I 81 -

79 140

78 139

771 30 40 50 60 70 K 80

81.0r I I 1 1 I ,176 _ UPaT

80.5

I (TPaY

\ / 174

I I 80.0 172

79.5 170

79.0 168

I 78.5 166 I

32.5 I\1 I

32.0

‘ill”t”i 35.25 31.51 20 30 40 50 60 70 K 80

T-

Fig. 21.78. TU-&(SeOi), (piezoel.). C gvs. T. [8532]. Tl = 56.4 K, Tz = 52.9 K, T3 = 51.6 k. Phase transi- tions at T,, T, and T3. Arrows indicate the direction of temperature change. W-X = l&a + 833 + 2ra + s44], 84%y = U[s,, + s33 + 293 + SSJ.

Fig. 21.79. TlD.&SeO& (piezoel.). SBpa vs. T. [85S2]. Tl = 53.75 K, Tz = 51.75 K, T3 = 49.95 K. Phase transitim at Tl, T, and T3. Arrows indicate the direc- tion of temperature change.

IdOlt-Bbmasin Now Saia IBf291

Page 546: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cPu (Figs. 21.80,21.82) 53s

26

22 14 GPa

10 12

9 IO

I a

I

0.0 2.2

0.6

T-

26

"120 160 200 240 200 K 320 T-

&g. 21.80. Thiourea, SC!(NH& c vs T 1. [82R3] 2: [74B33, 3: [73TS]. Tt = 2OO’I& : 180-K, T3 : 176 K, T4 * 169 K. Phase changes: Above Tt, mmm, paraelectric; between Tt and Tz, an incommensurate phase; between T, and T4 there are two closely spaced phases, the higher temperature phase beiig weakly ferroelectric; below T4, mm2, ferroelectric.

For Fig. 21.81 see next page.

0 0.1 0.2 0.3 0.4 GPa 0.5 P-

Fig. 21.82. Thiourea, SC(NH&, ~33 and ca vs. p at 293 K. [83B7].

Land&B&tmstein NewSaieaW29r

Page 547: Second and Higher Order Elastic Constants

536 1.3 Elastic constants spa, cpa (Figs. 21.81, 21.83) mef.p.576

I r--b-L I I 16

16

I

14

12

" 16

16 -m. I I c,,,p =0.2 GPO

12 I I

-IN 120 160 200 240 280 K 320 l-

75 100 125 150 175 200 K 225

30

28

1

1.0

0.9 Lb

0.8

0.9 \ I Ti

0.8

0.7

0.6

cS6,p= 0.075 GPO -

rc ,H /

b-

fi' 80 120 160 200 240 280 K 320

T-

A 4Pig. 21.81. Thiourea, SC(NH.&. cpo vs. T and p.

[83B7, 84B133. Ti and T, mark the incommensurate and commensurate phase transition temperatures, respectively.

43 GPO

I 21

b @20

19 100 110 120 130 140 150 K 160

T-

.&. 21.83. Tris-sarcosine calcium chloride, (CH,NHCH$CKIH)$aCl~ c vs. T. 1: [8OS171,2: [81&I], 3: [8537]. Paraelectric- r cn~oelectric phase @an- sitionmmm-,mm2,atT~~130Kwith~T. Curves 1,2, and 3 do not appear to have the seme reference axes.

LdOlt-B&l&t&l Now SaiaIBfBr

Page 548: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spur cPu (Figs. 21.84 . . . 22.2) 537

300 GPO

250

I

200

$50

100

50

0 100 200 300 400 500 600 700 800 K 900 T

Fig. 21.84. a-U. c o vs. T. [66Fl]. For behavior below T = 43 K see [68Flf.

(TPor"l 1 1 1 x=OE 1 1 _ )

1501 I I I I I I I loo 125 150 175 200 225 250 275 K :

T-

Fig. 22.1. Ammonium Rochelle qlt, NaK~,(NH& C&,06-4H20 (45’ X-cut ). sBti~+ vs. T. [78MS]. S4S’-x =M[s~+s33+2s~+s44].

Fig. 22.2., N&NaSe04-2H,O (45’ Z-cut). s450mr vs. T. [7521]. Ferroelectric Tc = 180 K. 1: s&4591 2: sD4501. 945~-*=‘/4[s~~+s~2r~~+s~. OL I I I I

125 150 175 200 225 K i

150 150 150 170 170 170 190 190 190 210 210 210 230 K 230 K 230 K 250

2400 (TPOY

1600

I 1200 r

125 (TPOY

100

I

i

75 r -5 l-2

50

T-

LandolbB6macin New Saia I.Uf.2Pa

Page 549: Second and Higher Order Elastic Constants

538 1.3 Elastic constants spu, cpa (Figs. 22.3 . . . 22.6) pef.p.576

20.50 I+

20.25

20.00

19.75

19.5 GPO 19.0

19.50 -- ’ \I Y 1

1 17..o}S b

cp 16.9 8.75

0.25 0.50

0.00 8.25

7.75 \, [ c

4.75

3.25 4.50

2.751 350 370 390 410 430 K 550

T- Fig. 22.3. (NH&&Cl& cPo vs. T. [82Sll]. phase changes: mmm + incommensurate phase at T = 406 K, incommensurate phase + mm2 at T = 364 K, mm2 + m, antifenoelectric at TN = 319 K. See also Fig. 26.1.

10.0, I

G6

0.0

I 0.6

b 0.1

0.2

0 295 300 305 310 315 K 320

I-

Fig. 22.4. Analine hydmbromide, C!&I$I$Br. css vs. T. [8O!J6]. Phase transition : monoclinic + ortho- rhombic at T = 296.2 K.

280 300 280 300 320 320 KO KO 360 K 380 360 K 380 l- l-

Fig. 22.6. Bis-(propyl-ammonium) manganese tetra- chloride, (C3H,NH3)@nCl+ % vs. T. [86Ml]. phase changes:4/mmm-+mmmat44OK;mmm+incom- mensurate at 393 K, incommensurate + mmm at 343 K; mmm + incommensurate at 163 K; incommen- surate 2/in at 114 K.

4 Fig. 22.5. B%G%TiOs. dtt vs. T. [76Kll]. Phase transition at T = 1083 K; some twinning occurs below this temperature. The prime on s’,, denotes that the crystallographic direction refers to the hvinned phase.

LdOll-Bl)mrtdn NowaQrioolB/291

Page 550: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpu (Figs. 22.7 . . . 22.10) 539

(TPi“

I 5.0 /

“2 s202 o,= 4.5 o

Sll _

-. 4.0 100 150 200 250 300 350 K 400

T-

Fig. 22.7. Boracite, Cu-Br, Cu3B701$r. sll and szz vs. T. [78Gll]. FerroelectWferroelastic transition mm2+ z3matTc=238K.

4.1 4.1 (TPo)-’ (TPo)-’

I I 4.0 4.0

z z 3.9 3.9

3.8 3.8 1.2 1.2 (TPd-’ (TPd-’

1.0 1.0 I I 0.8 0.8 $ $

0.6 0.6

I I 12 12

z z 11 11

10 10 200 200 300 300 400 400 500 500 600 600 K K 700 700

Fig. 22.9. Boracite, Mg-Cl, Mg3B701&!1. sPo vs. T. [76AlO]. Fexroelectric-paraelectric transition mm2 + -3m at Tc = 538 K. So is the shear compliance of a square plate with edges inclined at 45’ to the x and y axes. All data is given with respect to the cubic coordinate system. Results for the low-temperature phase are the pseudocubic constants for polydomain samples.

hdolt-B6mstcin New Series JJlf29a

Is51 I I I 41 I I I I I I

ITPa;’

I 6

“$ 9,’ 5

4 200 250 300 350 400 450 K 500

T-

Fig. 22.8. Boracite, Cu-Cl, C!uSB70&1. sll and szz vs. T. [18Gll]. Ferroelectric/fexxxz.lastic transition mm2+ 43matTc=365K.

90, I I I I I tGPaI I L I H

Fig. 22.10. Boracite, Ni-I, Ni&O1& CM vs. T. [78R4]. Ferroelectric-magnetic phase transition at T = 60 K.

Page 551: Second and Higher Order Elastic Constants

540 1.3 Elastic constants spa, cpa (Fig. 22.11) [Ref.p.576

133

132

131

126

I 124

LF 122

120

20.5

20.0

19.5

19.0

18.5 0

118 GPO

116

114

112

110

40

39

38

31

36

35

100 200 300 K 400 I-

b L.7

142 GPO

141

37.25

36.75

36.50

36.25

1.25 1.25

1.00 1.00

0.75 0.75

0.50 A

Fig. 22.11. CQ. cPo vs. T. 1: [85Sll], 2: Fig. 22.11. CQ. cPo vs. T. 1: [85Sll], 2: [87W3,b 025 87B4], 3: [87G8, 87G6, 88G4]. Phase changes: above 87B4], 3: [87G8, 87G6, 88G4]. Phase changes: above T, mmm; below Tc 2hn. Tc = 168 K for curve 1; T, = T, mmm; below Tc 2hn. Tc = 168 K for curve 1; T, =

. o 100 200 K 300 l- l-

220 K for curves 2,3. The differences in T, and in 220 K for curves 2,3. The differences in T, and in

127 GPa

126

125

I 121

& 123

122

134.0 GPO

133.5

133.0 I

LF

132.5

132.0

131.5

121

120 0 100 200 K 300

T-

curves la are due to the method of samplejwpera- tion (se-e Fii. 22.12). There are small features at wry lowtemperaturestoo8rnalltoseeonthesecurves.

b&It-B8UUt& Now !?aia IllR9r

Page 552: Second and Higher Order Elastic Constants

,Ref.p.576] 1.3 Elastic constants sPu, cPu (Figs. 22.12 . . . 22.15) 541

I I I I I I I I /

2.51 I I I I x/ I I

r 2.5 ’ GPa

GPO1 I I I I //I I I

0 0 50 100 150 200 250 300 350 K 4

0.5

0

1 T-

Fig. 22.12. CeC!u6. ca vs. T. 1: p = 0 [85Sll], 2: p = 0.4 GPa [8JSll], 3: sample grown in boron nitride crucible [8708], 4: sample grown in tungsten crucible [87G8]. See Fig. 22.11 for phase changes. Tc = 218 K for curve 3; T, = 168 K for curve 4.

20 I 55.0

7.50 GPO

7.25

I 6.00 7.00 GPa

3 5.75 s

5.50 50 100 150 200 250 K 300

T-

Fig. 22.15. Csh-inC13~2H20. cpo vs. T. [8OK2].

701 I I I I I I GPO

1 c22 60----

I ‘OfI

OL I I I I I I 0 50 100 150 200 250 K 300

T-

Fig. 22.14. CeNi. T. cpovs. 1: [85G3], 2: [87B4].

For pig. 22.13 see next page.

htdolt-B6mswin New Saia WI

Page 553: Second and Higher Order Elastic Constants

542 1.3 Elastic constants sPu, cPu (Figs. 22.13,22.16A) pef.p.576

125.75 I GPO I BllY

125.70

125.65

I 125.60

400 GPa

390

360

1 350

ul 340

I -125.55. \

z 1.2, \ 1 125.50 \ 51 TN

300 50 100 150 200 250 300 K 350

125.454 T- 125.75

GPa I I

BIIZ 1 I

\ T=ll K

125.60

125.55

125.50

12545 I I I I I

175 Ld I I I I I .__. ._ 0 12 3 4 5 6 7 T8

D- (I-

kg. 22.13. C!eCt+ 93 vs. B for various values of T. [87G6]. There are anomalies vs. B, too small to see on these curves. See [88G4,88G6].

Curve 1 2 3 4’

T>TN Cl1 Cl1 Cl1 Cl1 Td<TcTN Cl1 c33 92 Cl1 T<Td Cl1 c33 %2=Cll Cl1

Fig. 22.16A. Cr. c8o vs. T for singleQ and multi-Q phases for longitudmal elastic waves. [83V2]. TN = 311.7 K, spin-tYip temperature Td = 124.5 K Below TN the antiferromagnetic state is described by a spin density wave (SDW) state. Between TN and Tti the spin polarization s and the spin wave vector Q are mutually perpendicular (a TSDW state): below Td, 8 and Q are parallel (a LSDW state). A multi-Q phase results when cooling below TN in rhe absence of an applied H field. A single-Q phase results below TN when a field HQ is applied along the [lOO], [OlO], or [OOl] axis so that Q is parallel to Z$ A singlee single-s state results ( Td < T < TN) when a field HP is applied along a [lOO], [OlO] or [OOlJ axis, but normal to the Q of a single-Q state. s is mutually perpendicular to both HP and Q in the single-Q single-s phase. The diagrams give the directions of Q, the applied H field, the spin s, and the longitudmal elastic wave L P or the TSDW state. Diagram 1 is the multi-Q state; diagrams 2-4 are the single-Q single-s phase for a TSDW state. In the LSDW state below Td s is parallel to Q. Above TN, the crystal structure is cubic; between Tti and TN the crystal structure of a single-Q single-s state is orthorhombic but below Td a structural change to tetragonal occurs with s parallel to Q. The single-Q phase is tetragonal. The multi-Q phase is cubic at all temperatures. See Fig. 3.6.

LdOlt-BbUUtCiU New Suiemlll/29r

Page 554: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 22.16B . . . 22.16D) 543

106 GPa

105 105 GPO

100 50 100 150 200 250 300 K 350

T-

100 50 100 150 200 250 300 K

T-

Fig. 22.16B. Cr. c,,o vs. T for single-Q and multi-Q Fig. 22.16C. Cr. ~4,~s. T fti single-Q and multi-Q phases for transverse waves. [83V2]. Diagram 1 is for phases for lransverse waves. [83V2]. Diagram 1 is for the multi-Q state; diagrams 2-4, the single-Q single-s the multi-Q phase; diagram 2, the single-Q phase with TSDW state. Hp=O.

Curve 1 2 3 4

T>TN c44 c44 9s c44 Td<TcTN c4 c,+, c55 c66 T<Td c44 c44 %=c44 c66

140 50 100 150 200 250 300 K 350

T-

Landolt-Barnstein NowSdd&29a

Curve 1 2

T>TN c44 T,~<TcTN cu zz TcTd c44 c44

4 Fig. 22.16D. Cr. c,,o vs. T for single-Q and multi-Q phases for transverse waves propagating along Tz and polarized as shown. [83V2]. Diagram 1 is for the multi- Q state; diagrams 2-4, the single-Q singles TSDW state. The elastic constants associated with each of the mixed transverse modes are given below.

Curve 1 2 3 4

T>TN CT * q 9 T,~cT<TN CT 92 CT1 T<Td CT

qT Mode M,, [Oil]:

c~=‘~Icll+c33+~ss- [(c11~3j)2+4(c13+Cs5)21H) qT Mode M3, [llO]: CT3 = ‘/,Ic11+c2&&j- k11-@+ 4@12*&Pl”) qT Mode M4, [Ol 11: cT4=1/4(C11+c33+2C44-[(ClfC33)2+4(C13+C44)~H) For cubic phase: +I= ti = % = CT4 = CT where CT = 4(Lcll~l$~ For tC%~OIld phase: CT1 = Cm = CT4 and cm=c, = wc11-4

Expressions for cam, h, ti for the qL mode are given in the caption for Fig. 26.1.

Page 555: Second and Higher Order Elastic Constants

544 1.3 Elastic constants s,,, , cPu (Figs. 22.16E . . . 22.17~4) [Ref.p.576

160 GPO

156

140 50 100 150 200 250 300 K 350

l-

65

t 60 R

355 z

50

20 50 100 150 200 250 300 K 350

T-

Fig. 22.16F. Cr. c12, cl3 and cu vs. T. [83V2].

4 Fig. 22.16E. CT. cPa vs. T for single-Q and multi-Q phases for trmerse waves propagating along T2 and polarized as shown. [83V2]. Diagram 1 is for the multi- Q phase; diagram 2, the single-Q phase with HP = 0.

Curve 1 2

T>TN CT CT Td<T<TN CT CT T<Td 9 CT

390 GPO

-1 -2nn

96

92 0 50 100 150 200 250 300 K 350

T- Fig. 22.17A. Cr. cPa vs. T for single-Q and multi-Q phases. [87M2]. q 0 in the diagrams give the wave vector direction o P the elastic wave for each of the elastic constants cPC Arrows give the direction of temperature change. There is no distinction between cl1 and ~33 for the multi-Q phase. For other symbols and transition temperatures, see Fig. 22.16A. See also Fig. 3.6.

bRldObBthU&l Now SorlalBf29r

Page 556: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cPu (Figs. 22.17B . . . 22.17D) 545

395 GPO

385

375

365 I 355 b

345

I I I I II 335

325

0 50 100 150 200 250 300 K 350 T-

Fig. 22.17B. Cr. c,,o vs. T for the single-Q single-s phase. [87M2].

I Iy\I I I I lGPa 150 GPO 148

146

\ I I 148 s

146

144

0 50 100 150 200 250 300 K 350 7 -

Fig. 22.17C. Cr. cPa vs. T for the single-Q single-s phase for transverse elastic waves. [87M2]. The elastic constants CT1 to cm associated with modes MI to MS are given in Fig. 22.16D. Mode M4 has the same direc- tion of propagation as Mt but denotes the single-Q phase.

100 GPO

0 50 100 150 200 250 300 K 350

Fig. ,22.171). Cr. ~12, cl3 and ~23 VS. T for the single-Q single-s phase for elastic waves. [87M2].

Landolt-Blmstein Now Saica III/29a

Page 557: Second and Higher Order Elastic Constants

546 1.3 Elastic constants s,,, cPu (Figs. 22.17E . . . 22.19) mef.p.576

101.0 100.5 GPO GPO

100.8 I I I I II I multi-U I J 1 c,,single -0 (Scale - j- 100.3

I I. I . , I I I

139.0 309.0 309.5 310.0 310.5 311.0 311.5 312.0 312.5 313.0 K 313.5

T-

Fig. 22.17E. CT. cPo vs. T for multi-Q, single-Q and single-Q single-s phases for elastic waves (expanded scale around TN). [87h42]. Modes MI, MJ, M4 are defined in the caption of Fig. 22.16D.

I 57.5 57.5 mortensitic phose IGPo GPO

57.0 57.0 I I 23.0 23.0 56.5 56.5 ’ ’ GPO GPO

I I 22.5 22.5 56.0 56.0

z z 22.0 22.0

21.5 21.5 250 250 260 260 270 270 280 280 290 290 K K 300 300

T- T-

Fig. 22.18. Co-13.8 wt % Al-4.0 wt % Ni. CM and ~55 vs. T for the martensitic phase. [82Yl]. The martensitic temperature MO = 288.7 K. Phase transition to the cubic au&mite phase starts at A, =308.7 K and is completed atA,=323.2K.

Gf f

22-, ,

7” \ 3,.

18 22

I 16 20 $

c,

14 ._

10 I I I I I

1 l/2 k,,- c,,)

I C66 \ 1 1* Fig. 2219. (CzH$H&FeC$. ‘. cPo vs. T. 1: 18381: I / Jr.. 83N2], 2: [85Y4] Brillouin scattermg, 3: [85Y4] ultra- sonic propagation. Phase changes: 4/mmm + mmm at Tl = 378.8 K; mmm + mmm at T, = 2035 K; mmm + 2hn at T3 = 133.7 K; below TN = 97.7 K antifer~o- magnetic.

L

0 II tl t t I I 0 50 100 150 200 250 300 350 400 K 450

T-

Lddt-BhlUtC&l Now !Ma Blj29r

Page 558: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpa (Fig. 22.17F) 547

388 GPa

387

386

149.0 GPo

148.5

146.5

146.0

145.0 121 122 123 124 125 126 127 128 129 K 1

T-

Fig. 22.17F. Cr. cPo vs. T for single-Q and single-Q single-s phases for elastic waves (expanded scale around Td). [88l74]. The elastic constants CT1 to cm associated with modes Mt to MS are given in Fig. 22.16D. Mode M4 has the same direction of propaga- tion as MI but denotes the single-Q phase with HP = 0.

103.0 GPO

102.5

102.0

101.5 I b

u" 101.0

100.5

100.0

hdolt-Blmstcin New Sake lW29a

Page 559: Second and Higher Order Elastic Constants

548 1.3 Elastic constants spu, cpa (Figs. 22.20 . . . 22.22) Bef.p.576

10 23

8

6

‘0 50 100 150 200 250 K 300 T-

Fig. 22.20. Gd$o. cpo vs. T. [84B20]. Antiferro- magnetic TN = 131 K.

I I

I % 513 523+ = +

533 5 /

4 -/ 4

200 225 250 275 K 300 I-

0 20 40 60 80 I-

Fig. 22.21. Li(NH4)1~xTl$4H40a~H~0. SBdy-, and B 4so-y vs. T. [82K2]. 1: x = 0.35; 2: x = 0.5; 3: x = 0.8; 4:x= 0.93. For x = 0.5 the mixed crystal was antiferroelecaic below TN (J 24 K. s45*--x = U[s, + s33 + 2sa + &+$I, s4s-y = w[s,l+ s33 + 2q3 + SSJ.

Fig. 22.22. MnP. Linear compressibiities K vs. T. [7SIl]. Flue transition at 291.5 K.

LdOlt-BllI!Sh New St& WEJr

Page 560: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic’constants s,, , cpu (Figs. 22.23, 22.24) 549

32 GPO

28

26

24

12

11

10

9

8

I 8

b6 Q?+

4

22 GPa 21

20

19

18 I b

2.F

2.6

2.5

2.4

2.3

0 28 GPO

6 16

4

0 50 100 150 200 250 300 350 K 400 T- -

Fig. 22.24. Methylammonium manganese chloride, (CH3~3>$4~C% cPa VS. T. [79G4]. Phase transitions: monoclinic + 4/mmm at T = 95 K, 4/mmm +mmmatT=257K;mmm+4/mmmatT=394K. Stiffnesses calculated from wave velocities, assuming a density of 1700 kg/ma. See caption Fig. 22.23 for definitions of c, and cP Other ref. [8OG5].

I 26 25 G

24

23 300 310 320 330 340 K 350

T-

.’ Fig. 22.23. Methylammonium iron chloride, W3~&F~~h. cpa vs. T: 1: [82G2, 83N2], 2: [84Y3]. Antifenomagnetic TN = 93 K. Phase changes: 4/mmm+mmmatT=234K;mmm+4/mmmatT= 333 K. For the tetragonal phase: c, = %(cI1 + cl2 + kjfj), CT = %(cll- ~~2); for the orthorhombic phase cL = cu, CT = w. See captions Fig. 22.16D, 26.1. Other reference [84B19].

20 GPO

18

16

50 100 150 200 250 300 350 400 K 450 T-

Landolt-Blmstein New Salaa lBf29a

Page 561: Second and Higher Order Elastic Constants

550 1.3 Elastic constants spa, cpa (Figs. 22.25 . . . 22.28) mef.p.576

49 GPO

C55 44

50 100 150 200 250 300 K 350 I-

2: -1 93 . I

240.

Fig. 22.25. Nbh.~8. cPu vs. T. [77A5]. Ordering phase transition E + p (both orthorhombic) at T = 210 K.

284 GPO

GPol I I I I I I

58.6 17.2 , 58.2 16.8

57.8 16.4

11.8 16.0

11.4

“.“ul-tttl 10.61 I I I I I I

0 50 100 150 200 250 K 300 T-

22.28. P (black). c,,vs. T. [86Y2].

50. \ 42

I

GPO C’s \

40 \ u’ Cl 3 30 I

/ orthorhombic cubic

20 I I I 250 300 350 400 450 K 500

T-

Fig. 22.26. Nb&.78. cPa vs. T. [77A5]. Phase transi- tion fl (orthorhombic) -B CZ’ (cubic) at T - 380 K. CT = H(cll - ~13. See Fig. 22.25.

Fig. 22.27. Phenothiazine. ~33 and q5 vs. T. [88N2]. Transition mmm + 2/m at Tc = 248.8 K to a ferroelas- tic phase with decreasing T. 53 was determined from measurements along the orthorhombic [OOl] axis of the high-temperature phase.

LdO!t-BhUhl New SaiaWZ!h

Page 562: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 22.29 . . . 22.33) 551

b ’ QY

- 0.1

.I:: '0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 GPO 1.6

P-

km*

I

sz 2.0

0.5 0 50 100 150 200 250 K 300

Fig. 22.29. P (black). RI1, Rzz and Rs3 vs. p. [86Y2]. Fig. 22.31. PrC!up csdp and cdp vs. T. [76All]. R,, = [cpa - cp~O)]/cp~O). The data Point at 1.54 GPa h&n-Teller transition at TJ SJ 7 T(. is from neutron scat&ring.

400 GPO

100

I

I30

60

& 40

IO

8

6 250 300 350 400 450 K 500

I-

GPa 36

26 34

24 I kl u

Fig. 22.30. KNbOs @iezoel.). cpa vs. T. [74W4]. (Note logarithmic scale for cpo).

75 100 125 150 175 200 225 250 275 K 3 T-

1 lot For Fig. 22.32 see next page.

. Fig. 22.33. NaNH$04*2H20. cPa vs. T. [87M4]. cam represents the elastic stiffness of an unplated crystal. Paraelectric-ferroelectfic phase transition 222 + 2 at Tc = 99.3 K with decreasing T.

Landolt-B&mtcin New Series lllt29a

Page 563: Second and Higher Order Elastic Constants

552 1.3 Elastic constants spa, cpu (Figs. 22.32 . . . 22.36) [Ref.p.576

154 17.0 GPO ITPor’ 152 16.5

141 GPO 126

16.0

I 15.5

Q 15.0

60.6

3 39.8

2 394

1

0 0 !a 100 150 200 250 3w 350 K 400

I-

Fig. 22.32. Sm%. cpO vs. T. [87El]. T, = 64 K. Above T, the stxucture IS mmm; below T, 2hn. There are small anomalies at the magnetic transitions of TN = 9.0 K and To = 55 K.

300 350 400 150 500 550 K 600

Fig. 22.36. Sr$b&. tionsatT=488K.

s,,,., vs. T. [7901]. Phase transi-

13.5 140 160 180 200 220 240 260 280 K 300 T-

Fig. 22.35. Srg[A1120&Yr04)2. #tt and JQ vs. T. [89R2]. Phase transitions mm2 + 4/mmm at T = 286 K; 4/mmm -B m3m at T PI 300 K upon heating.

’ 220

I

(TPO 1-l E 265

%b A /J / ,

“,= 26.0 A’ 10.0

I ~IPOI” 9.5 --I-- 4 A

“2 9.0

8.00 300 350 400 450 500 550 600 650 K 700

l-

Fig. 22.34. Stiiiotantalite, Sb(T@b&. ~33 VS. T. [71N6].

L&Oh-Bbmrtdn NC8W!kilSIW29~

Page 564: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cpa (Figs. 22.37 . . . 22.39) 553

8.6 8.6 6Pa GPa

I I

8.2

8.2 7.8 7.8 G G

7.4 7.4

7.0 7.01 I I I I I I 1 280 300 320 340 360 380 400 K $20 0

T- T-

Fig. 22.37. Fig. 22.37. Tetramethylammoniumdiiodo-bromo- Tetramethylammoniumdiiodo-bromo- mercurate (TDBM), (CH#II-IgBr12. mercurate (TDBM), (CH#II-IgBr12. cl1 vs. T. cl1 vs. T. [8625]. Phase transition mm2 + 2/m at T = 381 K [8625]. Phase transition mm2 + 2/m at T = 381 K upon heating. Arrows indicate the direction of upon heating. Arrows indicate the direction of temperature change. temperature change.

1.00 GPO GPO 0.95 0.95

I 0.90 I 0.90

0.85 0.85 w w u u

0.80 0.80

0.75 0.75

0.70 0.70 288 288 292 292 296 300 3OL 308 K 312 296 300 3OL 308 K 312

T-

Fig. 22.38B. [N(CH&J$!~C~Q css vs. T (expanded scale). [85R2]. Tl = 299 K, T, = 292.5 K. Other references [SOS16,8112].

0 0.5 1.0 1.5 2.0 /2.5 GPa 3.0

14 GPa

12

12 GPa

10

8

8

2.5

;;;mj 150 200 250 300 K 350

T-

Fig. 22.38A. Tetramethylammonhun copper tetra- chloride, ~(CH3)&CuCl~ c o vs. T. [85R2]. Tl = 299 K, Tz= 292.5 K, T3 =26ZfK, T4 = 127 K.Phsse changes: below T = 263 K, 2/m, ferroelastic, no super- lattice; between T = 263 and 292.5 K, 2/m, ferroelastic with superlattice; between T = 292.5 and 299 K, incommensurate, paraelastic; above 299 K mmm. Below T = 127 K there is an additional but unidentified transition. The values of css between T = 263 and 292.5 K ware unobtainable because the required ultra- sonic echoes could not be observed, probably due to the formation of ferroelastic domains. The gaps in the data between 130 and 180 K are due to lack of suitable bonding material for the transducers.

Fig, 22.39. TlsAt& and TliPSe,. v = (c,dp)n vs. p. [SlFl]. Pressure-induced phase transitions atp = 1.4 Pa (TlsPSe4) and 2.1,2.6 Pa (‘$A&).

Laadolt-B6mstc-h New S&a lWZ9r

Page 565: Second and Higher Order Elastic Constants

1.3 Elastic constants sPo , cpa (Figs. 24.1A . . . 24.1C) pef.p.576

-3.5

z-3.0 P

%

I -2.0 GPo -1.5

GPi 8

3

1 60 100 140 160 220 260 K 300

T-

Fig. 24.1A. Anthracene, C,,H,,. c,vs. T. [7OAl].

Fig. 24.1B. Anrhmcene, C14HIo. cpo vs. T. [7OAl].

60 100 140 180 220 260 K 300 I-

Fig. U.lC. Anthracene, C,.+H,p c,,,vs. T. [7OAl].

LdOll-Bbmndn NowSaimUL29o

Page 566: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, $0 (Fig. 24.2)

2.8 I . . . . . . . . , . . . . . . . . . . . . . . . . . I . . . ..I. . . . . . . . . . . . . . . . . . . . . . ~'....................... *..<o,,>

2.6 I

km’sl I I I I:1 I I

t

1.8

1.6 2 I I I I I I

0.8

0.61 II- I I I I 180 190 200 210 220 230 240 K 250

T-

pig. 24.2. Anthracenetetracyanobnobenzene. vQL, vw vs. T. [9OE2]. Nonferroic continuous structural phase tran- sition about a critical temperature To = 212 K with both phases monoclinic 2/m. Measurements performed by Brillouin scattering. Two kinds of propagation direc- tions are given in the figure% true crystallographic axes are denoted by square brackets; directions indicated by (lOl), for example, do not refer to the [ 1011 axis, but to the first bisector of the (a,~*) plane. Two sets of measurements are given for vQL for the [loo] axis: l : denotes measurements from backscattering, 0: from small-angle scattering.

Lpndolt-BLlmstcin New Soded lW29a

Page 567: Second and Higher Order Elastic Constants

556 1.3 Elastic constants sPu, cpu (Figs. 24.3 . . . 24.4B) [Ref.p.576

LI

20 b, v)

19

--90 100 110 120 130 140 150 160 K 170

4 Fig. 24.3. Betaine arsenate, (C!H&NCH.$OO- H,AsSO,. sll, s, and s33 vs. T. [88M2]. Tl = 411 K, T2 = 117 K. Phase changes: mmm + 2/m, ferroelastic at T,; transition at T, to a ferroelectric phase.

T-

I II

1 20 / I 160

-150 -

‘--- 140

--335 3’tO 3L5 350 355 360 365 370 K 375 l-

m)-’ I I IA I I I I 4

‘b VP I I

I I\ I Is,. 110

I b

L,(Scole -1 d -I \

32 100 533

311 I It’; Iv2 I I

4 Fig. 24.4A. Betaine phosphate, (CH3hNCH$OO- H3FQ. sll, s, and s33 vs. T around Tl, [88M6]. Tl II 365 K, Tz = 86 K, T3 = 81 K. phase changes: 2/m + 2/m at Tl with cell doubling along the c axis, antife~~o- electric transition 2/m + 2/m at T2 with cell doubling along the u axis. Nature of the phase transition at T3 unknown.

““75 I30 85 90 95 100 105 K 110 T- -

Page 568: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Fig. 24.5) 557

20 GPa

19

18

17

16

29 GPa

28

21

26

I ( I I 25

24 I

&

6

23

-1------------ 516 -

T2 4 -2

0 25 50 15 100 125 150 175 200 225 250 275 K 300 T-

Pig. 24.5. Biphenyl. c O vs. T. [83El]. T1= 40 K, Tz = 17 K. Phase changes: &m 3 incommensurate phase at T,; nature of the phase transition at T2 is unclear. cm was measured only at 293 K. Measurements by Brillouin scattering.

Lmtdolt-Blimstein Now SorierW9a

Page 569: Second and Higher Order Elastic Constants

1.3 Elastic constants ~6, cPu (Figs. 24.6 . . . 24.9) mef.p.576

GPO 120 , 1

1 I

20

0

-20 r, -40

160 GPO 140

I 2-y ‘/2k,,-C,2) (Stole -1 a:,

I I I Y 20 t

250 300 350 400 650 500 550 K 600’

Fig. 24.6. BiVO,+ cpu vs. T. 1: [85A2], 2: [84Al]. Transition 4/m 3 2/m at T, = 528 K to a ferroelastic phase with decreasing T. Other reference [83D4].

I

38.5 lh5 (TPor’

16.0

I 37.5 15.5&Z

15.0

39.0 (TPaP’

150 170 190 210 230 K 250 T-

Fig. 24.8. CsH$O,t, sBll and sBS3 vs. T. [9OS2]. Fenoelectric phase transition at Tc = 150 K.

25

0 250 300 350 400 450 500 550 600 K 656

Fig. 24.7. BiVO,+ ~‘6 vs. T. [83T2]. c’a is the elastic constant in a coordinate system rotated lo’ away from the [ 1 lo] direction in the tetragonal(O01) plane so that elastic constants ct,j and cx vanish. This corresponds to the [NO] direction in the new coordinate space for the tetragonal phase. The double curve below T, is due to the presence of more than one domain in the test sample. See also Fig. 24.6.

210 (TPo)-’

t 190 R

$170 2

150

301 ITPi?

I I I I I I 1

t 20

k ‘;” 10

if o 220 220 225 225 230 230 235 235 240 240 245 245 250 250 K K 255 255

I- I-

Fig. 24.9. Copper formate, Cu(COOH&H~O. spa vs. T. 174821. Up arrows: heating cycle. Down arrows: cooling cycle. Paraelectric-antiferroelectric transition at TN = 234 K.

Fig. 24.9. Copper formate, Cu(COOH&H~O. spa vs. T. 174821. Up arrows: heating cycle. Down arrows: cooling cycle. Paraelectric-antiferroelectric transition at TN = 234 K.

Page 570: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPu, cpu (Figs. 24.10 . . . 24.12) 559

120 (TPc$’

T-

Fig. 24.10. Diglycine nitrate, (NH$!H$OOH)2- ISNO3 spa vs. T. [79V3]. Phase transition m + 2(m (ferroelecttic + pamelectric) at Tc = 206 K with increa&ngT.

$ 46 I I

c:(Scole -1

TC 20

160 180 200 220 240 260 K

27 GPO

26 I

25 5

280 T- /

Fig. 24.11. Diglycine nitrate, (NH$H$OOH)2- HNOp c,,,, vs. T. [88R4]. See also Fig. 24.10. The quasi-longitudinal elastic constants are given as: c*11 =~Ic11+c55+~(c11-c532+~1521~)~ CL33 = WC33 + c55 + k33 - css12 + WI?.

GPol I I I I I I I I

-50 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 GPO 2.00

P-

Fig. 24.12. Diopside. cPa vs. p. [84V3]. The ordinate scale has been reduced by a factor of 100 to bring the results into better agreement with Table 24.

hdolt-B&imutcin Now S&a IIbZ9a

Page 571: Second and Higher Order Elastic Constants

560 1.3 Elastic constants sPu, cpu (Figs. 24.13A . . . 24.14) . Wf.p.576

1501 I I L I I

q 1 1 CJ-T-

I I -.I4 II $30 I I I I

Cl1 M > 120 -----

110

I-..

I

I 40 GPO C55

E 20 w 0 250 300 350 400 450 K 500

I-

Fig. 24.13A. LapsOt,. On-diagonal c o vs. T. [gOElI, Ferroelastic transition ti + mmm at !F C = 398 K.

Fig. 24.13B. LaF%&, Offdiagonal cPa vs. T. [80El]. Below T = 398 K, cqg - 0; above T = 398 K, clsr czr, c35, ce are zero from symmetry considerations. See Fig. 24.13A.

110, I I GPO 100

70

I 60

- 50 9

40

30

20

10 --- -cl,

n I I I I I, I I I I I kl0 350 400 450 500 550 600 650 K 700

I-

Fig. 24.14. Pb#O& cPa vs. T. Curves for c12, c13, and -cl,+ from [75A5], remainder &II [#I’l]. Ferro- elastic transition 2/m + 3m at T, II 458 K. Elastic constants in the monoclinic phase are distinguished ly primes.

lAdOIl-BthUtdll NowSdwIlU29r

Page 572: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants s&,, cPu (Figs. 24.1SA . . . 24.16B) 561

6

2

0 50 100 150 2302 300 K 350

Fig. 24.15A. Naphthalene, C!t$$. cPO vs. T. 1: [67Tl], 2: [68A23.

GiZ 31

;$ I- I I

! 177 ‘I I I c,,(Scole -1 I I I‘-’

19 25

17 23 I

2 6

1 5

0 290 300 310 320 330 340 350 K 360

T-

10 10 GPO GPO

8 8

6 6

I 4 I 4

ul ul 2 2

0 0

-2 -2

-4 -4 50 50 100 100 150 150 200 200 250 250 300 300 K K 350 350

T- T-

Fig. 24.15B. Naphthalene, Cl&Is. cPa vs. [67Tl], 2: [68A2].

T. 1:

0 290 300 310 320 330 340 350 K 360

T-

Fig. 24-M. KHCO,. Cam vs. T. [86H4]. Cam is the elastic constant for a transverse wave propagating along the [OlO] axis with displacement vector nearly in the [lOO] direction. See caption for Fig. 2416A. c*~=Y2(c44+c~-[(c44-c&jp+4c462]~).

Fig. 24.16A. KHC03. cPa vs. T. [86H4]. Ferroelastic phase transition at T, = 318 K. Below 318 K, Urn, above 318 K, structure not completely known. Details near the anomalies are uncertain.

Lendolt-Blmstein New Suica IWZ9a

Page 573: Second and Higher Order Elastic Constants

562 1.3 Elastic constants spu, cpu (Fig. 24.17) [Ref.p.576

125 150 175 225 250 275 300 K 325.0 T-

Fig. 24.17. p-Terphenyl (deuterated). cpo vs. c [&IEl]. Improper ferroelastic phase transition Urn -+ 1 at ‘Z’, = 178 K on cooling. For hydrogenated samples T, = 193.3 K.

LdOlt-Blld NowSaiaWBr

Page 574: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Figs. 24.18 . . . 24.2OA) 563

z 44 Cl1

\

-

34 GPO

32 t I

30 A u

28 L?

A 20.5 26

k20.0 p.+ ’ ’ ’ ’ ’ I ,

19.5

t 2.5

GPO

1.0 I 290 300 310 320 330 340 350 K 360

T-

Fig. 24.18. Triglycine sulfate, (CH$H$XIOH)~- HzS04. cpu vs. T. 1: [77L333 (C&lIrcQ&& 2: [SlT7]. Ferroelectric phase transition (2 + 2/m) at Tc = 322 K.

(TPOF

76

I

72

41:: 68 vr

322 323 324 325 326 327 328 K 329 T-

Fig. 24.19A. Triglycine sulfate, (CHfiH&!OOH)3- H$O,. L& vs. T and dislocation density. [85Dl]. T, = 322 K. Paraelectric above Tc, ferroelectric below Te See caption Fig. 24.18.

322 323 322 323 324 324 325 325 326 326 327 K 328 327 K 328 T-

Fig. 24.19B. Triglycine sulfate, (CH$EI#XOH)~- H,SO,. $ss vs. T and irradiation. [85Dl]. 1 kGy = 1 kJ/kg = 1 Mrad. See caption Fig. 24.18.

-I I [‘ooi‘h I I I I 45

I 44

G- 43

42

27

26 295 300 305 310 315 320 K 325

4 Fig. 24.2OA. Triglycine sulfate, (CH~H$OOH)s- H$04 CL vs. T (no Cu2+ doping). [85W9]. Diiections of, measurement are indicated on the curves. Expressions for the modes are given in the caption of Fig.26.2A.

Lutdolt-Bhstein Now Saiea IlIf29r

Page 575: Second and Higher Order Elastic Constants

564 1.3 Elastic constants sPcl, cpa (Figs. 24.20B . . . 26.2B) mef.p.576

29 GPO 28

I 27 26 d

25

23) 295 300 305 310 315 320 K 325

I-

Fig. 242OB. Triglycine sulfate, (CH$H$COH)~- HzS04. q vs. T and C!u2+ doping. [85W9]. Curve 1: 10 z CUD, 2: 20 96 w+* Doping performed by growing TOS from an aqueous solution containing CU0,.5H20 of concentrations 10% and 20% by weight.

I (Scole-)

50 GPO

35

30 R

r, 25

100 200 300 400 500 K 600 I-

Fig. 26.2A. Sb&I, polytype 2MC. ccc vs. T. [80R6] (ultrasonic measurements). Ferroelastic transition 2 + 6/m at T, = 481 K. In the low temperature monoclinic ferroelastic phase, c(u*.u*) = H(C,,+cSS + Kc1+&2+ 4+l”), c(w) = wc33+css + Kc33-qs~2+ %s?P). See caption Fig. 26.15A for a more complete listing of modes.

38 295 300 305 310 315 320 K 325

T-

Fig. 24.2OC. Triglycine sulfate, (CH2NH2COOH)3- HzSO4. q, vs. T and C!uz+ doping. [85W9]. Curve 1: 10 % Cua, 2: 20 % Cu2+.

20 GPO

Fig. 26.2B. Sb&I, polytype 2MC. cPc vs. T. [80R6] (Brillouin scattering measurements). In the low temperature monoclinic phase, c(c,c) as in Fig. 26.2A. 4s4 = w%+q3 - Kc,3-QJ2+ 4@l”l. See caption Fig. 26.15A for a more complete listing of modes.

Page 576: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Fig. 26.1) 565

GPO

22 Cl1 -\

-~ \I

21 c22..

20

18 5.6 GPO

5.2

3.6 21

21 20

20 19

19 18

151 275 300 325 350 375 400 425 450 475 K 500

T-

Fig. 26.1. (NH&ZnCl~ c,,.vs. T. 1: [87Gl], 2: [89Ll]. Phase changes: mmm + incommensurate phase at T = 406 K; incommensurate phase + mm2 at T = 364 K, mm2 + m, antiferroelectric at TN = 319 K. See also Fig. 22.3. For orthorhombic phases: qT Mode, [Ol 11: CT1 = %2+&2C~- [(c2f13d2 + 4&3*4d)?] qL Mode, [Oil]: cL1=~(C22+c33+~c44+ [(CzrC332+4(C2~44)~tl) qL Mode, [loll:

Land&B6mstein .New Saiw IllI

Page 577: Second and Higher Order Elastic Constants

566 1.3 Elastic constants spu, cpo (Figs. 26.3 . . . 26.8) pef.p.576

31.5 31.5 GPO GPO

31.0 31.0

I 30.5 I 30.5

z z - - 30.0 30.0

29.5 29.5

29.0 29.0 120 120 1LO 1LO 160 160 180 180 200 200 220 220 K K 240 240

T- T-

Fig. 26.3. Cs(Ho,&&$0~. cs VS. T. [83BlO]. 1: E Fig. 26.3. Cs(Ho,&&$0~. cs VS. T. [83BlO]. 1: E = 0; 2: E = 120 kV/m. Fenoeleceic transition at Tc = = 0; 2: E = 120 kV/m. Fenoeleceic transition at Tc = 175 K. 175 K.

110 GPO

100

60

50

I 40

930

20

10

0 100 200 300 500 K 600

Fig. 26.5. KFe@foO,~.~cpo vs. T. [8OS12]. Ferro- elastic transition 2/m 3 3m at T, = 312 K; another phase transition at T = 139 K.

Fig, 26.8. NaHg(SeO&. s, vs. T. [7989]. For phase changes see caption of Fig. 26.7.

32.5 GPa

I 32.0

31.5 :: u

31.0

30.5 170 190 210 230 250 7.70 K 290

T-

Fig. 26.4. KD$Q. cz vs. T. [87Y8, 88Y2]. De&rated concentration = 98%.

-10.0 -%5 -5.0 -2.5 0 2.5 5.0 7.5 K 10.0

Fig. 26.7. NaH&SeO&. sll vs. T-Tel and E. [84!34]. Curve1:E =0;2:E=7OOkV/m;3:E=15OOkV/m. Arrows show the direction of temperature chqge. Phase changes: peraelectric-ferroelasticL2,‘m + 1 at Tcz = 195 K; ferroelastic-ferroelectric, 13 1 at Tel = 194.2 K; ferroelectric, 1 3 m at T = 95K. Other reference [7489].

15.5 A 125 150 175 200 225 K 250

LdOlt-BBmadn Now !MaBI/29r

Page 578: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPC, cpa (Figs. 26.6 . . . 26.10) 567

520 GPa

480

350 GPO

310 I

LF

40 270

20 $15 I 55 t;4

0’ I I I I I I I I 275 300 325 350 375 400 425 450 K 475

T-

Fig. 26.6. R~H(SeQ,&. cpa vs. 2’. [9OL2]. Ferroelastic transition 2/m + Trn at TC = 449 K upon heating. Elastic constants Ep in the trigonal phase are measured using the coordinate axes of the monoclinic phase.

451 I II I I I I 190 192 194 196 198 K 200

T-

Fig. 26.9A. NaH3(Se03~. cll, c, and c33 vs. T. [85G5]. For phase changes see caption for Fig. 26.7. For effects of deuteration see Figs. 26.11A,B.

GPa I I I I 151

-- I I

11 175 200 225 250 275 300 K 325

T-

Fig. 26.9B. NaH3(Se03h. 1~66 vs. T [8OS9]. Mono- clinic quasi-orthorhombic. For phase changes see Fig. 26.7. See also Fig. 26.9A.

19.2

I 19.0

218.8

18.6

18.41 -10.0 -7.5 -5.0 -2.5 0 2.5 5.0 7.5 K 10.0

T-T,, -

Fig. 26.10. NaH3(Se03)2. czz vs. T - Tel by ultrasonic propagation. [W7]. Arrow shows the direction of temperature change. For phase changes see caption for Fig. 26.7. See also Figs. 26.9A.B.

Land&BBmstein NewSericslIlf.291

Page 579: Second and Higher Order Elastic Constants

1.3 Elastic constants sPu, cPu (Figs. 26.11A . . . 26.12) mef.p.576

45 lTPa)e’

40

35

I 30

g 25

20

15

ill

ITPa?

I

30

25 G=

20

‘-150 170 190 2lO 230 250 270 K 290 T-

Fig. 26.11A. Na(Ht-,Dxh(SeQh. stt vs. T and composition x (higher temperature transitions). [8638]. A dc field E = 700 kV/m was required for reproducible .resuhs. Phase changes depend upon x. For x 5 0.05: 2/m + 1 at T M 195 K, and 1 + m at T fir 102 K; for 0.05 5 x 5 0.3: 2/m + m + 1 + m, on cooling: for 0.3 5 x 5 1: 2/m + m. For values of x close to xero there is an intermediate phase (7) 0.8 K wide between the 2/m and 1 phases.

t

I”

60 z

u. G 50

-150 200 250 300 350 400 K 450 T-

Fig. 26.12. Squaric acid, C,O,(OH~. 1: [7818], $, [8OK13], 3: [83Rl], 4: [87Y4]. cPo vs. T. Spructural phase transition 2/m + 4/m at T = 373 K. Curves 1,2 are labelled according to the modes in the high temperature tetragonal phase. In the monoclinic phase CM (curve 1) is split, and cll, ca are quasi-longitudinal and quasi-transverse modes, respectively. c33 in curve 4 is Welled c, in [87Y4] because of the choice of coordinates. Curves 1 and 3 are derived from ultrasonic measurements: curves 2 and 4 from Brillouin scattering.

‘“100 105 110 115 120 125 130 135 140 K 1’S T-

Fig. 26.11B. Na(Ht-xDXh(Se03)z. stl vs. T and composition x (lower temperature transition). [86S8]. A dc field E = 700 kV/rn was required for reproducible results. Arrows give the direction of temperature change. See the caption for Fig. 26.11A.

65 I I I I I\1 I I I IlP

GPa

60

lY

3, . 17

55 \ /- 16 Cl1

I 50 I I I I I \I II I 4

15

40 1 LF

35

7.2

7.0

6.8

7.8

7.1

II4 I i 13

.12 20

19

18

..”

260 280 300 320 340 360 3130 400 K 420 I-

Page 580: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cPu (Figs. 26.13 . . . 26.15A)

21.5 GPO

25.0

180 200 220 240 260 280 K 300 T-

/’ Fig. 26.13. SnC12.2H,0. cPa vs. T. [84T2]. T, = 219.4

1.0

K. Transition due to order-disordering of H atoms, 2/m ’ 0.5

l-l + 2/m, but no structural change.

8.5 GPO

' 8.0

8.0 GPo

6.0

2.5 0.5

2.0 0

1.5

71 GPO

76

15

G5pZ 74 I

J

56 73

I

53 72

:: 52 CI

51

50 50 100 150 200 250 300 K 350

T-

Fig. 26.14. TlIr&. ~33 and cl vs. T. [87L2, 88L6]. Anomalies at Tl= 213 f 2 K and T, = 195 f 2 K for c33r aud T3 = 189 f 2 K for cl are associated with tran- sitions to a ferroelectric phase. Structure is m or 2/m, consisting of alternating layers parallel to the (001) plane with each layer rotated 90’ with respect to the preceding one. c33 and cl are the elastic constants for propagation parallel or perpendicular, respectively to the [OOl] direction

Land&-Blimstcin New Saks IIb29a

-140 160 180 200 220 2kO 260 280 K 300 T-

Fig. 26.15A. p-Toluenesulfate (2,4-hexadiynylene-bis) (monomer). q, and CT vs. T. [83R3]. Ti = 192 K, T, = 159 K. Phase changes: monoclinic + incommensurate phase at T = Ti; incommensurate phase + commen- surate phase with cell doubling at T = T,. Labels (u*,c), for example, on the mixed modes indicate the direction of propagation a*, and the approximate direction of displacement c.

Directions of pv2 propagation and displacement

wc11+% + Ncll-&2+ %521”1

~w,,- Ncll-q32+wl~) c22 w,+c, + kM-qi&2+ &+l~l wc44+%- K%-cad2+ kgl”l w33+c55 + [(c33-@+ %?I") w33+% - [(c33-#+ 4C3svl c44

Page 581: Second and Higher Order Elastic Constants

1.3 Elastic constants spa, cpu (Figs. 26.15B, 27.1,42.1) pef.p.576

0 140 160 180 2a

I I I \ 8.5

- c,(afcl 8.0

I I c, (b,a’) I I I

3 220 240 260 280 K 300

Fig. 26.15B. p-Toluenesulfate (2,4-hexadiynylene-his) (polymer). CL and o, vs. T. [83R3]. Phase changes: monoclinic + commensurate phase with cell doubling at T, = 196K. See caption Fig. 26.15A.

-ZU 60

-40 40

0 20

0 0

1'60 -20

120 -40

V -60

60

40

0 -40 I 1

12 I

so

IL,I 4

'

Lt \.’

20 Tc,(Scole -1

0

I 11 - 14 ITILl-1 I

0

I llr”, -10 0 lo

v) 0 -10

15 13 I ‘2 u,

-10 -20 14 11

-20 13 100 125 150 175 200 225 250 K 275

T-

121 I Fig. 42.1. Betaine calcium chloride 'W 125 150 175 200 225 250

dihydrate, 275 K 300

Fig. 27.1. CsH#eOsi.GSb. sc vs. T. [LMSll]. (CH&NCH$OOCaC1~~2H~O. Tc,,,, vs. T. [88Hl]. Second-order phase transitions at 169 and 129 K.

Paraelectric-antiferroelectric i+ iat Tp 145 K with doubling of the unit cell on cooling.

hIdOlt-Blmctdn NewSuiulBfBr

Page 582: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spu, cpu (Figs. 4W42.3) 571

I I I I I

t

-6

-16 4.103

*10-k K-’

103 8 6

I 4

2 \ \ I I I I I I I & & \ 1

lo2 - \ 8

4

2

10 190 200 210 220 230 240 250 260 270 280 290 K 30(

T-

Fig. 42.2. Betie hydrogen maleate, (CH&- NCH$XXI~(CH)#!OOH~. Tc,, vs. T. [88H2]. Ferro- elastic phase transition mmm + 2/m at T, = 194 K.

50 MPa/K

, ‘I/----/. 3 L ̂ _

1-i I ?30 ,;'

25 200 400 600 800 1000 1200 1400 1600 K 1800

T-

Fig. 42.3. MgzSi04. (&P&J7’)P vs. T. [89I2].

Latdolt-B6mstcin Now Sorica IUfZSa

Page 583: Second and Higher Order Elastic Constants

572 1.3 Elastic constants spa, cPo (Fig. 42.4) Bef.p.576

25

I

0

&5

-50

-15

I 0

2 -10

-20

-30

-10 200

40-i

:jO

100

I 50

-150 140 160 180 200 220 240 260 K 280

Fig. 42.4. Thiourea, CS&~c,,, Tcz end Tc33 vs. T. [86HIJ. Phases: V (mmm) + IV (iicommen- surate) + IlI (weakly ferroelecbic) + II + I (feno- electric, mm2). See also caption for Pig. 21.80.

Ldolt-BaxMtoln NowSaium/&

Page 584: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants sPcl, cpa (Fig. 43.1A)

III 401 401 IO IO

.1o-4 .1o-4 K-1 K-1 0 0

I I -10 -10

&y &y -20 -20

-30 -30

-K$~ -K$~ I I I I I I I I I I I I 1 1

do-4 K-1 0

!

-10

g -20 &y

0. \

-10 I -y ::

e -20.

u

T-

-15

i

-5

Q -10

-15

--290 300 310 320 330 340 K 350’” T-

Fig. 43.1A. KHCOP Tc,, vs. 2”. [86H4]. The curves drawn between the data points are uncertain, but serve as a guide for the eye. The signs of Tea at 316 K and Tcs at 350 K have been changed. For phase transition see caption for Fig. 24.16A.

Lmdolt-Blmntein New Saius lU/Z9a

Page 585: Second and Higher Order Elastic Constants

574 1.3 Elastic constants spa, cPa (Figs. 43.1B, 43.2, 51.1) [Ref.p.S76

60 -10:f II I

-40

-603 290 300 310 320 330 340 350 K 360

T-

Fig. 43.1B. KHCO, Tces3 vs. T. [8684]. Tc*~~ is the logarithmic temperature derivative of Cafe. cbS3 = pv2 where v is the velocity of a quasi-longitudinal wave propagating along the [OOl] axis. c.33 = !4 b33+qs + r(c33-qsP+ 4c,s?l”l.

60

50

40

I 30

2 20

10

0

-10

I I I -201 I I I I I I J

270 280 290 300 310 320 330 K X0 T-

Fig. 43.2. Telluric acid ammonium phosphate, Te(oH>6-~&?QdNH&HP04. Tell, Tcu and Tc33 vs. T. [85H53. Paraelectriofenoelectic m + m at Tc = 321 K on cooling.

6.5

6.0

1.6

0 275 300 325 350 375 400 425 K 450

T-

Fig. 51.1 In. Ppo VS. T. [90Fl]. Ppo = acp~ap evaluated at zero pressure.

Land&-Bhutein New Saiu IIif29a

Page 586: Second and Higher Order Elastic Constants

Ref.p.5761 1.3 Elastic constants spa, cPu (Fig. 52.1) 575

2 (GPd’

200 (GPO)-’

-16

I -24

$8

0

-8 \I

-16

’ I I /I

160 160

120 120

80 80

40 40

0 0

-40 -40

160 160

120 120

80 80 & & ” ”

40 40

0 0

-40 -40

20

0

-20

0 0.02 0.04 0.06 0.08 0.10 0.12 o.l4 GPO036 P-

Fig. 52.1. LizGqOIs. PC d vs. p at 293 K. [83H5]. Pivaelectric-ferroelectric R p ase transition mmm + mm2 for p 2 0.063 GPa. Values very close to the phase transition are somewhat uncertain.

Land&Blmsteh New Series IlK29a

Page 587: Second and Higher Order Elastic Constants

576 1.4 References for 1

28vl 46hl

mm1

S&l

52hl

5211

55kl

56hl 57nl 58hl

58~1

61al 61hl

61kl 6261

62~1 64bl

65fl

65ql

65~1

6521

66bl

66b2

66ml

1.4 Bibliography

1.4.1 General References

Voigt, W.: Lehrbuch der Kristallphysik. Leipzig: Teubner, 1928. Hearmon, R. F. S.: The elastic constants of anisotropic materials. Rev. Mod. Phys. 18 (1946) 409. Mason, W. P.: Piezoelectric crystals and their application to ultrasonics. New York, etc.: van Nostrand, 1950. van Dyke, K. D., Gordon, G. D.: A manual of piezoelectric data, 10th Rept. Piezoelectr. Inv., Middletown, Corm.: Wesleyan Univ., 1950. Hearmon, R. F. S.: The elastic constants of piezoelectric crystals. Brit. J. Appl. Phys. 3 (1952) 120. Truesdell, C.: The mechanical foundations of elasticity and fluid dynamics. J. Rational Mech. Anal. l(l952) 125; 2 (1953) 593. Krishnan, R. S.: Elastic constants of crystals from light scattering experiments. Proc. Indian Acad. Sci. Sect. A41 (1955) 91. Hearmon, R. F. S.: The elastic constants of anisotropic materials-II. Advan. Phys. 5 (1956) 323. Nye, J. F.: Physical properties of crystals. oxford: Clarendon Press, 1957. Huntington, H. B.: The elastic constants of crytals. Solid State Physics (eds. Seitz, F., Turnbull, D.), New York: Academic Press 7 (1958) 213. Sundara Rao, R. V. G., Vedam, K., Krishnan, R. S.: Elastic constants. Progress in Crystal Physics (ed. Krishnan, R. S.), Madras: Viswanathan, S. 1958, p, 73. Aleksandrov, K. S., Ryzhova, T. V.: Elastic constants of crystals. Kristallografiya 6 (1961) 289. Hearmon, R. F. S.: An introduction to applied anisotropic elasticity. oxford: University Press, l%l. Khatkevich, A. G.: Elastic constants of crystals. Kristallografiya 6 (1961) 700. Daniels, W. B., Smith, C. S.: The pressure variation of the elastic constants of crystals. The Physics and Chemistry of High Pressures, Papers Symposium, London: Society of Chemical Industry, 1962, p. 50. Wooster, W. A.: Diffuse X-ray reflections from crystals. Oxford: Clarendon Press, 1962. Bhagavantam, S.: Group theory and crystal properties. Advanced Methods of Crystallography (ed. Ramachandran, G. N.), New York etc.: Academic Press, 1964. Fedorov, F. I.: Theory of elastic waves in crystals. Moscow: Nat&a, 1965. Trs. Bradley, J. E. S., New York: Consultants Bureau/Plenum Press, 1968. Quate, C. F., Wilkinson, C. D. W., Winslow, D. K.: Interaction of light and microwave sound. Proc. IEEE 53 (1965) 1604. Smith, C. S., Schuele, D. E., Daniels, W. B.: Elastic constants, pressure, and the alkali halides. Physics of Solids at High Pressures (eds. Tomizuka, C., Emrick, R. L.), New York and London: Academic Press, 1965, p. 4%. Zarembowitch, A.: Theoretical study and optical determination of the elastic constants of crystals. Bull. Sot. Fran. Mineral. Crist. 88 (1965) 17. Bhagavantam, S.: Crystal symmetry and physical properties. New York and London: Academic press, 1966. Birch, F.: Compressibility: elastic constants. Handbook of Physical Constants (ed. Clark, S. P.), Geol. Sot. Am. Mem. 97 (1966). Mason, W. P.: Crystal Physics of Interaction Processes. New York and London: Academic Press, 1966.

Lmdolt-BBm&n New Se&a lW29a

Page 588: Second and Higher Order Elastic Constants

1.4 References for 1 577

67bl

67hl 67kl

68cl

68hl 68pl

69al

69a2

69rl

70al

7ofl

7oml 71sl

72~1

73al 73dl

73nl 73rl

73sl

73wl

74fl

74t1

75fl

75hl

75nl

Barsch, G. R.: Adiabatic, isothermal, and intermediate pressure derivatives of the elastic constants for cubic symmetry. I Basic formulae. Phys. Status Solidi 19 (1967) 129. Haussuhl, S.: Deviations from the Cauchy relations. Phys. Kondens. Materie 6 (1967) 181. Keyes, R. W.: Electronic effects in the elastic properties of semiconductors. Solid State Physics (eds. Seitz, F., TtunbuIl, D., Ehremeich, H.), New York Academic Press, 20 (1967) 37. Chuug, D. H., Buessem, W. R.: The elastic auisotropy of crystals. Anisotropy in Single Crystal Refractory Compounds (eds. Vahldick, F. W., Mersol, S. A.), New York Plenum Press, 2 (1968) 217. Huntington, H. B.: Crystalline elasticity. Advan. Mater. Res. 2 (1%8) 1. Pomerance, H.: Bibliography of second- and third-order elastic constants. Oak Ridge Nat. Lab. Res. Mater., Information Center ONRLRMIC-9 UC25Metals, Ceramics, and Mater., 1968. Anderson, 0. L., Liebermann, R. C.: Elastic properties of oxide compounds used to estimate the properties of the Earths interior. The Application of Modern Physics to Earth and Planetary Interiors (NATO Advanced Study Institute), (ed. Runcom, S. IQ, New York etc.: Wiley Interscience, 1969, p. 425. Anderson, 0. L., Sammis, C., Phiney, R.: Brillouin scattering - a new geophysical tool. The Application of Modem Physics to Earth and Planetary Interiors (NATO Advanced Study Institute), (ed. Runcom, S. K.), New York, etc.: Wiley-Interscience, 1969, p. 465. Ryzhova, T. V., Aleksandrov, K. S., Belikov, B. P.: Elastic properties of rock-forming minerals. Zap. Vses. Mineralog. Obshchestva 98 (1969) 41. Anderson, 0. L.: Patterns in elastic constants of minerals important to geophysics. Nature of the Solid Earth, Papers Symposium 1970 (ed. Robertson, E. C.), New York McGraw Hill 1972, p. 575. Fleury, P. A.: Light scattering as a probe of phonons and other excitations. Physical Acoustics (eds. Mason, W. P., Thurston, R. N.), New York, etc.: Academic Press, 6 (1970) 1. Musgrave, M. J. P.: Crystal Acoustics. San Francisco, etc.: Holden Day 1970. Simmons, G., Wang, H.: Single crystal elastic constants and calculated aggregate properties. Cambridge, Mass. and London: The M. I. T. Press, 1971. Vacher, R., Boyer, L.: Brillouin scattering: A tool for the measurement of elastic and photoelastic constants. Phys. Rev. B6 (1972) 639. Auld, B. A.: Acoustic fields and waves in solids. New York: Wiley, 1973. Donuay, J. D. H., Ondik, H. M. (eds.): Crystal data determinative tables, 3rd edn., Washington, D. C.: National Bureau of Standards and the Joint Committee on Powder Diffraction Standards, 1973. Newnham, R. E., Yoon, H. S.: Elastic anisotropy in minerals. Mineral. Mag. 39 (1973) 78. Rehwald, W.: The study of structural phase transitions by means of ultrasonic experiments. Adv. Phys. 22 (1973) 721. Schreiber, E., Anderson, 0. L., Soga, M.: Elastic constants and their measurements. New York, etc.: McGraw Hill, 1973. Wooster, W. A.: Tensors and group theory for the physical properties of crystals. Oxford University Press, 1973: Fuller, E. R., Granato, A. V., Holder, J., Naimon, E. R.: Ultrasonic studies of the properties of solids in Methods of Experimental Physics (ed. Coleman, R. V.) New York and London: Academic Press, 11(1974) 371. Thurston, R. N.: Waves in solids. Encyclopedia of Physics (ed. Fliigge, S.), Vol. Via/4. Berlin: Springer-Verlag, 1974, p. 109. Fisher, E. S.: A review of solute effects on the elastic modulus of bee transition metals. Physics of Solid Solution Strengthening. Proc. Symposium 1973 (eds. Collings, E. W., Gegel, H. L.), New York Plenum Press, 1975, p. 195. Hadley, D. W., Ward, I. M.: Anisotropy and nonlinear behaviour in solid polymers. Rep. Progr. Phys. 38 (1975) 1143. New&am, R. E.: Stuctureproperty relations, Berlin, etc.: Springer-Verlag, 1975.

L.andolt-B5mstein New Series llIj29a

Page 589: Second and Higher Order Elastic Constants

578 1.4 References for 1

75sl 75wl

76ml

76~1

77kl

77ml

77pl 77rl 77sl

77vl

77wl

78hl 79fl

79pl 80dl 8Od2

80nl

80~1

81el 82bl 82cl

82dl 82gl

8211

82sl 84kl

85fl

Sirotin, Yu. I., Shaskolskaya, M. P.: Principles of crystal physics. Moscow: Nauka, 1975. Weidner, D. J., Swyler, K., Carleton, H. R.: Elasticity of microcrystals. Geophys. Res. Lett. 2 (1975) 189. Melcher, R. L.: The anomalous elastic properties of materials undergoing Jahn-Teller transitions. Physical Acoustics (eds. Mason, W. P., Tburston, R. N.), New York etc.: Academic Press 12 (1976) 1. Papadakis, E. P.: Ultrasonic velocity and attenuation measurement methods with scientific and industrial application. Physical Acoustics (eds. Mason, W. P., Thurston, R. N.), New York, etc.: Academic Press 12 (1976) 277. Klein, M. L., Venables, J. A. (eds.): Rare gas solids, 2 ~01s. London, etc.: Academic Press, 1977, Ch. 7,12,16. McCullough, R. L.: Anisotropic elastic behaviour of crystalline polymers. Treatise on Materials Science and Technology (eds. Herman, H., Schulz, J. M.), Vol. 10, Part B. New York, etc.: Academic Press 1977, p. 453. Pollard, H. F.: Sound Waves in Solid. London: Pion, Ltd., 1977. Reddy, P. J.: Crystal elasticity. Tirupati: Sri Venkateswara University, 1977. Smith, J. F.: Single crystal elastic constants with inferences pertinent to vibrational behaviour and superconductivity. Ferroelectrics 16 (1977) 95. Volarovich, M. P., Stiller, H. (eds.): High pressure and temperature studies of physical properties of rocks and minerals. Kiev: Naukova Dumka, 1977. Wagers, R. S.: Plate modes in surface acoustic wave devices. Physical Acoustics (eds. Mason, W. P., Thursten, R. N.), Vol. XIII (1977) p. 49. Hayes, W., Loudon, R.: Scattering of light by crystals. New York: Wiley International, 1978. Folk, R., Iro, H., Schwab& F.: Critical dynamics of elastic phase transitions. Phys. Rev. BU) (1979) 1229. Pynn, R.: Incommensurable structures. Nature (London) Zil(l979) 433. Dokmeci, M. C.: Vibrations of piezoelectric crystals. Int. J. Engng. Sci. 18 (1980) 431. Dieulesaint, E., Royer, D.: Elastic waves in solids (eds. Bastin, A., Motz, M.), Chichester, New York, etc.: John Wiley and Sons, 1980. Nakanishi, N.: Elastic constants as they relate to lattice properties and martensite formation. Prog. Mater. Sci. 24 (1980) 143. Steinemann, S. G., Fisher, E. S.: Elastic properties of transition metals. Preprint 1980, published in: Treatise on Materials Science and Technology, Vol. 21, “Electronic Stucture and Properties” (ed. Fradin, F. Y.), New York, etc.: Academic Press, 1981, p. 223. (The published version differs in a number of respects from the preprint. In particular, the diagrams in the preprint on which Figs. S58, S68, S69, S75, S77 were based in whole or in part were not printed.) Elbaum, C.: Ultrasonic studies of phase transitions. J. Phys. (Paris) 42 Suppl. (1981) C5-855. Bruesch, P.: Phonons: Theory and experiments I. Berlin: Springer Verlag, 1982. Cardona, M., Guntherodt, G.: Light scattering in solids III. Recent results. Berlin: Springer Verlag, 1982. Dil, J. G.: Brillouin scattering in condensed matter. Rep. Prog. Phys. 45 (1982) 285. Gebrande, H.: In ” Physical Properties of Rocks”, Chap. 3. Elasticity and inelasticity. Landolt Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. V/lb, p. 1, Berlin, Heidelberg, New York: Springer, 1982. Liakos, J. K., Saunders, G. A.: Application of the Landau theory to elastic phase transitions. Philos. Msg. A46 (1982) 217. Singh, R. K.: Many-body interactions in binary ionic solids. Phys. Rep. 85 (1982) 259. Kardashev, B. K., Lebedev, A. B., Nikanorov, S. P.: Acoustic study of elastic properties, dislocation damping and plasticity of crystals. Crystal Res. Technol. 19 (1984) 1039. Fossum, J. 0.: A phenomenological analysis of ultrasound near phase transitions. J. Phys. Cl8 (1985) 5531.

Lmdolt-Btbtein New Saiw lWZ9a

Page 590: Second and Higher Order Elastic Constants

1.4 References for 1 579

85kl

85ml

85nl

85n2.

86bl 86ml

86sl

86~2

88pl

88rl

88sl 88~2

24Bl 24Gl 36Dl 36Rl 3841 41Al 42Hl 43Yl 46Bl 46Ml 4621 48Kl 49Ll 5OJl 5OPl 51Bl 51B2 51B3 51Ml 51Rl 52Bl 5271 52Ml 53Fl 53Kl

Kitaeva, V. F., Zharikov, E. V., Chistyi, I. L.: The properties of crystals with garnet structure. Phys. Status Solidi (a) 92 (1985) 475. Maradudin, A. A,: Surface acoustic waves. Nonequilibrium Phonon Dynamics (NATO ASI), (ed. Bran, W. E.), New York Plenum, 1985, p. 395. Northrop, G. A., Wolfe, J. P.: Phonon imaging: Theory and applications. Nonquilibrium Phonon Dynamics (NATO ASI), (ed. Bran, W. E.), New York Plenum, 1985, p. 165. Nikanorov, S. P., Kardashev, B. K.: Elasticity and dislocation Inelasticity of crystals (in Russian). Moscow: Nauka, 1985. Bhatia, A. B., Singh, R. N.: Mechanics of deformable media. Bristol: Adam Hilger, 1986. Maris, H. J.: Phonon focusing. Nonequilibrium Phonons in Nonmetallic Crystals (eds. Eisenmenger, W., Kaplyanskii, A. A.), Amsterdam: North Holland, 1986, ~51. Shanker, J., Bhende, W. N.: Higher order elastic constants and thermoelastic properties of ionic solids. Phys. Status Solidi (b) 136 (1986) 11. Sirdeshmukh, D. B., Srinivas, K.: Physical properties of mixed crystals of alkali halides. J. Mater. Sci. 21(1986) 4117. Pat-ton, V. Z., Kudryavtsev, B. A.: Electromagnetoelasticity. New York: Gordon and Breach, l988. Rosenbaum, J. F., Norwood, M. A.: Bulk acoustic wave theory and devices. Boston: Artech House, 1988. Sengupta, S. (ed.): Lattice theory of elastic constants. Aedermannsdorfz Trans. Tech., 1988. Shutilov, V. A.: Fundamental physics of ultrasound. New York: Gordon and Breach, 1988.

1.4.2 Special References

Bridgman, P. W.: Proc. Natl. Acad.‘Sci. (US) 10 (1924) 411. Grtineisen, E., Goens, E.: Z. Phys. 26 (1924) 235. Durand, M. A.: Phys. Rev. 50 (1936) 449. Rose, F. C.: Phys. Rev. 49 (1936) 50. Quimby, S. L., Siegel, S.: Phys. Rev. 54 (1938) 293. Atanasoff, J. V., Hart, P. J.: Phys. Rev. 59 (1941) 85. Hunter, L., Siegel, S.: Phys. Rev. 61(1942) 84. Yamamoto, M.: Nippon Kinzoku Gakkaishi 7 (1943) 346. Quoted in [73L31. Bhagavantam, S.: 33rd Indian Sci. Congr. 1946. Mason, W. P.: Phys. Rev. 70 (1946) 529. Zwicker, B.: Helv. Phys. Acta 19 (1946) 523. Kammer,E. W., Pardue, T. E., Frissel, H. F.: J. Appl. Phys. 19 (1948) 265. Lazarus, D.: Phys. Rev. 76 (1949) 545. Jona, F.: Helv. Phys. Acta 23 (1950) 795. Price, W. J., Huntington, H. B.: J. Acoust. Sot. Am. 22 (1950) 32. Bechmann, R.: Proc. Phys. Sot. (London) B64 (1951) 323. Bond, W. L., Mason; W. P., McSkimin, H. J.: Phys. Rev. 82 (1951) 442. Bozorth, R. M., Mason, W. P., McSkimin, H. J.: Bell Syst. Tech. J. 30 (1951) 970. Mason, W. P.: Bell Syst. Tech. J. 30 (1951) 366. Ramachandran, G. N., Wooster, W. A.: Acta Cryst. 4 (1951) 431. Bechmann, R.: Pmt. Phys. Sot. (London) B65 (1952) 375. Jona, F., Scherrer, P.: Helv. Phys. Acta 25 (1952) 36. Mason, W. P., Mathias, B. T.: Phys. Rev. 88 (1952) 477. Fine, M. E.: J. Appl. Phys. 24 (1953) 338; 26,(1955) 863,1389. Krasnov, V. M., Stepanov, A. V.: Zh. Eksperim. Teor. Fiz. 25 (1953) 98.

Land&Bhstein New Series WZ9a

Page 591: Second and Higher Order Elastic Constants

1.4 References for 1 579

85kl

85ml

85nl

85n2.

86bl 86ml

86sl

86~2

88pl

88rl

88sl 88~2

24Bl 24Gl 36Dl 36Rl 3841 41Al 42Hl 43Yl 46Bl 46Ml 4621 48Kl 49Ll 5OJl 5OPl 51Bl 51B2 51B3 51Ml 51Rl 52Bl 5271 52Ml 53Fl 53Kl

Kitaeva, V. F., Zharikov, E. V., Chistyi, I. L.: The properties of crystals with garnet structure. Phys. Status Solidi (a) 92 (1985) 475. Maradudin, A. A,: Surface acoustic waves. Nonequilibrium Phonon Dynamics (NATO ASI), (ed. Bran, W. E.), New York Plenum, 1985, p. 395. Northrop, G. A., Wolfe, J. P.: Phonon imaging: Theory and applications. Nonquilibrium Phonon Dynamics (NATO ASI), (ed. Bran, W. E.), New York Plenum, 1985, p. 165. Nikanorov, S. P., Kardashev, B. K.: Elasticity and dislocation Inelasticity of crystals (in Russian). Moscow: Nauka, 1985. Bhatia, A. B., Singh, R. N.: Mechanics of deformable media. Bristol: Adam Hilger, 1986. Maris, H. J.: Phonon focusing. Nonequilibrium Phonons in Nonmetallic Crystals (eds. Eisenmenger, W., Kaplyanskii, A. A.), Amsterdam: North Holland, 1986, ~51. Shanker, J., Bhende, W. N.: Higher order elastic constants and thermoelastic properties of ionic solids. Phys. Status Solidi (b) 136 (1986) 11. Sirdeshmukh, D. B., Srinivas, K.: Physical properties of mixed crystals of alkali halides. J. Mater. Sci. 21(1986) 4117. Pat-ton, V. Z., Kudryavtsev, B. A.: Electromagnetoelasticity. New York: Gordon and Breach, l988. Rosenbaum, J. F., Norwood, M. A.: Bulk acoustic wave theory and devices. Boston: Artech House, 1988. Sengupta, S. (ed.): Lattice theory of elastic constants. Aedermannsdorfz Trans. Tech., 1988. Shutilov, V. A.: Fundamental physics of ultrasound. New York: Gordon and Breach, 1988.

1.4.2 Special References

Bridgman, P. W.: Proc. Natl. Acad.‘Sci. (US) 10 (1924) 411. Grtineisen, E., Goens, E.: Z. Phys. 26 (1924) 235. Durand, M. A.: Phys. Rev. 50 (1936) 449. Rose, F. C.: Phys. Rev. 49 (1936) 50. Quimby, S. L., Siegel, S.: Phys. Rev. 54 (1938) 293. Atanasoff, J. V., Hart, P. J.: Phys. Rev. 59 (1941) 85. Hunter, L., Siegel, S.: Phys. Rev. 61(1942) 84. Yamamoto, M.: Nippon Kinzoku Gakkaishi 7 (1943) 346. Quoted in [73L31. Bhagavantam, S.: 33rd Indian Sci. Congr. 1946. Mason, W. P.: Phys. Rev. 70 (1946) 529. Zwicker, B.: Helv. Phys. Acta 19 (1946) 523. Kammer,E. W., Pardue, T. E., Frissel, H. F.: J. Appl. Phys. 19 (1948) 265. Lazarus, D.: Phys. Rev. 76 (1949) 545. Jona, F.: Helv. Phys. Acta 23 (1950) 795. Price, W. J., Huntington, H. B.: J. Acoust. Sot. Am. 22 (1950) 32. Bechmann, R.: Proc. Phys. Sot. (London) B64 (1951) 323. Bond, W. L., Mason; W. P., McSkimin, H. J.: Phys. Rev. 82 (1951) 442. Bozorth, R. M., Mason, W. P., McSkimin, H. J.: Bell Syst. Tech. J. 30 (1951) 970. Mason, W. P.: Bell Syst. Tech. J. 30 (1951) 366. Ramachandran, G. N., Wooster, W. A.: Acta Cryst. 4 (1951) 431. Bechmann, R.: Pmt. Phys. Sot. (London) B65 (1952) 375. Jona, F., Scherrer, P.: Helv. Phys. Acta 25 (1952) 36. Mason, W. P., Mathias, B. T.: Phys. Rev. 88 (1952) 477. Fine, M. E.: J. Appl. Phys. 24 (1953) 338; 26,(1955) 863,1389. Krasnov, V. M., Stepanov, A. V.: Zh. Eksperim. Teor. Fiz. 25 (1953) 98.

Land&Bhstein New Series WZ9a

Page 592: Second and Higher Order Elastic Constants

580 1.4 References for I

53L1 53Ml 53Sl 54Bl 54Ll 54Nl 55Dl 55Ml 5501 55Sl 5533 56Al 56A2 56Bl 56B2 56Dl 56Gl 56M2

56M3 56Pl 56P3 56Sl 56S2 56Tl 5621 57Al 57A2 57Bl 57B2 57B3 57B4 57B5

57Cl 57C2 57Gl 57Hl 57K1 57Ll 57Ml 57M2 57M3 57Sl 58Al 58A2 58Bl 58Cl 58D1 58El 58Fl 58Gl

Levy, S., True& R.: Rev. Mod. Phys. 25 (1953) 140. McSkimin, H. J.: J. Appl. Phys. 24 (1953) 988. Sutton, P. M.: Phys. Rev. 91(1953) 816. Bechmann, R., Ayers, S.: Proc. Phys. Sot. (London) B 67 (1954) 422. Long, T. R., Smith, C. S.: J. Acoust. Sot. Am. 26 (1954) 146. Neighbours, J. R., Smith, C. S.: Acta Metall. 2 (1954) 591. de Klerk, J., Musgrave, M. J. P.: Proc. Phys. Sot. (London) B68 (1955) 81. McSkimin, H. J.: J. Appl. Phys. 26 (1955) 406. Overton, W. C., Gaffney, J.: Phys. Rev. 98 (1955) 969. Stepanov, A. V., Eidus, I. M.: Zh. Eksperim. i. Teor. Fiz. 29 (1955) 669. Susse, C.: J. Phys. Radium 16 (1955) 348. Annaka, S.: J. Phys. Sot. Jpn. 11(1956) 937. Aleksandrov, K. S., Nosikov, 0. V.: Akust. Zh. 2 (1956) 244. Bacon, R., Smith, C. S.: Acta Metall. 4 (1956) 337. Bechmann, R.: J. Acoust. Sot. Am. 28 (1956) 347. de Vaux, L. H., Pizzarello, F. A.: Phys. Rev. 102 (1956) 85. Green,R. E., Mackinnon, L.: J. Acoust. Sot. Am. 28 (1956) 1292. McSkimin, H. J., Bond, W. L., Pearson, G. L., Hrostowski, H. J.: Bull. Am. Phys. Sot. l(1956) 111. Mayer, G., Gigon, J.: J. Phys. Radium 18 (1956) 109. Potter, R. F.: Phys. Rev. 103 (1956) 47. Prasad, S. C., Wooster, W. A.: Acta Cryst. 9 (1956) 169. Subrahmanyam, S, V.: Current Sci. 25 (1956) 51. Snedecor, G. W.: Statistical Methods, 5th edn, Ames, Iowa: State University Press 1956, p. 38. Tan&user, D. S., Bruner, L. J., Lawson, A. W.: Phys. Rev. 102 (1956) 1276. Zirinsky, S.: Acta Metall. 4 (1956) 164. Aleksandrov, K. S.: Dissertation, Inst. Cryst. Acad. Sci. USSR, 1957; Quoted in [61al]. Alers, G. A., Neighbours, J. R.: J. Appl. Phys. 28 (1957) 1514. Bass, R., Rossberg, D., Ziegler, G.: 2. Phys. 149 (1957) 199. Bergmann, L.: Z. Naturforsch. 12a (1957) 229. ~Bhimasenachar, J., Venkata Rao, G.: J. Acoust. Sot. Am. 29 (1957) 343. Briscoe, C. V., Squire, C. F.: Phys. Rev. 106 (1957) 1175. Bechmann, R., Taylor, R.: Selected Eng. Rep&, Post Office Res. Stn., London: H. M. Stationery Office 1957. Chumakov, A. A., Silvestrova, I. M., Aleksandrov, K. S.: Kristallografiya 2 (1957) 707. Cook, W. R., Jaffe, H.: Acta Cryst. 10 (1957) 705. Gibbons, D. F.: J. Appl. Phys. 28 (1957) 325. Haussuhl, S.: Naturwissenschaften 44 (1957) 325. Komfeld, M. I., Chudinov, A. A.: Zh. Eksperim. Tear. Fiz. 33 (1957) 33. Long, T. R., Smith, C. S.: Acta MetaIl. 5 (1957) 200. McSkimin, H. J., Bond, W. L.: Phys. Rev. 105 (1957) 116. Markham, M. F.: Brit. J. Appl. Phys. Suppl. 6 (1957) S56. McSkimin, H. 1.: IRE Trans. Ultrasonics Eng. PGUE-5 (1957) 25. Slut&y, L. J., GarIand, C. W.: Phys. Rev. 107 (1957) 972. AIers, G. A., Neighbours, J. R.: J. Phys. Chem. Solids 7 (1958) 58. Aleksandrov, K. S.: Kristaliografiya 3 (1958) 623. Berlincourt, D., Jaffe, H.: Phys. Rev. lll(l958) 143. Chumakov, A. A., Silvestrova, I. M., Aleksandrov, K. S.: Kristallografiya 3 (1958) 480. Daniels, W. B., Smith, C. S.: Phys. Rev. lll(l958) 713. Eros, S., Reitz, J. R.: J. Appl. Phys. 29 (1958) 683. Fisher, E. S., McSkimin, H. J.: J. Appl. Phys. 29 (1958) 1473. Garland, C. W., Dalven, R.: Phys. Rev. lll(l958) 1232.

Land&-BBmswin New SeriwlUf29a

Page 593: Second and Higher Order Elastic Constants

1.4 References for 1 581

58Hl 58Kl 58K3 58Ml

58Nl 58N2 58Rl 5833 58Vl 58Wl 59Al 59Dl 59D2 59Hl 59H2 59Kl 59K2 59K3 59K4 59Ml 59Nl 59N2 59Rl 59R2 59Sl 5932 59Wl 6OAl 6oA2 6OBl 6OB2 6OB3 6OB4 6OB5 6OB6 600 6ODl 6OD2 6OEl 6OE2 6OFl 6OGl 6OHl 6oH2 6oH3 6OH4 6oH5 6OKl 6OMl 6ORl 6oR2

Haussuhl, S.: Acta Cryst. 11(1958) 58. Krishnan, R. S., Chandrasekharan, V., Rajagopal, E. S.: Nature (London) 182 (1958) 518. Koga, I., Aruga, M., Yoshinaka, Y.: Phys. Rev. 109 (1958) 1467. Mayer, W, G., Hiedemann, E. A,: J. Acoust. Sot. Am. 30 (1958) 756; 32 (1960) 1699; Acta Cryst. 14 (l%l) 323. Neighbours, J. R., Alers, G. A.: Phys. Rev. lll(l958) 707. Norwood, M. H., Briscoe, C. V.: Phys. Rev. 112 (1958) 45. Rayne, J. A.: Phys. Rev. 112 (1958) 1125. Silvestrova, I. M., Aleksandrov, K. S., Chumakov, A. A.: Kristallografiya 3 (1958) 386. Voronkov, A. A.: Kristallogratiya 3 (1958) 716. Winder, D.R., Smith, C. S.: J. Phys. Chem. Solids 4 (1958) 128. Armstrong, P. E., Carlson, 0. N., Smith, J. F.: J. Appl. Phys. 30 (1959) 36. Dalven, R., Garland, C. W.: J. Chem. Phys. 30 (1959) 346. de Klerk, J.: Proc. Phys. Sot. (London) 73 (1959) 337. Haussuhl, S.: 2. Krist. 111(1959) 321. Huibregtse, E. J., Bessey, W. H., Drougard, M. E.: J. Appl. Phys. 30 (1959) 899. Koppelmann, J., Landwehr, G.: 2. Angew. Phys. ll(l959) 164. Konstantinova, V. P., Silvestrova, I. M., Aleksandrov, K. S.: Kristallografiya 4 (1959) 70. Koptsik, V. A.: Kristallografiya 4 (1959) 219. Koptsik, V. A., Kobyakov, I. B.: Kristallograflya 4 (1959) 223. Merkulov, L. G.: Akust. Zh. 5 (1959) 432. Nash, H. C., Smith, C. S.: J. Phys. Chem. Solids 9 (1959) 113. Nikanorov, S. P., Stepanov, A. V.: Zh. Eksperim. Tear. Fiz. 37 (1959) 1814. Rayne, J. A.: Phys. Rev. 115 (1959) 63. Reddy, P. J., Subrahmanyam, S. V.: Proc. Indian Acad. Sci. A 50 (1959) 380. Schmunk, R. E., Smith, C. S.: J. Phys. Chem. Solids 9 (1959) 100. Slut&y, L. J., Garland, C. W.: Phys. Rev. 113 (1959) 167. Waterman, P. C.: Phys. Rev. 113 (1959) 1240. Alers, G. A.: Phys. Rev. 119 (1960) 1532. Alers, G. A., Neighbours, J. R., Sato, H.: J. Phys. Chem. Solids 13 (1960) 40. Birch, F.: Quoted in [6OVl]. Birch, F.: J. Geophys. Res. 65 (1960) 3855. Bolef, D. I., Menes, M.: J. Appl. Phys. 31(1960) 1010. Bolef, D. I., Menes, M.: J. Appl. Phys. 31(1960) 1426. Bolef, D. I., Melamed, N. T., Menes, M.: J. Phys. Chem. Solids 17 (1960) 143. Berlincourt, D. A., Cmolik, C., Jaffe, H.: Proc. IRE 48 (1960) 220. Claytor, R. N., Marshall, B. J.: Phys. Rev. 120 (1960) 332. Daniels, W. B.: Phys. Rev. 119 (1960) 1246. Dragsdorf, R. D.: J. Appl. Phys. 31(1960) 434. E&stein, Y., Lawson, A. W., Renecker, D. H.: J. Appl. Phys. 31(1960) 1534; 32 (1961) 752. Enck, F. D.: Phys. Rev. 119 (1960) 1873. Flinn, P. A., McManus, G. M., Rayne, J. A.: J. Phys. Chem. Solids 15 (1960) 189. Garland, C. W., Silverman, J.: Phys. Rev. 119 (1960) 1218; 127 (1962) 2287. Haussuhl, S.: Z. Phys. 159 (1960) 223. Haussuhl, S.: Acta Cryst. 13 (1960) 685. House, D. G., Vernon, E. V.: Brit. J. Appl. Phys. ll(l960) 254. Huffman, D. R., Nor-wood, M. H.: Phys. Rev. 117 (1960) 709. Haussuhl, S.: Z. Naturforsch. 15a (1960) 549. Koptsik, V. A., Emu&ova, L. A.: Fiz. Tverd. Tela 2 (1960) 697. McSkimin, H. J., Fisher, E. S.: J. Appl. Phys. 31(1960) 1627. Rayne, J. A.: Phys. Rev. 118 (1960) 1545. Rayne, J. A., Chandrasekharan, B. S.: Phys. Rev. 120 (1960) 1658.

Iatdolt-BBmstein New Series IIIf29a

Page 594: Second and Higher Order Elastic Constants

582 1.4 References for 1

6OSl 6Os2 6Os3 6os4

6OVl 6OWl

6Ow2 61Al 6lA2 61A3 61A4 61Bl 61B3 61Cl 61C2 6lC3 6lC4 61C5 61El 61Gl 61G2 61Hl 61Kl 61K2 61Ll 61Ml 6lM2 61M3

61Nl

61Rl 61R2 61Sl 61Tl 61Vl 62Al 62A2 62Bl 6282 6283

6284 62Cl 62Gl 62Ml 62M2 62M3 62Nl 62Rl

Schrnunk, R. E., Smith, C. S.: Acta Metall. 8 (1960) 396. Smith, J. F., Arbogast, 6. L.: J. Appl. Phys. 31(1960) 99. Smith, J. F., Gjevre, J. A.: J. Appl. Phys. 31(1960) 645. Salmutter, K., Stangler, F.: Z. Metallkd. 51(1960) 544. Tolpygo, K. B.: Fiz. Tverd. Tela 2 (1960) 2655. Vetma, R. K.: J. Geophys. Res. 65 (1960) 757. Wachtman, J. B., Tefft, W. E., Lam, D. G., Stinchfield, R. P.: J. Res. Natl. Bur. Std (U. S.) A 64 (1960) 213. Waldorf, D. L.: J. Phys. Chem. Solids 16 (1960) 90. Aleksandrov, K. S., Ryzhova, T. V.: Izv. Sibirsk. Otd. Akad. Nauk SSSR No. 6 (1961) 43. Aleksandrov, K. S., Ryzhova, T. V.: Izv. Akad. Nauk SSSR, Ser. Geofiz. No. 12 (1961) 1799. Aleksandrov, K. S., Ryzhova, T. V.: Izv. Akad. Nauk SSSR, Ser. Geofiz. No. 9 (1961) 1339. Alers, G. A., Thompson, D. 0.: J. Appl. Phys. 32 (l%l) 283. Bolef, D. I.: J. Appl. Phys. 32 (1961) 100. Burke, J. R., Houston, B. B., Allgaier, R. S.: Bull. Am. Phys. Sot. 6 (1961) 136. Chandrasekhar, B. S., Rayne, J. A.: Phys. Rev. 124 (1961) 1011. Chemov, Yu. M., Stepanov, A. V.: Fiz. Tverd. Tela 3 (1961) 2872. Clark, A. E., Strakhna, R. E.: J. Appl. Phys. 32 (1961) 1172. Corll, J. A.: ONR Tech. Rept. 5, Contract No. 1141(05), Project NRO17-309. Quoted in [66C3]. Clark, A. E., St&ma, R. E.: (1961). Quoted in [61B3]. Eros, S., Smith, C. S.: Acta Metall. 9 (1961) 14. Gilman, J. J.,Roberts, B. W.: J. Appl. Phys. (1961) 1405. Gilletta, F.: C. R. Hebd. Seances Acad. Sci., Paris 253 (1961) 1556. Haussuhl, S.: Z. Kristallogr. 116 (l%l) 371. Krishna Murty, B., Subrahmanyam, B.: J. Sci. Ind. Res. B 20 (l%l) 448. Khatkevich, A. G.: Kristallografiya 6 (1961) 700. Lowrie, R.: (1961). Quoted in [66B4]. Marshall, B. J.: Phys. Rev. 121(1961) 72. McSkimin, H. J., Bateman, T. B., Hutson, A. R.: J. Acoust. Sot. Am. 33 (1961) 856. Ithllin, R. D., Gazis, D. C.: U. S. Signal Corps Rept, Contract DA 36-039 SC 87414 (1961). Quoted in [62B3]. Nikanorov, S. P., Stepanov, A. V.: Fiz. Tverd. Tela 3 (1961) 3551; 4 (1%2) 570; 4 (1962) 1073. Rayne, J. A.,Chandrasekhar, B. S.: Phys. Rev. 122 (1961) 1714. Reinitz, K.: Phys. Rev. 123 (1961) 1615. Susse, C.: J. Rech. Centre Nat; Rech. Sci., Lab. Bellevue (Paris) No. 54 (1961) 23. Trivisonno, J., Smith, C. S.: Acta Metall. 9 (1961) 1064. Viswanathan, R., Rajagopal, E. S.: J. Sci. Ind. Res. B2O (1961) 463. Aleksandrov, K. S., Ryzhova, T. V.: Izv. Akad. Nauk SSSR, Ser. Geofiz. No. 2 (1962) 186. Aleksandrov, K. S., Ryzhova, T. V., Rostuntseva, A.: Kristallografiya 7 (1962) 930. Bolef, D. I., de Klerk, J.: J. Appl. Phys. 33 (1962) 2311. Bradfield, G.: Proc. 4th Int. Conf. on Acoustics, Copenhagen 1962, Paper J. 54. Bechmann, R., Ballato, A. D.,Lukazek, T. J.: Proc. IRE 50 (1962) 1812; 2451; Bechmann, R.: Arch. Elektr. Ubertnigung 16 (1962) 307. Bateman, T. B.: J. Appl. Phys. 33 (1962) 3309. Corll, J. A.: Case Inst. Technol. ONR Tech. Rept. No. 6 (1962). Garland, C. W., Park, K. C.: J. Appl. Phys. 33 (1962) 759. McSkimin, H. J., Thomas, D. G.: J. Appl. Phys. 33 (1962) 56. McSkimin, H. J.: J. Acoust Sot. Am. 34 (1962) 1271. Markham, M. F.: Natl. Phys. Lab. (II. K.) Internal Rept. 1962. Nikanorov, S. P., Stepanov, A. V.: Fiz. Tverd. Tela 4 (1962) 2576. Roughton, N. A., Nash, H. C.: Bull. Am. Phys. Sot. 7 (1962) 608.

Land&-BBmstein New Suits llI/29a

Page 595: Second and Higher Order Elastic Constants

1.4 References for 1 583

62R2 62R4 62Sl 62Wl 62W2 6221 63Al 63A2

63Bl 63B2 63B3 63B4 63B5 63B6 63Cl 63C3 63Dl 63El 63Fl 63F2 63Gl 6362 63G3 63Hl 63H2 63H3 63H4 63Ml 63M2 63M3 63M4

63Nl 63P3 63Sl 6332 6333

6384 63Wl 6321 64Bl

64B2

64B3 64B4 64B5 64B6 64Cl

Redin, R. D.: U. S. Navy Electronics Lab. Rept. 1133,1962. Ryzhova, T. V., Aleksandrov, K. S.: Izv. Akad. Nauk SSSR, Ser. Geofiz. No. 12 (1962) 1799. Sumer, A., Smith, J. F.: J. Appl. Phys. 33 (1%2) 2283. Wachunan, J. B., Tefft, W. E., Lam, D. G.: J. Res. Natl. Bur. Std. (U. S.) A 66 (1962) 465. Waldorf, D. L., Alers, G. A.: J. Appl. Phys. 33 (1962) 3266. Zubov, V. G., Firsova, M. M.: Kristallografiya 7 (1962) 469. Aleksandrov, K. S., Ryzhova, T. V., Belikov, B. P.: Kristallografiya 8 (1963) 738. Aleksandrov, K. S., Belikova, G. S., Ryzhenkov, A. N., Teslenko, V. R., Kitaigorodskii, A. I.: Kristallografiya 8 (1963) 221. Bernstein, B. T.: J. Appl. Phys. 34 (1963) 169. Bolef, D. I., de Klerk, J.: Phys. Rev. 129 (1963) 1063. Bell, R. O., Rupprecht, G.: Phys. Rev. 129 (1963) 90. Bernstein, B. T.: (1%3). Quoted in [66Cl]. Berlincourt, D., Jaffe, H., Shiozawa, L.: Phys. Rev. 129 (1963) 1009. Berlincourt, D., Cook, W. R., Rander, M. E.: Acta Cryst. 16 (1963) 163. Chung, D. H.: Philos. Mag. 8 (1963) 833. Chudinov, A. A.: Kristallografiya 8 (1%3) 473. Das, R. K., Hatibarua, J., Mahanta, P. C.: Indian J. Pure Appl. Phys. 1(1%3) 227. Einspruch, N. G., Manning, R. J.: J. Acoust. Sot. Am. 35 (1963) 215. Featherston, F. H., Neighbours, J. R.: Phys. Rev. 130 (1963) 13X Ferris, R. W., Shepard, M. L., Smith, J. F.: J. Appl. Phys. 34 (1963) 768. Graham, L., Nadler, H., Chang, R.: J. Appl. Phys. 34 (1963) 1572. Garland, C. W., Jones, J. S.: J. Chem. Phys. 39 (1963) 2874. Gluyas, M.: PhD Thesis, Exeter Univ. 1963. Haussuhl, S.: Phys. Status Solidi 3 (1963) 1072. Haussuhl, s.: z. Kristallogr. 118 (1%3) 33. Hamano, K., Negishi, K., Marutake, M., Nomura, S.: Jpn. J. Appl. Phys. 2 (1963) 83. Haussuhl, S.: Phys. Status Solidi 3 (1963) 1201. McManus, G. M.: Phys. Rev. 129 (1963) 2004. McManus, G. M.: Private communication, 1963. McSkimin, H. J., Andreatch, P.: J. Appl. Phys. 34 (1963) 651,. Malgrange, J.-L., Quentin, G., Thuiilier, J.-M.: C. R. Hebd. Seances Acad. Sci., Paris 257 (1963) 2030. Nikanorov, S. P., Tatarchenko, V. A., Stepanov, A. V.: Fiz. Tverd. Tela 5 (1963) 619. Peselnick, L., Robie, R. A.: J. Appl. Phys. 34 (1963) 2494. Simmons, G., Birch, F.: J. Appl. Phys. 34 (1963) 2736. Smith, J. F.: Private communication, 1963. Spencer, E. G., Denton, R. T., Bateman, T. B., Snow, W. B., van Uitert, L. G.: J. Appl. Phys. 34 (1963) 3059. Sumer, A., Smith, J. F.: J. Appl. Phys. 34 (1963) 2691. Wachtman, J. B., Wheat, M. L., Marzullo, S.: J. Res. Natl. Bur. Std. (U. S.) A 67 (1963) 193. Zarembowitch, A.: J. Phys. (Paris) 24 (1963) 1097. Bartels, R. A., Schuele, D. E.: Case Inst. Technol. ONR Tech. Rept. 8 (1964); J. Phys. Chem. Solids 26 (1965) 537. Berhncourt, D. A., Curran, D. R., Jaffe, H.: Physical Acoustics (ed. Mason, W. P.), New York and London: Academic Press 1A (1964) 169. Berlincourt, D., Jaffe, H., Men, W. J., Nitsche,R.: Appl. Phys. Lea. 4 (1964) 61. Bogorodskii, V. V.: Akust. Zh. 10 (1964) 152. Bradfield, G.: J. Iron Steel Inst. 202 (1964) 616. Brockamp, B., Querfurth, H.: Z. Polarforschung 5 (1964) 253. Chung, D. H., Lawrence, W. G.: J. Am. Ceram. Sot. 47 (1964) 448.

hdolt-Bijmstein New Series IlIi2Pa

Page 596: Second and Higher Order Elastic Constants

584 1.4 References for 1

64Dl

64El 64Fl 6433 64Gl 6462 6463 64Hl 64H2 64I-u 64H4 64w 64Kl 64Ml 64M2 64M4 64M5 64M6 64Rl 64R2 64R3 64R4 64R5 64Sl 64s2

64s4 6485 64Tl 64Vl 64v2 6421 65Al 65Bl 65B2 65Cl 65C2 65Dl 65El 65E2 65Hl 65H2 65H3 65H4 65K1 65Ll 65Ml 65M2 65M4 65M5 65Nl

Daniels, W. B.: Lattice Dynamics (ed. Wallis, R. F.), Oxford, etc.: Pergamon Press 1964. p. 273. Einspruch, N. G., Ciaiime, L. T.: J. Appl. Phys. 35 (1964) 175. Fisher, E. S., Renken, C. J.: Phys. Rev. 135 (1964) A482. Flowers, J. W., O’Brien, K. C., McEleney, P. C.: J. LessCommon Met. 7 (1964) 393. Gerlich, D.: Phys. Rev. 135 (1964) A1331. Gerlich, D.: Phys. Rev. 136 (1%4) A1366. Gerlich, D.: J. Appl. Phys. 35 (1964) 3062. Heseltine, J. C. W., EIliott, D. W., Wilson, 0. B.: J. Chem. Phys. 40 (1964) 2584. Hartley, C. S.: J. Less-Common Met. 6 (1964) 245. Haussuhl, S.: Phys. Kondens. Mater. 3 (1964) 139. Houston, B. B., Strakhna, R. E.: Bull. Am. Phys. Sot. 9 (1964) 646. Haussuhl, s.: z. Kristallogr. 120 (1964) 401. Kamm, G. N., Alers, G. A.: J. Appl. Phys. 35 (1964) 327. Macedo, P. M., Capps, W., Wachtman, J. B.: J. Am. &am. Sot. 47 (1964) 651. McSkimin, H. J., Andreatch, P.: J. Appl. Phys. 35 (1964) 2161. Miller, R. A., Smith, C. S.: J. Phys. Chem. Solids 25 (1964) 1279. Mavroides, J. G., Kolesar, D. F.: Solid State Commun. 2 (1964) 363. Malgrange, J.-L., Quentin, G., Thuillier, J.-M.: Phys. Status Solidi 4 (1964) 139. Reddy, P. J., Bhimasenachar, J.: Acta Cryst. 17 (1964) 28. Reddy, P. J., Bhimasenachar, J.: Acta Cryst. 17 (1964) 31. Reddy, P. J., Ruoff, A. L.: Bull. Am. Phys. Sot. 9 (1964) 534. Reddy, P. J., Ruoff, A. L.: Bull. Am. Phys. Sot. 9 (1964) 727. Ryzhova, T. V.: Izv. Akad. Nauk SSSR Ser. Geofiz. No. 7 (1964) 1049. Shepard, M. L., Smith, J. F.: Acta Metall. 12 (1964) 744. Shepard, M. L., Smith, J. F.: Inst. for Atomic. Res., Iowa State Univ., Contrib. No. 1590, 1964; J. Appl. Phys. 36 (1%5) 1447. Sakurai, J.: J. Phys. Sot. Jpn. 19 (1964) 311. Spinner, S., Wachtman, J. B.: J. Res. Natl. Bur. Std. (U. S.) A68 (1964) 669. ‘Ihurston, R. N., Brugger, K.: Phys. Rev. A 133 (1964) 1604. Vallin, J., Beckman, O., Salama, K.: J. Appl. Phys. 35 (1964) 1222. Vallin, J., Mongy, M., Salama, K., Beckman, 0.: J. Appl. Phys. 35 (1964) 1825. Zarembowitch, A., Kahane, A.: C. R. Hebd. Seances Acad Sci., Paris 258 (1964) 2529. Arlt, G., Schodder, G. R.: J. Acoust. Sot. Am. 37 (1965) 384. Bogardus, E. H.: J. Appl. Phys. 36 (1965) 2504. Bogardus,E. H.: J. Appl. Phys. 36 (1965) 3544. Carroll, K. J.: J. Appl. Phys. 36 (1965) 3689. Chung, P. L., Whitten, W. B., Danielson, G. C.: J. Phys. Chem. Solids 26 (1965) 1753. Damon, D. H., Miller, R. C., Sagar, A.: Phys. Rev. 138 (1965) A636. Epstein, S., de Btetteville, A.: Phys. Rev. 138 (1965) A771. Epstein, S. G., Carlson, 0. H.: Acta Metall. 13 (1965) 487. Haussuhl, S.: Acta Cryst. 18 (1965) 980. Haussuhl, S.: Acta Cryst. 18 (1965) 839. Haussuhl, s.: z. IQiskllogr. 122 (1%5) 311. Haussuhl, S.: Z. Naturforsch. 20a (1965) 1235. Koliwad, K. M., Ruoff, A. L.: Bulk Am. Phys. Sot. 10 (1965) 1113A. Lord, A. E., Beshers, D. N.: J. Appl. Phys. 36 (1965) 1620. Macfarlane, R. E., Rayne, J. A., Jones, C. K.: Phys. Len. 18 (1965) 91. Marquardt, W. R., Trivisonno, J.: J. Phys. Chem. Solids 26 (1%5) 273. Mukherjee, B., Sen, R. K.: Indian J. Pure Appl. Phys. 3 (1965) 7. McSkimin, H. J., Andreatch, P., Thurston, R. N.: J. Appl. Phys. 36 (1965) 1624. Novotny, D. B., Smith, J. F.: Acta Metall. 13 (1965) 881.

Imdolr-Bhstch New SaiuWZ9r

Page 597: Second and Higher Order Elastic Constants

1.4 References for 1 585

Landolt-BErnstein New Serb IlW9a

66D2 66D3 66Fl 66Gl 66G2 66Hl 66H2 66Kl 66K4 66Ll 66Ml 66M2 66M3

Diederich, M. E., Trivisonno, J.: J. Phys. Chem. Solids 27 (1966) 637. Drabble, J. R., Brammer, A. J.: Solid State Commun. 4 (1966) 467. Fisher, E. S.: J. Nucl. Mater. 18 (1966) 39. Garland, C. W., Renard, R.: J. Chem. Phys. 44 (1966) 1130. Garland, C. W., Yarriell, C. F.: J. Chem. Phys. 44 (1966) 1112. H&i, Y., Granato, A. V.: Phys. Rev. 144 (1966) 411. Hickemell, F. S.,.Gayton, W. R.: J. Appl. Phys. 37 (1966) 462. Kayser, F. X., Gibson, E. D.: USAEC Rept. IS 1500,1966, p, M70. Kobyakov, I. B.: Kristallografiya 11(1966) 419. Lewis,M. F.: J. Acoust. Sot. Am. 40 (1966) 728. Macfarlane, R. E., Rayne, J. A., Jones, C. K.: Phys. Lett. 20 (1966) 234. Martinson, R. H.: PhD Thesis, Cornell Univ., 1966; USAEC Rept. NYO-2504-15. Moeller, H. R., Squire, C. F.: Phys. Rev. 151(1966) 689.

65Pl 65Rl

65R2 6532 6534 65Tl

6512 6513 65T4 65Vl 65Wl 65W2 65W3 65W4 6521 66Al 66A2 66A3 66A4 66A5 66B1 66B2 66B3 66B4 66B5 66B6 66B7 66B8

66cl 66c2 66c3 66c4 66c5 66Dl

Purwins, H. G., Hieber, H., Labusch, R.: Phys. Status Solidi 11(1965) K63. Reddy, P. J., Ruoff, A. L.: Physics of Solids at High Pressures (eds. Tomizuka, C. T., Emrick, R. M.), New York and London: Academic Press 1965, p. 510. Ryzhova, T. V., Aleksandrov, K. S.: Izv. Akad. Nauk SSSR Fiz. Zemli No. l(l965) 98. Smith, P. A., Smith, C. S.: J. Phys. Chem. Solids 26 (1965) 279. Schwerdtuer, W. M., Tou, J. C.-M., Hertz, P. B.: Can. J. Earth Sci. 2 (1965) 673. Teslenko, V. F., Ryzhenkov, A. P., Ryzhova, T. V., Aleksandrov, K. S., Kitaigorodskii, A. I.: Kristallografiya 10 (1965) 895. Testardi, L. R., Bateman, T. B., Reed, W. A., Chirba, V. G.: Phys. Rev. Lett. 15 (1965) 250. True& R.: (1965). Quoted in [65Lll. Tinto, V.: MSc Thesis, Rensselaer Polytech. Inst. 1965. Viswanathan, R.: J. Appl. Phys. 37 (1965) 884. Whitten, W. B., Chung, P. L., Danielson, G. C.: J. Phys. Chem. Solids 26 (1965) 49. Wasilik, J. H., Wheat, M. L.: J. Appl. Phys. 36 (1965) 791. Wachtman, J. B., Wheat, M. L., Anderson, H. J., Bates, J. L.: J. Nucl. Mater. 16 (1965) 39. Wasilewski. R. J.: J. Phys. Chem. Solids 26 (1965) 1643. Zarembowitch, A.: Bull. Sot. Franc. Mineral Crist. 88 (1965) 17. Aleksandrov, K. S., Reshchikova, L:M., Beznosikov, B. V.: Phys. Status Solidi 18 (1966) K17. Alers, G. A., Karbon, J. A.: J. Appl. Phys. 37 (1966) 4252. Anderson, 0. L., Andreatch, P.: J. Am. Ceram. Sot. 49 (1966) 404. Armstrong, P. E., Dickenson, J. M., Brown, H. L.: Trans. Metall. Sot. AIME 236 (1966) 1404. Aleksandrov, K. S., Reshchikova, L. M., Benosikov, B. V.: Fiz. Tverd. Tela 8 (1966) 3637. Bateman, T. B.: J. Appl. Phys. 37 (1966) 2194. Bayh, W., Haussuhl, S.: Acta Cryst. 20 (1966) 931. Benedek, G. B., Fritsch, K.: Phys. Rev. 149 (1966) 647. Brown, H. L., Kempster, C. P.: Phys. Status Solidi 18 (1966) K21. Bentle,G. G.: J. Am.Ceram. Soc.49 (1966) 125. Bat& R. de.: Mater. Res. Bull.. 1(1966) 75. Bartels, R. A., Smith, C. S.: (1966). Quoted in 66b2 . Bechmann, R., in: Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series (ed. Hellwege, K. H.), Berlin, etc.: Springer Verlag, Group III, Vol. 1 (1966). Clung, R., Graham, L. J.: J. Appl. Phys. 37 (1966) 3778. Chang, Y. A., Himmel, L.: J. Appl. Phys. 37 (1966) 3787. Chang, Y. A., Himmel, L.: J. Appl. Phys. 37 (1966) 3567. Chung, P. L., Danielson, G. C.: (1966). Quoted in [72A5]. Comstock, R. L., Raymond, J., J., Nilsen, W. G., Remeika, J. P.: Phys. Lett. 9 (1966) 274. de Bretteville, A., Cohen, E. R., Ballato, A. D., Greenberg, I. N., Epstein, S.: Phys. Rev. 148 (1966) 575.

Page 598: Second and Higher Order Elastic Constants

586 1.4 References for 1

66M4

66Pl

66Rl

66R3

66R4

66Sl

66S2

66Tl

66Vl 66v2 66v4 66V5 66Wl 66W2 67Al 67A2 67A3 67A4 67Bl 67B2 67B3 67B4 67B5 67Cl 67C2 67C3 67C4 67C6 67C7 67C8 67C9 67Dl 67D2 67D3 67D4 67D5 67Fl 67F2 67Gl 6762 67G3 6764 6766 67G8

Mnat&anyan, A. V., Shuvalov, L. A., Zheludev, I. S., Gavrilova, I. V.: Kristallograftya 11 (1966) 464. Purwins, H. G., Labusch, R., Haasen, P.: 2. Metallkd. 57 (1966) 867. Proctor, T. M.: J. Acoust. Sot. Am. 39 (1966) 972. ” Roberts, C. A., Meister,R.: J. Phys. Chem. Solids 27 (1966) 1401. Rotter, C. A., Smith, C. S.: J. Phys. Chem. Solids 27 (1966) 267. Ryzhova, T. V., Aleksandrov, K. S., Korobkova, V. M.: Izv. Akad Nauk SSSR Fiz. Zemli No. 2 (1966) 63. Ryzhova, T. V., Reshchikova, L. M., Aleksandrov, K. S.: Izv. Akad. Nauk SSSR Fiz. Zemli No. 7 (1966) 52. Shepard, M. L., Smith, J. F.: Inst. Atomic. Res. and Dept. Metall. Iowa State Univ., Contrib. No. 1869.1966. See also [67S8]. Saga, N.: J. Appl. Phys. 37 (1966) 3416. Shuvalov, L. A., Mnatdanyan, A. V.: Kristallografiya ll(1966) 222. Tefft, W. E.: J. Res. Natl. Bur. Std. (U. S.) A 70 (1966) 277. Tit&, H. D.: Wiss. Z. Tech. Hochsch. Otto von Guericke Magdeburg 10 (1966) 519. Vallin, J., Markhmd, K., Sikstrom, J. 0.: Arkiv Fys. 33 (1966) 345. VaIlin, J., Markhmd, K., Sikstrom, J. O., Beckman, 0.: Arkiv Fys. 32 (1966) 515. Voronov, F. F., Goncharova, V. A., Agapova, T. A.: Fiz. Tverd. Tela 8 (1966) 3405. &dam, K., Miller, D. L., Roy, R.: J. Appl. Phys. 37 (1966) 3432. Wasilewski, R. J.: Trans. Metall. Sot. AIME 236 (1966) 455. Weil, R., Lawson, A. W.: Phys. Rev. 141(1966) 452. Alton, W. J., Barlow, A. J.: J. Appl. Phys. 38 (1967) 3023. Alton, W. J., Barlow, A. J.: J. Appl. Phys. 38 (1967) 3817. Afaneseva, G. K., Aleksandrov, K. S., Kitaigorodskii, A. I.: Phys. Status Solidi 24 (1%7) K61. Alper, T., Saunders, G. A.: J. Phys. Chem. Solids 28 (1967) 1637. Barsch, G. R.: Phys. Status Solidi 19 (1967) 129. Barsch, G. R., Chang, Z. P.: Phys. Status Solidi 19 (1967) 139. Bartlett, R. W., Smith, C. W.: J. Appl. Phys. 38 (1%7) 5428. Brandt, 0. G., Walker, C. T.: Phys. Rev. 18 (1967) 11. Bobylev, B. A., Kravchenko, A. F.: Akust. Zh. 13 (1967) 286. Chang, Y. A., Himmel, L., Neumann, J. P.: J. Appl. Phys. 38 (1967) 649. Chang, Y. A., Neumann, J. P.: J. Phys. Chem. Solids 28 (1967) 2117. Chechile, R. A.: Case Inst. Technol. ONR Tech. Rept. No. 10 (1%7). Cheng, C. H.: J. Phys. Chem. Solids 28 (1967) 413. Chang,Z. P., Barsch, G. R.: Phys. Rev. Lett. 19 (1967) 1381. Cowley, R. A.: Proc. Phys. Sot. (London) 90 (1967) 1127. Ciine, C. F., Dunegan, H. L., Henderson, G. W.: J. Appl. Phys. 38 (1967) 1944. Corll, J. A.: Phys. Rev. 1sI (1967) 623. Davis, L. C., Whitten, W. B., Danielson, G. C.: J. Phys. Chem. Solids 28 (1967) 439. Dickinson, J. M., Armstrong, P. E.: J. Appl. Phys. 38 (1967) 602. Drabble, J. R., Strathen, R. E. B.: Proc. Phys. Sot. (London) 92 (1967) 1090. de Kierk, J.: J. Phys. Chem. Solids 28 (1967) 1831. Drabble, J. R., Brammer, A. J.: Rot. Phys. Sot. (London) 91(1967) 959. Fisher, E. S., Dever, D.: Trans. Metall. Sot. AIME 239 (1967) 48. Fisher, E. S., Dever, D.: Proc. Conf. Rare Earth Res. 6th Gatlinburg, Term. (1967) 522. Gibson, E. D.: J. Appl. Phys. 38 (1967) 3026. Gluyas, M.: Brit. J. Appl. Phys. 18 (1967) 913. Golding, B., Moss, S. C., Averbach, B. L.: Phys. Rev. 158 (1967) 637. Gutman, E. J., Trivisonno, J.: J. Phys. Chem. Solids 28 (1967) 805. Gerlich, D.: J. Phys. Chem. Solids 28 (1967) 2575. Giadkii, V. V., Zheludev, I. S.: Kristallografiya 12 (1967) 905.

Landoh-B6mti New Sa-iea IUR9a

Page 599: Second and Higher Order Elastic Constants

1.4 References for 1 587

67Hl 67H2 67H3 67H4 67H5 67H6 67Kl 67K2 67K3 67K4

67K6 67K7 67K8 67Ll 67L2 67L3 67Ml 67M2 67M3

67M4 67M5 67M6 67M8 67Nl 67N2 6701 67P2 67Rl 67R2 67Sl 6782 6733 6734 6785 6786 6737 6738 6739 67Tl 67T2 67Vl 67Wl 67W2 67W3 6721 68Al 68A2 68A3

68A4

Hall, J. J.: Phys. Rev. 161(1%7) 756. Hidshaw, W., Lewis, J. T., Briscoe, C. V.: Phys. Rev. 163 (1967) 876. Hite, H. E., Kearney, R. J.: J. Appl. Phys. 38 (1967) 5424. Ho, P. S., Ruoff, A. L: Phys. Rev. 161(1967) 864, and corrections Oct. 31,1967. Haussuhl, S.: Acta Cryst. 23 (1967) 666. Haussuhl, s.: z. &istallogr. 125 (1967) 184. Keller, K. R., Hanak, J. J.: Phys. Rev. 154 (1967) 628. Koliwad, K. M., Ghate, P. B., Ruoff, A. L.: Phys. Status Solidi 21(1%7) 507. Keyes, R. W.: Solid State Phys. (eds. Seitz, F., Tumbull, D., Ehrenreich, H.) 20 (1967) 37. Kadyshevich, A. E., Beilin, V. M., Vekilov, Yu. Kh., Krasilnikov, 0. M., Paddyakov, V. N.: Fiz. Tverd. Tela 9 (1%7) 1861. Kobyakov, I. B.: Fiz. Tverd. Tela 9 (1967) 1613. Kobyakov, I. B., Pado, G. S.: Fiz. Tverd. Tela 9 (1967) 2173. Khalilov, Kh. M., Orudzheva, Sh. O., Rzhaev, K. I.: (1967). Quoted in [81S6]. Leamy, H. J., Gibson, E. D., Kayser, F. X.: Acta Metall. 15 (1967) 1827. Lewis, J. T., Lehoczy, A., Bristow, C. V.: Phys. Rev. 161(1967) 877. Lowrie, R., Gonas, A. M.: J. Appl. Phys. 38 (1%7) 4505. Marshall, B. J., Miller, R. E.: J. Appl. Phys. 38 (1967) 4749. Marshall, B. J., Pederson, D. O., Dorris, G. G.: J. Phys. Chem. Solids 28 (1967) 1061. Michard, F., Julien, J., Zarembowitch, A.: C. R. Hebd. Seances Acad. Sci., Paris 265 (1967) 565. Morse, G. E., Lawson, A. W.: J. Phys. Chem. Solids 28 (1967) 939. McSkimin, H. J., Jayaraman, A., Andre&h, P.: J. Appl. Phys. 38 (1967) 2362. Masumoto, H., Saito, H., Kikuchi, M.: Sci. Rep. Res. Ins& Tohoku Univ. Al9 (1967) 172. Mort, J.: J. Appl. Phys. 38 (1967) 3414. Nouet, J., Zarembowitch, A.: C. R. Hebd. Seances Acad. Sci., Paris B265 (1%7) 856. Neighbours, J. R., Schacher, G. E.: J. Appl. Phys. 38 (1967) 5366. Onoe, M., Warner, A. W., Ballman, A. A.: IEEE Trans. Sonics Ultrasonics SU-14 (1967) 165. Pawley, G. S.: Phys. Status Solidi 20 (1967) 247. Roberts, R. W.: Case Western Reserve Univ. AEC Tech. Rept. No. 50 (1967). Rosenberg, H. M., Wigmore, J. K.: Phys. Lea. A24 (1967) 317. SCM, H., Friedel, H.: Z. Metallkd. 58 (1967) 729. Schreiber, E.: J. Appl. Phys. 38 (1967) 2508. Slagle, 0. D., McKinstry, H. A.: J. Appl. Phys. 38 (1967) 437. Slagle, 0. D., McKinstry, H. A.: J. Appl. Phys. 38 (1967) 446. Slagle, 0. D., McKinstry, H. A.: J. Appl. Phys. 38 (1967) 451. Soga, N.: J. Geophys. Res. 72 (1%7) 4227. Swartz, K. D.: J. Acoust. Sot. Am. 41(1967) 1083. Shepard, M. S., Smith, J. F.: Acta Metall. 15 (1967) 357. Smith, R. T.: Appl. Phys. Lett. 11(1967) 146. Teslenko, V. F.: KristaIlografiya 12 (1967) 1083. Testardi, L. R., Bateman, T. B.: Phys. Rev. 154 (1967) 402. Vallin, J.: Arkiv Fys. 34 (1967) 367. Wazzan, A. R., Robinson, L. B.: Phys. Rev. 155 (1967) 586. Wong, C.: J. Phys. Chem. Solids 28 (1967) 1225. Warner, A. W., Onoe, M., Coqum, G. A.: J. Acoust. Sot. Am. 42 (1967) 1223. Zubov, V. G., Sysoev, L. A., Firsova, M. M.: Kristallografiya 12 (1967) 84. Aleksandrov, K. S., Shabanova, L. A., Reshchikova, L. M.: Fiz. Tverd. Tela 10 (1968) 1666. Afanaseva, G. K.: Kristallografiya 13 (1968) 1024. Aleksandrov, K. S., Ryzhova, T. V., Belikov, B. P.: Izv. Akad. Nauk SSSR Ser. Geol. No. 6 (1968) 17. Alper, T., Pace, N. G., Saunders, G. A.: J. Phys. Dl(l968) 1079.

Landolt-B6mstein New Series IIIfZ9a

Page 600: Second and Higher Order Elastic Constants

588 1.4 References for 1

68A5 68A6 68A7 68B1

68B2 68B3 68B4 68B6 6887 68Cl 68c2 68Dl 68D2 68D3 68D4 68D5 68D6 68D8 68El 68E2 68Fl 68F2 68F3 68F4

68Gl 6862 6863 6864 6805 68G7 68Hl 68H2 68l-n 68H4 68H5 68H6 68H9 68Kl 68K2 68K3 68Ll 68L2 68Ml 68M2 68M3 68M.5 68Nl 68Pl

68P2

Arlt, G., Schweppe, H.: Solid State Commun. 6 (1968) 783. Adhav,R. S.: J. Acoust. Sot. Am. 43 (1968) 835. Adhav, R. S.: J. Appl. Phys. 39 (1968).4091. Beilin, V. M., Vekilov, Yu. Kh., Kadyshevich, A. E., Krasilnikov, 0. M.: Fiz. Tverd. Tela 10 (1968) 1550. Brandt, 0. G., Walker, C. T.: Phys. Rev. 170 (1968) 528. Beilin, V. M., Vekilov, Yu. Kh., Krasilnikov, 0. M.: Fiz. Tverd. Tela 10 (1968) 3101. Bower, D. I., C&ridge, E., Tsong, I. S.: Phys. Status Solidi 29 (1968) 617. Brody, E. M., Cummins, H. 2.: Phys. Rev. Lea. 21(1968) 1263. Barrett, H. H.: Phys. Lea. A26 (1968) 217. Cutler, H. R., Gibson, J. J., McCarthy, K. A.: Solid State Commun. 6 (1968) 431. Craft, W. L., Slutsky,L. J.: J. Chem. Phys. 49 (1968) 638. Dandekhar, D. P.: J. Appl. Phys. 39 (1968) 2971. Dandekhar, D. P.: J. Appl. Phys. 39 (1968) 3694. Dantl, G.: Phys. Kondens. Mater. 7 (1968) 390. Dandekhar, D. P., Ruoff, A. L.: J. Appl. Phys. 39 (1968) 6004. Dandekhar, D. P.: Phys. Rev. 172 (1968) 873. Davidson, D. L., Brotzen, F. R.: J. Appl. Phys. 39 (1968) 5768. Danno, T., Inokuchi, H.: Bull, Chem. Sot. Jpn. 41(1968) 1783. Ezz-e&Arab, M., Vodar, B.: C? R. Hebd. Seances Acad. Sci., Paris B266 (1968) 92. Ezz-el-Arab, M., Galperin, B., Brielles, J., Vodar, B.: Solid State Commun. 6 (1968) 387. Fisher, E. S., Dever, D.: Phys. Rev. 170 (1968) 607. Fontaine, H., Moriamez, C.: J. Chem. Phys. 65 (1968) 969. Fisher, E. S., Dever, D.: Prcc. RareEarth Res. Conf., Coronado, Calif. 7 (1968) 237. Feldman, D. W., Parker, J. H., Choyke, W. J., Patrick, L.: Phys. Rev. 170 (1968) 698; Phys. Rev. 173 (1968) 787. Guinan, M. W., Beshers, D. N.: J. Phys. Chem. Solids 29 (1%8) 541. Graham, L. J.,Nadler, N., Chang, R.: J. Appl. Phys. 39 (1968) 3025. Gerlich, D.: Phys. Rev. 168 (1%8) 947. Gieske, J. H., Barsch, G. R.: Phys. Status Solidi 29 (1968) 121. Garland, C. W., Young, R. A.: J. Chem. Phys. 49 (1968) 5282. Gsanger, M., Egger, H., Luscher, E.: Phys. Lett. A27 (1968) 695. Haussuhl, S.: Phys. Status Solidi 28 (1968) 127. Houston, B., Strakhna, R. E., Belson, H. S.: J. Appl. Phys. 39 (1968) 3913. Hart, S.: J. Phys. Dl(l968) 1277. Hart, S.: J. Phys. Dl(l968) 1285. Hausch, G., Gsanger, M. G., Luscher, E.: Z. Angew. Phys. 25 (1968) 261. Haussuhl, S.: Acta Cryst. A24 (1968) 697. Hughes, F. D.: PhD Thesis, Salford Univ. 1968. Quoted in [72Jl]. Kaga, H.: Phys. Rev. 172 (1%8) 900. Khalilov, Kh. M., Qrudzheva, Sh. O., Rzaev, K. I.: Fiz. Tverd. Tela 10 (1968) 643. Kollarits, F. J., Trivisonno, J.: J. Phys. Chem. Solids 29 (1968) 2133. Leese, J., Lord, A. E.: J. Appl. Phys. 39 (1968) 3986. Litov, E., Uehling, El A.: Phys. Rev. Lett. 21(1968) 809. Michard, F.,Zarembowitch, A.: Bull. Sot. Franc. Mineral. Crist. 91(1%8) 126. Mangalick, M. C., Fiore,N. F.: Trans. Metall. Sot. AIME 242 (1968) 2363. Masumoto, H., Saito, H., Kikuchi, M.: Trans. Jpn. Inst. Met, 9 (1968) 257. McSkimin, H. J., Jayaraman, A., Andreatch, P., Bateman, T. B.: J. Appl. Phys. 39 (1968) 4127. Nikanorov, S. P., Kardashev, B. K., Kaskovich, N. S.: Fiz. Tverd. Tela 10 (1968) 898. Patter, L. A.: U. S. Clearing House for Federal Sci. Tech. Inf. AD670520,1968; Diss. Abstr. Int. B29 (1969) 4811. Portigai, D. L., Burstein, E.: Phys. Rev. 170 (1%8) 673.

Land&-BBmstein New Se& llV29a

Page 601: Second and Higher Order Elastic Constants

1.4 References for 1 589

68Rl 68R2 68R4 68Sl 6832

6834 68Tl 68Wl 68W2 68W3 68W4 69Al 69A2 69A3 69A4 69A6 69A7 69Bl 69B3 69B4

69B5 69Cl 69Dl 69D2 69El 69F2

69G2 69G3 69G5 69H2

69H3 69H4 69H5 69H6 69H7 69H8 69H9 69Jl 69J2 69K3 69K4 69L2

69L3 69L4 69L5 69Ml

Reshchikova, L. M.: Fiz. Tverd. Tela 10 (1968) 2558. Radha, V., Gopal, E. S. R.: J. Indian Inst. Sci. 50 (1968) 170. Radha, V., GopaI, E. S. R.: J. Indian Inst. Sci. 50 (1968) 26. Salama, K., Alers, G. A.: J. Appl. Phys. 39 (1968) 4857. Salama, K., Alers, G. A.: Paper Presented to Ultrasonics Symp. New York City Sept. 25-27, 1%8. Svenson, E. C., Buyers, W. J. L.: Phys. Rev. 165 (1%8) 1063. Thomas, J. F.: Phys. Rev. 175 (1968) 955. Wachtman, J. B., Brower, W. S., Farabaugh, E. N.: J. Am. Ceram. Sot. 51(1968) 341. Wong, C., Schuele, D. E.: J. Phys. Chem. Solids 29 (1968) 1309. Weil, R. B., Groves, W. 0.: J. Appl. Phys. 39 (1968) 4049. Wachttnan, J. B.: (1968). Quoted in [72Jl]. Adhav, R. S.: J. Appl. Phys. 40 (1969) 2725. Aleksandrov, K. S., Shabanova, L. A., Zinenko, V. I.: Phys. Status Solidi 33 (1969) Kl. Aleksandrov, K. S., Zaitseva, M. P., Shabanova, L. A.: Fiz. Tverd. Tela 11(1969) 155. Alterovitz, S., Gerlich, D.: Phys. Rev. 184 (1969) 999. Adhav, R. S.: J. Phys. D2 (1969) 171. Arlt, G., Quadflieg, P.: Phys. Status Solidi 32 (1969) 687. Bateman, T. B., Spencer, E. G.: (1%9). Quoted in [6901]. Beattie, A. G.: J. Appl. Phys. 40 (1969) 4818. Belyaev, L. M., Belikova, G. S., Gilvarg, A. B., Silvestrova, I. M.: Kristallografiya 14 (1969) 645. Brockamp, B., Ruter, H.: Z. Geophys. 35 (1969) 277. Chang, Z. P., Barsch, G. R.: J. Geophys. Res. 74 (1969) 3291. Dickson, R. W., Wachtman, J. B., Copley, S. M.: J. Appl. Phys. 40 (1969) 2276. Dobretsov, A. I., Peresada, G. I.: Fiz. Tverd. Tela 11(1969) 1728. Ezz-el-Arab, M., Vodar, B.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B269 (1969) 600. Fray, S., Johnson, F. A., Jones, R., Kay, S., Oliver, C. J., Pike, E. R., Russell, J., Sennett, C., G’Shaughnessy, J., Smith, C.: Proc. Int. Conf. on Light Scattering Spectra of Solids (ed. Wright, G. B.), Berlin, etc. Springer-VerIag 1969, p. 139. Gerlich, D., Fisher, E. S.: J. Phys. Chem. Solids 30 (1%9) 1197. Graham, E. K., Barsch, G. R.: J. Geophys. Res. 74 (1969) 5949. Garland, C. W., Novotny, D. B.: Phys. Rev. 177 (1969) 971. Handbook of Chemistry and Physics, 50th edn. Cleveland, Ohio: The Chemical Rubber Co. 1969. Hart, S.: J. Phys. D2 (1969) 621. Haussuhl, S., Siegert, H.: Z. Kristallogr. 129 (1969) 142. Haussuhl, S.: Z. Naturforsch. 24a (1969) 865. Haussuhl, S., Skorczyk, W.:, Z. Kristallogr. 130 (1969) 340. Ho, P. S., Poirier, J. P., Ruoff, A. L.: Phys. Status Solidi 35 (1969) 1017. Ho, P. S., Ruoff, A. L.’ J. Appl. Phys. 40 (1969) 3 15 1. Huntington, H. B., Gangoli, S. G., Mills, J. L.: J. Chem. Phys. 50 (1969) 3844. Jenkins, J. O., Rayne, J. A., Ure, R. W.: Phys. Lett. A30 (1969) 349. Jones, K. A., Moss, S. C., Rose, R. M.: Acta Metall. 17 (1969) 365. Kumazawa, M.: J. Geophys. Res. 74 (1%9) 5973. Kumazawa, M., Anderson, 0. L.: J. Geophys. Res. 74 (1969) 5961. Iazay, P. D., Lunacek, J. H., Clark, N. A., Benedek, G. B.: Proc. Int. Conf. on Light Scattering Spectra of Solids (ed. Wright, G. B. 9, Berlin, etc. Springer-Verlag 1969, p. 593. Leake, J. A., Daniels, W. B., Skalyo, J., Frazer, B. C., Shirane, G.: Phys. Rev. lSl(l969) 1251. Lehoczky, A., Nelson, D. A., Whitsett, C. R.: Phys. Rev. 188 (1969) 1069. Long, M., Wazzan, A. R., Stem, R.: Phys. Rev. 178 (1969) 775. Manghnani, M. H.: J. Geophys. Res. 74 (1969) 4317.

Land&-Biimstein New Series lIW9a

Page 602: Second and Higher Order Elastic Constants

590 1.4 References for 1

69M2 69M4 69M5 69M6 69M8 6901

6902 6903 69Pl 69Rl 69R2 69Sl 6982 6933 6936 6988 69Vl

Marshall, B. J., Cleavelin, C. R.: J. Phys. Chem. Solids 30 (1969) 1905. Martinson, R. H.: Phys. Rev. 178 (1969) 902. Melcher, R. L., Bolef, D. I.: Phys. Rev. 178 (1969) 864. Michard, F., Zarembowitch, A.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B269 (1969) 30. Miller, R. A., Schuele, D. E.: J. Phys. Chem. Solids 30 (1969) 589. O’Brien, R. J., Rosasco, G. J., Weber, A.: hoc. Int. Conf. on Light Scattering Spectra of Solids (ed. Wright, G. B.), Berlin, etc. Springer-Verlag 1%9, p. 623. Oliver, D. W.: J. Appl. Phys. 40 (1%9) 893. 0110, K., Stem, R.: Trans. Metall. Sot. AIME 245 (1969) 171. Pace, N. G., Saunders, G. A., Sumengen, Z., lborp, J. S.: J. Mater. Sci. 4 (1%9) 1106. Reifenberger, R., Keck, M. J., Trivisonno, 1.: J. Appl. Phys. 40 (1969) 5403. Rosen, M., Klimker, H., Weger, M.: Phys. Rev. 184 (1969) 466. Schweppe, H.: IEEE Trans. Sonics Ultrasonics SU-16 (1969) 219. Shannette, G. W., Smith, J. F.: Ser. Metall. 3 (1969) 33. Shannette, G. W., Smith, J. F.: J. Appl. Phys. 40 (1969) 79. Slohvinski, T., Trivisonno, J.: J. Phys. Chem. Solids 30 (1%9) 1276. Sorge, G., Hegenbarth, E.: Phys. Status Solidi 33 (1969) K79. Valiev, A. A., Koptev, Yu. L., Nikanorov, S. P., Stepanov, A. V.: Fiz. Tverd. Tela ll(l969) 236.

69Wl 69Yl 69Y2 70Al 7oA2 7oA3 70A4 7oA5 70A6

70Bl 70B2 70B3 70B4

70B5

Warner, A. W., Coquin, G. A., Fink, J. L.: J. Appl. Phys. 40 (1969) 4353. Yamada, T., Iwasaki, H., Niiezeki, N.: Jpn. J. Appl. Phys. 8 (1969) 1127. Yoon, H. S., Newnham, R. E.: Am. Mineral. 54 (1969) 1193. Afanaseva, G. K., Myasnikova, R. M.: Kristallografiya 15 (1970) 189. Alterovitz, S., Gerlich, D.: Phys. Rev. Bl(l970) 2718. Alterovitz, S., Gerlich, D.: Phys. Rev. Bl(l970) 4136. Armstrong, D. A., Mordike, B. L.: J. Less-Common Met. 22 (1970) 265. Armstrong, D. A., Mordike, B. L.: Z. Metallk. 61(1970) 356. Adams, C. A., Censlow, G. M., Kusters, J. H., Ward, R. W.: Proc. 24th AM. Symp. Freq. Corm. (1970) 55. Bartels, R. A., Potter, W. N., Watson, P. W.: Bull. Am. Phys. Sot. 15 (1970) 333. Beauie, A. G., Schirber, J. E.: Phys. Rev. Bl (1970) 1548. Beilin, V. M., Vekilov, Yu. Kh., Krasilnikov, 0. M.: Fix. Tverd. Tela 12 (1970) 684. Belikov, B. P., Aleksandrov, K. S., Ryzhova, T. V.: Elastic Properties of Rock-forming Minerals (in Russian), Moscow: Nat&a 1970. Blakslee, 0. L., Proctor, D. G., Seldin, E. J., Spence, G. B., Weng, T.: J. Appl. Phys. 41(1970) 3373.

70B6 70B7 7OC2 7Oc4

70Dl

7OFl 7oF2

Blinick, J. S., Maris, H. J.: Phys. Rev. B2 (1970) 2139. Burenkov, Yu. A., Nikanorov, S. P., Stepanov, A. V.: Fiz. Tverd. Tela 12 (1970) 2428. Cecchi, L., Vacher, R., Danyach, L.: J. Phys. 31(1970) 501. Cholokov, K. S., Novikov, E. N., Grishukov, V. A., Botaki, A. A.: Izv. Vyssh. Uchebn. Zaved. Fiz. No. 12 (1970) 157. Desrumaux, J. M., Gremillet, N., Moriamez, M.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. C270 (1970) 930. Fischer, G., Zarembowitch, A.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B270 (1970) 852. Fisher, E. S., Goodman, G. M., Manghnani, M. N., Benzing, W. M.: Colloq. Int. Cent. Rech. Sci. No. 188 (1970) 311.

7OF4 Fisher, E. S., Dever, D.: Acta Metall. 18 (1970) 265. 7OF5 Fisher, E. S., Manghnani, M. H., Sokolowski, T. I.: J. Appl. Phys. 41(1970) 2991. 7OF6 Fontanella, J. J., Schuele, D. E.: J. Phys. Chem. Solids 31(1970) 647. 7oF7 Franck, J. P., Wanner, R.: Phys. Rev. Lett. 25 (1970) 345. 7oF8 Fukumoto, A., Watanabe, A.: hoc. IEEE 58 (1970) 1376. 7OG1 Ghafelehbashi, M., Dandekar, D. P., Ruoff, A. L.: J. Appl. Phys. 41(1970) 652.

Land&-BBmswin New Saiu lJIR9a

Page 603: Second and Higher Order Elastic Constants

1.4 References for 1 591

7OG2 7oG3 7OG4 7OG5 7OG6 7OHl 7oH2 7oH3 7OH4 7oHs 7OH6 7OH7 7OH8 7oH9 70HlO 70Hll 7OH12 7OJ2 7oK2 7OK4 7oK5 7OK6

7OK7 7OK8

7oK9 70KlO 7OLl 7OL3 7oLA 7OL5 7OMl 7OM4 7qM5 7OM6 7ONl 7001 7002 7OPl 7oP3 7ORl 7oR2 7OR3 7OR4 7oR5 7OR6

Ghafelehbashi, M., Koliwad, K. M.: J. Appl. Phys. 41(1970) 4010. Gluck, W.: Solid State Commun. 8 (1970) 1831. Gluyas, M., Hughes, F. D., James, B. W.: J. Phys. D3 (1970) 1451. Gomall, W. S., Stoicheff, B. P.: Solid State Commun. 8 (1970) 1529. Graham, L. J., Chang, R.: J. Appl. Phys. 41(1970) 2247. Hallberg, J. C., Hanson, R. P.: Phys. Status Solidi 42 (1970) 305. Hankey, R. E., Schuele, D. E.: J. Acoust. Sot. Am. 48 (1970) 190. Hart, S.: J. Phys. D3 (1970) 430. Hart, S., Stevenson, R. W. H.: J. Phys. D3 (1970) 1789. Hart, S.: Phys. Status Solidi (a) 3 (1970) K187. Hauret, G., Gharbi, A.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B271(1970) 1072. I&ret, G., Taurel, L.: J. Phys. 31(1970) 657. Hamet, G., Taurel, L.: Phys. Status Solidi 41(1970) K21. Haussuhl, S.: 2. Krist. 132 (1970) 255. Haussuhl, S.: Acustica 23 (1970) 165. Hochli, U. T.: Solid State Commun. 8 (1970) 1487. Hopkin, L. M. T., Pursey, H., Markham, M. F.: Z. Metallkd. 61(1970) 535. Johnston, D. L., Thrasher, P. H., Kearney, R. J.: J. Appl. Phys. 41(1970) 427. Keeler, G. J., Batchelder, D. N.: J. Phys. C3 (1970) 510. Klement, W.: J. Phys. Chem. 74 (1970) 2753. Korolyuk, A. P., Matsakov, L. Ya., Vasilchenko, V. V.: Kristallografiya 15 (1970) 1028. Krasilnikov, 0. M., Vekilov, Yu. Kh., Bezborodova, V. M., Yushin, A. V.: Fiz. Tekh. Poluprovdn. 4 (1970) 2122. Kraut, E. A., Tittman, B. R., Graham, L. J., Lim, T. C.: Appl. Phys. Lett. 17 (1970) 271. Krishnan, R. S., Radha, V., Gopal, E. S. R.: J. Indian Inst. Sci. 52 (1970) 115; J. Phys. D4 (1971) 171. Krupnyi, A. I., Aleksandrov, K. S., Belikova, G. S.: Kristallografiya 15 (1970) 589. Kuppers, H., Siegert, H.: Acta Cryst. A26 (1970) 401. Leamy, H. J., Warlimont, H.: Phys. Status Solidi 37 (1970) 523. Lee, B. H.: J. Appl. Phys. 41(1970) 2984. Lee, B. H.: J. Appl. Phys. 41(1970) 2988. Loje, K. F., Schuele, D. E.: 1. Phys. Chem. Solids 31(1970) 2051. Mannel, P., Gunther, F.: Phys. Status Solidi (a) 3 (1970) 137. Masumoto, M., Kikuchi, M., Sawaya, S.: Trans. Jpn. Inst. Met. ll(l970) 176. Melcher, R. L.: Phys. Rev. B2 (1970) 733. Metzger, H., Kessler, F. R.: Z. Naturfomch. 25a (1970) 904. Novikov, E. N., Botaki, A. A.: Izv. Vyssh. Uchebn. Zaved. Fiz. No. 2 (1970) 139. Ohmachi, Y., Uchida, N.: J. Appl. Phys. 41(1970) 2307. Ota, K., Ishibashi, Y., Takagi, Y.: J. Phys. Sot. Jpn. 29 (1970) 1545. Pace, N. G.: PhD Thesis, Durham Univ. 1970. Palmer, S. B.: J. Phys. Chem. Solids 31(1970) 143. Rehwald, W.: Solid State Commun. 8 (1970) 1483. Roberts, R. W., Smith, C. S.: J. Phys. Chem. Solids 31(1970) 619. Roberta, R. W., Smith, C. S.: J. Phys. Chem. Solids 31(1970) 2397. Rosen, M., Klimker, H.: Phys. Rev. Bl(l970) 3748; B3 (1971) 3076. Ryabiin, L. N., Kapitonov, A. M.: Izv. Akad. Nauk SSSR Ser. Fiz. 34 (1970) 1092. Rzaev, K. I., Grudzheva, Sh. 0.: Izv. Akad. Nauk Azerb. SSR Ser. Fiz. Mat. Tekhn. Nauk No. 3 (1970) 76.

7OSl Sandercock, J. R.: Optics Commun. 2 (1970) 73. 7os3 Sharko, A. V., Botaki, A. A.: Izv. Vyssh. Uchebn. Zaved. Fiz. No. 6 (1970) 22. 7os4 Sharko, A. V., Botaki, A. A.: Fii. Tverd. Tela 12 (1970) 1559. 70s Sharko, A. V., Botaki, A. A.: Fiz. Tverd. Tela 12 (1970) 2247.

Land&-Bhstein New Series IIIf29a

Page 604: Second and Higher Order Elastic Constants

592 1.4 References for 1

7OS6 7os7 7OS8 7os9 7OSlO 7OSll 7OTl 7OT-3 7OVl

7OV2 7ov3 7ov4 7OWl

7OYl 71Al 71A2

71A3 71Bl 71B2 71B4 71B6 71Cl 71c3 71c4

710 71C6

71C7 71C8 71ClO 7lCll 71Dl 71D2 71D4 71El 71F2 71Gl 71G2 71G4 71Hl 71H2 71H3 71H4 7111 71Jl 71Kl 7x2 71K3

Sharko, A. V., Botaki, A. A.: Fiz. Tverd. Tela 12 (1970) 2702. Silversmith, D. J., Averbach, B. L.: Phys. Rev. Bl(l970) 567. Spetzkr, H.: J. Geophys. Res. 75 (1970) 2073. Swartz, K. D., Elbaum, C.: Phys. Rev. Bl(l970) 1512. Schweppe, H.: Ultrasonics 8 (1970) 84. Shaham, J., Kaplan, H., Low, W., Fogel, M.: Phys. Rev. Lea. 24 (1970) 827. Testardi, L. R.: Phys. Rev. Bl(l970) 4851. Turik, A. V.: Fiz. Tverd. Tela 12 (1970) 892. Vacher, R., Boyer, L., Danyach, L.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B270 (1970) 1430. Valiev, A. A., Nikanorov, S. P., Stepanov, A. V.: Fiz. Tverd. Tela 12 (1970) 1656. Valishev, R. M., Khazanov, A. Kh.: Fiz. Tverd. Tela I2 (1970) 2847. Varshni, Y. P.: Phys. Rev. B2 (1970) 3952. Walker, E.: Thesis, University of Geneva (1970); Walker, E., Qrtelii, J., Peter, M.: Phys. Lett. A31 (1970) 240. Yamada, T., Iwasaki, H., Niizeki, N.: J. Appl. Phys. 41(1970) 4141. Acker, E., Reeker, K., Haussuhl, S., Siegert, H.: Z. Naturforsch. 26a (1971) 1766. Alberts, L., Bohlmann, M., Alberts, H. L.: J. Phys. Colloq. 1971(l) PtlC1415, and private communication. Alberts, H. L., Wedepohl, P. T.: Physica 53 (1971) 571. Barsch, G. R., Shull, H. E.: Phys. Status Solidi (b) 43 (1971) 637. Bolef, D. I., Smith, R. E., Miller, J, G.: Phys. Rev. B3 (1971) 4100. Boyer, L., Vacher, R.: Phys. Status Solidi (a) 6 (1971) K105. Beattie, A. G., Samara, G. A.: J. Appl. Phys. 42 (1971) 2376. Cain, L. S., Thomas, J. F.: Phys. Rev. B4 (1971) 4245. Chang, Z. P., Barsch, G. R.: J. Phys. Chem. Solids 32 (1971) 27. Chkalova, V. V., Bondarenko, V. S., Fokina, G. O., Strizhevskaya, F. N.: Izv. Akad. Nauk SSSR Ser. Fiz. 35 (1971) 1886. Cholokov, K. S., Grishukov, V. A.: Izv. Vyssh. Uchebn. Zaved. Fiz. No. 4 (1971) 58. Chizhikov, S. I., So&in, N. G., Ostrovskii, B. I., Maleshina, V. A.: Pis’ma Zh. Eksper. Teor. Fiz. 14 (1971) 490. Chou, T. H., McBride, S. L., Rumin, N.: Can. J. Phys. 49 (1971) 1597. Christensen, N. I., Ramananantoandro, R.: J. Geophys. Res. 76 (1971) 4003. Coquin,G. A.,Pinnow, D. A., Warner, A. W.: J. Appl. Phys. 42 (1971) 2162. Gepeau, R. H.,Heybey, O., Lee, D. M., Strauss, S. A.: Phys. Rev. A3 (1971) 1162. Debesis, J. R.: PhD Thesis, Western Reserve Univ. 1971. Diesburg, D. E.: Thesis, Iowa State Univ. 1971. Quoted in [73L3]. du PI&s, P. de V., van Tonder, S. J., Alberts, L.: J. Phys. C4 (1971) 1983. Eggert, E., Hansel, H.: Phys. Status Solidi (b) 47 (1971) K69. Fisher, E. S., Manghnani, M. H.: J. Phys. Chem. Solids 32 (1971) 657. Gavrilyachenko, V. G., Fesenko, E. G.: Kristallografiya 16 (1971) 640. Gomall, W. S., Stoicheff, B. P.: Phys. Rev. B4 (1971) 4518. Greywall, D. S.: Phys. Rev. A3 (1971) 2106. Hart, S.: Phys. Status Solidi (a) 5 (1971) K95. Haussuhl, S.: Private communication, 1971. Hearmon, R. F. S.: Phys. Status Solidi (a) 5 (1971) K183. Ho, P. S., Poirier, J. P., Ruoff, A. L.: 1971. Quoted in [74Ll]. Ikegami, S., Weda, I., Nagata, Y.: J. Acoust. Sot. Am. 50 (1971) 1060. Jensen, J.: Danish At Energy Commiss. Riso Rep. No. 252 (1971). Kachalov, 0. V., Dobrzhanskii, G. F., Shpilko, I. A.: Kristallografiya 16 (1971) 784. Kikuchi, M.: Trans. Jpn. Inst. Metals 12 (1971) 417. Kino, Y., Ltithi, B.: Solid State Commun. 9 (1971) 805.

Land&-Barn&n New Series W29a

Page 605: Second and Higher Order Elastic Constants

1.4 References for 1 593

7x4 71K5 71K7 71K8 71Ll 71L2 71L3 711A 71L5 71Ml 71M2 71M3 71M4

71M5 7lM6

71M7 71M8 71Nl 71N2 71N4 71N5 71N6

7101 7102 71Pl 71P2 71P3

71P4 71P5

71P6 71w 71Rl 71R2 71R3

71R4 71Sl 71S2 71s3 71s4 71s5 71S6 71s9 71SlO 71Sll 71T2 71T3

Korpiun, P., Burmeister, A., Luscher, E.: Phys. Lett. A37 (1971) 184. Krupnyi, A. J., Alchikov, V. V., Aleksandrov, K. S.: Kristallografiya 16 (1971) 801. Ktippers, H.: Acta Cryst. A27 (1971) 316. Katz, J.L., Ukraincik, K.: J. Biomech. 4 (1971) 221. Lakkad, S. C.: J. Appl. Phys. 42 (1971) 4277. Lauer, H., Solberg, K. A., Kuhner, D. H., Bron, W. E.: Phys. Lett. A35 (1971) 219. Lyall, K. R., Co&ran, J. F.: Can. J, Phys. 49 (1971) 1075. Lucas, B. W.: J. Appl. Cryst. 4 (1971) 397. Lippmann, G., Kastner, P., Wanninger, H.: Phys. Status Solidi (a) 6 (1971) K159. Markland, K., Mahmoud, S. A.: Phys. Ser. 3 (1971) 75. Masumoto, H., Kikuchi, M.: Trans. Jpn. Inst. Metals 12 (1971) 90. Meixner, H., Leiderer, P., Luscher, E.: Phys. Lett. A37 (1971) 39. Melcher, R. L., Plovnik, R. H.: Phonons (ed. Nusimovici, M. A.), Proc. Intern. Conf., Rennes, France, Paris: Flammarion Sci. 1971, p. 348. Michard, F., Plicque, F.: C. R. Hebd. Seances Acad Sci., Paris2 B272 (1971) 848,1159. Michard, F., Zarembowitch, A., Vacher, R., Boyer, L.: Phonons (ed. Nusimovici, M. A.), Proc. Intern. Conf., Rennes, France, Paris: Fiammarion Sci. 1971, p, 321. Mikhalchenko, V. P., Charlai, B. M.: Ukr. Fir. Zh. 16 (1971) 1556. Mitzdorf, U., Hehnreich, D.: J. Acoust. Sot. Am. 49 (1971) 723. Naimon, E. R.: Phys. Rev. B4 (1971) 4291. Nielsen, M., Bjemun Moller, H.: Phys. Rev. B3 (1971) 4383. Nomura, H., Higuchi, K., Miyahara, Y .: Nippon Kakagu Zasshi 92 (197 1) 462. Novikov, E. N., Botaki, A. A.:, Izv. Vyssh. Uchebn. Zaved. Fir. No 4 (1971) 148. Novik, V. K., Karyakina, N. F., Bochkov, B. G., Koptsik, V. A., Gavrilova, N. A.: Izv. Akad. Nauk SSSR Ser. Fiz. 35 (1971) 1874. O’Hara, S. G., Marshall, B. J.: Phys. Rev. B3 (1971) 4002. O’Connell, R. J., Graham, E. K.: 1971. Quoted in [75L2]. Pace, N. G., Saunders, G. A.: J. Phys. Chem. Solids 32 (1971) 1585. Palmer, S. B., Lee, E. W.: Philos. Mag. 24 (1971) 311. Pierre, C., Dufour, J. P., Remoissenet, M.: Solid State Commun. 9 (1971) 1493; Dufour, J. P. (1973), private communication. Popkov, Yu. A., Fomin, V. J., Kharchenko, L. T.: Fir. Tverd. Tela 13 (1971) 1626. Popkov, Yu. A., Fomin, V. J.: Proc. 2nd Intern. Conf. Light Scattering Solids, Paris 1971 (ed. Balkan&ii, M.), Paris: Flammarion Sci. 1971, p. 502. Potter, W. N., Bartels, R. A., Watson, R. W.: J. Phys. Chem. Solids 32 (1971) 2363. Press, W., Domer, B., Stiller, H.: Solid State Commun. 9 (1971) 1113. Routbort, J. L.: 3. Nucl. Mater. 40 (1971) 17. Routbort, J. L., Reid, C. N., Fisher, E. S., Dever, D. J.: Acta Metall. 19 (1971) 1307. Rowland, W. D., White, J. S.: Atomic Weapons Res. Establishment Rep. 1971; 3. Phys. F2 (1972) 231. Rusakov, A. P.: Fiz. Tverd. Tela 13 (197 1) 623. Saunders, G. A.,,Seddon, T.: Phys. Lett. A34 (1971) 443. Schiltz, R. J., Pmvender, T. S., Smith, J. F.: J. Appl. Phys. 42 (1971) 4680. Shannette, G. W., Smith, J. F.: J. Appl. Phys. 42 (1971) 2799. Sharko, A. V., Botaki, A. A.: Izv. Vyssh. Uchebn. Zaved. Fir. No. 9 (1971) 118. Sharko, A. V., Botaki, A. A.: Izv. Vyssh. Uchebn. Zaved. Fiz. No. 12 (1971) 126. Smith, R. T., Welsh, F. S.: J. Appl. Phys. 42 (1971) 2219. Syono, Y.,Fukai, Y., Ishikawa, Y.: J. Phys. Sot. Jpn. 31(1971) 471. Shapira, Y., Reed, T. B.: AIP Conf. Proc. 5 (1971) 837. Sawaguchi, E., Cross, L. E.: Appl. Phys. Len. 18 (1971) 1. Terms, C., Moussin, C.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. A272 (1971) 815. Tonnies, J. J., Gshneider, K. A., Spedding, F. H.: J. Appl. Phys. 42 (1971) 3275.

Landolt-Barnstein New Series IIU29a

Page 606: Second and Higher Order Elastic Constants

594 1.4 References for 1

71Vl

71V2 71v3 71Wl 71Yl 7121 72Al 72A2 72A5 72A6 72Bl 72B2 72B3 72B4

7285 72C2 72C3 72D2 72D3 72El 72Fl 72F2 72F3 7262

7264 7267 7268 72Hl 72H2 72H3 72H4 72H5 72H6 72H8 72H9 72HlO 7271 7272 72J3 72K1 72K3

72K4 72K5 72K6 72K7 72K8 72K9 72L2

Valiev, A. A., Burenkov, Yu. A., Nikanorov, S. P., Stepanov, A. V.: Fiz. Tverd. Tela 13 (1971) 3098. van derplanken, J., Greiner, J; D., Smith, J. F.: J. Mater. Sci. 6 (1971) 1331. Vekilov, Yu. Kh., Rusakov, A. P.: Fiz. Tverd. Tela 13 (1971) 1157. Wanner, R.: Phys. Rev. A3 (1971) 448. Young, P. L., Bienenstock, A.: J. Appl. Phys. 42 (1971) 3008. Zelenka, J., Lee, P. C. Y.: IEEE Trans. Sonics Uhrasonics SU-18 (1971) 79. Abey, A., Joslyn, E. D.: J. Less-Common Met. 27 (1972) 9. Akgoz, Y. C., Saunders, G. A., Sumengen, Z.: J. Mater. Sci. 7 (1972) 279. Anastassakis, E., Hawranek, J. P.: Phys. Rev. BS (1972) 4003. Araki, K., Tanaka, T.: Jpn. J. Appl. Phys. 11(1972) 472. Bartels, R. A., Vetter, V. H.: J. Phys. Chem. Solids 33 (1972) 1991. Bensch, W. A.: Phys. Rev. B6 (1972) 1504. Bougnot, G., Desfours, J.-P., Galibert, G.: Gnde Elecb. 52 (1972) 298. Burenkov, Yu. A., Valiev, A. A., Nikanorov, S. P., Stepanov, A. V.: Fiz. Tverd. Tela 14 (1972) 264. Botaki, A. A., Gyrbu, I. N., Sharkov, A. V.: Izv. Vyssh. Uchebn. Zaved. Fiz. No. 6 (1972) 150. Chiarodo, R., Green, J., Spain, I. L., Bolsaitis, P.: J. Phys. Chem. Solids 33 (1972) 1905. Cleavelin, C. R., Pederson, D. O., Marshall, B. J.: Phys. Rev. BS (1972) 3193. Dever, D. J.: J. Appl. Phys. 43 (1972) 3293. Domer, B., Axe, J. D., Shirane, G.: Phys. Rev. B6 (1972) 1950. Ezz-el-Arab, M.-A.: Ann. Phys. (Paris) 7 (1972) 133. Farley, J. M., Saunders, G. A.: J. Phys. C5 (1972) 3021. Farley, J. M., Thorp, J. S., Ross, J. S., Saunders, G. A.: J. Mater. Sci. 7 (1972) 475. Frisillo, A., Barsch, G. R.: J. Geophys. Res. 77 (1972) 6360. G&and, J.-Y., Binois, M., Nouet, J.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B275 (1972) 551. Goasdue, C., Ho, P. S., Sass, S. L.: Acta Metall. 20 (1972) 725. Ghan, M. W., Cline, C. F.: J. Nonmet. 1(1972) 11. Guinan, M. W., Cline, C. F.: J. Nucl. Mater. 43 (1972) 205. Hamano, K., Shinmi, T.: J. Phys. Sot. Jpn. 33 (1972) 118. Hanson, R. C., Hallberg, J. R., Schwab, C.: Appl. Phys. Len. 21(1972) 490. Hart, S., Stevenson,R. W. H.: J. Phys. D5 (1972) 160. Haussuhl, S., Mateika, D.: Z. Naturforsch. 27a (1972) 1521. Haussuhl, S., Leckebusch, R., Reeker, K.: Z. Naturforsch. 27a (1972) 1022. Haussuhl, S.: Z. Krist. 135 (1972) 287. Hochli, U. T.: Phys. Rev. B6 (1972) 1814, and private communication. Hubbell, W. C., Brotzen, F. R.: J. Appl. Phys. 43 (1972) 3306. Humbert, P., Plicque, F.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B275 (1972) 391. James, B. W.: PhD Thesis, Salford Univ. 1972. James, B. W.: Phys. Status Solidi (a) 13 (1972) 89. Jenkins, J. O.,Rayne,J. A.,Ure,R. W.: Phys. Rev. B5 (1972) 3171. Kachalov, 0. V., Shpilko, 1. A.: Zh. Eksperim. Teor. Fiz. 62 (1972) 1840. Kammer, E. W., Cardinal, L. C., Vold, C. L., Glicksman, M. E.: J. Phys. Chem. Solids 33 (1972) 1891. Kino, Y., Ltithi, B., Mullen, M. E.: J. Phys. Sot. Jpn. 33 (1972) 687. Kodama, M., Saito, S., Minomura, S.: J. Phys. Sot. Jpn. 33 (1972) 1361. Korpiun, P., Bunneister, A., L&her, E.: J. Phys. Chem. Solids 33 (1972) 1411. Ktippers, H.: Acta Cryst. A28 (1972) 522. Kuskov, V. I., Rusakov, A. P., Mentser, A. N.: Fiz. Tverd. Tela 14 (1972) 2161. Kupperman, D. S., Simmons, R. 0.: Bull. Am. Phys. Sot. 17 (1972) 267. Lin, J. T., Wong, C.: J. Phys. Chem. Solids 33 (1972) 241.

Land&Bbmstcin New Saks III/29a

Page 607: Second and Higher Order Elastic Constants

1.4 References for 1 595

72L3 72LA 72Ml 72M2 72M3 72M4 72M5 72M6 72M7 72M8 72M9 72Mll 72M12 72M13 72Nl 72N2 72N4 72Pl 72P2 72P3 72P5 72Rl 72R2 72Sl 7232

7233 7234 7236

72S8 72s9 72s 10 72S13 7212 72Ul 72U2 72Vl 72Wl 72W3 72Yl 7221

73Al 73A2

73Bl

73B2 73B3 73B4

Luspin, Y., Hauret, G.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B274 (1972) 995. Le, H. H.: Thesis, Univ. Lausanne, 1972. Quoted in [79K4]. McLean, K. O., Smith, C. S.: J. Phys. Chem. Solids 33 (1972) 275. McLean, K. O., Smith, C. S.: J. Phys. Chem. Solids 33 (1972) 279. McSkimin, H. J., Andmatch, P., Glynn, P.: J. Appl. Phys. 43 (1972) 985. McSkimin, H. J., Andmatch, P., Tisone, T. C.: J. Appl. Phys. 43 (1972) 2467. McSkimin, H. J., Andreatch, P.: J. Appl. Phys. 43 (1972) 2944. Manghnani, M. S., Fisher, E. S., Brower, W. S.: J. Phys. Chem. Solids 33 (1972) 2149. Marsh, S. P.: USAEC Rept. LA4942,1972. Martin, R. M.: Phys. Rev. B6 (1972) 4546. Meixner, H., Leiderer, R., Berberich, P., Luscher, E.: Phys. Lett. A40 (1972) 257. Mikhalchenko, V. F., Rarenko, I. M., Charlai, B. M.: Ukr. Fiz. 2%. 17 (1972) 1203. Moment, R. L.: J. Appl. Phys. 43 (1972) 4419. Murakami, Y.: J. Phys. Sot. Jpn. 33 (1972) 1350. Nanamatsu, S., Doi, K., Takahashi, M.: Jpn. J. Appl. Phys. 11(1972) 816. Nomura, H., Higuchi, K., Kato, S., Miyahara, Y.: Jpn. J. Appl. Phys. 11(1972) 304. Nicklow, R., Wakabayashi, N., Smith, H. G.: Phys. Rev. B5 (1972) 4951. Pace, N. G., Saunders, G. A.: Proc. Roy. Sot. (London), Ser. A326 (1972) 521. Palmer, S. B., Lee, E. W.: Proc. Roy. Sot. (London), Ser. A327 (1972) 519. Peresada, G. I.: Fiz. Tverd. Tela 14 (1972) 1795. Phatak, S. D., Srivastava, R. C., Subbamo, E. C.: Acta Cryst. A28 (1972) 227. Rehwald, W., Rayl, M., Cohen, R. W., Cody, G. D.: Phys. Rev. B6 (1972) 363. Rolandson, S.: Phys. Status Solidi 52 (1972) 643. Sahuna, K., Brotzen, F. R., Donoho, P. L.: J. Appl. Phys. 43 (1972) 3254. Sandercock, J. R., Palmer, S. B., Elliott, R. J., Hayes, W., Smith, S. R. P., Young, A. P.: J. Phys. CS (1972) 3126. Scheiding, C., Schmidt, G.: Phys. Status Solidi 53 (1972) K95. Shiosaki, T., Miyataki, S., Kawabata, A.: Jpn. J. Appl. Phys. 11(1972) 409. Slobodnik, A. J., Sethares, J. C.: J. Appl. Phys. 43 (1972) 247; IEEE Trans. Sonics Ultrasonics su-19 (1972) 394. Son, P. R., Bartels, R. A.: J. Phys. Chem. Solids 33 (1972) 819. Spetzler, H., Sammis, C. G., G’Connell, R. J.: J. Phys. Chem. Solids 33 (1972) 1727. Swartz, K. D., Chua, W. B., Elbaum, C.: Phys. Rev. B6 (1972) 426. Shin, K., Hashimoto, K.: Technol. Rep. Kyushu Univ. 45 (1972) 6,820. Quoted in [81S61. T&key, S. B., Kirk, W. P., Adams, E. D.: Rev. Mod. Phys. 44 (1972) 668. Uchida, N., Saito, S.: J. Appl. Phys. 43 (1972) 971. Uchida, N., Saito, S.: J. &oust. Sot. Am. 51(1972) 1602. Vacher, R., Boyer, L., Boissier, M.: Phys. Rev. B6 (1972) 674. Wang, H., Simmons, G.: J. Geophys. Res. 77 (1972) 4379. Weil, R.: J. Appl. Phys. 43 (1972) 4271. Yamada, T., Iwasaki, H., Niizeki, N.: J. Appl. Phys. 43 (1972) 771. Zineva, G. P., Mikhelsbn, A. V., Andreeva, L. P., Krentsis, R. P., Geld, P. V.: Fiz. Tverd. Tela 14 (1972) 1578. Akgoz, Y. C., Farley; J. M., Saunders, G. A.: J. Phys. Chem. Solids 34 (1973) 141. Avericheva, V. E., Botaki, A. A., Dvomikov, G. A., Sharko, A. V.: Izv. Vyssh. Uchebn. Zaved. Fiz. No. 4 (1973) 148. Belikova, G. S., Pisarevskii, Yu. V., Silvestrova, I. M.: Izv. Akad. Nauk SSSR Neorg. Mater. 9 (1973) 1744. Belomesmykh, V. N., Sukhushin, Yu. N.: Izv. Vyssh. Uchebn. Zaved. Fiz. No. 1(1973) 76. Bird, M. J., Jackson, D. A., Powles, J. G.: Mol. Phys. 25 (1973) 1051. Botaki, A. A., Gyrbu, I. N., Ivankina, M. S., Pozdeeva, E. V., Sharko, A. V.: Izv. Vyssh. Uchebn. Zaved Fiz. No. 10 (1973) 122.

Land&-B6mstein New Series IW?9a

Page 608: Second and Higher Order Elastic Constants

596 1.4 References for 1

73B6 73B7

73Cl 73C2 73c3 73c4 73c5 73C6 73c7 73C8 73C9

73ClO 73Cll 73C12 73D3 73Fl

73F2 73F3 73F4 73F5 73Gl 7362 7366 7367

73G8 7309 73Hl 73H3 73H4 73H6 73H7 73H8 73H9 7311 73Kl 73K2 73K3 73K4 73K5 73L2 73L3 731A 73L5 73L6 73M1 73M2 73M3 73M4

Buhrer, W.: J. Phys. C6 (1973) 2931. Burenkov, Yu. A., Burdukov, Yu. M., Davydov, S. Yu.,Nikanorov, S. P.: Fiz. Tverd. Tela 15 (1973) 1757. Cain, L. S., Thomas, J. F.: Phys. Rev. BS (1973) 5372. Garcia, P. F., Barsch, G. R.: Phys. Rev. B8 (1973) 2505. Garcia, P. F., Barsch, G. R.: Phys. Status Solidi (b) 59 (1973) 595. Chang, E. S.: PhD Thesis, Pennsylvania State Univ. 1973; Diss. Abstr. Int. B35 (1973) 417. Chang, E., Barsch, G. R.: J. Phys. Chem. Solids 34 (1973) 1543. Chang, 2. P., Barsch, G. R.: J. Geophys. Res. 78 (1973) 2418. Chi, T. C., Sladek, R. J.: Phys. Rev. B7 (1973) 5080. Ching, L. S., Day, J. P., Ruoff, A. L.: J. Appl. Phys. 44 (1973) 1017. Chizhikov, S. I., Sorokin, N. G., Ledovskaya, I. Yu., Makevskaya, E. V.: Kristallografiya 18 (1973) 860. Chung, D. Y., Hoyte, A. F., Li, Y.: J. Appl. Phys. 44 (1973) 2424. Cottam, R. I., Saunders, G. A.: J. Phys. C6 (1973) 2105. Chandra, S., Hemkar, M. P.: Acta Cryst A29 (1973) 25. Doffler, M., Bamer, K.: Phys. Status Solidi (a) 17 (1973) 141. Fargeot, D., GIandus, J.-C., Vergnol, J., Villain, J.-P., Both, P.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. C276 (1973) 639. Farley, J. M., Saunders, G. A., Chung, D. Y.: J. Phys. C6 (1973) 2010. Fisher, E. S., Manghnani, M. H., Kikuta, R.: J. Phys. Chem. Solids 34 (1973) 687. Fjeldy, T. A., Cerdeira, F., Cardona, M.: Phys. Rev. B8 (1973) 4723. Fritsch, G., Geipel, F., Prasetyo, A.: J. Phys. Chem. Solids 34 (1973) 1961. Garland, C. W., PolIina, R. J.: J. Phys. Chem. 58 (1973) 5002. Gluyas, M., Hughes, F. D., James, B. W.: J. Phys. D6 (1973) 2025. Greenough, R. D., Palmer, S. B.: J. Phys. D6 (1973) 587. Greiner, J. D., Schiitz, R. J., Tonnies, J. J., Spedding, F. H., Smith, J. F.: J. Appl. Phys. 44 (1973) 3862. Grimes, N. W.: Phys. Status Solidi (b) 58 (1973) K129. Gyrbu, I. N., Ulyanov, V. L., Botaki, A. A.: Fiz. Tverd. Tela 15 (1973) 3389. HaBeck, P.: PhD Thesis, Chicago Univ. 1973. Quoted in [74Wl]. Hart, S.: Phys. Status Solidi (a) 17 (1973) K107. Hausch, G., Warhmont, H.: Acta Metall. 21(1973) 401. Haussuhl, S.: Z. Kristallogr. 138 (1973) 177. Haussuhl, S.: Solid State Commun. 13 (1973) 147. Hen& R., Yun, S. S.: J. Phys. Sot. Jpn. 35 (1973) 627. Hi&E. J., Burgess, J. H.: J. Appl. Phys. 44 (1973) 5. Ikeda, T., Fujibayashi, K., Nagai, T., Kobayashi, J.: Phys. Status Solidi (a) 16 (1973) 279. Kameyama, H., Ishibashi, Y., Takagi, Y.: J. Phys. Sot. Jpn. 35 (1973) 1450. Kino, H., LUthi, B., Mullen, M. F.: Solid State Commun. 12 (1973) 275. Kupenko, I. N., Polyakova, A. L., Silvestrova, I. M.: Fiz.,Tekh. Poluprovdn. 7 (1973) 2249. Ktlppers, H.: Z. Kristallogr. 138 (1973) 374. Kuppers, H.: Acta Cryst. A29 (1973) 415. Larsen, R. E., Ruoff;A. L.: J. Appl. Phys. 44 (1973) 1021. Ledbetter, H. M., Reed, R. P.: J. Phys. Chem. Ref. Data 2 (1973) 531. Leisure, R. G., Hsu, D. K., Seiber, B. A.: J. Appl. Phys. 44 (1973) 3394. Lthhi, B., Mullen, M. E., Bucher, E.: Phys. Rev. Lea. 31(1973) 95. Ltithi, B., Mullen, M. E., Andres, K., Bucher, E., Maita, J. P.: Phys. Rev. B8 (1973) 2639. Marculescu, L., Hauret, G.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B276 (1973) 555. Masumoto, H., Kikuchi, M., Sawaya, S.: Trans. Jpn. Inst. Met. 14 (1973) 415. Matsuura, H., Miyazawa, T.: Bull. Chem. Sot. Jpn. 46 (1973) 3031. Melcher, R., Pytte, E., Scott, B. A.: Phys. Rev. Lett. 31 (1973) 307.

Landoh-BBmstein New SuieslIlR9a

Page 609: Second and Higher Order Elastic Constants

1.4 References for 1 597

73M5 ,73M6

Me&lo: A., Gonzalo, J. A.: Ferroelectrics 5 (1973) 229. Michard, F., Plicque, F., Zarembowitch, A.: J. Appl. Phys. 44 (1973) 572, and private communication.

73M7 73Nl 73N4 73N5 7301 73P2

73Rl 73R2 73R3 73R4 73R5 73Sl 7333

Moran, T. J., Thomas, R. L., Levy, P. M., Chen, H. H.: Phys. Rev. B7 (1973) 3238. Naimon, E. R., Granato, A. V.: Phys. Rev. B7 (1973) 2091. Nakagawa, Y., Yamanouchi, K., Shibayama, K.: J. Appl. Phys. 44 (1973) 3969. Nigro, N. J., Huang, P.: J. Acoust. Sot. Am. 54 (1973) 1004. Ozkan, H., Cartz, L.: AIP Conf. 1973; AIP Conf. Proc. 17 (1974) 21. Prevot, B., Carabatos, C., Schwab, C., HeMion, B., Moussa, F.: Solid State Commun. 13 (1973) 1725. Rehwald, W., Widmer, R.: J. Phys. Chem. Solids 34 (1973) 2269. Reid, C. N., Routbout& J. L., Maynard, R. A.: J. Appl. Phys. 44 (1973) 1398. Reynolds, P. A.: J. Chem. Phys. 59 (1973) 2777. Rosen, M., Kalir, D., Klimker, H.: Phys. Rev. B8 (1973) 4399. Rivoallan, L., Favre, F.: Optics Commun. 8 (1973) 404. Salama, K., Brotzen, F. J., Donoho, P. L.: J. Appl. Phys. 44 (1973) 180. Sarma, V. P. N., Reddy, P. J.: Phys. Status Solidi (a) 16 (1973) 413; Philos. Mag. 27 (1973) 769. ”

7334

7385 7386

Sma, V. P. N., Reddy, P. J.: J. Phys. Chem. Solids 34 (1973) 1593; Phys. Status Solidi (a) 10 (1972) 563. Scheiding, C., Schmidt, G., Kursten, H. D.: Krist. Tech. 8 (1973) 311. Shimizu, H., Umeno, M., Wakita, K., Kameyama, H., Ishibashi, Y.: J. Phys. Sot. Jpn. 34 (1973) 983.

7337 7339

73Tl 7313

73T5

7317 73T8 73Vl 73V2

73w3 73w4 73w5 73W6 73w7

73Yl 7321 7323 74Al

74A2 74A3

Skalyo, J., Endoh, Y.: Phys. Rev. B7 (1973) 4670. Salama, K., Melcher, C. L., Donoho, P. L.: Proc. 1973 Ultrasonics Syrnp. (ed. de Klerk, J.), New York IEEE, p. 309. Tan, S. K.: Dissertation Abstr. Intern. B34 (1973) 2862. Testardi, L. R.: Physical Acoustics (eds. Mason, W. P., Thurston, R. N.), New York and London: Academic Press 10 (1973) 193. Tokarev, E. F., Karyakina, N. F., Kobyakov, I. B., Kuzmina, I. P., Lobachev, A. N.: Izv. Akad. Nauk SSSR Ser. Fiz. 37 (1973) 2401. Tremblay, M., Roy, C.: Mater. Sci. Eng. 12 (1973) 235. Tsunekawa, S., Ishibashi, Y., Takagi, Y.: J. Phys. Sot. Jpn. 34 (1973) 470. Vetter, V. H., Bartels, R. A.: J. Phys. Chem. Solids 34 (1973) 1448. Vijayaraghavan, P. R., Sinha, S. K., Iyengar, P. K.: Proc. Nucl. Phys. Solid State Phys. Symp., Indian Inst. Sci., Bangalore 16C (1973) 208. Wang, H., Simmons, G.: J. Geophys. Res. 78 (1973) 1262. Wanner, R., Meyer, H.: J. Low Temp. Phys. 11(1973) 715. Wanner, R., Mueller, K. H., Fairbank, H. A.: J. Low Temp. Phys. 13 (1973) 153. Wazzan, A. R., Bristoti, A., Robinson, L. B., Ahmediah, A.: J. Appl. Phys. 44 (1973) 2018. Weston, W. F.: PhD Thesis, Univ. of Illinois at Urbana-Champaign 1973; Dissertation Abstr. Intern. B34 (1974) 4594. Yoon, H. S., Newnham, R. E.: Acta Cryst. A29 (1973) 507. Zinoveva, G. P., Andreeva, L., Geld, P. V., Krentsis, R. P.: Fiz. Tverd. Tela 15 (1973) 2205. Zuckerwar, A. 3.: J. Acoust. Sot. Am. 54 (1973) 699. Aleksandrov, V. I., Kitaeva, V. F., Kozlov, I. V., O&o, V. V., Sobolev, N. N., Tatarintsev, V. M., Chistyi, I. L.: Fiz. Tverd. Tela 16 (1974) 2230. Armbmster, A., Thoma, R., Wehrle, H.: Phys. Status Solidi (a) 24 (1974) K71. Aleksandrov, K. S., Alchikov, V. V., Belikov, B. P., Zaslavskii, B. I., Krupnyi, A. I.: Izv. Akad. Nauk SSSR Ser. Geol. No. 10 (1974) 15.

74Bl Bashkin, I. O., Peresada, G. I.: Fiz. Tverd. Tell 16 (1974) 3166. 74B2 Belikova, G. S., Pisarevskii, Yu. V., Silvestrova, I. M.: Kristallografiya 19 (1974) 878.

.

Land&-B6mstein New Series IIV29a

Page 610: Second and Higher Order Elastic Constants

598 1.4 References for 1

74B3 74B5 74B6

74B7 74B8 74BlO 74Bll 74Cl 74c2 74c3 74c4

74Dl 74D2 74Fl 74F2 74F3 74F4 74F5 74Gl 7402 7403 74G4 7407 74G8 74G9 74Hl 74H2 74H3 74H4 74H5 74H6 74H7

74Jl 74K2 74Ll 74L2

74L3 74L5 74Ml 74M2 74M3 74M4 74M5 74M7 74M8

74Nl 7401

Benoit, J. P., Chapelle, J. P.: Solid State Commun. 14 (1974) 883. Birgenau,R. J., Kjems, J. K., Shirane, G., van Uitert, L. G.: Phys. Rev. BlO (1974) 2512. Bublik, V. T., Gorelik, S. S., Zaitsev, A. A., Polyakov, A. Y.: Phys. Status Solidi (b) 66 (1974) 427. Burenkov, Yu. A., Nikanorov, S. P.: Fiz. Tverd. Tela 16 (1974) 1496. Busch, M., Toledano, J. C., Torres, J.: Optics Commun. 10 (1974) 273. Bennett, J. G.: PhD Thesis, Purdue Univ. 1974. Quoted in [78R7]. Brody,E. M., Cummins, H. Z.: Phys. Rev. B9 (1974) 179. Chiarodo, R. A., Spain, I. L., Bolsaitis, P.: J. Phys. Chem. Solids 35 (1974) 762. Chung, D. Y., Saunders, G. A., Savage, C.: Phys. Lett. A47 (1974) 449. Courdille, J. M., Dumas, J.: Ferroelectrics 7 (1974) 135. Carpenter, M. L., Shannette, G. W.: Unpublished data, Michigan Technol. Univ. 1974. Quoted iIl8OSl. Day, J. P., Ruoff, A. L.: Phys. Status Solidi (a) 25 (1974) 205;a38 (1976) 781. Drichko, I. L., Kogan, S. I.: Fiz. Tverd. Tela 16 (1974) 1015. Firsova, M. M.: Fiz. Tverd. Tela 16 (1974) 549. Fjeldy, T. A., Hanson, R. C.: Phys. Rev. BlO (1974) 3569. Fritz, I. J.: J. Phys. Chem. Solids 35 (1974) 817. Fujii, Y., Lurie, N. A., Pynn, R., Shirane, G.: Phys. Rev. BlO (1974) 3647. Fuller, E. R., Weston, W. F.: J. Appl. Phys. 45 (1974) 3772. Galibert, G., Bougnot, G.: Mater. Res. Bull. 9 (1974) 167. Gauster, W. B., Fritz, I. J.: J. Appl. Phys. 45 (1974) 3309; 46 (1974) 3697. Gerlich, D., Smith, C. S.: J. Phys. Chem. Solids 35 (1974) 1587. Gewurtz, S., Stoicheff, B. P.: Phys. Rev. BlO (1974) 3487. Glogorova, M.: Phys. Status Solidi (a) 22 (1974) K69. Godet, M.: Helv. Phys. Acta 46 (1974) 770. Gunton, D. J., Saunders, G. A.: Solid State Commun. 14 (1974) 865. Hanson, R. C., Helliwell, K., Schwab, C.: Phys. Rev. B9 (1974) 2649. Hausch, G.: J. Phys. Sot. Jpn. 37 (1974) 819. Haussuhl, S.: Acta Cryst. A30 (1974) 106. Haussuhl, S.: Acta Cryst. A30 (1974) 455. Hayes, D. J., Brotzen, F. R.: J. Appl. Phys. 45 (1974) 1721. Hirano, H., Matsumara, S.: Jpn. J. Appl. Phys. 13 (1974) 17. Hubbell, W. C., Hayes, D. L., Bruni, F. J.: Proc. 1974 Ultrasonics Symp. (ed. de Klerk, J.), New York IEEE, p. 486. James, B. W.: J. Appl. Phys. 45 (1974) 3201. Kale, B. M., Donoho, P. L., Pinatti, D. G., Ferreira, 0.: AIP Conf. Proc. 24 (1974) 651. I&better, H. M., Naimon, E. R.: J. Phys. Chem. Ref. Data 3 (1974) 897. Lobachev, A. N., Belyaev, L. M., Silvestrova, I. M., Melnikov, 0. K., Pisarevskii, Yu. V., Triodina, N. S.: KristaIlografiya 19 (1974) 126. Lurie, N. A., Shirane, G., Skalyo, J.: Phys. Rev. B9 (1974) 2660. Landheer, D.: Thesis, Univ. of Toronto 1974. Quoted in [76K5]. Manghnani, M. H., Katahara, K., Fisher, E. S.: Phys. Rev. B9 (1974) 1421. Manghnani, M. H., Brower, W. S., Parker, H. S.: Phys. Status Solidi (a) 25 (1974) 69. Marculescu, L., I&ret, G.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B278 (1974) 751. Murakami, Y., Kachi, S.: Jpn. J. Appl. Phys. 13 (1974) 1728. Murakami, Y., Kachi, S.: J. Phys. Sot. Jpn. 37 (1974) 1475. Mathur, S. S., Gupta, P. N.: Acustica 31(1974) 114. Mullen, M. F., Ltithi, B., Wang, P. S., Bucher, E., Longinotti, L. D., Maita, J. P., Ott, H. R.: Phys. Rev. BlO (1974) 186. Nomura, H., Yoshida, M., Kato, S., Miyahara, Y.: Jpn. J. Appl. Phys. 13 (1974) 429. Qzkan, H., Cartz, L., Jamieson, J. C.: J. Appl. Phys. 45 (1974) 556.

Land&-Bthmein New Seriw BbZ9a

Page 611: Second and Higher Order Elastic Constants

1.4 References for 1 599

74Pl 74p2

74R2 74R4 74R5 74R6 74R7 74Sl 7432 7483 7486

7487

74S8 7489 74SlO 74Sll 74Vl 74V2 74v3 74Wl 74W2 74w3 74w4 74Yl 7421

7422

7423

74Z4 75Al

7542

ISA3 75A4 75A5

75A6 75Bl

75B2 75B3 75B4 75B5 75B6 75B7

Palmer, S. B., Lee, E. W., Islam, M. N.: Proc. Roy. Sot. (London), Ser. A338 (1974) 341. Perelomova, N. V., Chizhikov, S. I., Khmer&o, B. I,, Lyubimov, V. N.: Kristallografiya 19 (1974) 1220. Recher, K., Walhafen, F., Haussuhl, S.: J. Cryst. Growth 26 (1974) 97. Rosen, M., Kalir, D., Klimker, H.: J. Phys. Chem. Solids 35 (1974) 1333. Rousseau, M., Nouet, J.;Zarembowitch, A.: J. Phys. Chem. Solids 35 (1974) 921. Rivoallan, L., Favre, F.: optics Commun. 11(1974) 296. Roth, S., Ranvaud, R., Waintal, A., Drexel, W.: Solid State Commun. 15 (1974) 625. Sakami, J.: Phys. Lett. A50 (1974) 109. Sasaki, Y.: J. Phys. Sot. Jpn. 37 (1974) 1570. Schihz, R. J., Smith, J. F.: J. Appl. Phys. 45 (1974) 4681. Shimizu, H., Tsukamoto, M., Ishibashi, Y., Umeno, M.: J. Phys. Sot. Jpn. 36 (1974) 498; Ferroelectrics 8 (1974) 52 1. Silvestrova, I. M., Belyaev, L. M., P&rev&ii, Yu. V., Niemyski, T.: Mater. Res. Bull. 9 (1974) 1101. Smagin, A. G., Milstein, B. G.: Kristallografiya 19 (1974) 832. Sorge, G., Schmidt, G., Km-z, M.: Phys. Status Solidi (a) 21(1974) 463. Strukov, B. A., Garland, K. V.: Kristallografiya 19 (1974) 289. Schweppe, H., Quadflieg, P.: IEEE Trans. Sonics Ultrasonics SU-21(1974) 56. Vacher, R., Sapriel, J., Boissier, M.: J. Appl. Phys. 45 (1974) 2855. Vidal, D.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B279 (1974) 25 1. Vidal, D.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B279 (1974) 345. Wang, H., Simmons, G.: J. Geophys. Res. 79 (1974) 2607. Weinmann, C., Steinemann, S.: Solid State Commun. 15 (1974) 281. Weinmann, C., Steinemann, S.: Phys. Lett. A47 (1974) 275. Wiesendanger, E.: Ferroelectrics 6 (1974) 263. Yelon, W. B., Scherm, R., Vettier, C.: Solid State Commun. 15 (1974) 391. Zaitseva, M. P., Anistratov, A. T., Krumin, A. E., Shabanova, L. A., Iskomev, I. M.: Kristallografiya 19 (1974) 1020. Zaslavskii, B. I., Krupnyi, A. I., Aleksandrov, K. S.: Izv. Akad. Nauk SSSR Fiz. Zemli No. 8 (1974) 55. Zaslavskii, B. I., Usoltsev, Yu. K., Aleksandrov, K. S.: Izv. Akad. Nauk SSSR Fiz. Zemli No. 12 (1974) 83. Zinoveva, G. P., Andreeva, L. P., Geld, P. V.: Phys. Status Solidi (a) 23 (1974) 711. Aleksandrov, K. S., Aleksandrova, I. P., Zherebtsova, L. I., Kruglik, A. I., Krupnyi, A. I., Melnikova, S. V., Shneider, V. E., Shuvalov, L. A.: Izv. Akad. Nauk SSSR Ser. Fiz. 39 (1975) 943. Aleksandrov, K. S., Anistratov, A. T., Krupnyi, A. I., Pozdnyakova, L. A., Mehrikova, S. V., Beznosikov, A. V.: Fiz. Tverd. Tela 17 (1975) 735. Aleksiejuk, M., Kraska, D.: Phys. Status Solidi (a) 31(1975) K65. Ayres, R. A., Shannette, G. W., Stem, D. F.: J. Appl. Phys. 46 (1975) 1526. An, C.-X., Hauret, G., Chapelle, J. P.: C. R. Hebd. Seances Acad Sci. Paris, Ser. B280 (1975) 543. Aleksandrov, K. S., Haussuhl, S.: Z. Kristallogr. 142 (1975) 328. Balazyuk, V. N., Mikhalchenko, V. P., Chomei, S. A., Sharlai, B. M.: Ukr. Fiz. Zh. 20 (1975) 772. Barsch, G. R., Bonczar, L. J., Newnham, R. E.: Phys. Status Solidi (a) 29 (1975) 241. Benckert, L., Backstrom, G.: Phys. Ser. ll(l975) 43. Bonczar, L. J., Barsch, G. R.: J. Appl. Phys. 46 (1975) 4339. Boyle, W. F., Sladek, R. J.: Phys. Rev. Bll(l975) 2933. Burenkov, Yu. A., Davydov, S. Yu., Nikanorov, S. P.: Fiz. Tverd. Tela 17 (1975) 2183. Brielles, J., Vidal, D.: High Temp.-High Pressures 7 (1975) 29.

Land&Biimstein New Series III/Z9a

Page 612: Second and Higher Order Elastic Constants

600 1.4 References for 1

75B8 7x1 75C2

7x4 7x5

75D2 75E1 75E3 75E4 75Fl 75F2 75F3 75F4 75F5 75F6 75Gl

7502 75G3 75G4 75G5 7507 7508 75G9 75GlO

75012 75Hl 75H2 7511 75I2 75K1 75K3 75K4 75K5 75Ll 75L2 75Ml 75M3 75M4 75M5

7501 75Pl 75p2 75p3 75P5 75R2 75R3

Belyaev, A. D., Olikh, Ya., M., Miselyuk, E. G., Oleinik, G. S.: Ukr. Fiz. Zh. 20 (1975) 1966. Chang, E., Graham, E. K.: J. Geophys. Res. 80 (1975) 2595. Chang, Z. P., Barsch, G. R.: Mater. Res. Lab. and Dept. Phys., Pennsylvania State Univ. 1975; IEEE Trans. Sonics Ultrasonics SU-23 (1976) 127. Cottam,R. I., Saunders, G. A.: J. Phys. Chem. Solids 36 (1975) 187. Chistyi, I. L., Kitaeva, V. F., Osiko, V. V., Sobolev, N. N., Starikov, B. P., Timoshecbkin, M. I.: Fiz. Tverd. Tela 17 (1975) 1434. Damien, J. C.: Solid State Commun. 16 (1975) 1271, and private communication. Endoh, Y., Shirane, G., Skalyo, J.: Phys. Rev. Bll(l975) 1681. Eshelman, F. R., Smith, J. F.: J. Appl. Phys. 46 (1975) 5080. Eshelman, F. R.: PhD Thesis, Iowa State Univ. 1975; J. Appl. Phys. 49 (1978) 3284. Farley, J. M., Saunders, G. A., Chung, D. Y.: J. Phys. C8 (1975) 780. Fischer, M.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B280 (1975) 729. Fisher, E. S., Westlake, D. G., Ckkers, S. T.: Phys. Status Solidi (a) 28 (1975) 591. Folland, R., Jackson, D. A., Rajagopal, S.: Mol. Phys. 30 (1975) 1053. Fritsch, G., Bube, H.: Phys. Status Solidi (a) 30 (1975) 571. Fjeldy, T. A., Richter, W.: Phys. Status Solidi (b) 72 (1975) 555. Gabrielyan, V. T., Kiudzin, V. V., Kulakov, S. V., Razzhivin, B. P.: Fiz. Tverd. Tela 17 (1975) 603. Gerlich, D., HaussuhI, S.: J. Phys. Chem. Solids 36 (1975) 709. Gerlich, D., Siege& H.: Acta Cryst. A31 (1975) 207. Gluyas, M., Hunter, R., James, B. W.: J. Phys. D8 (1975) 1. Gluyas, M., Hunter, R., James, B. W.: J. Phys. CS (1975) 271. Graham, L. J., Chang, R.: J. Appl. Phys. 46 (1975) 2433. Greywall, D. S.: Phys. Rev. Bll(l975) 1070. Grimsditch, M. H.,Ramdas, A. K.: Phys. Rev. Bll(l975) 3139. Grimsditch, M. H., Holah, G. D.: Phys. Rev. B12 (1975) 4377; J. Phys. (Paris) 36 Suppl. (1975) C3-185. Graham, L. R., Alers, G. A.: (1975). Quoted in [75fl]. Haussuhl, S., Scholz, H.: Krist. Tech. 10 (1975) 1175. Hodgins, C. G., Irwin, J. C.: Phys. Status Solidi (a) 28 (1975) 647. Iwata, N., Okamoto, T.: Jpn. J. Appl. Phys. 14 (1975) 248. Islam, M. N.: Bangladesh J. Sci. Ind. Res. 10 (1975) 297. Kameyama, H., Ishibashi, Y., Yakagi, Y.: J. Phys. Sot. Jpn. 38 (1975) 1703. Kiefte, H., Ciouter, M. J.: J. Chem. Phys. 62 (1975) 4780. Krupnyi, A. I., Shabanova, L. A., Aleksandrov, K. S.: Kristallografiya 20 (1975) 355. Kumazaki, K.: Phys. Status Solidi (a) 29 (1975) K55. LanghiII, T. J., Trivisonno, J.: Can. J. Phys. 53 (1975) 581. Liu, H.-P., Schock, R. N., Anderson, D. L.: Geophys. J. R. Astron. Sot. 42 (1975) 217. McLaren, R. A., Kiefte, H., Landheer, D., Stoicheff, B. P.: Phys. Rev. Bll(l975) 1705. Murakami, Y., Kachi, S.: Jpn. J. Appl. Phys. 14 (1975) 1841. McWhan, D. B., Shapiro, S. M., Rameika, J. P., Shirane, G.: J. Phys. C8 (1975) IA87. Melcher, R. L., Guntherodt, G., Penney, T., Holtzberg, F.: Proc. IEEE Ultrasonics Symp. 1975 p. 616. Q&an, H., Car& L., Fisher, E. S.: Rev. Int. Hautes Temp. Refract. 12 (1975) 52. Peercy, P. S., Fritz, I. J., Samara, G. A.: J. Phys. Chem. Solids 36 (1975) 1105. Pollina, R. J., Garland, C. W.: Phys. Rev. B12 (1975) 362. Popkov, Yu. A., Beznosikov, B. V., Kharchenko, L. T.: Kristallografiya 20 (1975) 662. Park, K.-O., Sivertsen, J. M.: Phys. Lett A55 (1975) 62. Rouchy, J., Waintal, A.: Solid State Commun. 17 (1975) 1227. Rousseau, M., G&and, J. Y., Juilkud, J., Nouet, J., Zarembowitch, J., Zarembowitch, A.: Phys. Rev. B12 (1975) 1579.

Land&-B6mstr.h New Series W29a

Page 613: Second and Higher Order Elastic Constants

1.4 References for 1 601

75R4 75R5 75R6 75Sl 7532 7533 7535

75s7 75S8 7589 75SlO 75Sll 75312

75313 75Tl 7512

7513 75Ul 75V2 75W2 75w5 75Yl 7521

76Al 76A2 76A4

76A6 ’ 76A7 76A8 76A9

76AlO 76All

76Bl

76B2 76B3 76B4

76B5 76B6

76B7

76Cl 76C2

Ramakanth, A., Chatterjee, A., Sinha, S. K.: Indian J. Phys. 49 (1975) 373. Rehwald, W., Lang, G. K.: J. Phys. CS (1975) 3287. Rowe, J. M., Vagelatos, N., Rush, J. J., Flotow, H. E.: Phys. Rev. B12 (1975) 2959. Sailer, E., Konak, C., Unruh, H. G., Fouksova, A.: Phys. Status Solidi (a) 29 (1975) K73. Sandercock, J. R.: Festkorperprobleme (Adv. in Solid State Phys.) 15 (1975) 183. Seddon, T., Farley, J. M., Saunders, G. A.: Solid State Commun. 17 (1975) 55. Silvestrova, I. M., Barta, Ch., Dobrzhanskii, G. F., Belayev, L. M., Pisarevskii, Yu. V.: Kristallografiya 20 (1975) 359. Srinivasan, K. R., Gopal, E. S. R.: Solid State Commun. 17 (1975) 1119. Swartz, K. D., Bensch, W., Granato, A. V.: Phys. Rev. B12 (1975) 2125. Swanson, D., Brunel, L.C., Dows, D. A.: J. Chem. Phys. 63 (1975) 3863. Shannette, G. W.: (1975). Quoted in [75fl]. Smith, C. S.: (1975). Quoted in [75fl]. Smolenskii, G. A., Kamzina, L. S., Krainik, N. N.: Izv. Akad. Nauk SSSR Ser. Fiz. 39 (1975) 805. Sandercock, J. R.: RCA Rev. 36 (1975) 89. Tanaka, M., Yamada, M., Hamaguchi, C.: J. Phys. Sot. Jpn. 38 (1975) 1708. Tokarev, E. F., Kobyakov, I. B., Kuzmina, I. P., Lobachev, A. N., Pado, G. S.: Fiz. Tverd. Tela 17 (1975) 980. Turchi, P., Plicque, F., Calvayrac, Y.: Ser. Metall. 9 (1975) 797. Uwe, H., Sakudo, T.: J. Phys. Sot. Jpn. 38 (1975) 183. Vettier, C.: Thesis, Grenoble, France 1975. Quoted in [86D2]. Weston, W. F., Granato, A. V.: Phys. Rev B12 (1975) 5355. Wang, H., Gupta, M. C., Simmons, G.: J. Geophys. Res. 80 (1975) 3761. Yamada, T.: J. Appl. Phys. 46 (1975) 2894. Zaitseva, M. P., Krupnyi, A. I., Kokorin, Yu. I., Krasikov, V. S.: Izv. Akad. Nauk SSSR Ser. Fiz. 39 (1975) 954. Akgoz, Y. C., Isci, C., Saunders, G. A.: J. Mater. Sci. 11(1976) 291. Andrianov, G. O., Drichko, I. L.: Fiz. Tverd. Tela 18 (1976) 1392. Aleksandrov, K. S., Anistratov, A. T., Krupnyi, A. I., Martynov, V. G., Popkov, Yu. A., Fomin, V. I.: Kristallografiya 21(1976) 534. Acker, E., Reeker, K., Haussuhl, S.: J. Cryst. Growth 35 (1976) 165. Aslam, J., Rolandson, S., Bey, M. M., Butt, N. M.: Phys. Status Solidi (b) 77 (1976) 693. Alberts, H. L., Boeyens, C. A.: J. Magn. Magn. Mater. 2 (1976) 327. Aleksandrov, V. I., Kitaeva, V. F., Osiko, V. V., Sobolev, N. N., Tatarintsev, V. M., Chistyi, I. L.: Kratk. Soobshch. Fiz. No. 4 (1976) 8. Albers, J., Sailer, R. W., Muser, H. E.: Phys. Status Solidi (a) 36 (1976) 189. Andm, K., Wang, P. S., Wong, Y. H., Liithi, B., Ott, H. R.: AIP Conf. Proc. No. 34, New York Amer. Inst. Phys. 1976, p. 222. Barta, C., Chapelle, J. P., Hauret, G., An, C.-X., Fouksova, A., Konak, C.: Phys. Status Solidi 34 (1976) K51. Bennett, J. G., Sladek, R. J.: Solid State Commun. 18 (1976) 1055. Boyle, W. F., Bennett, J. G., Shin, S. H., Sladek, R. J.: Phys. Rev. B14 (1976) 526. Balazyuk, V. N., Mikhalchenko, V. P., Rarer&o, I. M., Sharlai, B. M.: Fiz. Tverd. Tela 18 (1976) 2843. Blessing, G. V., Clark, A. E.: J. Acoust. Sot. Am. 60 (1976) S53 Abstr. X8. Balazyuk, V. N., Geshko, E. T., Mikhalchenko, V. P., Sharlai, B. M.: Fiz. Met. Metalloved. 42 (1976) 854. Bucher, E., Maita, J. P., Hull jr., G. W., Longinotti, L. D., Ltithi, B., Wang, P. S.: Z. Phys. B25 (1976) 41; Ltithi, B., private communication, March 1982. Chung, D. Y., Gunton, D. J., Saunders, G. A.: Phys. Rev. B13 (1976) 3239. Chung, D. Y., Li, Y.: Phys. Lett. A58 (1976) 133.

Land&-Biimstein dew Series IIID9a

Page 614: Second and Higher Order Elastic Constants

602 1.4 References for 1

76c4 76D1 76D2 76D3 76D4 76E2 76Fl 76F2 76F3 76F4 76F5 76Gl 76G2

7664 76G5 76G6 76G7 76G8 76G9

76Hl 76H3 7611 7612 76Jl 76J2 76Kl 76K2 76K3 76K4 76K5 76K6 76K7 76K8 76K9 76KlO 76Kll 76Ll 76L2 76L3 76IJJ 76L6 76L7

76L9 76LJl 76Ml 76M.2 76M4

Cain, L. S.: J. Phys. Chem. Solids 37 (1976) 1178. du Plessis, P. de V.: J. Phys. F6 (1976) 873. Damien, J. C., Deprez, G.: Solid State Commun. 20 (1976) 161. Denier, P. D., Weber, W., Longinotti,L. D.: Phys. Rev. B14 (1976) 3635. Dolling, G.: Pm. Conf. Neutron Scattering (ed. Moon, R. M.), ORNL-USERDA, 1976. Enami, K., Hasunarna, J., Nagasawa, A., Nenno, S.: Ser. Metall. 10 (1976) 879. Fritz, I. J.: Phys. Rev. B13 (1976) 705. Fargeot, D., Glandus, J. C., Both, P.: Phys. Status Solidi (a) 35 (1976) 687. Fritz, I. J.: Solid State Commun. 20 (1976) 299. Fritz, I. J.: J. Appl. Phys. 47 (1976) 4353. Feldman, J. L.: J. Phys. Chem. Solids 37 (1976) 1141. Greywall, D. S.: Phys. Rev. B13 (1976) 1056. Gremer, J. D., SchIader, D. M., M&asters, 0. D., Gschneider, K. A., Smith, J. F.: J. Appl. Phys. 47 (1976) 3427. Grimsditch, M. H., Ran&s, A. K.: Phys. Rev. B14 (1976) 1670. Gorodetsb, G., LUthi, B., Eibschutz, M., Guggenheim, H. J.: Phys. Lett. A56 (1976) 479. Godet, M., Purwins, H.-G.: Helv. Phys. Acta 49 (1976) 821. Goto, T., Ohno, I., Sumino, Y.: J. Phys. Earth 24 (1976) 149. Gorodetsky, G., Shaulov, A., Volterra, V., Makovsky, J.: Phys. Rev. B13 (1976) 1205. Grirnsditch, M. H., Ramdas, A. K.: Proc. 5th Int. Conf. on Raman Spectrosc. (eds. Schmidt, E. D., BrandmUller, J., Kiefer, W.), Freiburflr.: H. F. Schulz Verlag 1976, p. 670; Chem. Abstr. 87 (1977) 192268. Haussuhl, S.: Acta Cryst. A32 (1976) 160. Haussuhl, S., Mateika, D., Tolksdorf, W.: Z. Naturforsch. 31a (1976) 390. Isaak, D. G., Graham, E. K.: J. Geophys. Res. 81(1976) 2483. Ike&, T., Imazu, I.: Jpn. J. Appl. Phys. 15 (1976) 1451. Jan& W., Sandercock, J. R., Wettling, W.: J. Phys. C9 (1976) 2229. Jones, L. E. A.: Phys. Earth Planet. Interiors 13 (1976) 105. K&ser, W., Buchenau, U., Haussuhl, S.: Solid State Commun. 18 (1976) 287. Katahara, K. W., Manghnani, M. H., Fisher, E. S.: J. Appl. Phys. 47 (1976) 434. Kumazaki, K.: Phys. Status Solidi 33 (1976) 615. Kuiiyama, K., Saito, S.: Phys. Rev. B13 (1976) 1528. Kiefte, H.,Clouter,M. J.: J. Chem. Phys. 64 (1976) 1816. Kapitonov, A. M., Smokotin, E. M.: Phys. Status Solidi (a) 34 (1976) K47. Kadota, Y., Ishibashi, Y., Takagi, Y.: J. Phys. Sot. Jpn. 40 (1976) 1017. Krasser, W., Haussuhl, S.: Solid State Commun. 20 (1976) 191. Kataev, T. S., Novikov, I. I., Proskurin, V. B.: Akust. Zh. 22 (1976) 296. Kersten, P.: Thesis, Techn. Univ. Berlin 1976. Quoted in [79M5]. Kimura, M., Utsumi, K., Nanarnatsu, S.: J. Appl. Phys. 47 (1976) 2249. Landheer, D., Jackson, H. E., McLaren, R. A., Stoicheff, B.: Phys. Rev B13 (1976) 888. Lichnowski, A. J., Saunders, G. A.: J. Phys. C9 (1976) 927. Laplaze, D., Boissier, M., Vacher, R.: Solid State Commun. 19 (1976) 445. Luspin, Y., Hauret, G.: Phys. Status Solidi (b) 76 (1976) 551. Ledbetter, H. M., Moment, R. L.: Acta Metall. 24 (1976) 891. Lisitskii, I. S., Tolstorozhev, M. N., Kanevskii, I. N., C&ret&ii, S. N., Belousev, A. P., Ivanychev, V. V.: Opt.-Mekh. Prom. 43 (1976) 41. Lagutina, Zh. P., Varikash, V. M.: KristalIografya 21(1976) 1039. Larose, A., Brockhouse, B. N.: Can. J. Phys. 54 (1976) 1990. Madhava, M. R., Saunders, G. A.: Solid State Commun. 19 (1976) 791. Magerl, A., Ben-e, B,, Alefeld, G.: Phys. Status Solidi (a) 36 (1976) 161, Mot-dike, B. L.: Phys. Status Solidi (a) 36 (1976) K161.

Page 615: Second and Higher Order Elastic Constants

1.4 References for 1 603

77A5 Amano, M., Bimbaum, H. K.: Internal Friction and Ultrasonic Attenuation in Solids, Proc. 6th Int. Conf. (eds. Hasiguti, R. R., Mikoshiba, M.), Tokyo: University Press 1977, p. 323. Bonczar, L. L., Graham, E. K., Wang, H.: J. Geophys. Res. 82 (1977) 2529. Burenkov, Yu. A., Botaki, A. A., Davydov, S. Yu., Nikanorov, S. P.: Fiz. Tverd. Tela 19 (1977) 1726.

77Bl 77B2

77B4 77B5

Land&-Biimsteh

Benner, R. E., Brady, E. M., Shanks, H. R., : J. Solid State Chem. 22 (1977) 361. Berdowski, J., Opilsky, A., Szuber, J.: J. Techn. Phys. (Warsaw) 18 (1977) 211.

76M5

7601 7602 76Pl 76P3 76P4

76%

76P7 76P8 76R2 76Sl 7632 76S3 7685

7636 7639

76s 10 76Sll 76312 76813

76s 14 76815

76816 76Tl 7613 76Vl 76V2 76V4

76Wl 76W2 76Yl 76Y2 77Al 77A2 77A3

Morris, C. E.: Off. Naval Res. Techn. Rep. ACR-221(1976); Proc. 6th Int. Symp. on Detonation, p. 396; Chem. Abstr. 91(1979) 159854. Ozkan, H.: J. Appl. Phys. 47 (1976) 4772. Ohno, I.: J. Phys. Earth 24 (1976) 355. Pai, S. Y., Sivertsen, J. M.: J. Phys. Chem. Solids: 37 (1976) 17. Pearsall, T. P., Coldren, L. A.: Solid State Commun. 18 (1976) 1093. Peresada, G. I., Ponyatovskii, E. G., Sokolovskaya, Zh. D.: Phys. Status Solidi (a) 35 (1976) K177. Pesin, M. S., Postnikov, V. S., Rembeza, S. I., Yaroslavtsev, I. P.: Fiz. Tverd. Tela 18 (1976) 2824. Palmer, S. B.: J. Phys. Chem. Solids 37 (1976) 1069. Prasetyo, A., Reynaud, F., Warlimont, H.: Acta Metall. 24 (1976) 65 1. Raja, V. S., Reddy, P. J.: Phys. Lett. AS6 (1976) 215. Seidenkranz, T., Hegenbarth, E.: Phys. Status Solidi (a) 33 (1976) 205. Seddon, T., Gupta, S. C., Saunders, G. A.: Phys. Lea. A56 (1976) 45. Seddon, T., Gupta, S. C., Saunders, G. A.: Solid State Commun. 20 (1976) 69. Semenov, V. I., Sapozhnikov, V. K., Avdienko, K. I., Sheloput, D. V.: Fiz. Tverd. Tela 18 (1976) 2805. Seddon, T., Gupta, S. C., Isci, C., Saunders, G. A.: J. Mater. Sci. 11(1976) 1756. Soboleva, L. B., Silvestrova, I. M., Perekalina, Z. B., Gilvarg, A. B., Martyshev, Yu. N.: Kristallografiya 21(1976) 1140. Sumino, Y., Ohno, I., Goto, T., Kumazawa, M.: J. Phys. Earth 24 (1976) 263. Suezawa, M., Sumino, K.: Ser. Metall. 10 (1976) 789. Stirling, W. G., Domer, B., Cheeke, J. D. N., Revelli, J.: Solid State Commun. 18 (1976) 931. Sivaraman, A., Padke, V. C., Rajagopal, E. S., Raghavendra, R. V.: Indian J. Cryogen. 1 (1976) 277. Shimizu, S., Murakami, Y., Kachi, S.: J. Phys. Sot. Jpn. 41(1976) 79. Smolenskii, G. A., P&hot-ova, S. D., Sinii, I. G., Chernishova, E. 0.: Ferroelectrics 12 (1976) 137. Saunders, G. A., Seddon, T.: J. Phys. Chem. Solids 37 (1976) 873. Taut, M., Es&rig, H.: Phys. Status Solidi (b) 73 (1976) 151. Tsuda,N., Sumino, Y., Ohno, I., Akahane, T.: J. Phys. Sot. Jpn. 41(1976) 1153. Vazquez, F., Singh, R. S., Gonzalo, J. A.: J. Phys. Chem. Solids 37 (1976) 451. Vohryanskii, M. D., Grzhegorzhevskii, 0. A.: Fiz. Tverd. Tela 18 (1976) 854. Varikash, V. M., Pupkevich, P. A.: Vestsi Akad Navuk BSSR Ser. F&-Mat. Navuk No. 1 (1976) 96; Chem. Abstr. 85 (1976) 12718. Wu, A. Y.: Phys. Rev. B13 (1976) 4857. Whitfield, C. H., Brody, E. M., Bassett, W. A.: Rev. Sci. Instr. 47 (1976) 942. Yamada, M., Wasa, K., Hamaguchi, C.: J. Phys. Sot. Jpn. 40 (1976) 1778. Yamada, M., Wasa, K., Hamaguchi, C.: Jpn. J. Appl. Phys. 15 (1976) 1107. An, C.-X.: Phys. Status Solidi (a) 43 (1977) K69. An, C.-X., Hauret, G., Chapelle, J. P.: Solid State Commun. 24 (1977) 443. Avdienko, K. I., Sapozhnikov, V. K., Semenov, V. I., Sheloput, D. V.: Avtometriya No. 5 (1977) 79. .

New Series IIIt29a

Page 616: Second and Higher Order Elastic Constants

604 1.4 References for 1

77BS

77B9

77BlO 77Cl 77C2

77c3 77c4 77Dl 77D2 77D3 77D4 77D6

77D7

77D8 77El

77F2 77F3 77F4 77G2 7763 7704 7705 77G6 77Hl 77H2 77H3 77H4 77H5 77fi6

77H7 77HlO 77Hll 77H13 77H14 77H15

77H16 7711 7712 77Jl 77J2 77J3 77J4 77Kl

Barta, C., Silvestrova, I. M., Pisarevskii, Yu. V., Moiseeva, N. A., Belyaev, L. M.: Krist. Tech. 12 (1977) 987. Buck, O., Ahlberg, L. A., Graham, L. J., Alers, G. A., Wert, C. A., Amano, M.: Internal Friction and Ultrasonic Attenuation in Solids, Pmt. 6th Int. Conf. (eds. Hasiguti, R. R., Mikoshiba, N.), Tokyo: University Press 1977, p. 407. Brebner, J. L., Jandl, S., Powell, B. M.: Nuovo Cimento B38 (1977) 263. Cain,L. S.: J. Phys. Chem. Solids 38 (1977) 73. Chistyi, I. L., Fabelinskii, I. L., Kitaeva, V. F., Osiko, V. V., Pisarevskii, Yu. V., Silvestrova, I. M., Sobolev, N. N.: J. Raman Specfrosc. 6 (1977) 183. Chang, Z. P., Graham, E. K.: J. Phys. Chem. Solids 38 (1977) 1355. Courdille, J. M., Dumas, J., Ziolkiewicz, S., Joffrin, J.: J. Phys. (Paris) 38 (1977) 1519. Dragoo, A. L., Spain, I. L., : J. Phys. Chem. Solids 38 (1977) 705. Doane, D. A.: J. Appl. Phys. 48 (1977) 2591. du Plessis, P. de V., van Doom, C. F.: Physica B+C 86-88 (1977) 993. Davies, G. F.: Earth Planet. Sci. I&t. 44 (1977) 300. Davies, G. F., O’Connell, R. J.: High Pressure Research Applications in Geophysics, (eds. Manghnani, M. H., Akimoto, S. I.), New York, etc.: Academic Press 1977, p. 533. Denrarest, H. H., Qta, R., Anderson, 0. L.: High Pressure Research Applications in Geophysics (eds. Manghnani, M. H., Akimoto, S. I.), New York, etc.: Academic Press 1977, p. 281. Dol, H., Nagasawa, H., Ishiguro, T., Kagoshima, S.: Solid State Commun. 24 (1977) 729. El Hamamsy, M., Elnahwy, S., Damask, A. C., Taub, H., Daniels, W. B.: J. Chem. Phys. 67 (1977) 5501. Fisher, E. S.: Ser. Metall. ll(l977) 685. Felice, R. A.,Trivisonno, J., Schuele, D. E.: Phys. Rev. B16 (1977) 5173. Fisher, E. S.: (1977). Quoted in [77R7]. Gefen, Y., Makovsky, J., Rosen, M.: J. Phys. Chem. Solids 38 (1977) 647. Greiner, J. D., Peterson, D. T., Smith, J. F.: J. Appl. Phys. 48 (1977) 3357. Gault, C., Boeh, P., Dauger, A.: Phys. Status Solidi (a) 43 (1977) 625. Greywall, D. S.: Phys. Rev. B16 (1977) 5127. Guenin, G., Morin, M., Gobin, P. F., Dejonghe, W., Delaey, L.: Ser. Metall. ll(l977) 1071. Haussuhl, S.: Acta Cryst. A33 (1977) 320. Hemnann-Ronzaud, D., Pavlovic, A. S., Waintal, A.: Physica B+C 86-88 (1977) 570. Haussuhl, S., Albers, J.: Ferroelectrics 15 (1977) 73. Haussuhl, S., E&stein, J., Reeker, K., Wall&en, F.: Acta Cryst. A33 (1977) 847. Hart, S.: J. Phys. DlO (1977) L262. Hirotsu, S., Suzuki, T.: Preprint, Dept. Phys. Coll. Sci. Tokyo Inst. Technol. (1977); See [78H14]. Haussuhl, S., Eckstein, J., Reeker, K., Walhafen, F.: J. Cryst. Growth 40 (1977) 200. Helliwell, K., Hanson, R. C., Schwab, C.: Proc. IEEE Ultrasonics Symp. (1977) 317. Haunch, G., Torok, E.: J. Magn. Magn. Mater. 6 (1977) 269. Hochli, U. T., Weibel, H. E., Boatner, L. A.: Phys. Rev. Lett. 39 (1977) 1158. Hoehheimer, H. D., Love, W. F., Walker, C. T.: Phys. Rev. Lea. 38 (1977) 832. Hausch, G., Torok, E.: Internal Friction and Ultrasonic Attenuation in Solids. Proc. 6th Int. Conf. (eds. Hasiguti, R. R., Mikoshiba, N.), Tokyo: University Press 1977, p. 731. Hirotsu, S., Suzuki, T., Sawada, S.: J. Phys. Sot. Jpn. 43 (1977) 575. Iskender-Zade, V. D., Faradzhev, V. D., Ageev, A. I.: Fiz. Tverd. Tela 19 (1977) 851. Isci, C., Palmer, S. B.: Philos. Mag. 35 (1977) 1577. Jhunjhunwala, A., Vetileno, J. F., Field, J. C.: J. Appl. Phys. 48 (1977) 887. Jamieson, J. C., Rimai, D. S.: Bull. Am. Phys. Sot. 22 (1977) 353 (Abstr. DN 5). Jones, L. E. A.: Phys. Earth Planet. Interiors 15 (1977) 77. Jones, L. E. A.: Phys. Chem. Minerals l(l977) 179. Kashida, S., Kaga, H.: J. Phys. Sot. Jpn. 42 (1977) 499.

Land&Bihskin New Saks lW.29~

Page 617: Second and Higher Order Elastic Constants

1.4 References for 1 605

77K2 77K3 77K6

77Ll 77L3 77L4 77L5

77L9 77LlO 77Ml 77M2 77M3 77M4 77M5 77M6 77M8 7701

77Pl 77P2 77P3 77P4 77P5 77P7 77Rl 77R2 77R5 77R6 77R7 77R9 77Sl

7733 7784 77s 7786 7737 77S8 77SlO 77Sll 77812

77Tl

77T2

7713 77Vl

Kimura, M.: J. Appl. Phys. 48 (1977) 2850. Kataev, T. S., Novikov, I. I., Proskurin, V. B.: Izv. Akad. Nauk SSSR Met. No. 1(1977) 190. Kumashiro, Y., Tokumoto, H., Sakuma, E., Itoh, A.: Internal Friction and Ultrasonic Attenuation in Solids, Proc. 6th Int. Conf. (eds. Hasiguti, R. R., Mikoshiba, N.), Tokyo: University Press 1977, p. 395. Lenkkeri, J. T., Palmer, S. B.: J. Phys. F7 (1977) 15. Luspin, Y., I-&ret, G.: Ferroelectrics 15 (1977) 43. Lichnowski, A. J. M., Saunders, G. A.: J. Phys. Cl0 (1977) 3243. Love, W. F., Hochheimer, H. D., Anderson, M. W., Work, R. N., Walker, C. T.: Solid State Commun. 23 (1977) 365. Let, R., Soluch, W.: Proc. IEEE Ultrasonics Symp. (1977) 389. Liu, S. T., Cross, L. E.: Phys. Status Solidi (a) 41(1977) K83. Machova, A., Kadeckova, S.: Czech. J. Phys. B27 (1977) 555. Machova, A.: Czech. J. Phys. B27 (1977) 904. Madhava, M. R., Saunders, G. A.: Philos. Mag. 36 (1977) 777. Maeda, M., Ikeda, T.: J. Phys. Sot. Jpn. 42 (1977) 1931. Madhava, M. R., Saunders, G. A.: preprint (1977); Phys. Rev. B18 (1978) 5340. Moncton, D. E., Axe, J. D., Di Salvo, F. J.: Phys. Rev. B16 (1977) 801. Makita, Y., Sakurai, F., Osaka, T., Tatsuzaki, I.: J. Phys. Sot. Jpn. 42 (1977) 518. Opilski, A., Klimasek, A., Zabawa, J., Rauluszkiewicz, J., SzraJ%r, S., Baginski, H.: J. Tech. Phys. (Warsaw) 18 (1977) 23 1. Palmer, S. B., Lenkkeri, J. T.: Physica B+C 86-88 (1977) 43. Palmer, S. B., Isci, C.: Physica B+C 86-88 (1977) 45. Palmer, S. B., Hukin, D., Isci, C.: J. Phys. F7 (1977) 2381. Page, J. H., Rosenberg, H. M.: J. Phys. Cl0 (1977) 1817. Pederson, D. O., Brewer, J. A.: Phys. Rev. B16 (1977) 4546. Park, K.-O., Sivertsen, J. M.: J. Amer. Ceram. Sot. 60 (1977) 537. Rausch, J. B., Kayser, F. X.: J. Appl. Phys. 48 (1977) 487. Rand, S. C., Rao, B. S., Emight, G. D., Stoicheff, B. P.: Phys. Rev. B15 (1977) 2352. Rimai, D. S.: Phys. Rev. B16 (1977) 2200. Rehwald, W., Sandercock, J. R., Rossinelli, M.: Phys. Status Solidi (a) 42 (1977) 699. Rusovic, N., Warhmont, H.: Phys. Status Solidi (a) 44 (1977) 609. Rimai, D. S.: Phys. Rev. B16 (1977) 4069. Stewart, W. L., Roberts, J. M., Alexandropolous, N. G., Salama, K.: J. Appl. Phys. 48 (1977) 75. Satija, S. K., Wang, C. H.: J. Chem. Phys. 66 (1977) 2221. Mama, K., Alers, G. A.: Phys. Status Solidi (a) 41(1977) 241. Scheiding, C., Ciesla, E.: Wiss. Z. Univ. Halle 26 (1977) 35. Silber, L.: J. Phys. (Paris) Colloq. 38 (1977) Cl 195. Shevelko, M. M., Yakovlev, L. A.: Akust. Zh. 23 (1977) 331. Schlader, D. M., Smith, J. F.: J. Appl. Phys. 48 (1977) 5062. Stirling, W. G., Press, W., Stiller, H. H.: J. Phys. Cl0 (1977) 3959. Sumino, Y., Nishizawa, O., Goto, T., Ohno, I., Ozima, M.: J. Phys. Earth 25 (1977) 377. Sughnoto, K., Ohta, K.: Internal Friction and Ultrasonic Attenuation in Solids. Proc. 6th Int. Conf. (eds. Hasiguti, R. R., Mikoshiba, N.), Tokyo: University Press 1977, p. 725. Tanaka, T., Yoshimoto, J., I&ii, M., Bannai, E., Kawai, S.: Solid State Commun. 22 (1977) 203. Trappeniers, N. J., Biswas, S. N., van’t Klooster, P., ten Seldam, C. A.: Physica B+C 85 (1977) 33. Tahnor, Y., Walker, E., Steinemann, S.: Solid State Commun. 23 (1977) 649. Vold, C. L., Glicksman, M. E., Kammer, E. W., Cardinal, L. C.: J. Phys. Chem. Solids 38 (1977) 157.

Land&-BBmstein New Series IBf29a

Page 618: Second and Higher Order Elastic Constants

606 1.4 References for 1

77V2 77v3 77v4 77Wl 77W2 77W3 77W4 77W5 77Yl 7721 78A4

78A5 78A6 78A8 78All 78Bl 78B4

78Bll

78B13 78C2 78C3

78D2

78D3

78Fl 78F-2

78Gl 78G2 7803 7865 7867 7869

78Gll 78Hl 78H2 78H3 78H4 78H5 78H6 78H7

78H8 78H9

78HlO

Volnyanskii, M. D., Grzhegorzhevskii, 0. V.: Kristallografiya 22 (1977) 406. van Doom, C. F., du P&is, P. de V.: J. Magn. Magn. Mater. 5 (1977) 164. Vazquez, F., Gonzalo, J. A.: Ferroelectrics 16 (1977) 223. Wu, A. Y.: Phys. Lett. A60 (1977) 260. Walker, E., Peter, M.: J. Appl. Phys. 48 (1977) 2820. Weidner, D. J., Carleton, H. R.: J. Geophys. Res. 82 (1977) 1334. Wang, C. H., Sat@, S.: J. Chem. Phys. 67 (1977) 851. Weinmann, C.: Thesis, Univ. Lausanne 1977. Quoted in [8Osl]. Yamada, M., Yamamoto, K., Abe, K.: J. Phys. DlO (1977) 1309. Zinenko, V. I., Krupnyi, A., Pozdnyakov, L. A.: Kristallografiya 22 (1977) 1015. Ashkenazi, J., Dacorogna, M., Peter, M., Talmor, Y., Walker, E., Steinemann, S.: Phys. Rev. B18 (1978) 4120. Adachi, M., Kawabata, A.: Jpn. J. Appl. Phys. 17 (1978) 1969. Ahmad, S. F., Kiefte, H., Clouter, M. J.: J. Chem. Phys. 69 (1978) 5468. Ahlberg,L. A., Buck, O., Paton, N. E.: Ser. Metall. 12 (1978) 1051; correction, see [79A5]. Assmus, W., Takke, R., Sommer, R., L&hi, B.: J. Phys. Cl1 (1978) L575, L793. Balazyuk, V. N., Peresada, G. I., Rarer&o, I. M.: Fiz. Tverd. Tela 20 (1978) 2224. Babuska, V., Fiala, J., Kumazawa, M., Ohno, I., Sumino, Y.: Phys. Earth Planet. Interiors 16 (1978) 157. Boissier, M., Vacher, R., Fontaine, D., Pick, R. M.: Proc. Int. Conf. on Lattice Dynamics, Paris, Sept. 5-9,1977 (exl. Balkan&i, M.), Paris: Flammarion Sciences 1978, p. 641. Bhalia, A. S., Cross, L. E., Payne, D. A.: Phys. Status Solidi (a) 50 (1978) 661. Chiang, T. C., Dumas, J., Shen, Y. R.: Solid State Commun. 28 (1978) 173. Catlow, C. R. A., Comins, J. D., Germano,F. A., Harley, R. T., Hayes, W.: J. Phys. Cl1 (1978) 3197. Darner, B., Windscheif, J., von der Osten, W.: Proc. Int. Conf. on Lattice Dynamics, Paris, Sept. S-9,1977 (al. Balkanski, M.), Paris: Flammarion Sciences 1978, p. 535. Duderov, N. G., Demianets, L. N., Lobachev, A. N., P&rev&ii, Yu. V., Silvestrova, I. M.: J. Cryst. Growth 44 (1978) 483. Frey, M. L., Lonnee, J. E., Shannette, G. W.: J. Appl. Phys. 49 (1978) 4406. Fischer, M., Peti, B., Rousseau, M., Zarembowitch, A.: Proc. Int. Conf. on Lattice Dynamics, Paris, Sept. 5-9,1977 (ed. Balkanski, M.), Paris: Flammarion Sciences 1978, p. 118. Gerlich, D., Wolf, M., Haussuhl, S.: J. Phys. Chem. Solids 39 (1978) 1089. Gladkii, V. V., Kirikov, V. A., Magataev, V. K.: Kristallografiya 23 (1978) 421. Godet, M., Walker, E.: Helv. Phys. Acta 51(1978) 178. Guha, A., Sarachik, M. P., Smith, F. W., Testardi, L. R.: Phys. Rev. B18 (1978) 9. Garland, C. W., Leung, R. C., Missel, F. P.: Phys. Rev. B18 (1978) 4848. Griclnev, S. A., Posmikov, V. S., Prasolov, B. N., Shuvalov, L. A., Fedosyuk, R. M.: Ferrcelectrics 21(1978) 597. Genequand, P., Schmid, H., Pouilly, G., Tippmann, H.: J. Phys. (Paris) 39 (1978) 287. Hatta, I., Shimizu, Y., Hamano, K.: J. Phys. Sot. Jpn. 44 (1978) 1887. Haussuhl, S.: Acta Cry’st. A34 (1978) 547. Hart, S.: S. Afr. J. Phys. 1(1978) 65. Haussuhl, S., Pm, P.: Acta Cryst. A34 (1978) 442. Harley, R. T., Manning, D. I.: J. Phys. Cl1 (1978) L633. Helme, B. G., King, P. J.: J. Mater. Sci. 13 (1978) 1487. Hochheimer, H. D., Love, W. F., Walker, C. T.: hoc. Int. Conf. on Lattice Dynamics, Sept. 5-9, 1977 (ed. Balkanski, M.), Paris: Flammarion Sciences 1978, p. 638. Hamano, K., Ema, K.: J. Phys. Sot. Jpn. 45 (1978) 923. Hochheimer, H. D., Love, W. F., Walker, C. T.: High- Pressure Low-Temperature Physics (eds. Chu, C. W., Woollam, J. A.), New York: Plenum Press 1978, p. 299. Haussuhl, S., Liebertz, 1.: Z. Kristallogr. 148 (1978) 87.

Land&-Barn-stein NewSaicslIlf29a

Page 619: Second and Higher Order Elastic Constants

1.4 References for 1 607

78Hll 78H14 7811 78K2

78K3 78K4 78L2 78L5 78Ml

78M2

78M3 78M4 78M5 78Nl

Hirotsu, S., Suzuki, T.: Ferroelectrics 20 (1978) 179. Hirotsu, S., Suzuki, T.: J. Phys. Sot. Jpn. 44 (1978) 1604; see [77H6]. Isci, C., Palmer, S. B.: J. Phys. F8 (1978) 247. Korobov, A. I., Prokhorov, V. M., Serdobolskaya, 0. Yu., Khegedush, P.: Kristallografiya 23 (1978) 566. Kudo, S., Hikita, T.: J. Phys. Sot. Jpn. 45 (1978) 1775. Kashida, S.: J. Phys. Sot. Jpn. 45 (1978) 1874. Lenkkeri, J. T., Lahteenko~a, E.: J. Phys. F8 (1978) 1643. Liu, S. T.: Ferroelectrics 22 (1978) 709. Michelutte, B., de Ia Bathie, R. P., de Lacheisserie, E. du T., Waintal, A.: Solid State Commun. 25 (1978) 163. Minaeva, K. A., Baryshnikova, E. V., Strukov, B. A., Varikash, V. M.: Kristallograflya 23 (1978) 646. Marklund, K., Vallin, J., Mahmouds, S. A.: Unpublished. Quoted in [78D2]. Madhava, M. R., Saunders, G. A., Draper, R. C.: Phys. Lett. A68 (1978) 67. Maeda, M., Ike&, T.: J. Phys. Sot. Jpn. 45 (1978) 162. Nakanishi, N., Takano, M., Hashimoto, M., Morimoto, H., Miura, S.: Ser. Metall. 12 (1978) 271.

7801 78Pl

78Rl 78R3 78R4 78R5 78R7 78R8

78R9 78Sl 7882 7883 7834

7835 7888

78Sll

78T2 78T4 78T5 78Ul 78U2 78Vl 78V3

Ozkan,H., Jamieson, J. C.: Phys. Chem. Miner. 2 (1978) 215. Perry, C. H., Jahn, I. R., Wagner, V., Bauhofer, W., Genzel, L., Sokoloff, J. B.: Proc. Int. Conf. on Lattice Dynamics, Paris, Sept. 59,1977 (ed. Balkanski, M.), Paris: Flammarion Sciences 1978, p. 419. Rowe, J. M.: J. Phys. F8 (1978) L7. Regnault, W. F.:Thesis, Pennsylvania State Univ. 1977; Diss. Abstr. Int. B38 (1978) 6020. Rehwald, W.: J. Phys. Cl1 (1978) L157. Rimai, D. S., Sladek, R. J.: Phys. Rev. B18 (1978) 2807. Rimai, D. S., Sladek, R. J., Nichols, D. N.: Phys. Rev. B18 (1978) 6807; B20 (1979) 820. Rehwald, W.: Proc. Int. Conf. on Lattice Dynamics, Paris, Sept. 5-9,1977 (ed. Balkanski, M.), Paris: Flammarion Sciences 1978, p. 644. Rehwald, W., Vonlanthen, A.: Phys. Status Solidi (b) 90 (1978) 61. Savastenko, V. A., Sheleg, A. U.: Phys. Status Solidi (a) 48 (1978) K135. Silvestrova, I. M., PoIkhovskaya, T. M., Pisarevskii, Yu. V.: Kristallografiya 23 (1978) 870. Swol, H., Rohleder, J. W.: Acta Phys. Pol. A53 (1978) 339. Silvestrova, I. M., Obukhova, N. F., Atroshchenko, L. V., Sysoev, L. A., Pisarevskii, Yu. V.: Izv. Akad. Nauk SSSR Neorg. Mater. 14 (1978) 1031. Seidenkranz, T., Hegenbarth, E.: Exp. Tech. Phys. 26 (1978) 13. Sumino, Y., Nishizawa, 0.: Preprint, Dept. of Earth Sciences, Nagoya Univ. ; J. Phys. Earth 26 (1978) 239. Sumino, Y., Nishizawa, 0.. Kumazawa, M., Pluschkell, W.: Dept. of Earth Sciences, Nagoya Univ., Unpub. Rep. 1978. Thomas, P. J., Rand, S. C., Stoicheff, B. P.: Can. J. Phys. 56 (1978) 1494. Takashige, M., Hirotsd, S., Sawada, S., Hamano, K.: J. Phys. Sot. Jpn. 45 (1978) 558. Turchi, P., Calvayrac, Y., Plicque, F.: Phys. Status Solidi (a) 45 (1978) 229. Unruh, H.-G., Kruger, J., Sailer, F.: Ferroelectrics 20 (1978) 3. Udagawa, M., Kohn, K., Nakamura, T.: Ferroelectrics 21(1978) 329. Vaughan, M. T., Weidner, D. J.: Phys. Chem. Miner. 3 (1978) 133. Voronov, F. F., Prokhorov, V. M., Gromnitskaya, E. L., Ilina, G. G.: Fiz. Met. Metalloved. 45 (1978) 1263.

78V4 van’t Klooster, P.: Doctoral Thesis, Univ. of Amsterdam 1978. 78Wl Weidner, D. J., Wang, H., Ito, J.: Phys. Earth Planet. Interiors 17 (1978) P7. 78W3 Wasa, K., Yamada, M., Hamaguchi, C.: Technol. Rep. Osaka Univ. 28 No. 1444 (1978) 447. 78W4 Walker, E.: Solid State Commun. 28 (1978) 587.

Land&-Barnstein New Series IIID9a

Page 620: Second and Higher Order Elastic Constants

608 1.4 References for 1

78W5

7821 78212 79Al

79A3

79A4

79A5 79A6

79A7

79A8 79A9 79Bl

79B2 79B3 79B4 79B5 79B6 79B7 79B8 79B9 79BlO

79Dl

79D2 79D3 79D4 79E2 79Fl 79Gl 7963 7964 7966 7967

79G8

7969 79GlO

79Hl 79H2

Windsor, C. G., Saunderson, D. H., Sherwood, J. N., Taylor, D., Pawley, G. S.: J. Phys. Cl1 (1978) 1741. Zelenka, J.: Czech. J. Phys. B2-8 (1978) 165. Zelenka, J.: Ferroelectrics 21(1978) 415. Ayasse, J. B., Ayache, C., Jager, B., Bonjour, E., Spain, I. L.: Solid State Commun. 29 (1979) 659. Aniitratov, A. T., Martynov, V. G., Shabanova, L. A., Rez, I. S.: Fiz. Tverd Tela 21(1979) 1354. Aleksandrov, K. S., Anistratov, A. T., Meh-rikova, S. V., Zinenko, V. I., Shabanova, L. A., Shefer, A. D.: Fiz. Tveni. Tela 21(1979) 1119. Ahlberg, L. A., Buck, O., Paton, N. E., Fisher, E. S.: Ser. Metall. 13 (1979) 359. Antonenko, A. M., Volnyanskii, M. D., Kudzin, A. Yu., Kuchenko, E. D.: Fiz. Tverd. Tela 21 (1979) 2461. Antonenko, A. M., Volnyanskii, M. D., Kudzin, A. Yu., Akimov, S. V.: Fiz. Tverd. Tela 21 (1979) 2831. Andreev, I. A., Shapkin, V. V.: Fiz. Tverd. Tela 21(1979) 1576. Alberts, H. L., Fisher, E. S., Katahara, K. W., Manghnani, M. H.: J. Phys. F9 (1979) L209. Bassett, W. A., Wilbum, D. R., Hrubec, J. A., Brody, E. M.: High Pressure Sci. and Technol., 6th AIRAPT Conf., 1977 (eds. Timmermans, K., Barber, M. S.), New York: Plenum Press 1979, p. 75; Chem. Abstr. 90 (1979) 160398. Brunel, L.C.: Chem. Phys. 37 (1979) 201. Brown, J., Bolef, D. I.: Phys. Rev. B19 (1979) 5847. Benner, R. E., Brody, E. M., Shanks, H. R.: J. Solid State Chem. 27 (1979) 383. Blanchfield, P., Saunders, G. A.: J. Phys. Cl2 (1979) 4673. Buchenau, II.: Solid State Commun. 32 (1979) 1329. Berger, J., Castaing, J., Fischer, M.: J. Phys. (Paris) 40 (1979) Suppl. C8 p. 183. Balasubramanian, K. R., Haridasan, T. M., Krishnamurty, N.: Chem. Phys. Lett. 67 (1979) 530. Belyaev, A. D., Olikh, Ya, M., Miselyuk, E. G., Taborov, V. F.: Ukr. Fiz. Zh. 24 (1979) 1896. Balazyuk, V. N., Geshko, E. I., Gritsyuk, B. N., Mikhalchenko, V. P., Sharlai, B. M.: Fiz. Elektron. (Lvov) 19 (1979) 34. Dickens, M. H., Hayes, W., Hutchings, M. T., Kleppman, W.: J. Phys. Cl2 (1979) 17; Dickens, M. H., Hutchings, M. T.: Neutron Inelastic Scattering, Proc. Symp. 1977, Vienna: International Atomic Energy Agency 2 (1978) 285. Dankov, I. A., Pado, G. S., Kobyakov, I. B., Berdnik, V. V.: Fiz. Tverd. Tela 21(1979) 2570. du Plessis, P . de V., Tillwick, D. L.: J. Appl. Phys. SO (1979) 1834. Detaint, J.: Proc. 33rd Ann. Freq. Corm. Symp. (1979) 70. Entel, P., Grewe, N., Seitz, M., Kowalski, K.: Phys. Rev. Lett. 43 (1979) 2002. Fribourg-Blanc, N., Dupeux, M., Guenin, G., Bonnet, R.: J. Appl. Crystallogr. 12 (1979) 151. Gammon, P. H., Kiefte, H., Clouter, M. J.: J. Chem. Phys. 70 (1979) 810. Greiner, J. D., Carlson, 0. N., Smith, J. F.: J. Appl. Phys. 50 (1979) 4394. Goto, T., Ltithi, B., Geick, R., Strobel, K.: J. Phys. Cl2 (1979) L303. Grabmeier, B. C., Haussuhl, S., Klufers, P.: Z. Kristallogr. 149 (1979) 261. Gerlich, D., Wolf, M.: Proc. AIRAPT Conf., July 1979. Published in High Pressure Science and Technology (eds. Vodar, B., Marteau, Ph.), Oxford and New York: Pergamon Press 1980. Results quoted in [81Yl]. Gridnev, S. A., Darinskii, B. M., Prasolov, B. N., Shuvalov, L. A., Fedosyuk, R. M.: Izv. Akad. Nauk SSSR Ser. Fiz. 43 (1979) 1713. Garland, C. W., Leung, R. C, Zahradnik, C.: J. Chem. Phys. 71(1979) 3158. Gorbunov, M. A., Makhmudov, E. A.: Izv. Akad. Nauk Tadzh. SSR Otd. Fiz. Mat. Geol. Khim. No. 3 (1979) 108; Chem. Abstr. 92 (1980) 224555. Haussuhl, S., Michaelis, W.: Acta Cryst. A35 (1979) 240. Hsu, D. K., Leisure, R. G.: Phys. Rev. B2O (1979) 1339.

Land&-Barnstein New Series IlVZ9a

Page 621: Second and Higher Order Elastic Constants

1.4 References for 1 609

79H3 79H5 79H6 79Jl 79J3

79Kl 79K3 79K4 79K5 79K6 79K7 79Ll 79M3 79M4 79M5

79M6 79M7

79Nl

7901 7902 79Rl 79R2 79R3 79R4 79R5 79R7

7932 7935 7936 7937 79S8 7939 79Sll

79Tl

7913 79Ul 79Vl 79v2 79v3 79v4

79Wl 79Yl

Haussuhl, S.: Solid State Commun. 32 (1979) 181. Ha& V., Kockelmann, H.: Z. Metal&, 70 (1979) 500. Hirotsu, S., Toyota, K., Hamano, K.: J. Phys. Sot. Jpn. 46 (1979) 1389. Jones, L. E. A.: Phys. Chem. Minerals 4 (1979) 23. Johnson, M. P., Trivisonno, J.: Proc. Ultrasonics Symp. (New Orleans, 1979), New York IEEE 1979, p. 459. Krasser, W., Janik, B., Ehrhardt, K. D., Haussuhl, S.: Solid State Commun. 30 (1979) 33. Kameyama, H., Ishibashi, Y., Takagi, Y.: J. Phys. Sot. Jpn. 46 (1979) 566. Kamham, K. W., Manghnani, M. H., Fisher, E. S.: J. Phys. F9 (1979) 773. Kukkonen, A., Laiho, R., Levola, T.: Semicond. Insulators 5 (1979) 77. Kamham, K. W., Nimelandran, M., Manghnani, M. H., Fisher, E. S.: J. Phys. F9 (1979) 2167. Kinoshita, H., Hamaya, N., Fujisawa, H.: J. Phys. Earth 27 (1979) 337. Levien, L., Weidner, D. J., Prewitt, C. T.: Phys. Chem. Minerals 4 (1979) 105. Madhava, M. R., Saunders, G. A.: J. Phys. Chem. Solids 40 (1979) 923. Maeda, M.: J. Phys. Sot, Jpn. 47 (1979) 1581. Meissner, M., Mimkes, J.: The Physics of Selenium and Tellurium, Proc. Int. Cot&, Konigstein, May 28-31 1979 (eds. Gerlach, E., Grosse, P), Berlin, etc.: Springer Verlag 1979, p. 74. Mook, H. A., Nicklow, R. M.: Phys. Rev. B20 (1979) 1656. Manghnani, M. H., Mat& T., Jamieson, J. C.: Trans. Amer. Geophys. Union EOS 60 (1979) 387. Nagasawa, A., Nakanishi, N., Morimoto, H., Takano, M., Matsuo, Y., Suzuki, T.: J. Phys. Sot. Jpn. 47 (1979) 535. Ohi, K., Kimura, M., Ishida, H., Kakinuma, H.: J. Phys. Sot. Jpn. 46 (1979) 1387. Ozkan, H.: J. Appl. Phys. 50 (1979) 6006. Rimai, D. S., Sladek, R. J.: Solid State Commun. 30 (1979) 591. Royer, D., Dieulesaint, E.: J. Appl. Phys. 50 (1979) 4042. Riehemann, W., Nembach, E.: Z. Metallkd. 70 (1979) 199. Rimai, D. S., Dunn, M. A., Jamieson, J. G., Manghnani, M. H.: Phys. Rev. B19 (1979) 3215. Rand, S. C.: Diss. Abstr. Int. B40 (1979) 806. Robertson, D. S., Young, I. M., Ainger, F. W., GHara, C., Glazer, A. M.: J. Phys. D12 (1979) 611. Sumino, Y.: Preprint, Dept. of Earth Sci., Nagoya Univ. ; J. Phys. Earth 27 (1979) 209. Satija, S. K., Wang, C. H.: J. Chem. Phys. 70 (1979) 4437. Sheleg, A. U., Savastenko, V. A,: Izv. Akad. Nauk SSSR Neorg. Mater. 15 (1979) 1598. Sato, M., Abe, K.: J. Phys. Cl2 (1979) L613. Serebryakov, V. G., Kushnir, I. P., Estrin, E. I.: Dokl. Akad. Nauk SSSR 244 (1979) 352. Sasaki, Y., Takeuchi, Y., Mat-make, M.: J. Phys. Sot. Jpn. 47 (1979) 2035. Soluch, W., Ksiezopolski, R., Vetelino, J. F., Jhunjhunwala, A.: Proc. Ultrasonics Symp. (New Grleans, Sept. 1979), New York: IEEE 1979, p. 602. Trappeniers, N. J., van*t KIooster, P., Biswas, S. N.: High Pressure Science and Technology, 6th AIRAPT Conf., 1977 (eds. Timmerhaus, K. D., Barker, M. S.), New York: Plenum Press 1979, p. 108. Tallon, J. L., Wolfenden, A.: J. Phys. Chem. Solids 40 (1979) 831. Uwe, H., Tokimoto, H.: Phys. Rev. B19 (1979) 3700. Voronov, F. F., Chernysheva, E. V., Goncharova, V. A.: Fiz. Tverd. Tela 21(1979) 100. van’t Klooster, P., Trappeniers, N. J., Biswas, S. N.: Physica B97 (1979) 65. Varikash, V. M., Rodin, S. V.: Kristallografiya 24 (1979) 383. Varikash, V. M., Rodin, S. V.: Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Nauk No. 6 (1979) 104. Witek, A., Wosik, J., Zbieranowski, W.: Phys. Status Solidi (a) 53 (1979) K27. Yelon, W. B., Keem, J. E.: Solid State Commun. 29 (1979) 775.

Land&-Biimstein New Series III/Z9a

Page 622: Second and Higher Order Elastic Constants

610 1.4 References for 1

79Y2

79Y3

7921 7922 7925

80Al 8OA3 80B2 80B3 80B4 8OB5 80B6 80BlO 8OC2

8OC3 80Dl 80D3 8OEl 8OE2

8OE3 8OFl 8OF-2 8OF3

8OF4

8OF5 8OGl 8OG2 8OG4 8OG5 8OG6

8OG7 8OHl 8OH3 8OH5 80H6 8OH7

80H8

80H9 80HlO 8011

Yogurtcu, Y. K., Abey, A. E., Miller, A. J., Saunders, G. A.: High Pressure Science and Technology, Proc. Int. AIRAPT Conf., 1979 (eds. Vodar, B., Marteau, Ph, ), Oxford and New York Pergamon Press 1980, p. 302. Yamamoto, T., Kobayashi, H., Danno, T.: Koen Yoshishu-Bunshi Kozo Sogo Toroukai, 1979, p. 42; Chem. Abstr. 93 (1980) 159378. Zahradnik, C., Garland, C. W.: J. Chem. Phys. 70 (1979) 1011. Zaitseva, M. P., Shabanova, L. A., Zherebtmva, L. I.: Fiz. Tverd. Tela 21(1979) 2308. Zdotko, A. S., Kitaeva, V. F., Kuzminov, Yu. S., Polzkov, N. M., Sirobaba, E. Ya, Sobolev, N. N., Federov, V. V.: Kratk. Sooshch. Fiz. No. 10 (1979) 23. Alberts, H. L.: J. Phys. Chem. Solids 41(1980) 1161. Andrianov, G. O., Zhdanova, V. V., Sergeev, V. P.: Fiz. Tverd. Tela 22 (1980) 1249. Boppart, H., Treindl, I., Wachter, P., Roth, S.: Solid State Commun. 35 (1980) 483. Belyatskaya, I. S., Serebryakov, V. G.: Fiz. Met. Metalloved. 49 (1980) 1113. Butler, B., Givord, D., Givord, F., Palmer, S. B.: J. Phys. Cl3 (1980) L743. Blanchfield, P., Saunders, G. A.: J. Phys. Chem. Solids 41(1980) 1065. Boissier, M., Vacher, R., Fontaine, D., Pick, R. M.: J. Phys. (Paris) 41(1980) 1437. Bennett, B. W., Shannette, G. W.: Acoust Lett 4 (1980) 99. Cheeke, J. D. N., Houde, D., Hota, N. K.: Phonon Scattering in Condensed Matter, Proc. 3rd Int Conf., 1979 (ed. Maris, H. J.), New York and London: Plenum Press 1980, p. 283. Chang,Z. P., Barsch, G. R.: Phys. Rev. B22 (1980) 3242. Drabble, J. R., Husain, A. H. M.: J. Phys. Cl3 (1980) 1377. Delekta, O., Gpilski, A: Arch. Acoust. (Warsaw) 5 (1980) 181. Errandonea, G.: Phys. Rev. B21(1980) 5221. Edelstein, A. S., Sengupta, S. K., Carlin, R. L., M&lasters, 0. D.: Solid State Commun. 34 (1980) 781. Ecolivet, C., Sanquer, M.: J. Chem. Phys. 72 (1980) 4145. Fisher, E. S., Remark, J. F.: J. Appl. Phys. Sl(l980) 927. Fisher, E. S., Miller, J. F., Alberts, H. L.: Unpublished. Quoted in [8Osl]. Ford, P. J., Lambson, W. A., Miller, A. J., Saunders, G. A., Bach, H., Methfessel, S.: J. Phys. Cl3 (1980) L.697. Fisher, M., Zarembowitch, A., Breazeale, M. A., : Proc. IEEE Ultrasonics Conf. (ed. McAvoy, B. R.) 1980, p. 999. Fisher, E. S.: Metall. Trans. All (1980) 103. Greiner. J. D., McMasters, 0. D., Smith, J. F.: Ser. Metall. 14 (1980) 989. Gyrbu, I. N.: Izv. Akad. Nauk SSSR Neorg. Mater. 16 (1980) 1286. Garg, A., Srivastava, R. C.: Acta Cryst. A36 (1980) 873. Goto, T., Lt.&hi, B., Geick, R., Strobel, K.: Phys. Rev. B22 (1980) 3452. Geerken, B. M., Hoefsloot, A. M., Griessen, R., Walker, E.: Phys. of Transition Metals (ed. Rhodes, P.), Conf. Series No. 55, London and Bristol: Institute of Physics 1980, p. 595. Gammon, P. H., Kiefte, H., Clouter, M. J.: J. Glacial. 25 (1980) 159. Hatta, I., Hanami, M., Hamano, K.: J. Phys. Sot. Jpn. 48 (1980) 160. Haussuhl, S., Bunthoff, D., Michaelis, W.: Solid State Commun. 34 (1980) 765. Henkel, W., Pelzl, J., Hock, K.-H., Thomas, II.: Z. Phys. B37 (1980) 321. Haussuhl, S., Walhafen, F., Reeker, K., E&stein, J.: Z. Kristallogr. 153 (1980) 329. Hamaguchi, C., Wasa, K., Yamawaki, M.: Phonon Scattering in Condensed Matter, Proc. 3rd Int. Conf., 1979 (ed. Maris, H. J.), New York and London: Plenum Press 1980, p. 441. Hikita, T., Kitabatake, M., Ikeda, T.: Proc. 2nd Japanese-Soviet Symp. on Ferroelectricity, Kyoto, 1980; J. Phys. Sot. Jpn. 49 Suppl. B (1980) 44. Hirotsu, S., Toyota, K., Hamano, K.: Phys. Lea. A80 (1980) 32. Hughes, S. R., Somerford, D. J.: J. Phys. Cl3 (1980) L975. Istomina, Z. A., Zinoveva, G. P., Andreeva, L. P., Geld, P. V., Mikhelson, A.: Fiz. Tverd. Tela 22 (1980) 281.

Land&-B8mste.k NewSaicsIIIf29r

Page 623: Second and Higher Order Elastic Constants

1.4 References for 1 611

8OJ2 8OJ3

Jakubowski, B., Ecolivet, C.: Mol. Cryst. Liq. Cryst. 62 (1980) 33. Jones, G. R., Young, I. M., Burgess, J. W., GHara, C., Whatmore, R. W.: J. Phys. D13 (1980) 2143.

8OKl 8OK2 8OK4 8OK5 8OK6 8OK8 8OK9 8OKlO 8OKll 8OK13 8OK14 8OK15

8OK16 8OK17 8OLl 8OL3

8OIA

8OL5 8OMl 8OM2 8OM3 8OM5 8OM6

8ONl

8ON2 8ON3 8ON5 8OPl 8OP2 8OP3 8OP4

8OP5 8ORl 8OR2 8OR3

Ko, C. R., Salama, K., Roberts, J. M.: J. Appl. Phys. 51(1980) 1014. Kwaaitaal, T., Potters, F. A. J. A.: J. Appl. Phys. 51(1980) 2047. Kudo, S., Ikeda, T.: Jpn. J. Appl. Phys. 19 (1980) L45. Katahara, K. W.: Unpublished. Quoted in [8Osl]. Kovtun, V. M., Mikhalchenko, V. P.: Izv. Akad. Nauk SSSR Neorg. Mater. 16 (1980) 1203. Knorr, K.,Renker, B., Assmus, W., L&hi, B., Takke, R., Lauter, H. J.: Z. Phys. B39 (1980) 151. Kovtun, V. M., Mikhalchenko, V. P.: Ukr. Fiz. Zh. 25 (1980) 709. Kovtun, V. M., Mikhalchenko, V. P., Savastenko, V. A.: Ukr. Fiz. Zh. 25 (1980) 970. Kobiakov, I. B.: Solid State Commun. 35 (1980) 305. Kruger, J. K., Maier, H.-D., Petersson, J., Unruh, H. D.: Ferroelectrics 25 (1980) 621. Kruger, J. K., Bastian, H., Arbach, G., Pietrella, M.: Polym. Bull. 3 (1980) 633. Kamiyoshi, K.-I., Fujimura, T., Yoshizawa, M., Goto, T.: Proc. 2nd Japanese-Soviet. Symp. on Ferroelectricity, Kyoto, 1980; 1. Phys. Sot. Jpn. 49 Suppl. B (1980) 169. Karajamaki, E., Laiho, R., Levola, T., Sheleg, A. U.: Semicond Insul. 5 (1980) 153. Kunxuaswarny, K., Krishnamurthy, N.: Acta Cryst. A36 (1980) 760. Leitner, B. J., Weidner, D. J., Liebermann, R. C.: Phys. Earth Planet. Interiors 22 (1980) 111. Loidl, A., Feile, R., Knorr, K., Renker, B., Dauber&J., Durand, D., Suck, J. B.: Z. Phys. B38 (1980) 253. Liu, H.-J., Zhao, Z.-Y., Zhao, Y.-Z., Li, H.-Z., He, Z.-G., Shi, S.-J., Wang, Z.-W,: Sheng Hsueh Hsueh Pao [Acta Acustica (China)] 1980 (2) 134. Liebertz, J., Stahr, S., Haussuhl, S.: Krist. Tech. 15 (1980) 1257. Mercier, O., Milton, K. N., Gremaud, G., Hage, J.: J. Appl. Phys. 51(1980) 1833. Maeda, M.: J. Phys. Sot. Jpn. 49 (1980) 1090. Matsuo, Y., Suzuki, T., Nagasawa, A.: J. Phys. Sot. Jpn. 49 (1980) 1344. Mitsui, T., Iio, K.: Jpn. J. Appl. Phys. 19 (1980) 2511. Miniewicz, A., Samoc, M., Swarakowski, J., Jakubowski, B., Zboinski, Z., Cehak, A.: Chem. Phys. Lea. 76 (1980) 442. Narasimham, A. V., Roth, S., Renker, B., Kafer, K., Buerkin, J.: Phys. Status Solidi (a) 57 (1980) K75. Nichols, D. N., Rimai, D. S., Sladek, R. J.: Solid State Commun. 36 (1980) 667. Nihara, T., Iwata, T.: J. Phys. Sot. Jpn. 49 (1980) 1916. Neighbours, J. R.: J. Appl. Phys. 51(1980) 5801. Palmer, S. B.: Personal communication, 1980. Palmer, S. B., Waintal, A.: Solid State Commun. 34 (1980) 663. Powell, B. M., Dolling, G., Pawley, G. S., Leech, J. W.: Canad. J. Phys. 58 (1980) 1703. Page, J. H., Prieur, J.-Y.: Phonon Scattering in Condensed Matter, Prw. 3rd Int. Conf., 1979 (ed. Maris, H. J.), New York and London: Plenum Press 1980, p. 271. Petculescu, P.: Stud. Cercet. Fiz. (Bucharest) 32 (1980) 829. Rimai, D. S., Sladek, R. J.: Phys. Rev. B21(1980) 843. Rusovic, N., Henig, E.-Th.: Phys. Status Solidi (a) 57 (1980) 529. Rehwald, W., Vonlanthen, A., Kruger, J. K., Wallerius, R., Unruh, H.-G.: J. Phys. Cl3 (1980) 3823.

8OR6 Rehwald, W., Vonlanthen, A., Rehaber, E., Prettl, W.: Z. Phys. B39 (1980) 299. 8OS3 Savage, S. J., Palmer, S. B., Fort, D., Jordan, R. G., Jones, D. W.: J. Phys. FlO (1980) 347. 8OS5 Stathis, J. H., Bolef, D. I.: J. Appl. Phys. 51(1980) 4770. 8OS6 Sawada, A., Hattori, A., Ishibashi, Y.: J. Phys. Sot. Jpn. 49 (1980) 423. 8OS7 Sorge, G., Straube, U., Ahneido, A.: Acta Phys. Slovaca 30 (1980) 65. 8OS8 Sorge, G., Straube, U., Than&e, B., Shuvalov, L. A.: Phys. Status Solidi (a) 59 (1980) K183. 8OS9 Sorge, G., Thamke, B., Schmidt, G., Shuvalov, L. A.: Phys. Status Solidi (a) 62 (1980) K95.

Land&Bhstein New Series IIV29a

Page 624: Second and Higher Order Elastic Constants

612 1.4 References for 1

8OSlO 80Sll 8Os12

8OS15

8OS16

8OS17

Silvestrova, I. M., Kobyakov, I. B., Shternberg, A. A.: Zh. Tekh. Fiz. 50 (1980) 2451. Salama, K., Ko, C. R.: J. Appl. Phys. 51(1980) 6202. Smolenskii, G. A., Prokhorova, S. D., Siny, I. G., Fouksova, A., Konak, C., Dudnik, E. F.: Ferroelectrics 26 (1980) 677. Schmidt, G., Amdt, H., von Cieminski, J., Petzsche, T., Voigt, H.-J., Krainik, N. N.: Krist. Tech. 15 (1980) 1415. Sawada, A, Sugiyama, J., Wada, M., Ishibashi, Y.: Proc. 2nd Japanese-Soviet Symp. on Ferroelectricity, Kyoto, 1980; J. Phys. Sot. Jpn. 49 Suppl. B (1980) 89. Smolensky, G. A., Siny, I. G.,Prokhorova, S. D., Kuzminov, E. G., Mikvabia, V. D.: Proc. 2nd Japanese-Soviet Symp. on.Ferroelectricity, Kyoto, 1980; J. Phys. Sot. Jpn. 49 Suppl. B (1980) 26.

8OS19

8OTl 8OT2 8OUl

8OVl 8OV2

8OWl 8OW2 8OYl 8OY2 81A2 81A3

81A5

81Bl 81B2 81B3 81B4 81B7 81B8 81B9

8lB13 81Cl 81C3 81C5 81C6 81C7

81Dl 81El 81Fl 81F3 81G3 81G4

&rout, T. R., Cross, L. E., Moses, P., McKinstry, H. A., Neurgaonkar, R. R.: Proc. IEEE Ultrasonics Symp. (ed. McAvoy, B. R.) l(l980) 414. Torres, J., Primot, J., Pougnet, A. M., Aubree, J.: Ferroelectrics 26 (1980) 689. Tanaka, H., Tatsuzaki, I.: Solid State Commun. 35 (1980) 285. Uchino, K., Nomura, S., Amin, A., Chang, Z. P., Cross, L. E., Newnham, R. E.: Jpn. J. Appl. Phys. 19 (1980) L398. Vogt, K., Reichardt, W., Randl, W., Haussuhl, S.: Phys. Status Solidi (a) 57 (1980) K145. Vintaikin, E. Z., Udovenko, V. A., Litvin, D. F., Serebryakov, V. G.: Fiz. Met. Metalloved 49 (1980) 883. Wruk, N., Pet& J.: Unpublished (1980). Quoted in [81Pl]. Walker, E., Bujard, P.: Solid State Commun. 34 (1980) 691. Yamada, M., Shhai, T., Yamamoto, K., Abe, K.: J. Phys. Sot. Jpn. 48 (1980) 874. Yogurtcu, Y. K., Miller, A. J., Saunders, G. A.: J. Phys. Cl3 (1980) 6585. Antonenko, A. M., Pozdeeva, V. G.: Fiz. Tverd. Tela 23 (1981) 2494. Aleksandrov, K. S., Zaitseva, M. P., Shabanova, L. A., Shhnanskaya, 0. V.: Fiz. Tverd. Tela 23 (1981) 2440. Aleksandrov, K. S., Anistratov, A. T., Melnikova, S. V., Klevtsov, P. V., Krughk, A. I., Voronov, V. N.: Ferroelectrics 36 (1981) 399. Biswas, S. N., van’t KIooster, P., Trappeniers, N. J.: Physica B103 (1981) 235. Bujard, P., Sanjines, R., Walker, E., Ashlcenazi, J., Peter, M.: J. Phys. Fll(l981) 775. Braul, H., Plint, C. A.: Solid State Commun. 38 (1981) 227. Bujard, P., Walker, E.: Solid State Commun. 39 (1981) 667. Belyaev, A. D., Olikh, Ya. M., Miselyuk, E. G., Taborov, V. F.: Ukr. Fiz. Zh. 26 (1981) 224. Berger, J., Berthon, J., Revcolevschi, A., Jolles, E.: J. Amer. Ceram. Sot. 64 (1981) C153. Babushkin, A. N., Zlokazov, V. B., Zadvorkin, S. M., Kobelev, L. Ya., Kuznetsov, Yu. S: Fiz. ‘herd. Tela 23 (1981) 3705. Buchenau, U., Schober, H. R., Wagner, R.: J. Phys. (Paris) 42 Suppl. (1981) (X-395. Copic, M., Zgonlk, M., Fox, D. L., Lavrencic, B. B.: Phys. Rev. B23 (1981) 3469. Chatterjee, S., Chakraborty, S.: Acta Cryst. A37 (1981) 645. Chao, M. H., Sladek, R. J.: J. Phys. (Paris) 42 Suppl. (1981) C6-667. Cho, M., Yagi, T.: J. Phys. Sot. Jpn. 50 (1981) 543. Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T., Hayes, W., Gwen, I. B.: J. Phys. Cl4 (1981) 329. . de With, G., Damen, J. P. M.: J. Mater. Sci. 16 (1981) 838. Ecolivet, C., Poignant, H.: Phys. Status Solidi (a) 63 (1981) K107. Fritz, I. J.,Gottlieb, M., Isaacs, T. J., Morozin, B.: J. Phys. Chem. Solids 42 (1981) 269. Feldman, J. L.: J. Phys. Chem. Solids 42 (1981) 1029. Gefen, Y., Rosen, M.: J. Phys. Chem. Solids 42 (1981) 857. Garland, C. W., Kwiecien, J. Z., Leung, R. C., Damien, J., : Solid State Commun. 37 (1981) 359.

81G6 Grill, W., LUthi, B.: Phys. Rev. B24 (1981) 3571.

Landoh-Bkmtein New SuiuI&29r

Page 625: Second and Higher Order Elastic Constants

1.4 References for 1 613

81Hl 81H2 81H3 81H5 81H8

81H9 81H12 81H13 81H14 81H15 81H16 81H17

81H18 8111 81I2 81I4

8115 81J3 81Kl 81K2 81K4 81K6 81K7 81K8 81Kll 81Ll 81L2

81L3 81L4 81L5 81L6 81L9

81LlO

81Lll 81L12 81L13 81L14 81L15 81M4 81M5 81M6 81M7 81M8 81M9

Houde, D., Cheeke, D.: Phys. Status Solidi (b) 103 (1981) K21. Hearmon, R. F. S.: Solid State Commun. 37 (1981) 915. Haussuhl, S., Chmielewski, W.: Acta Cryst. A37 (1981) 361. Haussuhl, S.: Solid State Commun. 38 (1981) 329. Hirotsu, S., Kunii, Y., Yamamoto, I., Miyamoto, M., Mitsui, T.: J. Phys. Sot. Jpn. 50 (1981) 3392. Hausch, G., Torok, E.: J. Phys. (Paris) 42 Suppl. (1981) CS-1031. Hirotsu, S., Miyamoto, M., Yamamoto, I.: Jpn. J. Appl. Phys. 20 (1981) L917. Hart, S.: S. Afr. J. Phys. 4 (1981) 103. Hikita, T., Kitabatake, M., Ikeda, T.: J. Phys. Sot. Jpn. 50 (1981) 1259. Hirotsu, S., Toyota, K., Hamano, K.: Ferroelectrics 36 (1981) 319. Hattori, T., Nakata, H., Imanishi, T., Mitsuishi, A.: Solid State Ionics 3/4 (1981) 69. Hattori, T., Nakata, H., Imanishi, T., Kurokawa, H., Mitsuishi, A.: Solid State Ionics 2 (1981) 47. Hikita, T., Suzuki, K., Ikeda, T.: Ferroelectrics 39 (1981) 1005. Ivanova, S. V., Lukin, S. N., Telepa, V. T.: Fiz. Tverd. Tela 23 (1981) 1173. Ishibashi, Y., Sugiyama, J., Sawada, A.: J. Phys. Sot. Jpn. 50 (1981) 2500. Ilisavskii, Yu. V., Kulakova, L. A., Pevtsov, A. B., Smolyarenko, E. M., Sheleg, A. U., Yakhkind, E. 2.: Fiz. Tverd. Tela 23 (1981) 1816. Ito, Y., Nagatsuma, K., Takeuchi, H., Jyomura, S.: J. Appl. Phys. 52 (1981) 4479. Jiles, D. C., Palmer, S. B.: Philos. Mag. A44 (1981) 447. Kandil, H. M., Greiner, J. D., Ayers, A. C., Smith, J. F.: J. Appl. Phys. 52 (1981) 759. Kayser, F. X., Stassis, C.: Phys. Status Solidi (a) 64 (1981) 335. Kwiecien, J. Z., Leung, R. C., Garland, C. W.: Phys. Rev. B23 (1981) 4419. Karajamaki, E., I.&o, R., Levola, T.: Phys. Rev. B23 (1981) 6307. Katahaq K. W., Manghnani, M. H., Devnani, N.: J. Appl. Phys. 52 (1981) 3360. Kanrar, A., Ghosh, U. S.: J. Appl. Phys. 52 (1981) 5851. Khoder, A. E, Couach, M., Bonjour, E.: J. Phys. (Paris) 42 Suppl. (1981) C5-1085. Lemanov, V. V., Esayan, S. Kh., Chapelle, J. P.: Fiz. Tverd. Tela 23 (1981) 262. Lowde, R. D., Harley, R. T., Saunders, G. A., Sato, M., Scherm, R., Underhill, C.: Proc. R. Sot. London A374 (1981) 87. Lahteenkorva, E. E., Lenkkeri, J. T.: J. Phys. Fll(l981) 767. Lockwoql, D. J., Murray, A. F., Rowell, N. J.: J. Phys. Cl4 (1981) 753. Ledbetter, H. M., LaBrecque, J. F., Dahnke, J. L.: Phys. Status Solidi (a) 67 (1981) 643. Lenkkeri, J. T.: J. Phys. Fll(l981) 1991. Liu, H.-J, Zhao, Z.-Y., Shi, Z.J.: Wu Li Hsueh Pao 30 (1981) 297; Chem. Abstr. 94 (1981) 184171. Ledbetter, H. M., Dahnke, J. L.: Preprint, Fracture and Deformation Division, N. B. S., Boulder, Colorado 1981. Ledbetter, H. M.: Br. J. Non-Des& Test. 23 (1981) 286. Lawless, W. N., Rytz, D., Hochli, U. T.: Ferroelectrics 38 (1981) 809. Litvin, B. N., Kobyakdv, I. B., Belimenko, F. A.: Kristallogratiya 26 (1981) 822. Ledbetter, H. M.: Phys. Status Solidi (a) 66 (1981) 477. Loidl, A., Feile, R., Knorr, K.: Z. Phys. B42 (1981) 143. Miller, A. J., Saunders, G. A., Yogurtcu, Y. K.: J. Phys. Cl4 (1981) 1569. Maeda, M., Ikeda, T.: J.Phys. Sot. Jpn. 50 (1981) 1815. Miller, A. J., Saunders, G. A., Yogurtcu, Y. K., Abey, A. E.: Philos. Mag. A43 (1981) 1447. Mountfield, K. R., Rayne, J. A.: J. Phys. (Paris) 42 Suppl. (1981) C6468. Mazzolai, F., Bimbaum, H. K.: J. Phys. (Paris) 42 Suppl. (1981) C5-769. Mikami,N., Ikeda, T.: Jpn. J. Appl. Phys. 20 (1981) Suppl. 20-4 167.

hdolt-B6mstein New Series IW29a

Page 626: Second and Higher Order Elastic Constants

614 1.4 References for 1

81MlO

81Mll 81Nl 81N2 8lN3 8lN5

8101 8103 81Pl 81P2 81P3

81R2

81S2

81S4 81%

81S6

8lS8 81Sll

81S15 81S18

81T2 81T4 8lT6 81T7 81T8 81Vl 81V2 81Wl 8lW2 81W4 81W5 81Yl 81Y2 81Y5

82Al 82A3

82A4 82A5

82A6

Mook, H. A., Holtzberg, F.: Valence Fluctuations in Solids (eds. Falicov, L. M., Hanke, W., Maple, M. B.), Santa Barbara Institute for Theoretical Physics Conference, Amsterdam, etc.: North Holland Publishing Co. 1981, p. 113. Matsuo, Y., Makita, T., Suzuki, T., Nagasawa, A.: J. Phys. Sot. Jpn. 50 (1981) 1207. Nichols, D. N., Sladek, R. J., Harrison, H. R.: Phys. Rev. B24 (1981) 3025. Nichols, D. N., Sladek, R. J.: Phys. Rev. B24 (1981) 3155. Nakamura, T., Sawaguchi, E.: J. Phys. Sot. Jpn. 50 (1981) 2323. Nasybullin, R. A., Kalimullm, R. Kh., Shapkin, V. V., Kharionovskii, Yu. S., Dzhumigo, A. M., Bursian, E. V.: Fiz. Tverd. Tela 23 (1981) 300. Ohba, S., Matsuda, T., Hatta, I., Harada, J.: J. Phys. Sot. Jpn. 50 (1981) 861. Olikh, Ya M.: Ukr. Fiz. Zh. 26 (1981) 1565. Pelzl, J.,Hock, K.-H., Miller, A. J.,Ford, P. J., Saunders, G. A.: 2. Phys. B40 (1981) 321. Polian, A.,Besson, J. M., Grimsditch, M. H., Vogt, H.: Appl. Phys. Len. 38 (1981) 334.1033. Padaki, V. C., Lakhshmikumar, S. T., Subrahmanyam, S. V., Gopal, E. S. R.: Pramana 17 (1981) 25. Ramachandran, V., Ibrahim, M. M, Padaki, V. C., Gopal, E. S. R.: Phys. Status Solidi (a) 67 (1981) K49. Smolenskii, G. A., Sinii, I. G., Kolpakova, N. N., Prokhorova, S. D., Mikvabiya, V. D., Symikov, P. P.: Fiz. Tverd. Tela 23 (198 1) 1726. Sorge, G., Straube, U., Ivanov, N. R.: Phys. Status Solidi (a) 65 (1981) 189. Smolenskii, G. A., Sinii, I. G., Prokhorova, S. D., Godovikov, A. A., Laiho, R., Levola, T., Karamayaki, E.: Fiz. Tverd. Tela 23 (1981) 2017. Shakhtakhtinskii, M. G., Gusenov, D. A., Nizametdinova, M. A., Shteinschraiber, V. Ya: Fiz. Tverd. Tela 23 (1981) 1522. Saunders, G. A., Yogurtcu, Y:K.: Phys. Lett A84 (1981) 327. Sorge, G., Almeida, A., Shuvalov, L. A., Fedosyuk, R. M.: Phys. Status Solidi (a) 68 (1981) 245. Sato, M., G&r, B. H., Shapiro, S. M., Miyajima, H.: J. Phys. (Paris) 42 Suppl. (1981) C6-770. Shorrocks, N. W., Whatmore, R. W., Ainger, F. W., Young, I. M.: Proc. IEEE Ultrason. Symp. (1981) 337. Tomeno,I., Hirano,N.: J. Phys. Sot. Jpn. SO (1981) 1809; 51(1982) 339. Takke, R., Dolezal, N., Assmus, W., LUthi, B.: J. Magn. Magn. Mater. 23 (1981) 247. Trivisonno, J., Slotwinski, A. R., Johnson, M. P.: J. Phys. (Paris) 42 Suppl. (1981) C5-983. Tylczynski, Z.: Physica B+C lll(l981) 267. Tsunoda, Y., Wakabayashi, N.: J. Phys. Sot. Jpn. 50 (1981) 3341. Vacher, R., Boissier, M., Sapriel, J.: Phys. Rev. B23 (1981) 215. Vacher, R., Boissier, M., Laplaze, 0. D.: Solid State Commun. 37 (1981) 533. Wiehl,L., Haussuhl, S.: Z. Kristallogr. 156 (1981) 117. Walker, E., Ashkenazi, J., Dacorogna, M.: Phys. Rev. B24 (1981) 2254. Weiss, L., Rumyantsev, A. Y.: Phys. Status Solidi (b) 107 (1981) K75. Wu, A. J., Sladek, R. J.: J. Phys. (Paris) 42 Suppl. (1981) C6-646. Yogurtcu, Y. K., Miller, A. J., Saunders, G. A.: J. Phys. Chem. Solids 42 (1981) 49. Yao, W., Cummins, H. Z., Bruce, R. H.: Phys. Rev. B24 (1981) 424. Yamashita, Y., Yokoyama, K., Honda, H., Takahashi, T.: Jpn. J. Appl. Phys. (1981) Suppl. 204 183. Anderson, C. E., Brotzen, F. R.: J. Appl. Phys. 53 (1982) 292. Avakyants, L. P., Antonenko, A. M., Dudnik, E. F., Kiselev, D. F., Mnushkina, I.E., Firsova, M. M.: Fiz. Tverd. Tela 24 (1982) 2486. Antonenko, A. M., Dudnii, E. F., Kolesov, I. S.: Fiz. Tverd. Tela 24 (1982) 1486. Aleksandrov, K. S., Anistratov, A. T., Melnikova, S. V., Kruglik, A. I., Zherebtsova, L. I., Shabanova, L. A.: Fiz. Tverd. Tela 2A (1982) 1094. Ahmad, S. F., Kiefte, H., Clouter, M. J., Whitmore, M. D.: Phys. Rev. B26 (1982) 4239.

Landolt-Barnstein New SuicsW29a

Page 627: Second and Higher Order Elastic Constants

1.4 References for 1 615

82A7

82A8 82AlO

82Bl 82B2 82B3

82B4 82B5 82B7 82B8 82BlO 82Bll 82B12

82Cl 82C5 82Dl 82D2 82D3 82D4 82D5 82El

82Fl

82F2 82F5 82F6 8262 8263 82G4 8205 82G6 82G7

82Hl 1 82H2

, 82H4 82H5 82H6 82H8

8211 8272 82K2 82K4 82K6 82K7 82K8

AIeksandrov, V. V., Bar-a&ii, K. N., Vasileva, 0. I., Velichkina, T. S., Izrailenko, A. N., Yakovlev, I. A.: Opt. Spektrosk. 52 (1982) 193. Aronsson, R., Gunilla Knape, H. E., Torell, L. M.: J. Chem. Phys. 77 (1982) 677. Anistratov, A. T., Zamkov, A..V., Kot, L. A., Stolovitskaya, I. N., Shabanova, L. A.: Fiz. Tverd. Tela 24(1982) 2763. Blanchfield, P., Saunders, G. A., Hailing, T.: J. Phys. Cl5 (1982) 2081. Bohaty, L., Haussuhl, S., Liebertz, J., Stahr, S.: Z. Kristallogr. 161(1982) 157. Braga, M. E., Pinto, R. P., Sousa, J. B., Blackie, G. N., Hemsley, D. J., Palmer, S. B.: J. Magn. Magn. Mater. 29 (1982) 203. Butler, B., Givord, D., Givoid, F., Palmer, S. B.: J. Phys. F12 (1982) 2813. ’ Brassington, M. P., Saunders, G. A.: Phys. Rev. Lett. 48 (1982) 159. Bujard, P., Walker, E.: Solid State Commun. 43 (1982) 65. BriIl, J. W.: Solid State Commun.‘41(1982) 925. Beg, M. M., Kobbelt, M.: Phys. Rev. B26 (1982) 1893. Blackie, G. N., Palmer, S. B.: J. Phys. Cl5 (1982) L483. - Bailey, D. S., Soluch, W., Lee, D. L., Vetelino, J. F., Am-he, J.: Proc. 36th Ann. Freq. Corm. Symp. (1982) (unpublished). Quoted in [87S15]. Chase, L. L., Lee, E., Prater, R. L., Boatner, L. A.: Phys. Rev. B26 (1982) 2759, Chengalrayan, G., Ramamurthy, L.: J. Phys. El5 (1982) 47. Dutta, M., Mudare, S. M., Jackson, H. E.: Phys. Rev. B26 (1982) 5927. Dominec, J., Misek, K., Sladky, P., Trojanova, Z.: Czech. J. Phys. B32 (1982) 899. de Camargo, P. C., Brotzen, F. R.: J. Magn. Magn. Mater. 27 (1982) 65. Dankov, 1. A., Kobyakov, I. B., Davydov, S. Yu.: Fiz. Tverd. Tela 24 (1982) 3613. dAmour, H., Denner, W., Schulz, H.,, Cardona, M.: J. Appl. Cryst. 15 (1982) 148. EcoIivet, C., Granger, M. M., Sanquer, M., Toupet, L., Charbonneau, G. P.: Mol. Cryst. Liq. Cryst. 80 (1982) 1. Ford, P. J., Miller, A. J., Saunders, G. A., Yogurtcu, Y. K., Furdyna, J. K., Jaczynski, M.: J. Phys. Cl5 (1982) 657, Feile, R., Loidl, A., Knorr, K.: Phys. Rev. B26 (1982) 6875: FIeury, P. A., Lyons, K. B., Katiyar, R. S.: Phys. Rev. B26 (1982) 6397. Fujii, Y., Akahama, Y., Endo, S., Narita, S., Shirane, G.: Solid State Commun. 44 (1982) 579. Goto, T., Yoshizawa, M., Tar&i, A., Fujimura, T.: J. Phys. Cl5 (1982) 3041. Garland, C. W., Kwiecien, J. Z., Damien, J. C.: Phys. Rev. B25 (1982) 5818. Ganot,F., Dugautier, C., Moth, P., Nouet, J.: J. Phys. Cl5 (1982) 801. Ganot, F., Dugautier, C., Moth, P., Nouet, J.: Solid State Commun. 44 (1982) 975. Geerken, B. M., Griessen, R., Huisman, L. M., WaIker, E.: Phys. Rev. B26 (1982) 1637. Graham, E. K., Sopkin? S. M., Resley, W. E.: (Abstract) EOS, Trans. Am. Geophys. Union 63 (1982) 1090. Quoted by [84B 111. Hailing, T., Saunders, G. A., Lambson, W. A., Feigelson, R. S.: J. Phys. Cl5 (1982) 1399. Hailing, T., Saunders, G. A.: J. Mater. Sci. Lea. 1(1982) 416. Haussuhl, S.,Liebertz, J., Stahr, S.: Cryst. Res. Technol. 17 (1982) 521. Ham-et, G., Benoit, J. P.: Ferroelectrics 40 (1982) 1. Hailing, T., Saunders, G. A., Lambson, W. A.: Phys. Rev. B26 (1982) 5786. Holden, T. M., Buyers, W. J. L., Svensson, E. C., Jackman, J. A., Murray, A. F., Vogt, O., du Plessis, P. deV.: J. Appl. Phys. 53 (1982) 1967. Imamutdinov, F. S., Nazarov, Yu. G., Khasanov, A. Kh.: Kristallografiya 27 (1982) 1194. James, B. W., Kheyrandish, H.: J. Phys. Cl5 (1982) 6321. Kainijo, Y., Abe, R.: J. Phys. Sot. Jpn. 51(1982) 2910. Kuwata, J.,Uchino, K., Nomura, S.: Jpn. J. Appl. Phys. Part 121(1982) 1298. Karajamaki, E., Laiho, R., Levola, T.: Phys. Rev. B25 (1982) 6474. Kubo, H., Shimizu, K.: Trans. Jpn. Inst. Met. 23 (1982) 655. Kolchin, A. E., Livshitz, B. G., Sidorova, I. B.: Izv. Akad. Nauk SSSR Met. 3 (1982) 110.

Landolt-Bijmstein New SeriwIlIj29a

Page 628: Second and Higher Order Elastic Constants

616 1.4 References for 1

82K9

82KlO 82Ll 82L2 82L5 82U5 82Ml

82M2

82M4

82M.5 82Nl 82N2 82N3 82N4 82N5 82N6 8202 8203 8204 82Pl 82p2

82b3 82P4 82P5 82R1

82R2 82Ft3 82R4 82R5

82S2 8234 82S5 82S6 82S7 82S9 82SlO

82Sll

82S12

82S13 82S14

82315

Kumazaki, K.: Prtx. 4th Int. Conf. on Physics of Narrow Gap Semiconductors 1981, Berlin: Springer Verlag 1982, p. 410. Kahan, A.: F?oc 36th Ann. Freq. Contr. Symp. 1982, p. 159. Lnsphr, Y., Chabin, M., Moncuit, C.: Solid State Commun. 44 (1982) 71. Lee, M., Gihnore, R. S.: J. Mater. Sci. 17 (1982) 2657. Luspin, Y., Chabm, M., Hamt, G., Gilletta, F.: J. Phys. Cl5 (1982) 1581. Legrand, J. F.: J. Phys. (Paris) 43 (1982) 1099. Melnikova, S. V., Klevtsov, P. V., Zherebtsova, L. I., Kruglik, A. I., Shabanova, L. A., Voronov, V. N.: Fiz. Tverd. Tela 24 (1982) 2862. Murakami, Y.,Nakanishi, N., Morimoto, H., Takano, M, Kachi, S.: J. Phys. (Paris) 43 Suppl. (1982) C4-335. Mm, B., Krajewski, T., Breczewski, T., Chomka, W., Sematowicz, D.: Ferroelectrics 42 (1982) 71. Mierzejewski, A., Ecolivet, C.: J. Phys. Cl5 (1982) 4695. Niksch, M., Assmus, W., Lttthi, B., Ott, H. R., Kjems, J. K.: Helv. Phys. Acta 55 (1982) 688. Nagasawa, A., Makita, T., Takagi, Y.: J. Phys. Sot. Jpn. Sl(l982) 3876. Nagatsuma, K., Ito, Y., Jyomura, S., Takeuchi, H., Ashida, S.: Ferrcelectrics 41(1982) 169. Nichols, D. N., Rimai, D. S., Sladek, R. J.: Phys. Rev. B25 (1982) 3786. Negita, K.,Nakamura, N., Chihara, H.: J. Phys. Sot. Jpn. Sl(l982) 858. Niksch, M., Ltlthi, B., Assmus, W., Kubler, J.: J. Magn. Magn. Mater. 28 (1982) 243. Over, H. H., Knotek, O., Lugscheider, E.: 2. Metallkd. 73 (1982) 552. O’Hara, C., Shorrocks, N. M., Whatmore, R. W., Jones, 0.: J. Phys. D15 (1982) 1289. Okuda, S., Mizubayashi, H.: Rot. Yamada Conf. V 1981, Tokyo: U. Tokyo Press 1982, p. 163. Polian, A., Besson, J. M., Grimsditch, M., Vogt, H.: Phys. Rev.B25 (1982) 2767. Penney, T., Barbara, B., Plaskett, T. S., King, H. E., LaPlaca, S. J.: Solid State Commun. 44 (1982) 1199. Powell, B. M., Dolling, G., Torrie, B. H., Pawley, G. S.: J. Phys. Cl5 (1982) 4265. Polian, A., Grimsditch, M., Fischer, M., Gatulle, M.: J. Phys. (Paris) Lett. 43 (1982) I.405. Prokert, F.: Phys. Status Solidi (b) 113 (1982) 239. Ramachandran, V., Ibrahii, M. M., Gopal, E. S. R., Padaki, V. C.: Phys. Status Solidi (a) 69 (1982) 407. Rand, S. C., Stoicheff, B. P.: Can. J. Phys. 60 (1982) 287. Rehwald, W., Vonlanthen, A.: J. Phys. Cl5 (1982) 5361. Rehwald, W.: Phys. I.&t. A87 (1982) 245. Reider, G. A., Kittinger, E., Tichy, J.: J. Appl. Phys. 53 (1982) 8716; J. Acoust. Sot. Am. 73 (1983) 1995. Sorge, G., Almeida, A., Shuvalov, L. A.: Phys. Status Solidi (a) 74 (1982) 91. Stasis, C., Loong, C. K., Zarestky, J.: Phys. Rev. B26 (1982) 5426. Saunders, G. A.: Phys. Ser. Tl(l982) 49. Shorrocks, N. M., Whatmore, R. W., Liu, S. T.: J. Phys. D15 (1982) 2469. Stasis, C., Loong, C. K., The&n, C., Nicklow, R. M.: Phys. Rev. B2d (1982) 4106. Seino, D.: J. Magn. M&n. Mater. 28 (1982) 55. Sousa, J. B., Pinto, R. P., Plnheiro, M. F., Braga, M. E., Moreha, J. M., Blackie, G. N., Palmer, S. B., Hukhr, D.: J. Magn. Magn. Mater. 28 (1982) 175. Smolenskii, G. A., Sinii, I. G., Rokhorova, S. D., Kuzminov, E. G., Mikvabia, V. D., Laiho, R.: Ferroelectrics 45 (1982) 185. Smolenskii, G. A., Sinii, I. G., Prokhorova, S. D., Kuzminov, E. G., Godovikov, A. A.: IGistallografiya 27 (1982) 140. Stojanoff, V., Missell, F. P.: J. Chem. Phys. 77 (1982) 939. Saunders, G. A., Lambson, W. A., Hailing, T., Bullet& D. M., Bach, H., Methfessel, S.: J. Phys. Cl5 (1982) L551. Silvestrova, I. M., Kobyakov, I. B., Belimenko, F. A.: Fiz. Tverd. Tela 24 (1982) 3241.

Iandolt-Blimstcin New SaiesUV29r

Page 629: Second and Higher Order Elastic Constants

1.4 References for 1 617

82316 82S17 82319

82Tl 8212 82T4 82Vl 82Wl 82W2 82W3 82W4 82WS 82W6 82Yl

82Y2 82114 82Y5 82Y6 82Y7 8221 8222 83Al 83A2 83A3 83A4

83A6

83A7 83A9 83AlO

83Bl 83B2

83B4

83B5 83B6

83B7 83B9 83BlO 83Bll 83B12 83B13

83B15 83C2 83Dl

Sato, M., Grier, B. H., Shapiro, S. M., Miyajima, H.: J. Phys. F12 (1982) 2117. Schmidt, M. C., EscribeFilippini, C., Ziebeck, K. R. A.: J. Phys. (Paris) 43 (1982) 931. Shorrocks, N. M., Whatmore, R. W., Ahrger, F. W.: Proc. IEEE Ultrasonics Symp. 1982, New York IEEE 1982, p. 359. Tomeno, I.: J. Phys. Sot. Jpn. Sl(l982) 2891. Tokumoto, H., Unoki, H., Ishiguro, T.: Jpn. J. Appl. Phys. 21(1982) Suppl. 21-3 77. Tsuji, K., Takano, S.: J. Phys. Sot. Jpn. 51(1982) 1851. van Doom, C. F., van Delden,,D. C., du Plessis, P. deV.: J. Magn. Magn. Mater. 27 (1982) 124. Wu, A. Y., Sladek, R. J.: Phys. Rev. B26 (1982) 2159. Weidner, D. J., Bass, J. D., Ringwood, A. E., Sinclair, W.: J. Geophys. Res. 87 (1982) 4740. Wu, A. Y., Sladek, R. J., Feigelson, R. S.: Phys. Rev. B26 (1982) 1507. Wong, C., Garikepati, P.: J. Appl. Phys. 53 (1982) 8529. Wang, C. H., Satija, S., Luty, F.: Chem. Phys. Lett. 90 (1982) 397. Weiner, D.: Ser. Metall. 16 (1982) 503. Yasunaga, M., Funatsu, Y., Kojima, S., Otsuka, K., Suzuki, T.: J. Phys. (Paris) 43 Suppl. (1982) c4-603. Yoshihara, A., Bernstein, E. R.: J. Chem. Phys. 77 (1982) 5319. Yamanaka, A., Kasaham M., Tatsuzaki, I.: Ferroelectr. Lett. Sect. 44 (1982) 93. Yoshihara, A., Bernstein, E. R., Raich, J. C.: J. Chem. Phys. 77 (1982) 2768. Yoshihara, A., Pan, C. L., Bernstein, E. R., Raich, J. C.: J. Chem. Phys. 76 (1982) 3218. Yoshihara, A., Wilber, W. D., Bernstein, E. R., Raich, J. C.: J. Chem. Phys. 76 (1982) 2064. Zarembo, L. K., Karpachev, S. N., Sukhovtsev, V. V.: Fiz. Tverd. Tela 24 (1982) 2514. Zabel, H., Magerl, A.: Phys. Rev. B25 (1982) 2463. Andmw, I. A., Kuzminov, Yu. S., Polozkov, N. M.: Zh. Tekh. Fizz. 53 (1983) 1632. Antonenko, A. M., Volnyanskii, M. D., Pozdeev, V. G.: Fiz. Tverd. Tela 25 (1983) 1848. Amano, M., Mazzolai, F. M., Bimbaum, H. K.: Acta Metall. 31(1983) 1549. Andrusiv, I. I., Grigorovich, G. M., Bisavskii, Yu. V., Ruvinskii, M. A., Shchetinin, V. P.: Fiz. Tverd. Tela 25 (1983) 252. Anistratov, A. T., Zamkov, A. V., Kot, L. A., Stolovitskaya, I. N., Shabanova, L. A.: Ferroelectrics 48 (1983) 103. Aronsson, R., Borjesson, L., Tore& L. M.: Solid State Ionics 8 (1983) 147. Aronsson, R., Borjesson, L., Torell, L. M.: Solid State Ionics 9 (1983) 1383. Aronsson, R., Gunilla Knape, H. E., Lunden, A., Nilsson, L., Torell, L. M., Andersen, N. H., Kjems, J. K.: Radiat. Eff. 75 (1983) 79. Berger, J., Thomas, F., Berthon, J., Revcolevschi, A.: Solid State Commun. 48 (1983) 231. Borovik-Romanov, A. S., Zhotikov, V. G., Zavaritskii, V. N., Kreines, N. M., Laiho, R., Levola, T.: Kristallogratlya 28 (1983) 713. Bairamov, B. Kh., Go&v, A. V., Karajamaki, E., Laiho, R., Levola, T., Toporov, V. V.: Fiz. Tverd. Tela 25 (1983) 1286. Burke&E., Behr, H., Metzger, H., Peisl, J., Eckold, G.: Z. Phys. B53 (1983) 27. Blanchfield, P., Hailing, T., Miller, A. J., Saunders, G. A., Chapman, B.: J. Phys. Cl6 (1983) 3851. Benoit, J. P., Thomas, F., Berger, J.: J. Phys. (Paris) 44 (1983) 841. Brassington, M. P., Saunders, G. A.: Proc. Roy. Sot. (London), Ser. A387 (1983) 289. Baranov, A. I., Shuvalov, L. A., Yak&kin, E. D.: Ferroelectrics 47 (1983)25. Bellessa, G.: J. Phys. Lett. (Paris) 44 (1983) L387. Boppart, H., Rehwald, W., Kakiis, E., Wachter, P.: Physica B+C 117-118 (1983) 573. Buchenau, U., Schober, H. R., Welter, J. M., Arnold, G., Wagner, R.: Phys. Rev. B27 (1983) 955. Batallan, F., Rosenman, I., Simon, C., Lauter, H.: Synth. Met. 7 (1983) 361. Chen, P. J.: Acta Mech. 47 (1983) 95. Drozdowski, M., Holuj, F., Czajkowski, M.: Solid State Commun. 45 (1983) 1005.

hdolt-B6mstein New Series IW29a

Page 630: Second and Higher Order Elastic Constants

618 1.4 References for 1

83D3 83D4 83D5 83El 83Gl 8362 83G4 8365

83G7 83G8

83G9 83GlO 83H2 83H3 83H4 83H5 83H6 83H7 83H8 83H9 83Hll 8311 83I2 83Jl 83K2

83K4 83K5 83K9 83K10 83Kl2 83K13 83K14 83Ll 83L2 83L4 83L5 83L6 83L7 83L8 83L9

83M3 83M4 83M5 83M6 83Nl

83N2

Davydov, S. Yu., Kobyakov, I. B.: Zh. Tekh. Fiz. 53 (1983) 377. David, W. I. F.: J. Phys. Cl6 (1983) 5093,5119. Dultz, W., Rehaber, E.: Phys. Rev. B28 (1983) 2114. E&vet, C., Sanquer, M., Pellegrin, J., DeWitte, J.: J. Chem. Phys. 78 (1983) 6317. Goncharova, V. A., Chemysheva, E. V., Voronov, F. F.: Fiz. Tverd. Tela 25 (1983) 3680. Gammon, P. H., Kiefte, H., Clouter, M. J.: J. Phys. Chem. 87 (1983) 4025. Gatulle, M., Fischer, M., Chevy, A.: Phys. Status Solidi (b) 119 (1983) 327. Gololobov, E. M., Mager, E. L., Mezhevich, 2. V., Pan, L. K.: Phys. Status Solidi (b) 119 (1983) K139. Grimsditch, M.: J. Phys. Cl6 (1983) L143. Goto, T., Tamaki, A., Kunii, S., Nakajima, T., Fujimura, T., Kasuya, T., Komatsubara, T., Woods, S. B.: J. Magn. Magn. Mater. 31-34 (1983) 419. Goto, T., Saga, N.: Yogyo-Kyokai-Shi 91(1983) 24. Ganot,F., Moth, P., Nouet, J.: J. Magn. Magn. Mater. 31-34 (1983) 1165. Haussuhl, S., Mateika, D.: Z. Kristallogr. 165 (1983) 289. Hausch, G., Schmolz, A., Torok, E., Warlimont, H.: J. Phys. (Paris) 44 Suppl. (1983) C9-471. Hirot.su, S.: Ferroelectrics 52 (1983) 25. Haussuhl, S.: Solid State Commun. 46 (1983) 423. Honma, Y., Yamada, M., Yamamoto, K., Abe, K.3. Phys. Sot. Jpn. 52 (1983) 2777. Hailing, T., Saunders, G. A.: J. Mater. Sci. 18 (1983) 2337. Hart, S., Greenwood, P. H.: Solid State Commun. 46 (1983) 161. Hwang, D. M.: Solid State Commun. 46 (1983) 177. Hailing, T., Saunders, G. A.: Philos. Mag. A48 (1983) 571. Ishio, S., Isomura, A., Ikeda, T., Takahashi, M., Kadowaki, S.: Physica B+C! 119 (1983) 119. Irving, M. A., Prawer, S., Smith, T. F., Finlayson, T. R.: Aust J. Phys. 36 (1983) 85. Jan& W., Koidl, P., Wettling, W.: Appl. Phys. A30 (1983) 109. Kaminskii, A. A., Silvestrova, I. M., Sarkisov, S. E., Denisenko, G. A.: Phys. Status Solidi (a) 80 (1983) 607. Karajamaki, E., Laiho, R., Levola, T.: J. Phys. Cl6 (1983) 6531. Khan, Md. S., Narasimhamurty, T. S., Ramana, Y. V.: J. Mater. Sci. Lett. 2 (1983) 629. Kmar, A., Ghosh, U. S.: J. Phys. Chem. Solids 44 (1983) 457. Kawai, Y., Ogawa, T.: Phys. Status Solidi (a) 76 (1983) 375. Kumazaki, K., Abe, Y.: Physida B+C 117-118 (1983) 438. Khanna, S. K.: Phys. Status Solidi (b) 116 (1983) 173. Khan, Md. S., Narasimhamurty, T. S., Ramana, Y. V.: Solid State Commun. 48 (1983) 169. Lenkkeri, J. T., Levoska, J.:Philos. Msg. A48 (1983) 749. Ling, H. C., Owen, W. S.: Acta Metall. 31(1983) 1343. Lingner, C., LUthi, B.: J. Magn. Magn. Mater. 36 (1983) 86. Leiiure, R. G., Kanashiro, T., Riedi,P. C., Hsu, D. K.: Phys. Rev. B27 (1983) 4872. Luspin, Y., Hauret, G.: Solid State Commun. 46 (1983) 397. Loidl, A., Haussuhl, S., Kjems, J. K.: Z. Phys. B50 (1983) 187. . Laiho, R., Lakkisto, M., Levola, T.: Philos. Mag. A47 (1983) 235. Lemanov, V. V.: Proc. 2nd Int. School on Condensed Matter Physics, Vama, Bulgaria 1982, Singapore: World Scientific 1983, p. 190. Matsuo, Y., Makita, T., Nagasawa, A.: Ser. Metall. 17 (1983) 285. Matsui, M., Shimizu, T., Ada&i, K.: Physica B+C 119 (1983) 84. Matsuo, Y., Takahashi, K., Nagasawa, A.: J. Jpn. Inst. Met. 47 (1983) 99, in Japanese. Mountfield, K. R., Rayne, J. A.: J. Magn. Magn. Mater. 31-34 (1983) 1167. Newman, P. R., Ewbank, M. D., Kuwamoto, H., Morgan, P. E. D.,Ehrenfreund, E.: J. Appl. Phys. 54. (1983) 1547. Nakajima, T., Yamauchi, H., Goto, T., Yoshizawa, M., Suzuki, T., Fujimura, T.: J. Magn. Magn. Mater. 31-34 (1983) 1189.

hdolt-Bhstcin New SaitrllI/29~

Page 631: Second and Higher Order Elastic Constants

1.4 References for 1 619

8301 83Pl 83P2 83P3 83P5 83P7 83P8 83Rl 83R2 83R3 8382

8383

83S5 83S6 8388

Olikh, Ya M.: Phys. Status Solidi (a) 80 (1983) KS 1. Pisarenko, G. G., Khaustov, V. K.: Probl. Pro&n. 15 (1983) 65. Pakulski, G., Mroz, B., Krajewski, T.: Ferroelectrics 48 (1983) 259. Puskorius, G. V., Trivisonno, J.: Phys. Rev. B28 (1983) 3566. Pottebohm, H., Neite, G., Nembach, E.: Mater. Sci. Eng. 60 (1983) 189. Polian, A., Grimsditch, M.: Phys. Rev. B27 (1983) 6499. Powell, B. M., Dolling, G., Nieman, H. F.: J. Chem. Phys. 79 (1983) 982. Rehwald, W., Vonlanthen, A: Z. Phys. B52 (1983) 139. Rytz, D., Chatelain, A., Hochli, U. T.: Phys. Rev. B27 (1983) 6830. Rehwald, W., Vonlanthen, A., Meyer, W.: Phys. Status Solidi (a) 75 (1983) 219. Shuvalov, L. A., Bondarenko, V. V., Varikash, V. M., Gridnev, S. A., Makarova, I. P., Simonov, V. I.: Kristallografiya 28 (1983) 1124. Smolenskii, G. A., Somikov, A. V., Symikov, P. P., Yushin, N. K.: Izv. Akad. Nauk SSSR Ser. Fiz. 47 (1983) 603. Suzuki, I., Anderson, 0. L., Sumino, Y.: Phys. Chem. Minerals 10 (1983) 38. Sumino, Y., Anderson, 0. L., Suzuki, I.: Phys. Chem. Minerals 9 (1983) 38. Strossner, K., Henkel, W., Hochheimer, H. D., Cardona, M.: Solid State Commun. 47 (1983) 567.

8339

83Sll

83813

83314 83815 83317 83Tl 8312 83Ul

Stassis, C., Zaretsky, J., Misemer, D. K., Skriver, H. L., Harmon, B. N., Nicklow, R. M.: Phys. Rev. B27 (1983) 3303. Smolenskii, G. A., Sotnikov, A. V., Symikov, P. P., Yushin, N. K.: Pis’maZh. Eksp. Teor. Fiz. 37 (1983) 30. Suzuki, T., Yoshizawa, M., Goto, T., Yamakami, T., Takahashi, M., Fujimura, T.: J. Phys. Sot. Jpn. 52 (1983) 1669. Shin&u, H.: Oyo Buturi 52 (1983) 22. Straube, U., Grutznxum, D., Sorge, G.: Acta Phys. Slovaca 33 (1983) 3 15. Stirling, W. G., Lander, G. H., Vogt, 0.: J. Phys. Cl6 (1983) 4093. Tomeno, I., Matsumura, S.: J. Phys. Sot. Jpn.,52 (1983) 1515. Tokumoto, H., Unoki, H.: Phys. Rev. B27 (1983) 3748. Unoki, H., Tokumoto, H., Ishiguro, T.:Proc. 4th Int. Conf. on Phonon Scattering in Condensed Matter 1983, Berlin: Springer Verlag 1984, p. 292; Jpn. J. Appl. Phys. 22 (1983) Suppl. 22-3 187.

83Vl 83V2 83V3

83Wl 83W2 83X1 83Y4 83Y5 83Y6 83Y8 8321

8322

8324, 84Al

Vaughan, M. T., Bass, J. D.: Phys. Chem. Minerals 10 (1983) 62. van Rijn, H. J., Alberts, H. L.: J. Phys. F13 (1983) 1559. Vainshtein, A. A., Galperina, B. A., Strizhak, V. A., Kuznetsov, L. M., Stepanov, S. I.: Fiz. Met. Metalloved. 55 (1983) 193. Weidner, D. J., Hamaya, N.: Phys. Earth Planet. Interiors 33 (1983) 275. Wachter, P.: J. Magn. Magn. Mater. 31-34 (1983) 439. Xu, Y., Chen, H.: Acta Phys. Sin. 32 (1983) 705. Yasunaga, M., Funatsu, Y., Kojima, S., Otsuka, K., Suzuki, T.: Ser. Metall. 17 (1983) 1091. Yang, H., Sladek, R. J., Harrison, H. R.: Solid State Commun. 47 (1983) 955. Yushin, N. K,, Nasyrov, A. N., Salaev, F. M., Sher, E. S.: Fiz. Tverd. Tela 25 (1983) 575. Yoshihara, A., Bernstein, E. R., Raich, J. C.: J. Chem. Phys. 79 (1983) 2504. Zaitseva, M. P., Shabanova, L. A., Kidyarov, B. I., Kokorhr, Yu. I., Burkov, S. I.: Kristallografiya 28 (1983) 741. Zharikov, E. V., Zolotko, A. S., Kitaeva, V. F., Laptev, V. V., O&o, V. V., Sobolev, N. N., Sychev, I. A.: Fiz. Tverd. Tela 25 (1983) 986. Zabel, H.,.Magerl, A., Rush, J. J.: Phys. Rev. B27 (1983) 3930. Avakyants, L. P., Kiselev, D. F., Chervyakov, A. V.: Izv. Akad. Nauk SSSR Ser. Fiz. 48 (1984) 1107.

84A2 Aliev, A. E., Fershtat, L. N., Khabibullaev, P. K.: Teplofiz. Vys. Temp. 22 (1984) 473. 84A3 Antonenko, A. M., Stolpakova, T. M.: Ukr. Fiz. Zh. 29 (1984) 612.

Land&-B6mstein , New Series UI/29a

Page 632: Second and Higher Order Elastic Constants

620 1.4 References for 1

84B1 84B2 84B3 84B6 84B8

84B9 84BlO 84Bll

84B12 84B13 84B16 84B17 84B18

84B19 84B20 84B21 84C.l

84Dl 84D3 84D4 84El 84E3

84F2 84F3 84F4 84F5 84Gl

84G3 84Hl 84H2 84H3 84H4 84H5 84H6 84H7

84H8 84H9 84HlO 84H12 84Hl4 84Hl5

8411 84Jl

Bohaty, L., Haussuhl, S.: 2. Kristallogr. 167 (1984) 299. Bohaty, L., Haussuhl, S.: 2. Kriscallogr. 167 (1984) 303. Babushkin, A. N., Ko,belev, L. Ya, zlokazov, V. B.: Kristallografiya 29 (1984) 807. Basu, B. K., Samudravijaya, K., Nigam, A. K.9. Appl. Phys. 56 (1984) 3018. Buchenau, U., Heiroth, M., Schober, H. R.,Evers, J., Gehlinger, G.: Phys. Rev. B30 (1984) 3502. Boppatt, H., Wachter, P.: Phys. Rev. Lett. 53 (1984) 1759. Brill, J. W., Roark, W.: Phys. Rev. Lett. 53 (1984) 846. Bass, J. D., Weidner, D. J., Hamaya, N., Ozima, M., Akimoto, S.: Phys. Chem. Minerals 10 (1984) 261. Brissaud, M., Eyraud, L., Guerder, P.: Acustica 55 (1984) 160. Benoit, J. P., Berger, J.: Fenoelectrics 53 (1984) 235. Berger, J., Benoit, J. P.: Solid State Commun. 49 (1984) 541. Beige, H., Schmidt, G.: Ferroelectr. Lett. Sect. 1(1984) 155. Boppart, H., Wachter, P.: Proc. 9th AIRAPT Int. High Pressure Conf. 1983, New York: North Holland 1984, p. 273. Bernstein, E. R.: Mater. Sci. (Poland) 10 (1984) 315. Baranov, N. V., Deryaght, A. V., Kvashnin, G. M.: Pis’ma Zh. Tekh. Fiz. 10 (1984) 596. Bass, J. D., Weidner, D. J.: J. Geophys. Res. 89 (1984) 4359. Carabatos, C., Kugel, G. E., Fontana, M. D.: Proc. IUTAM-IUPAP Symp. Paris 1983, Amsterdam: North Holland 1984, p. 145. Deryagin, A. V., Kvashnin,G. M., Kapitonov, A. M.: Fiz. Tverd. Tela 26 (1984) 3106. Deryagin, A. V., Kvashnin, G. M., Kapitonov, A. M.: Fiz. Met. Metalloved. 57 (1984) 686. Dunk, A., Saunders, G. A.: J. Mater. Sci. 19 (1984) 125. Ecolivet, C., Toudic, B., Sanquer, M.: J. Chem. Phys. 81(1984) 599. E&ova, L. M., Zharikov, E. V., Kitaeva, V. F., O&o, V. V., Rustamov, I. R., Sobolev, N. N.: Sb. Kratk. Soobshch. Fiz. AN SSSR Fiz. Inst. P. N. Lebedeva 7 (1984) 48. Fossum, J. O., Fossheim, K., Scheel, J. H.: Solid State Commun. 51(1984) 839. Fredericks, W. J., Collins, P. R., Edwards, D. F.: J. Phys. Chem. Solids 45 (1984) 471. Fossum, J. O., Fossheim, K.: Ferroelectrics 54 (1984) 629. Finch, C. B., Ferber, M. K., Simpson, W. A., Williams, R. K.: J. Mater. Sci. Lett. 3 (1984) 1074. Goto, T., Kanda, E., Yamada, H., Suto, S., Tanaka, S., Fuji@ T., Fujimura, T.: Proc. LT-17 1984, Amsterdam: North Holland 1984, p. 383. Gedich, D., Hart, S., Whittal, D.: Phys. Rev. B29 (1984) 2142. Haussuhl, S., Nagel, W., Bohm, H.: Z. Kristallogr. 169 (1984) 299. Haussuhl, S., Bohaty,L., Grazel, U.: Z. Kristallogr. 167 (1984) 307. Haussuhl, S., Bohaty, L.: Z. Kristallogr. 167 (1984) 311. Hailing, T., Saunders, G. A., Bach, H.: Phys. Rev. B29 (1984) 1848. Hailing, T., Saunders, G. A., Chnar, M. S., Pamplin, B. R.: J. Phys. Chem. Solids 45 (1984) 163. Hailing, T., Saunders, G: A., Pelzl, J., Wruk, N.: J. Phys. Cl7 (1984) 5121. Hailing, T., Saunders, G. A., Yogurtcu, Y. K., Bach, H., Methfessel, S.: J. Phys. Cl7 (1984) 4559. Huard, F., El Haidouri, A., Durand, J., Vacher, R., Pelous, J.: Mater. Res. Bull. 19 (1984) 415. Hikita,T., Iwasaki, A., Ikeda, T.: J. Phys. Sot. Jpn. 53 (1984) 1524. Hikita,T.: J.Phys. Sot. Jpn. 53 (1984) 1513. Haussuhl, S.: Solid State Commun. SO (1984) 63. Ham, I.: J. Phys. Sot. Jpn. 53 (1984) 635. Hart, S.: Proc. 9th AIRAPT Int. High Pressure Conf. 1983, New York: North Holland 1984, p. 239. Ihlemann, J., Bamer, K.: J. Magn. Magn. Mater. 46 (1984) 40. Jiles, D. C., Palmer, S. B., Jones, D. W., Farrant, S. P., Gschneidner, K. A.: J. Phys. F14 (1984) 3061.

Landoh-Bhstcin New Swim l&298

Page 633: Second and Higher Order Elastic Constants

1.4 References for 1 621

84Kl

84K2

84K3 84K4 84K6 84K7 84Ll 84L3

84L5 84Ml 84M3 84M4 84M5 84M6 84M7 84M8 84M9 84N2

84P2 84P3 84P4 84Rl 84R2

84Sl 8483 8434 8435 8437 8439

84SlO 84Sll 8412 8413 84Ul

84Vl 84v2 84v3

84Wl 84w2 84w3 84x1 84Yl

Kvashnina, 0. P., Kapitonov, A. M., Smokotin, E. M., Titova, A. G.: Fiz. Tverd. Tela 26 (1984) 2488. Kaminskii, A. A., Belokoneva, E. L., Mill, B. V., Pisarevskii, Yu. V., Sarkisov, S. E., Silvestrova, I. M., Butashin, A. V., Khodzhabagyan, G. G.: Phys. Status Solidi (a) 86 (1984) 345. Kushida, T., Terhune, R. W.: Phys. Rev. B30 (1984) 3554. Kandil, H. M., Greiner, J. D., Smith, J. F.: J. Am. Ceram. Sot. 67 (1984) 341. Krzesinska, M., Szuta-Buchacz, T.: Phys. Status Solidi (a) 82 (1984) 421. Kanrar, A., Ghosh, U. S.: Indian J. Cryog. 9 (1984) 284. Ledbetter, H. M.: Phys. Status Solidi (a) 85 (1984) 89. LUthi, B., Blumenroder, S., Hillebrands, B., Zimgiebl, E., Guntherodt, G., Winzer, K.: Z. Phys. B58 (1984) 31. Luspin, Y., Hauret, G., Robinet, A. M., Benoit, J. P.: Ferroelectrics 53 (1984) 273. Mock, R., Guntherodt, G.: J. Phys. Cl7 (1984) 5635. Manasreh, M. O., Pederson, D. 0.: Phys. Rev. B30 (1984) 3482. Marx, S. V., Simmons, R. 0.: J. Chem. Phys. 81(1984) 944. Manasreh, M. O., Pederson, D. 0.: J. Acoust. Sot. Am. 75 (1984) 1766. Matsuo, Y.: J. Phys. Sot. Jpn. 53 (1984) 1360. Morin, P., Williamson, S. J.: Phys. Rev. B29 (1984) 1425. McLelIan, A. G.: J. Phys. Cl7 (1984) 1. Muller, P., Buchenau, U., Nucker, N.,,Renker, B., Muller, A.: Proc. LT-17 (1984) 599. Neuenschwander, J., Boppart, H., Schoenes, J., Voit, E., Vogt, O., Wachter, P.: 14th Journees des A&ides @I. Schoenes, J.), Ziirich: Eidgenossische Technische Hochschule 1984, p. 30. Quoted in [85D4]. Polian, A., Grimsditch, M.: Phys. Rev. B29 (1984) 6362. Poker, D. B., Setser, G. G., Granato, A. V., Bimbaum, H. K.: Phys. Rev. B29 (1984) 622. Pierre, J., Galera, R. M., Bouillot, J.: J. Magn. Magn. Mater. 42 (1984) 139. Reeker, K., Wall&en, F., Haussuhl, S., Shu, S. Z.: Z. Kristallogr. 169 (1984) 249. Rehwald, W.: Proc. 4th Int. Cot& on Phonon Scattering in Condensed Matter 1983, Berlin: Springer Verlag 1984, p. 295. Smolenskii, G. A., Sotnikov, A. V., Yushin, N. K.: Fiz. Tverd. Tela 26 (1984) 3063. Schmidt, J. W., Nielsen, M., Daniels, W. B.: Phys. Rev. B30 (1984) 6308. Serge, G., Janich, J., Shuvalov, L. A., Shchagina, N. M.: Phys. Status Solidi (a) 86 (1984) 111. Saunders, G. A., Yogurtcu, Y. K.: Phys. Rev. B30 (1984) 5734. Serge, G., Janich, J., Shuvalov, L. A.: Ferroelectr. Lett. Sect. 3 (1984)15. Smolenskii, G. A., Sotnikov, A. V., Symikov, P. P., Yushin, N. K.: Ferroelectrics 54 (1984) 459. Sood, A. K., Cardona, M.: Solid State Commun. 49 (1984) 299. Sasaki, Y., Takeuchi, Y., Marutake, M.: J. Phys. Sot. Jpn. 53 (1984) 2428. Taniguchi, O., Tokunaga, M., Kasahara, M., Tatsuzaki, I.: J. Phys. Sot. Jpn. 53 (1984) 3227. Tsunoda, Y., Oishi, N., Kunitomi, N.: J. Phys. Sot. Jpn. 53 (1984) 359. Unoki, H., Tokumoto,k., Ishiguro, T.: Proc 4th Int. Conf. on Phonon Scattering in Condensed Matter 1983, Berlin: Springer Verlag 1984, p. 292. Verlinden, B., Suzuki, T., Delaey, L., Guenin, G.: Ser. Metall. 18 (1984) 975. Vo Thanh, D., Lacam, A.: Phys. Earth. Planet. Interiors 34 (1984) 195. Volarovich, M. P., Efimova, G. A., Kireyenkova, S. M., Safarov, I. B., Chesnokov, E. M.: Gerlands Be&. Geophys. 93 (1984) 95. Weidner, D. J., Sawamoto, H., Sasaki, S., Kumazawa, M.: J. Geophys. Res. 89 (1984) 7852. Wettling, W., Windscheif, J.: Solid State Commun. 50 (1984) 33. Webb, S. L., Jackson, I., Takei, H.: Phys. Chem. Minerals ll(l984) 167. Xu, Y., Chen, H., Cross, L. E.: Ferroelectrics 54 (1984) 463. Yamashita, H., Tatsuzaki, I.: J. Phys. Sot. Jpn. 53 (1984) 2075.

LandolbB6mstein New Se&a llU.?9a

Page 634: Second and Higher Order Elastic Constants

622 1.4 References for 1

84Y3

84Y6

8421

8422

85Al

85A2 85A3

85A5

85B2

85B3

8584 85B5

85B6 85B7 85Cl 85C2

85C4 85Dl 85D2 85D3 85D4

85D5 85El 85Fl 85F2 85F3 85F4 85Gl 8562

8503

8505 8506 85G7 8508 85G9

85GlO 85JX!

Yoshiham, A., Burr, J. C., Mudare, S. M., Bernstein, E. R., Raich, J. C.: J. Chem. Phys. 80 (1984) 3816. Yamada, Y., Fujii, Y., Akahama, S., Endo, S. Narita, S., Axe, J. D., McWhan, D. B.: Phys. Rev. B30 (1984) 2410. Zinoveva, G. P., Romasheva, L. F., Saperov, V. A., Geld, P. V.: Fiz. Tverd. Tela 26 (1984) 3509. Zharkov,E. V., Kitaeva, V. F., Osiko, V. V.,Rustamov, I. R., Sobolev, N. N.: Fiz. Tverd. Tela 26 (1984) 1517. Andreev, A. V., Deryagin, A. V., Zadvorkin, S. M., Kvashnin, G. M.: Fiz. Tverd. Tela 27 (1985) 3164. Avakyants, L. P., Kiselev, D. F., Chervyakov, A. V.: Kristallogratiya 30 (1985) 1021. Antyukhov, A. M., Kutiov, V. I., Antortov, A. V., Ivanov, I. A.: Fiz. Tverd. Tela 27 (1985) 1224. Ada&i, M., Shiosaki, T., Kobayashi, H., Ohnishi, O., Kawabata, A.: Proc. IEEE Ultrasonics Symp. 1985, p. 228. Bernet, J. F., Doussineau, P., Levelut, A., Meissner, M., Schon, W.: Phys. Rev. Lea. 55 (1985) 2013. Benoit, J. P., Hauret, G., Luspin, Y., Gillet, A. M., Berger, J.: Solid State Commun. 54 (1985) 1095. Barber, R., Buchanan, J. R., Cain, L. S.: J. Phys. Chem. Solids 45 (1985) 249. Belyaev, A. D., Mise$uk, E. G., Olikh, Ya. M., Tsekvava, B. E., Volnyanskii, M. D.: Kristallograflya 30 (1985) 1131. Brodowsky, H., Fleischhauer, J.: Z. Phys. Chem. Neue Folge 145 (1985) 221. Boppart, H.: J. Magn. Magn. Mater. 47-48 (1985) 436. Chater, R., Gavarri, J. R.: J. Solid State Chem. 59 (1985) 123. Ciausen, K., Hayes, W., Hutchings, M. T., Kjems, J. K., Macdonald, J. E., Osbom, R.: High Temp. Sci. 19 (1985) 189. Chater, R., Gavarri, J. R., Hewat, A.: J. Solid State Chem. 60 (1985) 78. Dkstelhorst, M., Hoffmann,R., Beige, H.: Jpn. J. Appl. Phys. 24 (1985) Suppl. 24-2 1019. Dominec, J.: J. Phys. Cl8 (1985) 5793. Deryagin, A. V., Kvashnin, G. M., Kapitonov, A. M.: Fiz. Tverd Tela 27 (1985) 255. du Plessis, P. deV., Holden, T. M., Buyers, W. J. L., Jackman, J. A., Murray, A. F., van Doom, C. F.: J. Phys. Cl8 (1985) 2809. de Visser, A., Franse, J. J. M., Menovsky, A.: J. Phys. F15 (1985) L53. Errandonea, G., Hebbache, M., Bonnouvrier, F.: Phys. Rev. B32 (1985) 1691. Florencio, O., Pinatti, D. G., Roberts, J. M.: J. Phys. (Paris) 46 Suppl. (1985) ClO-115. Fossum, J. O., Fossheim, K.3. Phys. Cl8 (1985) 5549. Fischer, M., Polian, A., Chevy, A., Chervin, J. C.: Solid State Commun. 56 (1985) 311. Flower, S. C., Saunders, G. A., Yogurtcu, Y. K.: J. Phys. Chem. Solids 46 (1985) 97. Gendelev, S. Sh., Guseva, E. K., Saenko, I. V., Titov, S. V.: Kristallografiya 30 (1985) 739. Grabov, V. M., Davydov, S. Yu., Mironov, Yu. P., Dzhumigo, A. M.: Fiz. Tverd. Tela 27 (1985) 2017. . Gignoux, D., Givord, F., Hennion, B., Ishikawa, Y., Lemaire, R.: J. Magn. Magn. Mater. 52 (1985) 421. .

~ Gridnev, S. A., Shuvalov, L. A., Bondarenko, V. V.: Fiz. Tverd. Tela 27 (1985) 464. Gavarri, J. R., Boher, P., Hewat, A. W.: J. Solid State Chem. 58 (1985) 87. Ghosh, U. X., Kanrar, A.: J. Appl. Phys. 57 (1985) 5071. Ganot, F., Kihal, B., Farhi, R., Moth, P.: Jpn. J. Appl. Phys. 24 (1985) Suppl. 24-2 491. Gao, Q. Z., Kanda, E., Kitazawa, H., Sera, M., Goto, T., Fuji& T., Suzuki, T., Fujimura, T., Kasuya, T.: J. Magn. Magn. Mater. 47-48 (1985) 69. Gurchenok, A. A., Ulyanov, V. L.: Izv. Vyssh Uchebn. Zaved. Fiz. No. 28 (1985) 71. Haussuhl, S.: Z. Kristallogr. 171(1985) 269.

Lad&BBmstein New SaiesmR9a

Page 635: Second and Higher Order Elastic Constants

1.4 References for 1 623

85H3 85H4 85H5 85H6

85H7 \

85H8 85K2

85K4 85K5 85K6 85K7 85K8 85Kll 85Kl2

85Ll 85L3 85L5

85L6

85L7

85Ml 85M2 85M4 85M5

85M6

85M7 85M8 85M9 85MlO 85Mll 85M12

85Nl 85N2 8502 85Pl

I85P5 85P8 85P9 8541

85R2 85Sl

Hayakawa, M., Imai, S., Oka, M.: J. Appl. Crystallogr. 18 (1985) 513. Holuj, F., Drozdowski, M., Czajkowski, M.: Solid State Commun. 56 (1985) 1019. Haussuhl, S., Nicolau, Y. F.: 2. Phys. B61(1985) 85. Ham, K., Sakai, A., Tsunekawa, S., Sawada, A., Ishibashi, Y., Yagi, T.: J. Phys. Sot. Jpn. 54 (1985) 1168. Hikita, T., Schnackenberg, P., .Schmidt, V. H.: Phys. Rev. B31(1985) 299; Ferroelectrics 63 (1985) 107. Harder, S.: J. Geophys. Res. 90 (1985) 10275. Kanda, E., Goto, T., Yamada, H., Suto, S., Tanaka, S., Fuji@ T., Fujimura, T.: J. Phys. Sot. Jpn. 54 (1985) 175. Knorr, K.,Loidl, A., Kjems, J. K.: Phys. Rev. Lett. 55 (1985) 2445. Kiefte, H., Breckon, S. W., Penney, R., Clouter, M. J.: J. Chem. Phys. 83 (1985) 4738. Kato, E., Komatsu, T., Kaifu, Y.: J. Phys. Sot. Jpn. 54 (1985) 3597. Kruger, J. K., Peetz, L., Albers, J., Muser, H. E.: Ferroelectr. Lett. Sect. 4 (1985) 111. Kiefte, H., Clouter, M. J., Gagnon, R. E.: J. Phys. Chem. 89 (1985) 3103. Kondratyev, V. V., Pushin, V. G.: Fiz. Met. Metalloved. 60 (1985) 629. Kuryachii, V. Ya., Mikhalchenko, V. P., Stuchinskaya, N. V., Tychina, I. I.: Ukr. Fiz. Zh. 30 (1985) 248. Luspin, Y., Hauret, G., Gillet, A. M.: Ferroelectrics 65 (1985) 1. Ledbetter, H. M.: J. Appl. Phys. 57 (1985) 5069. Luspin, Y., Hauret, G., Echegut, P.: Proc. Second Int. Conf. on Phonon’Physics, Singapore: World Scientific 1985, p, 278. L&hi, B., Herrmann, M., Assmus, W., Schmidt, H., Rietschel, H., Wuhl, H., Gottwick, U., Spam, G., Steglich, F.: Z. Phys. B60 (1985) 387. Ltithi, B., Bhunenroder, S., Hillebrands, B., Zimgiebl, E., Guntherodt, G., Winzer, K.: J. Magn. Magn. Mater. 47-48 (1985) 321. Maheswaranathan, P., Sladek, R. J., Deb&a, U.: J. Phys. (Paris) 46 Suppl. (1985) ClO-513. Mizuki, J., Stassis, C.:Phys. Rev B32 (1985) 8372; Errata: B35 (1987) 872. Mizuki, J.,Chen, Y.,Ho, K. M., Stassis, C.: Phys. Rev. B32 (1985) 666. Macdonald, J. E., Saunders, G. A., Yogurtcu, Y. K., Honle, W.: J. Phys. Chem. Solids 46 (1985) 951. Macdonald, J. E., Saunders, G. A., Chnar, M. S., Pamplin, B. R.: Phys. Status Solidi (a) 89 (1985) K137. Maheswaramhan, P., Sladek, R. J., Deb&a, U.: Phys. Rev. B31(1985) 5212. Manasreh, M. O., Pederson, D. 0.: Phys. Rev. B31(1985) 3960. Mazzolai, F. M., Bimbaum, H. K.: J. Phys. F15 (1985) 507. Maheswamathan, P., Sladek, R. J., Deb&a, U.: Phys. Rev. B31(1985) 7910. Manasreh, M. O., Pederson, D. 0.: Solid State Ionics 15 (1985) 65. Mickevicius, V. V., Purlys, R. P., Sin&is, A. Yu., Griskevicius, D. S.: Litov. Fiz. Sb. 25 (1985) 56. Nucker, N., Buchenau, U.: Phys. Rev. B31(1985) 5479. Niksch, M., Kouroudis, I., Assmus, W., Liithi, B.: J. Magn. Magn. Mater: 47-48 (1985) 297. Orlova, N. S.: Cry& Res. Technol. 20 (1985) 233. Poker, D. B., Schwarz, R. B., Granato, A. V.: J. Phys. (Paris) 46 Suppl. (1985) ClO-123. Powell, B. M., Press, W., Dolling, G.: Phys. Rev. B32 (1985) 3118. Prawer, S., Smith, T. F., Finlayson, T. R.: Aust. J. Phys. 38 (1985) 63. Peisl, J., Fischer, H., Metzger, T. H.: Z. Phys. Chem. Neue Folge 145 (1985) 189. Qiu, S. L., Bunten, R. A. J., Dutta, M., Mitchell, E. W. J., Cummins, H. Z.: Phys. Rev. B31 (1985) 2456. Rehwald, W., Vonlanthen, A.: Z. Phys. B61(1985) 25. Sheleg, A. U., Soshnikov, L. E.: Fiz. Tverd. Tela 27 (1985) 3685.

hdolt-B6mstein New Set-lea IlIfZ9a

Page 636: Second and Higher Order Elastic Constants

624 1.4 References for 1

8582

8533

85S4 8535

8536

8537

8538 8589

85SlO 85Sll

85S12 85813 85814 85S15 85316 85317

85318

85Tl 8512 85T4

85T5 85T6 8517 85T9 85TlO

85Vl

85V3 85V4 85Wl 85W2 85W3 85W4 85W5

85W6

85W7 85W8 85W9

Smolenskii, G. A., Sotnikov, A. V., Symikov, P. P., Yushin, N. K.: Izv. Akad. Nauk SSSR Ser. Fiz. 49 (1985) 247. Silvestrova, I. M., Pisarevskii, Yu. V., Mill, B. V., Kaminskii, A. A.: Dokl. Akad. Nauk SSSR 282 (1985) 575. Shiga, M., Muraoka, Y., Ishibashi, N., Nakamura, Y.: J. Phys. Sot. Jpn. 54 (1985) 4306. Shiosaki, T., Ada&i, M., Kobayashi, H., Araki, K., Kawabata, A: Jpn. J. Appl. Phys. 24 (1985) 25. Suzuki, T., Goto, T., Fujimura, T., Kunii, S., Suzuki, T., Kasuya, T.: J. Magn. Magn. Mater. 52 (1985) 261. Smolenskii, G. A., Sinii, I. G., Tagantsev, A. K., Prokhorova, S. D., Mikvabiya, V. D., Windsch, W.: Zh. Eksp. Tear. Fiz. 88 (1985) 1020. Satija, S. K., Comes, R. P., Shirane, G.: Phys. Rev. B32 (1985) 3309. Soluch, W., Ksiezopolski, R.,Piekarczyk, W., Berkowski, M., Goodberlet, M. A., Vetelino, J. F.: J. Appl. Phys. !I8 (1985) 2285. hits, J. G.: Ferroelectrics 64 (1985) 275. Suzuki, T., Goto, T., Tamaki, A., Fujimura, T., Gnuki, Y., Komatsubara, T.: J. Phys. Sot. Jpn. 54 (1985) 2367. Smolenskii, G. A., Yushin, N. K., Smimov, S. I.: Fiz. Tverd. Tela 27 (1985) 801. Stasis, C., Smith, G. S., Harmon, B. N., Ho, K. M., Chen, Y.: Phys. Rev. B31(1985) 6298. Strossner, K., Hochheimer, H. D.: J. Chem. Phys. 82 (1985) 5364. Shubii, V. V., Kataev, G. I., Ivanova, T. I.: Fiz. Met. Metalloved. 59 (1985) 746. Smokotin, E. M., Kvashnina, 0. P., Kapitonov, A. M.: Phys. Status Solidi (a) 87 (1985) K53. Smith, H. G., Dolling, G., Kunii, S., Kasaya, M., Liu, B., Takegahara, K., Kasuya, T., Goto, T.: Solid State Commun. 53 (1985) 15. Shuvalov, L. A., Gridnev, S. A., Bondarenko, V. V., Varikash, V. M.: Izv. Akad. Nauk SSSR Ser. Fiz. 49 (1985) 251. Tomeno, I., Matsumura, S.: Jpn. J. Appl. Phys. 24 (1985) Suppl. 24-2 679. Takegahara, K., Kasaya, M., Goto, T., Kasuya, T.: Physica B+C 130 (1985) 49. Tamaki, A., Goto, T., Yoshizawa, M.,Fujimura, T., Kunii, S., Kasuya, T.: J. Magn. Magn. Mater. 52 (1985) 257. Tam&i, A., Goto, T., Kunii, S., Suzuki, T., Fujimura, T., Kasuya, T.: J. Phys. Cl8 (1985) 5849. Tatli, A.: J. Phys. Chem. Solids 46 (1985) 1015. Tsunoda, Y., Kunitomi, N.: Solid State Commun. 54 (1985) 547. Take&a, T., Sakaq K., Toda, K.: Jpn. J. Appl. Phys. 24 (1985) Suppl. 24-2 730. Tar&i, A., Goto, T., Kunii, S., Kasaya, M., Suzuki, T., Fujimura, T., Kasuya, T.: J. Magn. Magn. Mater. 47-48 (1985) 469. Volk, T. R., Rakhimov, I., Samatskii, V. M., Charnaya, E. V., Shuvalov, L. A., Shutilov, V. A.: Fiz. Tverd. Tela 27 (1985) 3613. Vasilev, A. N., Gaidukov, Yu. P., Nikiforov, V. N.: Pis’ma Zh. Eksp. Tear. Fiz. 41(1985) 466. Vassiliou, J. K.: J. Appl. Phys, 57 (1985) 4543. Walker, N. J., Saunders, G. A., Hawkey, J. E.: Philos. Mag. B52 (1985) 1005. Wruk, N., Pelzl, J., Saunders, G. A., Hailing, T.: J. Phys. Chem. Solids 46 (1985) 1235. Weidner, D. J., Ito, E.: Phys. Earth Planet. Interiors 40 (1985) 65. Witek, A.: Physica B+C 128 (1985) 39. Wruk, N., Pelzl, J., Hock, K.-H., Saunders, G. A.: Proc. Second Int. Conf. on Phonon Physics, Singapore: World Scientific 1985, p. 328. Wruk, N., Futterer, H., Bach, H., Pelzl, J., Hoch, K.-H., Saunders, G. A.: Proc. Second Int. Conf. on Phonon Physics, Singapore: World Scientific 1985, p. 293. Wang, H., Xu, B., Liu, X., Han, J., Shan, S.: Acta Phys. Sin. 34 (1985) 1634. Wang, J.,Zhang, D., Wang,R.,Zhang,L.: Chin. Phys. Lett. 2 (1985) 201. Wolniewicz, H.: Mater. Sci. (Poland) 11(1985) 77.

85WlO Wang, R., Wang, J., Cha, J.: Acta Phys. Sin. 34 (1985) 1086.

Lmdolt-Bthsldn New SCAM llIf29e

Page 637: Second and Higher Order Elastic Constants

1.4 References for 1 625

85Yl Yamada, M., Yamasaki, Y., Honma, Y., Yamamoto, K., Abe, Ic: J. Phys. Sot. Jpn. 54 (1985) 608.

85Y2 Yoshihara, A., Toshizawa, M., Yasuda, H., Fujimura, T.: Jpn. J. Appl. Phys. 24 (1985) Suppl. 24-2 367.

85Y3 85Y4 85Y5 85Y6

85Y7 85Y9

8521

86Al 86A3 86Bl

Yogurtcu, Y. K., Saunders, G. A., Riedi, P. C.: Philos. Mag. AS2 (1985) 833. Yoshihara, A., Suzuki, T., Yamakami, T., Fujimura, T.: J. Phys. Sot. Jpn. 54 (1985) 3376. Yang, H., Sladek,R. J., Harrison, H. R.: Phys. Rev. B31(1985) 5417. Yogurtcu, Y. K., Hailing, T., Saunders,G. A., Bach, H.,Methfessel, S.: J. Mater. Sci. Lett. 4 (1985) 230. Yang, S. W.: Metall. Trans. Al6 (1985) 661. Yoshizawa, M., Ltithi, B., Goto, T., Suzuki, T., Renker, B., de Visser, A., Frings, P., Franse, J. J. M.: J. Magn. Magn. Mater. 52 (1985) 413. Zharikov, E. V., Kitaeva, V. F., Kosheleva, I. V., Ershova, L. M., Kalitin, S. P., Osiko, V. V., Sobolev, N. N.: Sb. Kratk. Soobshch. Fiz. AN SSSR Fiz. Inst. P. N. Lebedeva l(l985) 23. Al-Mummar, I. J., Saunders, G. A.: Phys. Rev. B34 (1986) 4304. Asenbaum, A., Biaschko, O., Hochheimer, H. D.: Phys. Rev. B34 (1986) 1968. Belousov, A. P., Lisitskii, I. S., Salakhitdinov, F., Samatskii, V. M., Charnaya, E. V., Shutilov, V. A.: Akust. Zh. 32 (1986) 656.

86B5 86B6 86B7 86B8 86BlO 86Cl

86D2 86D3 86D4 86Fl

Bass, J. D.: J. Geophys. Res. 91(1986) 7505.’ Brill, J. W., Roark, W., Minton, G.: Phys. Rev. B33 (1986) 6831. Benoit, J. P., Berger, J., Krautzman, M., Godet, J. L.: J. Phys. (Paris) 47 (1986) 815. Burnett, P. J., Briggs, G. A. D.: J. Mater. Sci. 21(1986) 1828. Berger, J., Benoit, J. P., Garland, C. W., Wallace, P. W.: J. Phys. (Paris) 47 (1986) 483. Comhrs, J. D., Heremans, C., Salleh, M. D., Saunders, G. A., Honle, W.: J. Mater. Sci. Lett. 5 (1986) 1195. de Kouchkovsky, R., Nasser, J. A.: J. Phys. (Paris) 47 (1986) 1741. DiVincenzo, D. P.: Phys. Rev. 834 (1986) 5450. Damjanovic, D., Gumraja, T. R., Jang, S. J.: Proc. IEEE Ultrasonics Symp. 1986, p. 633. Frankel, J., Vassiliou, J., Jamieson, J. C., Dandekar, D. P., Scholz, W.: Physica B+C 139-140 (1986) 198.

86232 86F3

Fisher, E. S.: Ser. Metall. 20 (1986) 279. Field, J. E.: Proc. Int. Conf. on Science of Hard Materials 1984, Bristol: Adam Hilger 1986, p. 181.

86Gl 86G3 86G4 8665 86G7 86G8 86Hl 86H2 86H4 86H5 86H6 86H7 8611

8612

Goncharova, V. A., Chemysheva, E. V., Voronov, F. F.: Fiz. Tverd. Tela 28 (1986) 3664. Gnanam,F. D., Wang, J., Haussuhl, S.: Z. Kristallogr. 174 (1986) 313. Goto, T., Tamaki, A., Fujimura, T.,Unoki, H.: J. Phys. Sot. Jpn. 55 (1986) 1613. Grimsditch, M., Loubeyre, P., Polian, A.: Phys. Rev. B33 (1986) 7192. Giraud, M., Morin, P.: J. Magn. Magn. Mater. 58 (1986) 135. Giraud, M., Morin, P., Rouchy, J., Schmitt, D.: J. Magn. Magn. Mater. 59 (1986) 255. Haussuhl, S., Pahl, M.: Z. Kristallogr. 176 (1986) 147. Hart, S., Wallis, J., Sigalas, I.: Physica B+C 139-140 (1986) 183. Haussuhl, S.: Solid State Commun. 57 (1986) 643. Haussuhl, S., Homburg, H.,Pahl, M.: Z. Kristallogr. 177 (1986) 133. Heiroth, M., Buchenau, U., Schober, H. R., Ever-s, J.: Phys. Rev. B34 (1986) 6681. Hegedus, P., Musil, C., Kohrik, S., Cap, I., Sobolev, B. P.: Acta Phys. Slovaca 36 (1986) 64. Ilisavskii, Yu. V., Okulov, V. L., Svechnikova, T. E., Chizhevskaya, S. N.: Fi+ Tekh. Poluprovodn. 20 (1986) 2115. Ilyaev, A. B., Umarov, B. S., Shabanova, L. A., Dubovik, M. F.: Phys. Status Solidi (a) 98 (1986) K109.

8613 Inoue,T., Takahashi, S.: Trans. Inst. Electron. & Commun. Eng. Jpn. IX9 (1986) 1180. 8614 Iiisavskii, Yu. V., Okulov, V. L., Ordin, S. V.: Pis’ma Zh. Tekh. Fiz. 12 (1986) 377. 8671 Jamieson, J. C., Manghnani, M. H., Matsui, T., Ming, L. C.: J. Geophys. Res. 91(1986) 4643.

Landolt-B6mstein New Series IUf29a

Page 638: Second and Higher Order Elastic Constants

626 1.4 References for 1

8612 8613

86K1

86K2 86K3 86K4 86K5 86K6 86K7

86Ll 86L2 86L3 86Ml 86M2

86M3 86Nl 86N3 86N4

86N5

8601 8602 86Pl 86F’2 86F3

86p4

86P5 86Rl

86Ft2 86S1

8685

8636

Jeanloz, R., Sato-Sorensen, Y.: J. Geophys. Res. 91(1986) 4665. Jackman, I. A., Holden, T. M., Buyers, W. J. L., du Plessis, P. deV., Vogt, O., Genossar, J.: Phys. Rev. B33 (1986) 7144. Kuryachii, V. Ya., Bogachev, G. Yu., Mikhalchenko, V. P., St&him, I. M.: Izv. Akad. Nauk SSSR Neorg. Mater. 22 (1986) 855. Knorr, K., Volkmann, U. G., Loidl, A.: Phys. Rev. Lett. 57 (1986) 2544. Kushida, T., Terhune, R. W.: Phys. Rev. B34 (1986) 5791. Knorr, K.,Loidl, A., Kjems, J. K.: Physica B+C 136 (1986) 311. Krzesinska, M.: Ultrasonics 24 (1986) 88. Kashiwagura,N., Kashihara, Y., Harada, J.: Jpn. J. Appl. Phys. 25 (1986) 1317. Kitaeva, V. F., Fedorovich, V. Yu., Antyukhov, A. M., Zharikov, E. V., Kutukov, V. I., Nosenko, A. E.: Sb. Kratk. Soobshch. Fiz. AN SSSR Fiz. Inst. P. N. Lebedeva 10 (1986) 20. Levola, T., Laiho, R.: J. Phys, Cl9 (1986) 6931. Ledbetter, H. M.,Chevacharoenkul, S., Davis,R. F.: J. Appl. Phys. 60 (1986) 1614. Lee, S. A., Pinnick, D. A., Lindsay, S. M., Hanson, R. C.: Phys. Rev. B34 (1986) 2799. Mu-ah, P.: J. Phys. CI9 (1986) 1689. Maheswaranathan, P., Mayanovic,R., Sladek, R. J., Deb&a, U.: J. Magn. Magn. Mater. 54-57 (1986) 1225. Mimki, J., Stassis, C.: Phys. Rev. B34 (1986) 5890. Neuenschwander, J., Vogt, 0.. Voit, E., Wachter, P.: Physica B+C 144 (1986) 66. Nowak, R., Bernstein, E. R.: J. Chem. Phys. 85 (1986) 6858. Ngoepe, P. E., Comins, J. D.: J. Phys. Cl9 (1986) L267; Proc. ICORS-X, Eugene: University of Oregon 1986, p. 11-25. Nevitt, M. V., Grimsditch, M. H., Fisher, E. S.: Materials Characterization Symp. 1986, Pittsburgh: Mater. Res. Sot. 1986, p. 391. Ohno, I., Yamamoto, S., Anderson, 0. L., Noda, J.: J. Phys. Chem. Solids 47 (1986) 1103. O&an, H., Cartz, L.: High Temp.-High Press. 18 (1986) 675. Pimenta, M. A.,Luspin, Y., Hauret, G.: Solid State Commun. 59 (1986) 481. Polian, A., Grimsditch, M.: Physica B+C 139-140 (1986) 187. Palmer, S. B., Baruchel, J., Drillat, A.,Patterson, C., Fort, D.: J. Magn. Magn. Mater. 54-57 (1986) 1626. Page, J. H., Maliepaard, M. C., Taylor, D. R.: Phonon Scattering in Condensed Matter V, Berlin: Springer Verlag 1986, p. 275. Patterson, C., Givord, D., Voiron, J., Palmer, S. B.: J. Magn. Magn. Mater. 54-57 (1986) 891. Robinson, R. A., Axe, J. D., Goldman, A. I., Fisk, Z., Smith, J. L., Ott, H. R.: Phys Rev. B33 (1986) 6488. Reddy, D. L., Suryanarayana, M.: Acoust. Lett. 9 (1986) 175. Silvestrova, I. M., P&rev&ii, Yu. V., Senyushchenkov, P. A., Krupnyi, A. I.: Fiz. Tverd. Tela 28 (1986) 2875. Saunders, G. A., Yogurtcu, Y. K., Macdonald, J. E., Pawley, G. S.: Proc. Roy. Sot. London A407 (1986) 325. Smolenskii, G. A., Yushin, N. K., Smimov, S. I., Gulyamov, G.: Fiz. Tverd. Tela 28 (1986) 932.

86S7 86s8 86S9

Schaefer, A., Schmitt, H., Dot-r, A.: Ferroelectrics 69 (1986) 253. Serge, G., Janich, J., Shuvalov, L. A.: Phys. Status Solidi (a) 95 (1986) 433. Salleh, M. D., Macdonald, J. E., Saunders, G. A., du Plessis, P. deV.: J. Mater. Sci. 21(1986) 2577.

86SlO Silvestrova, I. M., Kuznetsov, V. A., Moiseeva, N. A., Efremova, E. P., Pisarevskii, Yu. V.: Fiz. Tverd. Tela 28 (1986) 180.

86Sll Saunders, G. A., Yogurtcu, Y. K.: J. Phys. Chem. Solids 47 (1986) 421. 86S12 Simon, Ch., Batallan, F., Rosenman, I., Pepy, G., Lauter, H.: Physica B+C 136 (1986) 15. 86813 Shiga, M., Muraoka, Y., Nakamura, Y.: J. Magn. Magn. Mater. 54 (1986) 187.

Lattdolt-Btimstcin New StiesIlI/Z9~

Page 639: Second and Higher Order Elastic Constants

1.4 References for 1 627

86S14 86S15

86316

86Tl

8612 86Vl

86V3 86V5

86V6 86Wl 86W3 86W5

86W6 86W7 86W8 86W9 86WlO 86Yl 86Y2 86Y3 86Y5 86Y6 86Y7 86Y8 8621 8622 8623 862A 8625 8626

87Al

87A2 87A3

87Bl 87B3 87B4

87B5 87B6

87B7

87Cl

-

Sood, A. K., Cardona, M.: Solid State Commun. 60 (1986) 629. Silyavichyus, Z., Reksnis, R., Samulensis, V., Skritskii, V., Yakimovich, V.: Litov. Fiz. Sb. 26 (1986) 501. Shiosaki, T., Adachi, M., Kawabata, A.: Proc. 6th Int. Symp. on Applications of Ferroelectrics 1986, p, 455. Tokarev, E. F., Dankov, I. A., Ivannikov, V. I., Solodukhin, A. V., Volnyanskii, M. D.: Izv. Akad. Nat& SSSR Neorg. Mater. 22 (1986) 450. Tupichak, V. P., Stasyuk, I. V.: Ukr. Fiz. Zh. 31(1986) 263. Vintaikin, E. Z., Makushev, S. Yu., Mann-in, V.I., Litvin, D. F., Tyapkina, 0. Yu., Udovenko, V. A.:Dokl. Akad Nauk SSSR 290 (1986) 103. van Buskirk, W. C., Cowin, S. C., Carter, R.: J. Mater. Sci. 21(1986) 2759. Volkonskaya, T. I., Shelykh, A. I., Sotnikov, A. V., Sokolov, V. V., Akhmedzhanov, F. R.: Fiz. Tverd. Tela 29 (1986) 559. Verlinden, B., Delaey, L.: J. Phys. F16 (1986) 1391. Wyslouzil, R., Schranz, W., Fuith, A. H., Warhanek, H: Z. Phys. B64 (1986) 473. Wang, Y., Shen, H., Xu, Z., Zhou, H.: Ferroelectr. Lett. Sect. 6 (1986) 1. Winter, K. M., Lenz, D., Schmidt, H., Ewert, S., Blumenroder, S., Zimgiebl, E., Winzer, K.: Solid State Commun. 59 (1986) 117. Wang, H., Xu, B., Liu, X., Han, J., Shan, S., Li, H.: J. Cryst. Growth 79 (1986) 227. Wang, H., Wang, M.: J. Cryst Growth 79 (1986) 527. Wang, J., Haussuhl, S.: Cryst. Res. Technol. 21(1986) K156. Wang, J., Li, H., Zhang, L., Wang, R.: Acta Acust. (China) ll(1986) 338. Wang, H., Xu. B., Han, J., Li, T., Huo, L.: Acta Phys. Sin. 35 (1986) 889. Yang, H., Sladek, R. J.: Phys. Rev. B34 (1986) 2627. Yoshizawa, M., Shirotani, I., Fujimura, T.: J. Phys. Sot. Jpn. 55 (1986) 11%. Young, P. W., Scott, J. F.: Phase Transitions 6 (1986) 175. Yokosuka, M.: Jpn. J. Appl. Phys. 25 (1986) 1183. Yakovlev, L. A.: Akust. Zh. 32 (1986) 840. Yakovlev, L. A.: Defektoskopiya 22 (1986) 47. Yokosuka, M., Marutake, M.: Jpn. J. Appl. Phys. Part 125 (1986) 981. Zhailobaev, K. K., Serebryakov, V. G., E&n, E. I.: Dokl. Akad. Nauk SSSR 291(1986) 847. Zaporozhets, 0. I., Krapivka, N. A., Tikhonov, L. V.: Fiz. Met. Melalloved. 61(1986) 379. Zhang, M., Yagi, T., Oliver, W. F., Scott, J. F.: Phys. Rev. B33 (1986) 1381. Zhao, Z., Guo, X.: Acta Phys. Sin. 35 (1986) 1473. Zhu, Y., Arend, H., Guenter, P.: Ferroelectr. Lea. Sect. 5 (1986) 107. Zhuang, Z. Q., Huan, M. J., Jang, S. J., Cross, L. E.: Proc. 6th Int. Symp. on Applications of Ferroelectrics 1986, p. 394. Antyukhov, A. M., Kutukov, V. I., Ivanov, I. A., Antonov, A. V.: Kristallografiya 32 (1987) 505. Aronsson, R., Torell, L. M.: Phys. Rev. B36 (1987) 4926. Arai, M., Arima, M., Sakai, A., Wada, M., Sawada, A., Yagi, T.: J. Phys. Sot. Jpn. 56 (1987) 3213. Bryukhanov, A. A., Manzhikov, A. V., Tarasov, A. F., : Zavod. Lab. 53 (1987)31. Borjesson, L., Tore& L. M.: Phys. Rev. B36 (1987) 4915. Bomken, K., Weber, D., Yoshizawa, M., Assmus, W., L&hi, B., Walker, E: J. Magn. Magn. Mater. 63-64 (1987) 315. Bourne, L. C., Zeal, A.: Phys. Rev. B36 (1987) 2626. Burriel, R., Bartolome, J., Gonzalez, D., Navarro, R., Ridou, C., Rousseau, M., Bulou, A.: J. Phys. C20 (1987) 2819. Brice, J.: Properties of Mercury Cadmium Telhuide. EMIS Datareviews Series No. 3 (eds. Brice, J., Capper, P.), London INSPEC 1987, p. 8;~. 9. Cowin, S. C., Mehrabadi, M. M.: Q. J. Mech. Appl. Math. 40 (1987) 451.

Land&-Barnstein New Series IlU29a

Page 640: Second and Higher Order Elastic Constants

628 1.4 References for 1

87D3 87El

87Ei2 87E3 87E4 87Fl 87Gl 8702

8763 8764 8765 87G6

87G8

87G9 87Hl 87H2 87H3 87H4

8711 87Jl 87J2

87KI 87K2

de Qmargo, P. C., Broken, F. R., Steinemann, S.: J. Phys. F17 (1987) 1065. Endoh, D., Goto, T., Suzuki, T., Fujiiura, T., Gnuki, Y., Komatsubara, T.: J. Phys. Sot. Jpn. 56 (1987) 4489. Eimerl, D., Davis, L., Velsko, S., Graham,E. K., Zalkin, A.: J. Appl. Phys. 62 (1987) 1968. Every, A. G.: Phys. Rev. B36 (1987) 1448. Every, A. G.: J. Phys. Cu) (1987) 2973. Fischer, M., Polian, A.: Phase Transitions 9 (1987) 205. Gillet, A. M., Luspin, Y., Hauret, G.: Solid State Commun. 64 (1987) 797. Ghose, S., Hastings, J. M., Corliss,L. M., Rae, K. R., Chaplot, S. L., Choudhury, N.: Solid State Commun. 63 (1987) 1045. Gremer, J. D., Beaudry, B. J., Smith, J. F.: J. Appl. Phys. 62 (1987) 1220. Gagnon, R. E., Kiefte, H., Clouter, M. J., Whalley, E.: J. Phys. (Paris) 48 Suppl. (1987) Cl-23. Grimsditch, M., Bhadra, R., &huller, I. K.: Phys. Rev. Lett. Ss (1987)1216. Goto, T., Suzuki, T., Tamaki, A., Fujimura, T., Gnuki, Y., Komatsubara, T.: J. Magn. Magn. Mater. 63-64 (1987) 309. Goto, T., Suzuki, T., Ohe, Y., Tamake, A., Sakatsume, S., Fujimura, T., Gnuki, Y., Komatsubara, T.: Jpn. J. Appl. Phys. 26 (1987) Suppl. 26-3 525. Ganot, F., Kihal, B., Dugautier, C., Farhi, R., Moth, P.: J. Phys. C: 20 (1987) 4491. Hutchings, M. T.: J. Chem. Sot. Faraday Trans. II 83 (1987) 1083. Haumhl, S., Kranzmann, A., Podeswa, R.: J. Mater. Sci. Lett. 6 (1987)423. Hossain, M. D.: Indian J. Phys. A61 (1987) 143. Haussuhl, S., Shu, S. Z., Siegert, H., Reeker, K., Wall&en, F., Shou, G. 2.: Z. Kristallogr. 180 (1987) 203. Ishiclate, T., Sas&.i, S.: J. Phys. Sot. Jpn. 56 (1987) 4214. Jiang, Z., Liu, Y., Zhang, P.: Acta Phys. Sin. 36 (1987) 951; [Chin. Phys. 8 (1988) 6201. James, B. J.: lEE Colloq. on Physics and Device Applications of Acoustic Waves, London: IEE 1987, p. 10/l. Krumbe, W., Haussuhl, S.: Z. Kristallogr. 179 (1987) 267. Khachin, V. N., Muslov, S. A., Pushin, V. G., Chumlyakov, Yu. I.: Dokl. Akad. Nauk SSSR 295 (1987) 606.

87K3

87K4 87K!5 87K6 87K7 87K8

87K9

Kouroudis, I., N&l, D., Yoshiiwa, M., Assmus, W., LUthi, B., Franse, J. J. M., Menovsky, A., Welp, U., Burls, G.: J. Magn. Magn. Mater. 63-64 (1987) 389. Kojima, H., Shino, M., Suzuki, T., : Acta Metall. 35 (1987) 891. Kiefte, H., Penney, R., Breckon, S. W., Clouter, M. J.: J. Chem. Phys. 86 (1987) 662. Kolnik, S., Cap, I., Musil, C., Hegedus, P., Sobolev, B. P.: Acta Phys. Slovaca 37 (1987) 237. Khromova, N. N.: Izv. Akad. Nauk SSSR Neorg. Mater. 23 (1987) 1500. Kondratkov, A. I., Pavlov, S. V., Serdobolskaya, 0. Yu.: Vestn. Mosk. Univ. 3, Fiz. Astron. 42 (1987) 90. Kouroudis, I., Weber, D., Yoshizawa, M., L&hi, B., Punch, L., Haen, P., Flouquet, J., Burls, G., Welp, U., Franse, J. J. M., Menovsky, A., Bucher, E., Hufnagl, J.: Phys. Rev. Lett Ss (1987) 820.

87L.l 87L2

Liu, D. W., Perry, C. I-I., Feinberg, A. A., Currat, R.: Phys. Rev. B36 (1987) 9212. Laiho, R., Levola, T., Sardarly, R. M., Allakhverdiev, K. R., Sadikov, I. Sh., Tagiev, M. M.: Solid State Commun. 63 (1987) 1189.

87L3 Lushnikov, S. G., Prokhorova, S. D., Sinii, I. G., Smolenskii, G. A.: Fiz. Tverd. Tela 29 (1987) 4%.

87L4 Li, Z., Bra& R. C.: J. Mater. Sci. 22 (1987) 2557. 87L6 Lee, S. D., Jang, M. S., Lee, J. H.: New Phys. (Korea) 27 (1987) 141. 87Ml Mazzolai, F. M., Bimbaum, H. K.: J. Phys. (Paris) 48 Suppl. (1987) C8-263. 87M2 Muir, W. C., Pen, J. M., Fawcett, E.: J. Phys. F17 (1987) 2431. 87M3 Mm, B., Kiefte, H., Clouter, M. J., Tuszynski, J. A.: Phys. Rev. B36 (1987) 3745. 87M4 Miyazaki, A., Makita, Y.: J. Phys. Sot. Jpn. 56 (1987) 1868.

Land&-Barnstein New Saiu llIR9r

Page 641: Second and Higher Order Elastic Constants

1.4 References for 1 629

87M6 87M7

87Nl

87N2 am3

Muslov, S. A., Khachin, V. N., Sikhova, V. P., Pushin, V. G.: Metallofizika 9 (1987) 29. Morr, M., Weiss, G., Wpf, H.: Proc ILL-IEF Workshop on Quantum Aspects of Molecular Motions in Solids 1986, Berlin: Springer Verlag 1987, p. 163. Ngoepe, P. E., Comins, J. D.: Cry& Lattice Defects Amorphous Mater. 15 (1987) 317; Proc.ICORS-X, Eugene: University of Oregon 1986, p. 1 l-27. Ngoepe, P. E., Comins, J. D.: J. Phys. C2t.I (1987) 2983. Nikl, D., Kouroudis, I., Assmus, W., LUthi, B., Bruls, G., Welp, U.: Phys. Rev. B35 (1987) 6864.

8701 87Pl 87Rl 87R2 87Sl

8732

Otto, Y., Hikita, T., Ikeda, T.: J. Phys. Sot. Jpn. 56 (1987) 577. Pimenta, M. A., Luspin, Y., Hauret, G.: Solid State Commun. 62 (1987) 275. Reddy, D. L., Suryanarayana, M.: Cryst. Res. Technol. 22 (1987) K88. Reddy, D. L., Suryanarayana, M.: Cryst. Res. Technol. 22 (1987) K148. Silvestrova, I. M., Pisarevskii, Yu. V., Senyushchenkov, P. A., Voronkov, E. B., Krupnyi, A. I., Voszka, R., Foldvari, I.: Kristallografiya 32 (1987) 257. Silvestrova, I. M., P&rev&ii, Yu. V., Kaminskii, A. A., Mill, B. V.: Fiz. Tverd. Tela 29 (1987) 1520.

87S3

87S4

87S5

8736 8739 87SlO

87Sll 87S12 87813

’ 87315 87819 87820

87Tl 8713 87T4 87T5 87Vl 87V2

87V5

Svetlov, I. L., Sukhanov, N. N., Krivko, A. I., Roshchina, I. N., Khatsinskaya, I. M., Samoilov, A. I.: Probl. F?ochn. 19 (1987) 51. Sniolenskii, G. A., Yushin, N. K., Smirnov, S. I., Dorogovtsev, S. N.: Dokl. Akad Nauk SSSR 294 (1987) 1366. Silvestrova, I. M., Pisarevskii, Yu. V., Zvereva, 0. V., Shtemberg, A. A: Kristallografiya 32 (1987) 792. Sasaki, Y., Yokosuka, M., Marutake, M.: Jpn. J. Appl. Phys. 26 (1987) Suppl. 26-2 136. Simpson, A. M., Caille, A., Jericho, M. H.: Solid State Commun. 64 (1987) 1117. Silvestrova, I. M., Pisarevskii, Yu. V., Senyushenkov, P. A., Krupny, A. I., Voszka, R., Foldvari, I., Jan&y, J.: Phys. Status Solidi (a) 101(1987) 437. Salleh, M. D., Saunders, G. A., Suliivan, R. A. L., Bach, H.: Philos. Mag. I.&t. 55 (1987) 81. Schranz, W., Fuith, A., Kabelka, H., Warhanek, I-L Ferroelectr. Lett. Sect. 7 (1987) 37. Suzuki, T., Goto, T., Tan&i, A., Fujimura, T., Kitazawa, H., Suzuki, T., Kasuya, T.: J. Magn. Magn. Mater. 63-64 (1987) 563. Sidek, H A. A., Saunders, G. A., Wang, H., Xu, B., Han, J.: Phys. Rev. B36 (1987) 7612. Shinohara, K., Sea, T.: Sadhana 11(1987) 389. Sanquer, M., Ecolivet, C.: Dynamics of Molecular Crystals (ed. Lascombe, J.), Proc. 41st Int. Meeting of the Sot. Fran& de Chimie, Amsterdam: Elsevier 1987, p. 447. Tu, A., Liu, J., Gu, B., MO, Y., Yang, H., Wang, Y.: Solid State Commun. 61(1987) 1. Tat& A., Ozkan, H.: Phys. Chem. Minerals 14 (1987) 172. Tomeno, I., Matsumura, S: J. Phys. Sot. Jpn. 56 (1987) 163. Ting, T. C. T.: Q. J. Mech. Appl. Math. 40 (1987) 431. Volnyanskii, M. D., Kudzin, A. Yu.: Fiz. Tverd. Tela 29 (1987) 3123. Vasilev, A. N., Kurbanov, K. R., Nikiforov, V. N., Popova, E. A,, Sredin, V. G.: Fiz. Tekh. Poluprovodn. 21(1987) 944. Vasilev, A. N., Kurbanov, K. R., Nikiforov, V. N., Popova, E. A., Sredin, V. G.: Pis’ma Zh. Tekh. Fiz. 13 (1987) 682.

87Wl Wallow, F., Neite, G., Schmer, W., Nembach, E.: Phys. Status Solidi (a) 99 (1987) 483. 87w2 Walker, N. J., Saunders, G. A., S&al, N.: J. Phys. Chem. Solids 48 (1987) 91. 87w3 Weber, D., Yoshizawa, M., Kouroudis, I., Ltithi, B., Walker, E.: Europhys. Lett. 3 (1987) 827. 87w4 Wu, K., Hua, W.: Acta. Acust. (China) 12 (1987) 64. 87X1 Xiang, X. D., Brill, J. W.: Phys. Rev, B36 (1987) 2969. 87Yl Yamamoto, S.: Phys. Chem. Minerals 14 (1987) 332. J37Y2 Yagi, T., Fuji&i, H., Sakai, A.: J. Phys. Sot. Jpn. 56 (1987) 2535. 87113 Yamashita, H., Tatsuzaki, I.: Solid State Commun. 62 (1987) 723. 87114 Yamanaka, A., Tatsuzaki, I.: J. Phys. Sot. Jpn. 56 (1987) 1043.

Land&Barnstein New Series lW29a

Page 642: Second and Higher Order Elastic Constants

630 1.4 References for 1

87Y5 Yoshihara, A., Fujimura, T., Oka, Y., Fujisaki, H., Shirotani, I.: J. Phys. Sot. Jpn. 56 (1987) 1223.

87Y6 87Y7 87Y8 8721 8722 8723 88Al 88A3 88A4

Yoshihara, M., M&Ban, R. B., Brotzen, F. R.: Acta Metall. 35 (1987) 775. Yamamoto, S., Ohno, I., Anderson, 0. L.: J. Phys. Chem. Solids 48 (1987) 143. Yakushkin, E. D., Anisimova, V. N.: Fiz. Tverd. Tela 29 (1987) 563. Zarestky, J., Stassis, C.: Phys. Rev. B35 (1987) 4500. Zheng, H., Tang, X., Zhao, M., Shao, Z., Xu, D., Jiang, M.: Z. Phys. B69 (1987) 289. Zhailobaev, K. K., Serebryakov, V. G., Estrin, E. I.: Metallofizika 9 (1987) 106. Alberts, H. L., Palmer, S. B., Patterson, C.: J. Phys. C21(1988) 271. Askarpour, V., Kiefte, H., Clouter, M. J.: Can. J. Chem. 66 (1988) 541. Aleksandrov, K. S., Burkov, S. I., Sorokin, B. P., Shabanova, L. A.: Fiz. Tverd. Tela 30 (1988) 227.

88A5

88A6

88Bl

88B2 88B3

88B4 88Cl 88C2 88Dl 88D3 88Fl 8833 88F3 88F4 88F5 88F6 88F7 88F9

88FlO

88Gl

8863 8864

8865

8866

Aleksandrov, K. S., Burkov, S. I., Zamkov, A. V., Kholov, A., Khafizov, S. Kh., Shabanova, L. A., Klevtsov, P. V.: Fiz. Tverd. Tela 30 (1988) 609. Akhmedzhanova, M. M., Akhmedzhanov, F. R., Lemanov, V. V., Petrov, A. A.: Zh. Tekh. Fiz. 58 (1988) 1005. Bell, J. A., Zanoni, R., Seaton, C. T., Stegeman, G. I., Makous, J., Falco, C. M.: Appl. Phys. Lat. 52 (1988) 610. Bucur, V., Rocaboy, F.: Ultrasonics 26 (1988) 344. Bates, S., Patterson, C., McIntyre, G. J., Palmer, S. B., Mayer, A., Cowley, R. A., Melville, R.: J. Phys. C21(1988) 4125. Billesbach, D. P., Ulman, F. G., Yagi, T.: Ferroelecn. I&t. 9 (1988) 53. Cheng, L., Nelson, K. A.: Phys. Rev. B37 (1988) 3603. Cao, W., Barsch, G. R.: Phys. Rev. B38 (1988) 7947. Drozdowski, M., Holuj, F.: Ferroelectrics 77 (1988) 47. de Carmargo, P. C., Castro, E. P., Fawcett, E.: J. Phys. F18 (1988) L219. Finlayson, T. R.: Metall. Trans. Al9 (1988) 185. Futterer, H., Yohannes, T., Bach, H., Pelzl, J., Nahm, K.: J. Appl. Phys. 63 (1988) 3933. Finlayson, T. R., Smith, H. G.: Metall. Trans. Al9 (1988) 193. Fawcett, E., Muir, W. C.,Perz, J. M.: J. Phys. F18 (1988) 517. Fossum, J. O., Garland, C. W.: Phys. Rev. Lett. 60 (1988) 592. Fossum, J. O., Wells, A., Garland, C. W.: Phys. Rev. B38 (1988) 412. Futterer, H., Pelzl, J., Bach, H., Saunders, G. A., Sidek, H. A. A,: J. Mater. Sci. 23 (1988) 121. Futterer, H., Yohannes, T., Bach, H., Pelzl, J., Nahm, K., Kim, C. K.: J. Phys. (Paris) 49 Suppl. (1988) C8-461. Fedorovich, V. Ju., Kitaeva, V. F., Csillag, L., Paitz, J.: Report KFKI-1988-62/E, Hungarian Acad. Sci. (1988). Gomez-Cuevas, A., Perez-Mato, J. M., Bocanegra, E. H., Couzi, M., Chaminade, J. P.: J. Phys. C21(1988) 3641. Garland, C. W., Fossum, J. O., Wells, A.: Phys. Rev. B38 (1988) 5640. Goto, T., Suzuki, T., Ohe, Y., Fujimura, T., Sakatsume, S., Onuki, Y., Komatsubara, T.: J. Phys. Sot. Jpn. 57 (1988) 2612. Goto, T., Suzuki, T., Ohe, Y., Sakatsume, S., Kunii, S., Fujimura, T., Kasuya, T.: J. Phys. Sot. Jpn. 57 (1988) 2885.. Gospodinov, M., Haussuhl, S., Sveshtarov, P., Tassev, V., Petkov, N.: Bulg. J. Phys. 15 (1988) 140.

8867 8868 8869 88GlO

Goto, T., Anderson, 0. L.: Rev. Sci. Instrum. 59 (1988) 1405. Gagnon, R. E., Kiefte, H., Clouter, M. J., Whalley, E.: J. Chem. Phys. 89 (1988) 4522. Gauthier, M., Pruzan, Ph., Chervin, J. C., Polian, A.: Solid State Commun. 68 (1988) 149. Gospodinov, M., Sveshtarov, P., Haussuhl, S., Gnanam, F.: Cryst. Res. Technol. 23 (1988) K119.

88Gll Ganot, F., Farhi, R., Moch,P.: Ferroelectrics 80 (1988) 821.

Iandolt-B6mstdn __ - --_

Page 643: Second and Higher Order Elastic Constants

1.4 References for 1 631

88612 Graham,E. K., Schwab, J. A., Sopkin, S. M., Takei, H.: Phys. Chem. Miner. 16 (1988) 186. 88Hl Haussuhl, S., Liedtke, J., Albers, J., Klopperpieper, A.: Z. Phys. B70 (1988) 219. 88H2 Haussuhl, S.: Solid State Commun. 68 (1988) 963. 8811 Ingel, R. P., Lewis, D.: J. Am. Ceram. Sot. 71(1988) 261. 88I2 Ingel, R. P., Lewis, D.: J. Am. Ceram. Sot. 71(1988) 265. 88Jl Johampurkar, D. N., Rajagopalan, S., Basu, B. K.: Phys. Rev. B37 (1988)3101. 8872 James, B. J,: Proc. 42nd Ann. Freq. Con& Symp. New York: IEEE 1988, p. 146. 88J3 Jiang, Z., Liu, Y., Zhang, P.: Chin. Phys. 8 (1988) 620. 88Kl Kleszczewski, Z., Bodzenta, J.: Phys. Status Solidi (b) 146 (1988) 467. 88K2 Kiefte, H., Penney, R., Clot&r, M. J.: J. Chem. Phys. 88 (1988) 5846. 88K3 Kandelin, J., Weidner, D. J.: Phys. Earth Planet. Interiors 50 (1988) 25 1. 88K5 Kohno, M., Ogiwara, H., A&no, K., Suzuki, K.: J. Phys. C21(1988) 4033. 88K6 Kawald, U., Muller, S., Pelzl, J.: Solid State Commun. 67 (1988) 239. 88K7 Kuhn, H. A., Sockel, H. G.: Phys. Status Solidi (a) 110 (1988) 449. 88K8 Kim, C. K., Nahm, K., Cho, Y., Futterer, H., Pelzl, J.: J. Phys. F18 (1988) L271. 88K9 Kikkarb, S. M., Tsarev, A. V., Shashkin, V. V., Yakovkin, I. B.: Fiz. Tend. Tela 30 (1988)

2929. 88KlO Kobyakov, I. B., Arutyunova, V. M.: Zh. Tekh. Fiz. 58 (1988) 983. 88K12 Kandelin, J., Weidner, D. J.: J. Geophys. Res. Solid Earth Planets 93 (1988) 1063. 88Ll Lee, S., Hillebrands, B., Stegeman, G. I., Cheng, H., Potts, J. E., Nizzoli, F.: J. Appl. Phys. 63

(1988) 1914. 88L2 Levola, T., Laiho, R.: Solid State Commun. 66 (1988) 557. 88L3 Lloyd, R. G., Cussen, L. D., Mitchell, P. W.: Solid State Commun. 66 (1988) 109. 88I.4 Li, Z., Bradt, R. C.: Int. J. High Technol. Ceram. 4 (1988) 1. 88L5 Lemanov, V. V.: Ferroelectrics 78 (1988) 163. 88L6 Laiho, R., Sardarly, R. M.: Ferroelectrics 80 (1988) 833. 88Ml Miyazaki, A., Makita, Y.: J. Phys. Sot. Jpn. 57 (1988) 282. 88M2 Maeda, M.: J. Phys. Sot. Jpn. 57 (1988) 2162. 88M3 Maglione, M., Joffrin, J., Hochli, U. T., Pelous, J.: J. Phys. (Paris) 49 (1988) 959. 88M4 Mochizuki, E.: J. Appl. Phys. 63 (1988) 5668. 88M5 Mayanovic, R. A., Sladek, R. J., Deb&a, U.: Phys. Rev. B38 (1988) 1311. 88M6 Maeda, M.: J. Phys. Sot. Jpn. 57 (1988) 3059. 88M8 Maksimyuk, P. A., Fomin, A. V., Glei, V. A., Gnanko, A. P., Dyachuk, R. I., Kravetskii, M.

Yu.: Fiz. Tverd. Tela 30 (1988) 2868. 88M9 Matsui, H., Goto, T., Tamaki, A., Fujimura, T., Suzuki, T., Kasuya, T.: J. Magn. Magn. Mater.

76 & 77 (1988) 321. 88MlO Morin, P., Rouchy, J., Miyako, Y., Nishioka, T.: J. Magn. Magn. Mater. 76 & 77 (1988) 319. 88Mll Matsuo, Y., Miyata, K., Suzuki, T.: Trans. Jpn. Inst. Met. 29 (1988) 947. 88M12 Miyazaki, A., Makita, Y.: Ferroelectrics 81(1988) 1005. 88Ml3 Mroz, B., Kiefte, H., Clouter, M. J., Tuszynski, J. A.: Ferroelectrics 81(1988) 1179. 88M14 McCarthy, K. A., Sample, H. H., McCurdy, A. K.: Thermal Conductivity 19,1985 (ed.

Yarbrough, D. W.), New York and London: Plenum 1988, p. 59. 88Nl Nevitt, M. V., Chan, S. K., Liu, 1. Z., Grimsditch, M. H., Fang, Y.: Physica B+C 150 (1988)

230. 88N2 Nakayama, H., Ishii,‘K., Sawada, A.: Solid State Commun. 67 (1988) 179. 88N3 Neumann, D. A., Zabel, H.,Fan, Y. B., Solin, S. A.,Rush, J. J.: Phys. Rev. B37 (1988) 8424. 88N4 Nygmn, L. A., Leisure, R. G.: Phys. Rev. B37 (1988) 6482. 88N5 Nikanorov, S. P., Burenkov, Yu. A., Lebedev, A. B., Golubkov, A. V., Zhukova, T. B.,

Smimov, I. A.: Phys. Status Solidi (a) 105 (1988) K103. 88N6 Nelson, D. F.: Phys. Rev. Lett. 60 (1988) 608. 88N7 Nizzoli, F., Bhadra, R., de Lima, 0. F., Brodsky, M. B., Grimsditch, M.: Phys. Rev. B37 (1988)

1007.

Lund&-BBmstein New Serb IlU29a

Page 644: Second and Higher Order Elastic Constants

632 1.4 References for 1

88NlO

8801

88Pl 88P2

88P3

88P4 88P5 88P6 88Ql 88R2 88R4 88Sl 8834 88S5 8886 88S9 88SlO 88Sll 88Tl 8812 8813 88T5 88Vl 88V3

88V4

88Wl 88X2 88Yl 88Y2 89Al

89A2 89Bl

89B2 89B3 89B4 89B5 89B6 89B7 89B8 89Cl 89C2

89Dl

Nakamura, S., Goto, T., Fujimura, T., Kasaya, M., Kasuya, T.: J. Magn. Magn. Mater. 76 & 77 (1988) 312. Okamoto, P. R., Rehn, L. E., Pearson, J., Bhadra, R., Grimsditch, M.: J. Less-Common Met. 148 (1988) 231. Pavel, M., Fouskova, A., Holakovsky, J., Brezina, B.: Czech. J. Phys. B38 (1988) 314. Pisarevskii, YIL V., Silvestrova, I. M., Voszka, R., Peter, A., Fold&, I., Janszky, J.: Phys. Status Solidi (a) 107 (1988) 161. Pelzl, J., Kawald, U., Pudwell, C., Muller, S., Dimitropoulos, C.: Proc. ICORS-XI, Chichester: Wiley 1988, p. 443. R-ins, A. D., Dunstan, D. J.: Philos. Msg. Lett. 58 (1988) 37. prieto, C., Ramirez, R., Gonzalo, J. A., Windsch, W.: Phys. Status Solidi (a) 108 (1988) K9. Pleiner, H., Brand, H. R.: Phys. Rev. I&t. 61(1988) 766. Quilichini, M., Dugautier, C.: Ferroelectrics 80 (1988) 837. Reddy, D. L., Suryanarayana, M.: Cryst. Res. Technol. 23 (1988) K149. Rodin, S. V., Zgonik, M., Copic, M., Khasinevich, N. I.: Ferroelectrics 82 (1988) 85. Szente, J., Trivisonno, J.: Phys. Rev. B37 (1988) 8447. Sorokina, T. P., Kapitonov, A. M., Kvashnina, 0. P.: Fiz. Tverd. Tela 30 (1988) 1497. Shen, Z., Tao, F., Ma, W., Lin, Q.: Acta Phys. Sin. 37 (1988) 214. Sandvold, E., Laegreid, T., Courtens, E.: Phys. Ser. 38 (1988) 732. Shiga, M., Makita, K., Uematsu, K., Nakamura, Y.: J. Phys. (Paris) 49 Suppl. (1988) CS-309. Saint-Paul, M., Monceau, P., Levy, F.: Solid State Commun. 67 (1988) 581. Sarkar, S., Talapatra, S. K.: Fizika (Yugoslavia) 20 (1988) 291. Tatli, A.: J. Phys. Chem. Solids 49 (1988) 981. Toulouse, J., Launay, C.: Rev. Sci. Instrum. 59 (1988) 492. Toulouse, J., Wang, X. M., Boatner, L. A.: Solid State Commun. 68 (1988) 353. ‘Ihalmeier, P.: J. Magn. Magn. Mater. 76 & 77 (1988) 299. Verlinden, B., Delaey, L.: Metall. Trans. Al9 (1988) 207. Vasilev, A. N., Gaidukov, Yu. P., Zlomanov, V. P., Nikiforov, V. N., Tananaeva, 0. I.: Izv. Akad. Nauk SSSR Neorg. Mater. 24 (1988) 227. Vasilev, A. N., Gaidukov, Yu. P., Kopyl, A. I., Nikiforov, V. N., Slynko, E. I.: Zh. Tekh. Fiz. 58 (1988) 421. WoleJ’ko, T., Pakulski, G., Tylczynski, Z.: Ferroelectrics 81(1988) 1143. Xu, Y., Wang, H., Chen, H.: Acta Phys. Sin. 37 (1988) 1350; Chin. J. Phys. 9 (1989) 998. Yamaguchi, H., Uwe, H., Sakudo, T., Sawaguchi, E.: J. Phys. Sot. Jpn. 57 (1988) 147. Yak~~shkin, E. D., Anisimova, V. N.: Phys. Status Solidi (a) 105 (1988) 139. Aleksandrov, V. V., Velichkina, T. S., Voronkova, V. I., Koltsova, L. V., Yakovlev, I. A., Yanovskii, V. K.: Solid State Commun. 69 (1989) 877. Aussel, J. D., Monchalin, J. P.: Ultrasonics 27 (1989) 165. Baumgart, P., Blumenroder, S., Erle, A., Hillebrands, B., Guntherodt, G., Schmidt, H.: Solid State Commun. 69 (1989) 1135. Berger, J. B.: Phase Transitions 14 (1989) 31. Benbattouche, N., Saunders, G. A., Lambson, E. F., Honle, W.: J. Phys. D22 (1989) 670. Benbattouche, N., Saunders, G. A., Bach, H.: private communication (1989). Berret, J. F., Farkadi, A., Boissier, M.,Pelous, J.: Phys. Rev. B39 (1989) 13451. Bebnke, E., Haussuhl, S.: J. Mater. Sci. 24 (1989) 2209. Bohaty, L., Haussuhl, S., Liebertz, J.: Cryst. Res. Tech. 24 (1989) 1159. Brown, J. M., Slut&y, L. J., Nelson, K. A., Cheng, L.-T: J. Geophys. Res. 94 (1989) 9485. Castagnede, B., Jenkins, J. T., Sachse, W., Baste, S.: J. Appl. Phys. 67 (1989) 2753. Castagnede, B., Sachse, W.: Review of Progress in Quantitative Nondestructive Evaluation, Vol. 8B, New York: Plenum 1989, p. 1855. Dye, R. C., Eckhardt, C. J.: J. Chem. Phys. 90 (1989) 2090.

LdOlt-BbtMtCill New Suia W29r

Page 645: Second and Higher Order Elastic Constants

1.4 References for 1 633

89El

89E2 89Fl 89F2

89Gl 8962 89H1 89H2 89H3 89H4 89HS 8911 89I2 89Kl 89Ll 89L2 89L3

891A 89Ml 89M2 89M3 89M4 89M5

89Pl 89p2

89P3 89Rl 89R2 8982 8933 8934 8936 8937 89S8 89SlO 89Sll 89312

89Tl

89Vl 89Wl 89W2 89X1

89Yl

Endoh, D., Goto, T., Tamaki, A., Liu, B., Kasaya, M., Fujimura, T., Kasuya, T.: J. Phys. Sot. Jpn. 58 (1989) 940. Ecolivet, C., Miniewicz, A., Sanquer, M.: J. Phys. Chem. Solids 50 (1989) 651. Fisher, E. S.: J. Phys.: Condens. Matter 1(1989) 2875. Farley, T. W. D., Hayes, W., Hull, S., Hutchings, M. T.,‘Alb&‘M., Vrtis, M.: Physica B156 & 157 (1989) 99. Goto, T., Anderson, 0. L., Ohno, I., Yamamoto, S: J. Geophys. Res. 94 (1989) 7588. Guillermet, A. F.: J. Less-Common Metals 147 (1989) 195. Horikz, J. J. L., Arts, A. F. M., Di~?rhuis, J. I., de Wijn, H. W.: Phys. Rev. B39 (1989) 5726. Ho, W. K. B., Kogure, Y., Granato, A. V.: Phys. Rev. B39 (1989) 8153. Haussuhl, S.: Z. Kristallogr. 187 (1989) 153. Haussuhl, S., Wang, J.: Z. Kristallogr. 187 (1989) 249. Herbiet, R., Robels, U., Dederichs, H., Arlt, G.: Ferroelectrics 98 (1989) 107. Ishidate, T., Sasaki, S.: Phys. Rev. Lett. 62 (1989) 67. Isaak, D. G., Anderson, 0. L., Goto, T., Suzuki, I.: J. Geophys. Res. 94 (1989) 5895. Karmann, S., Helbig, R., Stein, R. A.: J. Appl. Phys. 66 (1989) 3922. Luspin, Y., Hauret, G.: Solid State Commun. 69 (1989) 1187. Lee, W. Y., Kok, W. C.: Solid State Commun. 70 (1989) 459. Lee, S., Hillebrands, B., Stegeman, G. I., Dunn, B., Momoda, L. A., Nizzoli, F.: Solid State Commun. 70 (1989) 15. Ledbetter, H., Kim, S. A., Violet, C. E., Thompson, J. D.: Physica 162164C (1989) 460. Mroz, B., Tuszynski, J. A., Kiefte, H., CIouter, M. J.: J. Phys.: Condens. Matter 1(1989) 783. Marx, A., Kruger, J. K., Unruh, H. G.: Z. Phys. B75 (1989) 101. Mroz, B., Tuszynski, J. A., Kiefte, H., CIouter, M. J.: J. Phys.: Condens. Matter 1(1989) 4425. Mroz, B., Tuszynski, J. A., Kiefte, H., CIouter, M. J.: J. Phys.: Condens. Matter 1(1989) 5965. Miyazaki, A., Ikeda, T., Osaka, T., Komukae, M., Makita, Y.: J. Phys. Sot. Jpn. 58 (1989) 4496. Polian, A., Besson, J. M., Grimsditch, M., Grosshans, W. A.: Phys. Rev. B39 (1989) 1332. Perry, C. H., Currat, R., Buhay, H., Migoni, R. M., Stirling, W. G., Axe, J. D.: Phys. Rev. B39 (1989) 8666. Prieto, C., Pelous, J., Boissier, M., Contreras, L.: J. Raman Spectrosc. 20 (1989) 181. Robels, U., Herbiet, R., Arh, G.: Ferroelectrics 93 (1989) 95. Rossignol, J.-F., Rivera, J.-P., S&mid, H.: Ferroelectrics 93 (1989) 151. Sasaki, Y.: J. Phys. Sot. Jpn. 58 (1989) 552. Shi, X. D., Yu, R. C., Wang, Z. Z., Gng, N. P., Chaikin, P. M.: Phys. Rev. B39 (1989) 827. Soshnikov, L. E., Sheleg, A. U.: Phys. Status Solidi (a) 111(1989) 485. Schrader, T., Loidl, A., Vogt, T., Frank, V.: Physica B156&157 (1989) 195. Sehery, A. A., Somerford, D. J.: J. Phys.: Condens. Matter 1(1989) 2279. Sidek, H. A. A., Saunders, G. A., James, B.: Preprint. See [9OSl]. Sapriel, J., Hierle, R., Zyss, J.,‘Boissier, M.: Appl. Phys. Lett. 55 (1989) 2594. Sorokina, T. P., Burkov, S. I., So&in, B. P.: Fiz. Tverd. Tela 31(1989) 156. Sour&au, C., Fouassier, M., Alba, M., Ghorayeb, A., Gomchov, 0.: Mater. Sci. Eng. B3 (1989) 119. Turik, A. V., Chemyshkov, V. A., Resnichenko, L. A., Khasabova, G. I., Chemobabov, A. I.: Zh. Tekh. Fiz. 59 (1989) 162. Vorobev, V. V., Krupotkin, M. Ya., Finkel, V. A.: Phys. Status Solidi (a) 113 (1989) 375. Wang, Q., Saunders, G. A., Honle, W.: private communication (1989). Wruk, N., Pelzl, J., Hock, K. H., Saunders, G. A,: Preprint. See [9OWl]. Xiang, X., Chung, M., Brill, J. W., Hoen, S., Pinsukanjana, P., Zettl, A.: Solid State Commun. 69 (1989) 833. Yeganeh-Haeri, A., Weidner, D. J.: Phys. Chem. Miner. 16 (1989) 360.

Lmdolt-BBmstein New S&a IIIjZ9a

Page 646: Second and Higher Order Elastic Constants

634 1.4 References for 1

9OA1

9ODl 9OEl 9oE2 9OFl 9OGl

9OG2

9OHl 9oH2 9OKl 9OLl 9oL2 S’OMl

9oM2

9oM3 9ONl 9OPl 9OSl

9Os2 9Os3 9OWl

90x1 9OZl

Arai, M., Yagi, T., Sakai, A., Komukae, M., Osaka, T., Makita, Y.: J. Phys. Sot. Jpn. 59 (1990) 1285. Deb&he, M., Ganot, F., Bulou, A., Notre&J., Moth, P.: Ferroelectrics 106 (1990) 213. Every, A. G., Sachse, W.: Phys. Rev. B42 (1990) 81%. Ecolivet, C., Mierzejewski, A.: Phys. Rev. B42 (1990) 8471. Flower, S. C., Saunders, G. A.: Philos. Msg. B62 (1990) 311. Ganot, F., Deb&he, M., Bulou, A., Dugautier, C., Moth, P., Noet, J.: Ferroeltxtrics 107 (1990) 171. Gen, L., Tao, N., Le Van Hong, Cummhts, H. Z., Dreyfus, C., Hebbache, M., Pick, R. M., Vagner, J.: Phys. Rev. B42 (1990) 4406. Haussuhl, S.: Private communication. Haussuhl, s.: z. Ihimll0g.r. 190 (1990) 111. Kadkas, J. M., Sooryakumar, R., Carlone, C., Aubin, M.: Phys. Rev. B41(1990) 1516. Li, C., Chang, Y., Yan, Y., Zhao, M., Zheng, H., Qran, J.: Ferroelectrics lOl(l990) 207. Lushnhv, S. G., Siny, I. G.: Ferroelectrics 106 (1990) 237. Migliori, A., V&her, W. M., Brown, S. E., Fisk, Z., Cheong, S.-W., Alten, B., Ahrens, E. T., Kubat-Martin, K. A., Maynard, J. D., Huang, Y., Kirk, D. R., Gillis, K. A., Kim, H. K., Chan, M. H. W.: Phys. Rev. Blll(l990) 2098. Migliori, A., Visscher, W. M., Wong, S., Brown, S. E., Tanaka, I., Kojima, H., Allen, P. B.: Phys. Rev. Lett. 64 (1990) 2458. Marx, A., Kruger, J. K., Kirfel, A., Unruh, H.-G.: Phys. Rev. B42 (1990) 6642. Nakamura, M., Matsumoto, S., Hirano, T.: J. Mater. Sci. 25 (1990) 3309. prieto, C.: J. Raman Spectroscopy 21(1990) 371. Sidek, H. A. A., Saunders, G. A., James, B.: J. Phys. Chem. Solids 51(1990) 457; [8988] in published form. Sorge, G., Muller, V., Shuvalov, L. A.: Ferroelectrics 108 (1990) 289. Suzuki, T., Nohara, M., Fujita, T., T&batake, T., Fujii, H.: Physica B165-166 (1990) 421. Wruk, N., Pelzl, J., Hock, K.-H., Saunders, G. A.: Philos. Mag. B61(1990) 67; Published version of [89W2]. Xu, Y., Wang, H., Chen, H.: Ferroelectrics lOl(l990) 243. Zhang, P. L., Zong, W. L., Wang, Y. G., Lu, M. K.: Ferroelectrics 106 (1990) 351.

hdolt-Bllmstcin New Saica III/291

Page 647: Second and Higher Order Elastic Constants

Ref. p. 6741 2.1 Introduction 635

2 The third-*) and higher-order elastic constants

2.1 Introduction

2.1.1 Notation, units and abbreviations a) List of symbols

GPa

crlpv Cijklmn

c&w K Slpv 411 Sijklmn

K2, K3

sij

SA

Tij

TA T

GPa GPa GPa GPa m4Nm2 m4N-’ m4Nm2 GPa

GPa GPa K

Tc PO

K kg/m3

second order stiffnesses (contracted) 1GPa = 10’ Nme2 = 1O’O dyncmm2 third-order stiffnesses (contracted) third-order stiffnesses (tensor) fourth-order stiffnesses (contracted) bulk modulus for cubic crystals K = j(c,, + 2c12) third-order compliances (contracted) third-order compliances of rotated specimen (Fig. 13) third-order compliances (tensor) nonlinearity parameters components of Lagrangian finite strain tensor’*) strain components (contracted) components of stress tensor stress components (contracted) temperature Curie temperature initial density

b) Letters used as superscripts S T E D P M

adiabatic (constant entropy) isothermal (constant temperature) constant electric field constant electric displacement constant electric polarization mixed

c) Other abbreviations RT room temperature (Z 300 K, all results are for RT unless otherwise stated) at% atomic % mole% mole % wt% weight %

l ) Some investigators, e.g. [57nl], have termed these constants “second order”. The description “third-order” is more usual, and serves as a remainder that three strains are involved in the definition of the constants.

ai, aj are initial coordinates, and 6 is the Kronecker delta.

2.1.2 Theory and notation

For finite strains Hooke’s law no longer holds, and the stress-strain relationship is nonlinear. In the usual treatment, the energy of deformation is assumed to be a polynomial in the strains. If the initial energy and deformation of the body are zero, the deformation energy takes the form

@ = k2Cijklsijskl + k3Cijkhnsijsklsmn + ’ ’ ’ 3 (14 where Sij are the Lagrange finite strain components [47Bl], and the coefficients cijkl and Cijklmn are the second-

Land&Bdmstein New Series W29a

Page 648: Second and Higher Order Elastic Constants

636 2.1 Introduction [Ref. p. 674

and third-order stiffnesses, respectively. Summation over indices appearing twice in any product (Einstein convention) is observed throughout this section, unless otherwise indicated by the presence of a summation sign. The stiffnesses are normally commutative with respect to the indices ij, kl, mn, and the index pairs, e.g.,

Cijklmn = Cjiklmn = Cijmnkl = * ’ * . (lb)

The second-order stiffnesses form a fourth-rank tensor containing 9’ = 81 components, 21 of which are independent for a triclinic crystal. The third-order stiffnesses form a sixth-rank tensor containing 9’ = 729 components of which 56 are independent for a triclinic crystal.

In accordance with the existing definition of second-order stiffnesses, k2 in Eq. (la) is equal to l/2. Brugger [64B2] has proposed a general definition of higher-order elastic coefficients in which the factor k, in Eq. (la) is l/n!, and in accordance with this definition k, is equal to l/6.

The suffixes of the strains are usually expressed as a single-suffix notation instead of as a double-suffix notation (see Table I). The abbreviation is generally accompanied by the introduction of the factor l/2 in the shear strains, resulting in the full transformation

Sll = Sl, s22 = s*. s33 = s3, s23 = fs,, S13 = f&s,, S12 = +s,. (24

Table 1. Conversion of double indices to single indices.

ij, kl, mn, op 1, I4 v, 0

11 1 22 2 33 3 23 or 32 4 31 or 13 5 12 or 21 6

The factor l/2 does not occur in transforming the stresses so that

T,, = TA. CW

The Roman letters i, j, k, 1, m, n, running from 1 to 3 are used here in the double-suffix notation, whereas the Greek letters J., p, v, o, running from 1 to 6, are used in the single-suffix notation. The notation and numbers of components in tensors up to the fourth order are summarized in Table 2; for the theory of fourth-order elastic coefficients, see Section 2.1.4.

Table 2. Higher-order tensors.

Order of coefficient

Rank of tensor

Tensor notation

Abbreviated Number of form tensor

components

Number of components in abbreviated form

Number of independent coefficients

first second third fourth

second fourth sixth eighth

aij

aijkl

aijkhn

aijkhop

9 6 6 81 * 36 21

729 216 56 6561 1296 126

. The contribution of the third-order terms to the strain energy [Eq. (1)], using Brugger’s definition for the

stiffnesses, is

@3 = (1/6)CijklmnSijSt~Srnn. Brugger contracts the third-order stiffnesses according to the rule

(34

C~pv = Cijklmn. (W

Landoh-Btimsfein New Scrics IllR9a

Page 649: Second and Higher Order Elastic Constants

Ref. p. 6741 2.1 Introduction 637

However, Birch’s [47Bl] pioneering work on the third-order constants defines their contribution to the strain energy as

@3 = c GpvSvqsa. (4) asp~v

Comparing (4) with (3a), term by term, and taking into account relations of the type (lb), it follows:

Cf’11 = c,,,/6, Cl, = c112/z c?14 = Cl 14,

and, in general

Ckv = Mc,,,/6, (5) where M is the number of possible ways in which claV can be expressed in tensor notation. The M values for typical constants are given in Table 3, and by suitable substitution of other suffixes, the M values for all the clllV can be obtained (see Table 5, Column 2).

Table 3. Third-order coefficients in abbreviated form and M, the number of possible ways in which cLpV can be written in tensor (six) indices.

Type Abbreviated Indices M form

Cl11

c444

Cl12

Cl14

Cl44

c455

Cl23

cl24

Cl45

C456

A.= 1,2,3 1 = 4,5,6 1 * P, 1 * I.4

J. * I4

1 9 P, a*p*vv, a*p*vv,

a*p*v,

a*p*vv,

1 8

1,p= 1,2,3 3 1=1,2,3 6 p = 4,5,6 1=1,2,3 12 p = 4,5,6

1, p = 4,5,6 24 A,p,v= 1,2,3 6

1,p= 1,2,3 12 v = 4, 5, 6 I = 1,2,3 24

p, v = 4,5,6 1, /L, v = 4,5,6 48

The conversion relations for the third-order stiffnesses defined by Birch and by Brugger in the cubic system are:

CT11 = cl11/6 Cl2 = Cll2lZ

c:23 = cl239 CT44 = 2Cl44, (6) ‘% = %ss, c:s.s = 8~456.

Brugger’s formal thermodynamic definitions of the nth order stiffnesses c and compliances s are:

C:kl... = Po(PU/aSijaSk, ’ ’ ‘)S,

CCkl... = po(a”F/aSijdSkl ’ ’ ‘)T,

SEkl... = -po(a”H/aTijaTk* ’ ’ ‘)S, ’

s$~,... = -po(PG/aTijdTk, * * *)T,

(74

(W

(7c)

(74 where Tij, Tkl are the thermodynamic tensions, pO is the density, U is the internal energy, F is the free energy, H the enthalpy, G the Gibbs function, S denotes (constant) entropy, and T denotes (constant) temperature. Thus from (7a), the adiabatic thi;d-order stiffnesses are:

S Cijklmn = Po(a3u/asijask,as,“)S = @:klh%& 63)

Land&-BBmstein New Series 111/29a

Page 650: Second and Higher Order Elastic Constants

638 2.1 Introduction [Ref. p. 674

and the isothermal stiffnesses from (7b):

However, Thurston and Brugger [64Tl] showed that the third-order stiffnesses as normally measured are mixed (M), and can be written

The relation between the adiabatic stiffnesses (7a) and the mixed stiffnesses (10) was established by Brugger [64B2], and Nran’yan [65Nl] has dealt with the difference between the adiabatic and isothermal stiffnesses; Powell and Skove [67Pl] have derived the difference between the isothermal and mixed constants. Barsch [67Bl] has provided the basic formulae for calculating the adiabatic, isothermal and mixed pressure derivatives of the second-order stiffnesses of materials with cubic symmetry, and, together with Chang [67B2] has calculated the values for 25 materials. Sachs [SSSl] reports that there are some errors and disagreements in the literature on these relationships.

A further complication is that the mixed constants do not possess the full symmetry of the adiabatic and isothermal constants [6782,70E2,7OSl]. Whereas cs and cT are symmetric under the interchange of any pair of subscripts, cM are only symmetric in general under interchange of the first two pairs. Guinan and Ritchie [7OG2] show that for cubic materials cM 144 - c&r, CYST - &, , and c”;: i - crj’, 2 are not zero, and supply the formulae for calculating the differences. The modifications to the Thurston-Brugger treatment of wave propagation [64Tl] needed to take account of the differences are discussed by Sekoyan [75S4].

Obviously, as Thurston [74tl] has pointed out, any tabulation of third-order constants should take these findings into account, but this has not been done in the present tabulation for the following reasons:

(1) The third-order constants cannot in general be measured with high accuracy, and it is possible that the corrections are not significantly greater than experimental errors.

(2) In some cases the formulae and data required for calculating the corrections are not available. (3) Any attempt to tabulate corrected values would make for complication and unwieldiness both in

processing and presenting the data. The data in the tables are therefore given as published in the original papers, converted when necessary to

conform to Brugger’s definition, and no corrections have been applied. The third-order constants as defined by Brugger and Birch are the only ones which have been used for

crystals. For isotropic materials there are only three independent third-order constants, which are often taken as c,~~, c144, and c456; these have been denoted respectively by vi, v2, and v3, and called “third-order Lame constants” [6lT2, 63S1, 64Tl]. Other sets of third-order constants that are used for isotropic materials are the Murnaghan [51ml] constants I, m, and n, and the Landau [7OZl, 73gl] constants A, B, and C, both of which sets can be expressed as linear combinations of the Lame constants. The relationship between Eulerian and Lagrangian third-order elastic constants has been discussed by [87tl].

The third-order constants are involved in the concept of “effective” constants under stress. Thurston [74tl] has identified three types of second-order constants:

(I) Second derivatives of internal energy with respect to some measure of strain. (2) First derivatives of stress with respect to strain. (3) Coefficients in a linearized equation of motion. The constants (1) are thermodynamic; (2) and (3) are “effective” for stress deformation and wave propagation

respectively. Other discussions of effective constants are given in [60B2, 65T1,66(32, 68B2, 68C4, 74D1, 88R2].

2.1.3 Third-order coefficients of the various crystal classes

The number of elastic stiffnesses for a crystal having no symmetry (i.e. 56 independent third-order stiffnesses for the triclinic system), is reduced in the case of a material with higher symmetry. A list of the various crystal classes, Hermann-Mauguin symbols, Schoenflies symbols, and the number of second- and third-order elastic coefficients is given in Table 4. When two numbers appear in columns 4 and 5 the first number indicates the total number of non-zero constants whereas the second number indicates the number of independent constants. Only one number is given when all constants are independent.

Land&-B6msrcin New Series III!Z9a

Page 651: Second and Higher Order Elastic Constants

638 2.1 Introduction [Ref. p. 674

and the isothermal stiffnesses from (7b):

However, Thurston and Brugger [64Tl] showed that the third-order stiffnesses as normally measured are mixed (M), and can be written

The relation between the adiabatic stiffnesses (7a) and the mixed stiffnesses (10) was established by Brugger [64B2], and Nran’yan [65Nl] has dealt with the difference between the adiabatic and isothermal stiffnesses; Powell and Skove [67Pl] have derived the difference between the isothermal and mixed constants. Barsch [67Bl] has provided the basic formulae for calculating the adiabatic, isothermal and mixed pressure derivatives of the second-order stiffnesses of materials with cubic symmetry, and, together with Chang [67B2] has calculated the values for 25 materials. Sachs [SSSl] reports that there are some errors and disagreements in the literature on these relationships.

A further complication is that the mixed constants do not possess the full symmetry of the adiabatic and isothermal constants [6782,70E2,7OSl]. Whereas cs and cT are symmetric under the interchange of any pair of subscripts, cM are only symmetric in general under interchange of the first two pairs. Guinan and Ritchie [7OG2] show that for cubic materials cM 144 - c&r, CYST - &, , and c”;: i - crj’, 2 are not zero, and supply the formulae for calculating the differences. The modifications to the Thurston-Brugger treatment of wave propagation [64Tl] needed to take account of the differences are discussed by Sekoyan [75S4].

Obviously, as Thurston [74tl] has pointed out, any tabulation of third-order constants should take these findings into account, but this has not been done in the present tabulation for the following reasons:

(1) The third-order constants cannot in general be measured with high accuracy, and it is possible that the corrections are not significantly greater than experimental errors.

(2) In some cases the formulae and data required for calculating the corrections are not available. (3) Any attempt to tabulate corrected values would make for complication and unwieldiness both in

processing and presenting the data. The data in the tables are therefore given as published in the original papers, converted when necessary to

conform to Brugger’s definition, and no corrections have been applied. The third-order constants as defined by Brugger and Birch are the only ones which have been used for

crystals. For isotropic materials there are only three independent third-order constants, which are often taken as c,~~, c144, and c456; these have been denoted respectively by vi, v2, and v3, and called “third-order Lame constants” [6lT2, 63S1, 64Tl]. Other sets of third-order constants that are used for isotropic materials are the Murnaghan [51ml] constants I, m, and n, and the Landau [7OZl, 73gl] constants A, B, and C, both of which sets can be expressed as linear combinations of the Lame constants. The relationship between Eulerian and Lagrangian third-order elastic constants has been discussed by [87tl].

The third-order constants are involved in the concept of “effective” constants under stress. Thurston [74tl] has identified three types of second-order constants:

(I) Second derivatives of internal energy with respect to some measure of strain. (2) First derivatives of stress with respect to strain. (3) Coefficients in a linearized equation of motion. The constants (1) are thermodynamic; (2) and (3) are “effective” for stress deformation and wave propagation

respectively. Other discussions of effective constants are given in [60B2, 65T1,66(32, 68B2, 68C4, 74D1, 88R2].

2.1.3 Third-order coefficients of the various crystal classes

The number of elastic stiffnesses for a crystal having no symmetry (i.e. 56 independent third-order stiffnesses for the triclinic system), is reduced in the case of a material with higher symmetry. A list of the various crystal classes, Hermann-Mauguin symbols, Schoenflies symbols, and the number of second- and third-order elastic coefficients is given in Table 4. When two numbers appear in columns 4 and 5 the first number indicates the total number of non-zero constants whereas the second number indicates the number of independent constants. Only one number is given when all constants are independent.

Land&-B6msrcin New Series III!Z9a

Page 652: Second and Higher Order Elastic Constants

Ref. p. 6741 2.1 Introduction 639

Table 4. Various crystal systems, symmetry symbols, and number of second- and third-order elastic coefficients.

Crystal system Symmetry symbols No. of elastic coefficients

Hermann-Mauguin Schoenflies 2nd order 3rd order

Triclinic I i,i cl,ci 21 56 Monoclinic II 2, m, 2/m &v cs, &h 13 32 Orthorhombic III 222, mm2, mmm Dz, czv, Da 9 20

IVa 4,4,4/m c4, s4, C4h 1 l/7 28/16 Tetragonal IVb 422,4mm, 42m, 4/mmm Da> c4v, Dm D4h 916 20112

Va 3, J c3 9 c3i 1517 50120 Trigonal Vb 32,3m, Trn &r c3v, D3d 1216 31/14

Via 6,6,6/m c6, C3hv C6h 915 28112 Hexagonal VIb 622,6mm, 6m2,6/mmm D6, c6w Da,, D6h 915 20110

VIIa 23, m3 T, Th 913 20/8 Cubic VIIb 432,43m, m3m 0, Td, Oh 913 2016

The schemes of the elastic coefficients for the various crystal classes are given in Table 5. Transversely isotropic materials are not included in the table; according to [77Fl] the scheme of constants is

identical with that for hexagonal class VIb, with the additional relation c222 = cl 1 1.

Table 5. Scheme of the third-order elastic stiffnesses (suffixes only) and their simplification for the various crystal classes (see Table 4). For explanation of the letters a), b), . . . , w) see Table 6, for explanation of A4 see Table 3.

Tri- A4 Monoclinic II Ortho- Tetragonal Trigonal Hexagonal Cubic Iso- clinic rhom- tropic

X-axis Y-axis Z-axis bit sym- sym- sym-

I metry metry metry III IVa IVb Va Vb Via VIb VIIa VIIb

111 1 111 111 111 111 111 111 112 3 112 112 112 112 112 112 113 3 113 113 113 113 113 113 114 6 114 0 0 0 0 0 115 6 0 115 0 0 0 0 116 6 0 0 116 0 116 0 122 3 122 122 122 122 122 112 123 6 123 123 123 123 123 123 124 12 124 0 0 0 0 0 125 12 0 125 0 0 0 0 126 12 0 0 126 0 0 0 133 3 133 133 133 133 133 133 134 12 134 0 0 0 0‘ 0 135 12 0 135 0 0 0 0 136 12 0 0 136 0 136 0 144 12 144 144 144 144 144 144 145 24 0 0 145 0 145 0 146 24 0 146 0 0 0 0 155 12 155 155 155 155 155 155 156 24 156 0 0 0 0 0 166 12 166 166 166 166 166 166 222 1 222 222 222 222 111 111 223 3 223 223 223 223 113 113 224 6 224 0 0 0 0 0 225 6 0 225 0 0 0 0 226 6 0 0 226 0 -116 0 233 3 233 233 233 233 133 133 234 12 234 0 0 0 0 0 235 12 0 235 0 0 0 0 236 12 0 0 236 0 -136 0 244 12 244 244 244 244 155 155 245 24 0 0 245 0 - 145 0 246 24 0 246 0 0 0 0

111 112 113 114 115 116

4 123 124 125

P) 133 134 135

0 144 145 b)

155

dc; 222 113

4 f )

116 133

- 134 - 135

0 155

- 145 8)

-

111 112 113 114

0 0

4 123 124

0 0

133 134

0 0

144 0 0

155

2) 222 113

4 0 0

133 134

0 0

155 0 0

-

111 111 111 111 111 112 112 112 112 112 113 113 113 112 112

0 0 0 0 0 0 0 0 0 0

116 0 0 0 0 4 4 113 112 112

123 123 123 123 123 0 0 0 0 0 8 0 0 0

p) 0 0 0 0 133 133 112 112 112

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

144 144 144 144 1) 145 0 0 0 0

0 0 0 0 0 155 155 155 155 m)

d”, ; 16: 0 0

155 m) 222 222 111 111 111 113 113 112 112 112

0 0 0 0 0 0 0 0 0 0

116 0 0 0 0 133 133 113 112 112

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

155 155 166 155 m) 145 0 0 0 0

0 0 0 0 0

(continued)

Landolt-Biirnstein New Series III/29a

Page 653: Second and Higher Order Elastic Constants

640 2.1 Introduction [Ref. p. 674

Table 5. (continued)

Tri- M Monoclinic II Ortho- Tetragonal Trigonal Hexagonal Cubic Iso- clinic rhom- tropic

X-axis Y-axis Z-axis bit sym- sym- sym-

I metry metry metry III IVa IVb Va Vb Via VIb VIIa VIIb

255 12 255 255 256 24 256 0 266 12 266 266 333 1 333 333 334 6 334 0 335 6 0 335 336 6 0 0 344 12 344 344 345 24 0 0 346 24 0 346 355 12 355 355 356 24 356 0 366 12 366 366 444 8 444 0 445 24 0 445 446 24 0 0 455 24 455 0 456 48 456 456 466 24 466 0 555 8 0 555 556 24 0 0 566 24 566 666 8 8 0

255 255 144 144 144 144 144 144 144 144 1) 0 0 0 0 h) h) 0 0 0 0 0

266 266 166 166 i) 9 i) i) 155 155 333 333 333 333 333 333 333 333 111 111 1:) 0 0 0 0 0 0 0 0 0 0 0 0

8

0 0 0 0 0 0 0 0 0

336 0 0 0 0 0 0 0 344 344 344 344 344 344 344 344 155 15: 4 345 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4) 0 0 0 0 0 0 355 355 344 344 344 344 344 344 166 155 m)

0 0 0 0 r) r) 0 0 0 0 0 366 366 366 366 3 3 j) j) 144 144 1)

0 0 : 0 444 444 0 0 0 0 0 0 0 0 445 0 0 0 0 0

446 0 446 0 145 0 145 0 0 0 : 0 0 0 0

456 456 456 456 ksj E;' 1p, kg 45:: 45: n; 0 0 0 0 1) 1) 0 0 0 0 0 0 0 0 0 u) 0 0 0 0 0 0

556 0 -446 0 - 145 0 - 145 0 0 0 0 0

666 8 8 8 VI 0 0 0

4 8 WI 8 : 0 0

Table 6. Explanation of the letters a), b), * * . used in Table 5.

Definitions according to Birch Definitions according to Brugger

4 P) 9) r) s) 0 4 4 WI

c122= ~~III+~IIZ-~~ZZZ c122= c111+c112-c222

Cl46= -2G15-3G2s c~~~=~(--c~~~--~c~x) clS6= 2c114+3c,z4 C,S6=t(Cl,4+3Cl24)

cl66= -6C111-C112+9C222 ~,66=!(-~~lll-~llZ+3~ZZZ)

c224= -cll4-cl24 c224= -c,l4-2c,z4

c225= -c115-Cl25 c225= -c115-2c125

c246 = -2c,,s+c,25 C246=t(--C,lS+ClZS)

c256= ~C,M-~IM C256=f(Cll4-C,24)

c266 = 6C111-C112-3C222 C266=t(2Cl,l-Cll2-C222)

C366= ~CL,J-~IZ~ C366=t(Cll3-C,23)

c456 = 2(C ,ss-Cl441 C456=t(--Cl44+ClSS)

c,44=cZSS=c366= 2c,,z-c,23 Cl44=C2SS=C366=th,Z-C,23)

~lSS=~l66=~244 ~lSS=~l66=~244=

c266=c344=c3SS= 3cl,,-cl12 c266=c344=c355=!(c,,,-c,,2) c456 = 6C1 I I - 6C112+2C123 c4S6=~(clll-3cll2+2cl23)

Cl26= -2cll6 cl26= -cl16

c346 = -~C,JS c346= -cl35

CJS6 = ~CIM c356= Cl34

c4ss= - 3c444 c455 = - c444

C466 = 2c 124 c466 = cl24

css; = -c445/3 Gss = -c445

G66 = cS66 = Cl25

C666 = -:::::,3 c666= -cl16

Landoh-Ltiimrtein New Series lllj’29a

Page 654: Second and Higher Order Elastic Constants

Ref. p. 6741 2.1 Introduction 641

The numerical values differ according to the definitions for the expressions for the third-order coefficients. The schemes of the coefficients for the monoclinic system are related to the X-, Y-, or Z-axis as symmetry axis. Table 5 refers to the elastic stiffnesses CkV [47Bl] and crllrv [64B2] but the letter C or c is always omitted and only suffixes are represented. Coefficients indicated by letters are explained in Table 6, the expressions transforming according to the definitions of C and c. The left-hand side of the table refers to CkY according to Birch [47Bl] and Hearmon [53Hl]; whereas the right-hand side of the table refers to crllrv according to Brugger [64B2], and Fumi [51Fl, 52Fl]. A clarification of the chronological development of the tensor form of the third-order elastic constants is given by Fumi [87Fl].

2.1.4 Macroscopic theory of higher-order constants

Constants of higher order than the third are at present mainly of academic interest, although some numerical estimates of fourth-order constants have been made. The subject of higher-order constants, nevertheless, has attracted considerable theoretical attention.

The numbers of independent fourth-, fifth-, sixth-, and seventh-order constants required by symmetry considerations are given in Table 7. For a class VIIb material, for example, the fourth-order constants are:

1111 = 2222 = 3333, 1112 = 1113 = 1222 = 1333 = 2223 = 2333, 1122 = 2233 = 3311, 1123 = 1322 = 1233, 1144 = 2255 = 3366, 1155 = 2266 = 3344 = 1166 = 2244 = 3355, 1244 = 2366 = 1344 = 1366 = 2355 = 1255, 1266 = 2344 = 1355, 1456 = 2456 = 3456, 4444 = 5555 = 6666,

(11)

4455 = 5566 = 4466,

where the suffixes only are given [64Gl, 65631. Complete schemes of the constants, which are too extensive to quote here, have been derived as follows:

4th-order: All crystal systems [79B3]. Sth-order: Systems I, II, III, IVa, IVb, VIIa, VIIb [74Cl], 6th-order: Systems I, II, III, IVa, IVb, VIIa, VIIb [74Cl]. The schemes of fourth-order constants for the trigonal system Vb have also been derived in [76M2], with

quartz particularly in mind. Fumi and Ripamonti [80Fl, 80F2] have developed a method of dealing with tensor properties and rotational

symmetry of crystals, and have presented condensed tables of the independent components of tensors up to rank 8 with l-, 2-, 3-, 4-, and 6-fold symmetry.

The general theory of the elastic constants of a stressed crystal has been considered by Zarochentsev et al. [7922], and applied to cubic crystals [7923], with special mention of the parts played by the adiabatic, mixed, and isothermal stiffnesses. Based on this theory, a possible static method of studying stressed crystals is proposed [SOZl]. The theory of stressed crystals is also considered by Hegedus and Kolnik [79H2], who have derived some invariance relations for acoustic waves propagating in crystals under hydrostatic pressure.

Special attention has been paid to the higher-order constants of an isotropic solid [69Kl, 6982,74Sl]. Shull [6932] has established the isotropy conditions for the mixed moduli, and has expressed his measurements in terms of fourth-order Lame constants r1 , z2, z3, and rd.

Land&-Biirnstein New Series II1/29a

Page 655: Second and Higher Order Elastic Constants

Ref. p. 6741 2.1 Introduction 641

The numerical values differ according to the definitions for the expressions for the third-order coefficients. The schemes of the coefficients for the monoclinic system are related to the X-, Y-, or Z-axis as symmetry axis. Table 5 refers to the elastic stiffnesses CkV [47Bl] and crllrv [64B2] but the letter C or c is always omitted and only suffixes are represented. Coefficients indicated by letters are explained in Table 6, the expressions transforming according to the definitions of C and c. The left-hand side of the table refers to CkY according to Birch [47Bl] and Hearmon [53Hl]; whereas the right-hand side of the table refers to crllrv according to Brugger [64B2], and Fumi [51Fl, 52Fl]. A clarification of the chronological development of the tensor form of the third-order elastic constants is given by Fumi [87Fl].

2.1.4 Macroscopic theory of higher-order constants

Constants of higher order than the third are at present mainly of academic interest, although some numerical estimates of fourth-order constants have been made. The subject of higher-order constants, nevertheless, has attracted considerable theoretical attention.

The numbers of independent fourth-, fifth-, sixth-, and seventh-order constants required by symmetry considerations are given in Table 7. For a class VIIb material, for example, the fourth-order constants are:

1111 = 2222 = 3333, 1112 = 1113 = 1222 = 1333 = 2223 = 2333, 1122 = 2233 = 3311, 1123 = 1322 = 1233, 1144 = 2255 = 3366, 1155 = 2266 = 3344 = 1166 = 2244 = 3355, 1244 = 2366 = 1344 = 1366 = 2355 = 1255, 1266 = 2344 = 1355, 1456 = 2456 = 3456, 4444 = 5555 = 6666,

(11)

4455 = 5566 = 4466,

where the suffixes only are given [64Gl, 65631. Complete schemes of the constants, which are too extensive to quote here, have been derived as follows:

4th-order: All crystal systems [79B3]. Sth-order: Systems I, II, III, IVa, IVb, VIIa, VIIb [74Cl], 6th-order: Systems I, II, III, IVa, IVb, VIIa, VIIb [74Cl]. The schemes of fourth-order constants for the trigonal system Vb have also been derived in [76M2], with

quartz particularly in mind. Fumi and Ripamonti [80Fl, 80F2] have developed a method of dealing with tensor properties and rotational

symmetry of crystals, and have presented condensed tables of the independent components of tensors up to rank 8 with l-, 2-, 3-, 4-, and 6-fold symmetry.

The general theory of the elastic constants of a stressed crystal has been considered by Zarochentsev et al. [7922], and applied to cubic crystals [7923], with special mention of the parts played by the adiabatic, mixed, and isothermal stiffnesses. Based on this theory, a possible static method of studying stressed crystals is proposed [SOZl]. The theory of stressed crystals is also considered by Hegedus and Kolnik [79H2], who have derived some invariance relations for acoustic waves propagating in crystals under hydrostatic pressure.

Special attention has been paid to the higher-order constants of an isotropic solid [69Kl, 6982,74Sl]. Shull [6932] has established the isotropy conditions for the mixed moduli, and has expressed his measurements in terms of fourth-order Lame constants r1 , z2, z3, and rd.

Land&-Biirnstein New Series II1/29a

Page 656: Second and Higher Order Elastic Constants

642 2.1 Introduction [Ref. p. 674

Table 7. Numbers of independent nth order stiffnesses.

Crystal system Laue Hermann-Mauguin n=4 n=5 n=6 n=l

group symbols’)

I Triclinic N II Monoclinic M III Orthorhombic 0 IVa Tetragonal T II IVb Tetragonal TI Va Trigonal R II Vb Trigonal RI Via Hexagonal H 11 VIb Hexagonal HI VIIa Cubic c II VIIb Cubic CI VIII Isotropic I

References

1, i 2, N/m 222, mm2, mmm 4,;i, 4/m 422,4mm, 42m, 4/mmm 3,3 32, 3m, 3rn 6, 6, 6/m 622,6mm, zrn, 2,6/mmm 23, m3 432, ;i3m, m3m

126 252 462 70 136 246 42 78 138 36 68 124 25 44 77 42 84 156 28 52 93 24 46 84 19 33 57 14 26 48 11 18 32 4 5 7

63Kl 64N3 65Ll 64Gl 65Ll 72Cl 64N3 68K2 72C2 6563 74Cl 74Cl 65Ll 74s1 74s 1 68K2 69S2 74Cl

792 416 228 208 124 256 148 140 90 76 48

8

72C2 74s 1

l I For the corresponding Schoenflies symbols see Table 4.

2.1.5 Methods for the determination of the third-order elastic constants

The principal experimental methods for estimating numerical values of the third-order stiffnesses are based on the following effects:

A) The variation of ultrasonic transmission velocity with applied stress. B) The development of second and higher harmonics in finite amplitude waves propagating through the

material (SHG). C) Deviations from Hooke’s law in static experiments. D) Shock wave propagation. Method A is the most important of the four; it is the one by which the great majority of existing values of

third-order stiffnesses have been measured, and it is the only one which on its own yields a complete set of stiffnesses. In principle, it consists in observing the variation with applied stress of the velocity of ultrasonic waves propagating in different directions through the crystal [64Tl, 64tl,65B4, 74tl,8624]. If the crystal belongs to the cubic system VIIb (Table 4), and the stress is hydrostatic, the combinations (cl I, + 2c, ,& (crd4 + 2~r~~), (c111 -Ed and (3~~~~ + 2c112 + c144 + 2~ 155 + 4~123) can be obtained from appropriate propagation and polarization directions. In order to find the individual stiffnesses, and to determine the remaining stiffness, c456, observations of velocity change under uniaxial stress are necessary. The directions of stress, propagation, and polarization must be properly chosen [65B4, 83S2] to yield the required stiffnesses; for instance [64Tl], if the stress direction coincides with [I lo], and the propagation and polarization directions with [OOl] (i.e. a longitud- inal wave along a cube edge with stress applied along a face diagonal), then

where the isothermal differential is evaluated at zero stress, and W is the velocity referred to the unstressed path length; the second-order compliances ST,, are isothermal, whereas the stiffness c$r is adiabatic. Thus, measure- ments under these conditions, combined with hydrostatic pressure data and the values of 4r, ST,, sT2, enable the

Landoh-BCmstcln New Series 11129a

Page 657: Second and Higher Order Elastic Constants

642 2.1 Introduction [Ref. p. 674

Table 7. Numbers of independent nth order stiffnesses.

Crystal system Laue Hermann-Mauguin n=4 n=5 n=6 n=l

group symbols’)

I Triclinic N II Monoclinic M III Orthorhombic 0 IVa Tetragonal T II IVb Tetragonal TI Va Trigonal R II Vb Trigonal RI Via Hexagonal H 11 VIb Hexagonal HI VIIa Cubic c II VIIb Cubic CI VIII Isotropic I

References

1, i 2, N/m 222, mm2, mmm 4,;i, 4/m 422,4mm, 42m, 4/mmm 3,3 32, 3m, 3rn 6, 6, 6/m 622,6mm, zrn, 2,6/mmm 23, m3 432, ;i3m, m3m

126 252 462 70 136 246 42 78 138 36 68 124 25 44 77 42 84 156 28 52 93 24 46 84 19 33 57 14 26 48 11 18 32 4 5 7

63Kl 64N3 65Ll 64Gl 65Ll 72Cl 64N3 68K2 72C2 6563 74Cl 74Cl 65Ll 74s1 74s 1 68K2 69S2 74Cl

792 416 228 208 124 256 148 140 90 76 48

8

72C2 74s 1

l I For the corresponding Schoenflies symbols see Table 4.

2.1.5 Methods for the determination of the third-order elastic constants

The principal experimental methods for estimating numerical values of the third-order stiffnesses are based on the following effects:

A) The variation of ultrasonic transmission velocity with applied stress. B) The development of second and higher harmonics in finite amplitude waves propagating through the

material (SHG). C) Deviations from Hooke’s law in static experiments. D) Shock wave propagation. Method A is the most important of the four; it is the one by which the great majority of existing values of

third-order stiffnesses have been measured, and it is the only one which on its own yields a complete set of stiffnesses. In principle, it consists in observing the variation with applied stress of the velocity of ultrasonic waves propagating in different directions through the crystal [64Tl, 64tl,65B4, 74tl,8624]. If the crystal belongs to the cubic system VIIb (Table 4), and the stress is hydrostatic, the combinations (cl I, + 2c, ,& (crd4 + 2~r~~), (c111 -Ed and (3~~~~ + 2c112 + c144 + 2~ 155 + 4~123) can be obtained from appropriate propagation and polarization directions. In order to find the individual stiffnesses, and to determine the remaining stiffness, c456, observations of velocity change under uniaxial stress are necessary. The directions of stress, propagation, and polarization must be properly chosen [65B4, 83S2] to yield the required stiffnesses; for instance [64Tl], if the stress direction coincides with [I lo], and the propagation and polarization directions with [OOl] (i.e. a longitud- inal wave along a cube edge with stress applied along a face diagonal), then

where the isothermal differential is evaluated at zero stress, and W is the velocity referred to the unstressed path length; the second-order compliances ST,, are isothermal, whereas the stiffness c$r is adiabatic. Thus, measure- ments under these conditions, combined with hydrostatic pressure data and the values of 4r, ST,, sT2, enable the

Landoh-BCmstcln New Series 11129a

Page 658: Second and Higher Order Elastic Constants

Ref. p. 6741 2.1 Introduction 643

values of ci i i and c1 i2 to be found; the remaining third-order stiffnesses are found similarly from observations under other combinations of the directions of stress, propagation, and polarization. The method has also been extended to the determination of complete sets of third-order stiffnesses for hexagonal [7OS2,71Nl, 73F1, 74F1,74Wl], trigonal [66Tl, 68K1,6884,69Gl, 70H1,73N2], and tetragonal [72S2], crystals. The efficient measurement of the third-order constants by wave-propagation methods requires a knowledge of the pure modes of propagation, and these have been investigated by Brugger [65B5] and Chang [68C3].

Method B depends on the distortion developed in an ultrasonic wave during passage through the crystal, and involves measuring the amplitudes of the fundamental and second harmonic components of the wave as a function of path length [84bl]. Analysis of the conditions in a cubic crystal [66Bl, 67H4,8623] shows that the equations of motion for a single plane wave depend on the stiffnesses c ill, cl12, cis5, and the combinations (2cid4 + Cafe), (&i44 + cbs6). Evidently, at least one supplementary measurement is needed to obtain a full set of stiffnesses, and usually this is related to the pressure dependence of the second-order stiffnesses. The accuracy of SHG measurements appears to be somewhat limited, particularly that of the two combinations, but the technique has the advantage that shear stresses are avoided, and thus it can be applied to materials which are brittle or prone to plastic flow [88Gl]. Most observations appear to relate to longitudinal waves propagating in simple directions in crystals. In cubic crystals the amplitude of vibration of the wave depends on two parameters K2, a combination of second-order stiffnesses, and K,, a combination of third-order stiffnesses, termed the nonlinearity parameters [65B6, 84bl]. Expressions for K2 and K3 for the cube edge, cube diagonal, and body diagonal directions in cubic crystals are given in Table 8.

Table 8. Nonlinearity parameters K2 and KS.

Direction K2

ClW Cl1

CllOl (Cl1 + Cl2 + 2c44)/2

Cl111 (Cl1 + 2c12 + 4&d/3

K3

Cl11

(CIII + ha + 12c1~)/4 (cl11 + 6~112 + 12~ + 24~~~ +2c123 + 16cd/9

Assuming that a sinusoidal source is situated at the position a = 0, an approximate solution [72bl] of the governing differential equation gives the displacement U as

U=Asin(ka-ot)-[(3K2+K3)/8K2]A2k2acos2(ka-ot)......,

where a is the distance from the source and k = 27r/J. Thus if the second-order constants are known, K3 can be determined from measurements of the amplitudes of the fundamental and second harmonic of a longitudinal wave travelling in the appropriate direction. Calculations of nonlinearity parameters in some cubic crystals are reported in [77P2]; the effect of temperature on K3 is shown in several Figures in Section 2.4.

Method C depends basically on measuring the nonlinearity in the stress-strain relationship, and expressing the deviations in terms of the third-order stiffnesses [6OSl, 68P2,68P3]. The method, though of great intrinsic interest, is even less self-contained than Method B, and like it, is of rather limited accuracy. It has been used [68P2], in conjunction with supplementary data, to derive complete sets of third-order stiffnesses for fused quartz, Cu, Ag, and a partial set for Fe. Some work has related to combinations of third-order constants [72P2,73Pl], and some to combinations of fourth-order constants [69Pl, 7OP43. Whisker crystals have been used in some investigations [73Kl, 73R4,83P2]. Combinations of isothermal third-order stiffnesses can also be obtained from data on volume changes under hydrostatic pressure [84Pl].

Method D can only be used on materials with high Hugoniot elastic limits. The experimental data consists of a stress-compression relationship in shock wave loading; details of the technique and data analysis are given in [67Fl, 7263-j; it has been applied to measuring certain third- and fourth-order constants of sapphire and quartz.

A method has been described [78Hl], which depends on the change in resonance frequency of thick plates with stress [75Ll], observed by a light diffraction technique (Fig. 1). The method has been used on materials belonging to the cubic classes VIIb (6 constants) and VIIa (8 constants), and to the orthorhombic class (calcium formate) [81Hl], to obtain complete sets of third-order stiffnesses for these classes.

Ultrasonic beam mixing provides another method of determining certain combinations of third-order elastic constants [70Dl].

Third-order elastic constants have also been obtained from the stress dependence of elastic constants measured by Brillouin scattering [87Yl]. This permits the study of dispersive effects between MHz and GHz frequencies.

Landolt-B6rnstein New Series III/29a

r

Page 659: Second and Higher Order Elastic Constants

644 2.1 Introduction [Ref. p. 674

2.1.6 Applications and theoretical developments

The third-order elastic constants have found application in the fo!!o&ng topics: attenuation, both microwave [65P!] and acoustic [64M2,65P2,66Ml, 66M2,67H2,68Ll, 72K2,88Jl]; electronic effects in Ge and Si [65Hl, 67Hl]; geophysics [47Bl, 54Kl,57Bl, 6OB1,6OB2,6OCl]; effect of temperature [67H3,74R4,75Gl, 75621 and pressure [67C2] on the second-order elastic constants; defects [59Sl, 76R2]; polarization in ferroelectrics [75S2]; vibration of quartz and other plates [62Sl, 67K1,72Gl, 75Ll,77Ml]; lattice parameter changes under hydrostatic pressure [67Tl]; phase transitions [75Sl, 76S1,77Sl, 77S2-J; polycrystalline elastic constants [67Cl, 67(33,68B!, 68(32,68(36,6863,68Hl, 6851,70Nl, 72Pl,74Jl]; thermal expansion and Griineisen gammas [SSS!, 64B!, 67B3,6783,68R!, 7lhl,73R2,74Rl, 7412,7416,78N2,8OCl, 8OC2,82N2] and general- ized Anderson-Griineisen parameters [88Pl]; large deflections of thin plates [68B3]; parametric amplification of ultrasonic travelling waves [65Sl]; acoustic amplification at microwave frequencies in solids [68Cl, 68R2]; microwave rectification [67C5]; acoustic wave mixing [77Nl]; the elastic properties of hexagonal polycrystals under high pressure [78P4]; the Landau theory of elastic phase transitions [82!1]; acoustoelastic effects [82Hl]; fourth-order coupling parameters of a lattice [82Tl]; phonon decay [85Tl, 87Ml,87B2].

These many applications, and the relative paucity and inaccuracy of experimental data on the third-order constants, and more particularly the fourth-order constants, has provided an incentive for theoretical determina- tions of third- and higher-order elastic constants, and a considerable amount of work has been done in this area. These theoretical methods and results lie outside the scope of this compilation, but nevertheless some discussion of these developments is appropriate.

The Born lattice-dynamic method and the Born-Mayer potential have been widely used. Keating [66Kl] has applied the Born method to the diamond-like crystals Ge and Si. He has emphasized the desirability of using an appropriate invariant form for the strain energy function, and has developed a suitable formulation. Keating’s method, though not free from criticism [75M! J, has proved popular, and has been used not only for Ge [7OTl] and other semiconductors [68S2,7264], but also for hexagonal metals [71Sl, 72M2,72M3,77R2].

Extensive calculations have been carried out by Naimon, Suzuki, and Granato [71N2] on a theoretical model in which the energy density consists of a volume-dependent term, an electrostatic term, and a band-structure term derived from a local Ashcroft pseudopotential.

Hiki and Granato [66Hl], in interpreting their experimental determinations on Cu, Ag, and Au showed that on the basis of certain rather drastic assumptions, the third-order stiffnesses of cubic materials obey the relations

Cl11 = 2c112 = 2c155,

Cl23 = C456 = Cl44 = 0. (13) These equations are, in fact, generalizations of the third-order Cauchy relations

Cl12 = c155,

Cl23 = c456 = cl44. (14) which hold if the forces are central.

Examination of Tables 9. . * 12 shows that Eq. (13) gives a correct indication of the relative magnitude of the third-order constants of materials such as diamond, Si, Ge, A!, and Cu, but for most other materials these relationships do not hold even approximately.

The fourth-order equations corresponding to (13) are:

cl111 =2c1112 =2cllSS =2c1266 =%444r

cl123 = cl144 = cl255 = cl456 = c4455 = 0,

and the fourth-order Cauchy relations are [71hl]: (15)

Cl112 =cllss~

cl123 = cl144 = cl255 = cl456 = C4455r

cl122 =cl266 = c4444. (16) Calculated values of third-order constants must be accepted with caution, particularly as some failures have

been reported. For instance, Suzuki [71S2] found that a rigid-band mode! could not account for the observed constants of A!, and Thomas [73T!] found that a pseudopotential method was unsuccessful for Au.

In addition to the calculation of complete sets of constants, the theoretical methods have been applied to the Cauchy and other relations [64Nl, 71C1,71C2,72Ml], to the electrostatic [67C4,68(35,72(33,72Fl], Coulomb [74M2], magnetic [70M2], piezoelectric [70M!], and many-body [7OPl, 7OP2,75M2] contributions to the third-order constants, and to the relations between force constants and third-order constants [62Pl, 63Cl].

Land&-BSmslein New Series lll,C!9a

Page 660: Second and Higher Order Elastic Constants

Ref. p. 6741 2.1 Introduction 645

2.1.7 The effect of temperature and electrical conditions on the third-order stiffnksses

Information on the effect of temperature on the third-order stiffnesses is fragmentary and not very well established. The available results are shown in a number of the figures and tables. It appears that the normal tendency is for the stiffnesses to increase (i.e. to become less negative) as the temperature rises. However, the effect is comparatively small, especially when considered in relation to the errors of measurement. Results of calcu- lations on the effect of temperature, based on theoretical considerations, are reported in [63Nl, 63N2,65G2, 65N2,66Ll, 7OP1,7OTl]. According to the theoretical calculations of [65G2], the temperature coefficients are all positive for CsCl-type crystals, whereas in NaCl-type crystals the temperature coefficients of c1 1 1, c1 12, c1 55, are positive, and the remainder negative.

The effect of an electric field on the third-order stiffnesses has been studied by [86Zl].

2.1.8 The third-order compliances

The formal definition of the third-order compliances may be obtained from Eqs. (7~) and (7d):

ss i jklmn = - h(a3H/a~ja%a%n)S~

$klmn = - Po(a3G/aTjaG,aTmn),.

(174

(17b)

They have been briefly discussed by several workers in connection with the third-order constants of polycrystal- line materials [68B1,68C2,68C6,68Hl, 7ONl]. Regarding crystalline materials, Beige and coworkers [75B3,85Bl, 85Dl] have developed a method of measurement based on the effect of field amplitude on the frequency of a resonant ferroelectric specimen in the paraelectric phase. Using this method, they have obtained the temperature variation of certain third-order compliances of SrTi03, BaTiO,, Rochelle salt and triglycine sulfate (TGS). Their results are plotted in Figs. 21, 25, 26, 28, and 32, and show a considerable effect of temperature on the compliances, but the materials studied, being ferroelectric and near phase transition points, should not be taken as typical. Sandler et al. [78Sl] have reported measurements on NaND,SeO,*2D,O (see Figs. 29, 30).

2.1.9 Arrangement of tables and comments

Experimental values of third-order stiffnesses are listed in Tables 9. . . 14 (cubic system), 15 and 16 (hexagonal), 17 (trigonal), 18 (tetragonal), 19 (orthorhombic), and 20 (monoclinic). Semiempirical estimates of third-order stiffnesses of calcite-type compounds (trigonal system Vb) are given in Table 21. Temperature coefficients of the third-order stiffnesses of Al(N03)3 *9Hz0 (monoclinic) are listed in Table 22. Values of fourth-order stiffnesses for cubic materials are given in Tables 23. * * 25. Fourth-order stiffnesses and combinations thereof for a few elements in the hexagonal system (VIb) are given in Tables 26 and 27, respectively.

Three figure accuracy is aimed at in the tables, but this is not always realized even in the original data. The experimental values as published are often accompanied by estimated errors, but the errors are not quoted in the tables below. The appropriate reference is given against each set of constants. The column labelled “Other references” refers to other data or information relating to the relevant material, in particular to incomplete sets of constants, to preliminary data, and to data which is doubtful in some way.

Some combinations and incomplete sets of third-order stiffnesses are given in Table 13. The significance of the quantities F in Table 13 is as follows: Chang and Barsch [67C2] have shown that the differential of a second- order stiffness cijkl with respect to hydrostatic pressure p is

where B is the bulk modulus, S and T denote adiabatic and isothermal conditions respectively, 6 is the Kronecker delta and F& represents the partial contraction cijklmm (summation over m). If, for example, i = k = 1, j = 1 = 2,

l-i”’ 212 = cl21211 + cl21222 + c121233.

Hence, contracting the suffixes, and making a slight change in notation:

3r44 = %51 + cS62 + c663,

or, changing the order of suffixes, and using Table 5:

3r44 = Cl44 + 2c155.

Land&-Biirnstein New Series III/29a

(19)

Page 661: Second and Higher Order Elastic Constants

646 2.1 Introduction [Ref. p. 674

Similarly,

3r 1, = Cl11 + 2c112, (20)

3r12 = Cl23 + 2c112. (21) Thus by measuring dc/dp, the quantities F,,, can be determined if the second-order constants are known. Equations (19). . * (21) apply strictly only to isothermal or adiabatic pressure derivatives, whereas the Frjti in (18) are defined in terms of mixed derivatives. As already pointed out in Section 2.1.2, the pairs of suffixes are not freely interchangeable for mixed derivatives, so (19) . . . (21) should really be modified to take this into account. However, these equations will give a useful approximation, the errors of which will probably not greatly exceed the experimental error of the measurements, and the full equations will not therefore be derived here.

Table 23 contains some complete sets of fourth-order stiffnesses for cubic metals. The results quoted under [74S2] and [66Rl] are purely theoretical, whereas those under [6783] are based on cl,, , estimated from the temperature variation of the second-order stiffnesses. The remaining constants are then obtained by assuming the truth of Eqs. (15).

Incomplete sets of fourth-order stiffnesses are given in Table 24. In [75G2] the results were obtained from the temperature variation of the second-order stiffnesses, and in [67Fl, 7262,7263] from the response to shock loading.

Values of some combinations of fourth-order constants are given in Table 25. Chang and Barsch [67C2] have shown that the second derivative of the second-order stiffnesses cijkl with respect to hydrostatic pressure (2 *cijk’/i?p2) depends on the quantities F@, in Eq. (18) and on the quantities r$,, defined as the contractions

rI% = Cijklmmpp.

Using a notation analogous to that in Eqs. (19). . . (21), the contractions when applied to specific cases become

4rll = cllll + 4~ 1112 + 2c1122 + 2c1123, (23) 4r12 = 2c1112 + 2c1122 + 5cl123,

4r 44=c1144 + 2c1155 +%244 + h266r (25) and numerical values of 4rr,, 4r1 2, and 4F44 are given in Table 25.

Further values of some combinations of fourth-order constants for Cu and Ag are given in [69Pl]; among third-order constants some information on cJJ3 of PbMo04 and 2c133 + 0.70~~~~ of ZnO is given in [72T2] and [69Tl] respectively.

Fourth-order constants are difficult to determine experimentally, not least of all because the large stresses that the sample must be subjected to tend to cause plastic flow, dislocation line movement and cracking of the sample. The problems have been highlighted by a dispute in the literature concerning a scheme for measuring cr, r i of cubic crystals [82P2, 84Gl].

2.1.10 Notes on bibliography

The bibliography contains two sets of references: “General references”, identified by a lower-case letter, which are to sources of background information such as textbooks and review articles, and “Special references”, identified by a capital letter, which supply information on specific substances.

All the experimental data on crystals from Chaps. 2 of Landolt-Bornstein, New Series, Vol. III/l1 and Vol. III/l8 has been retained in the present chapter, and has been supplemented by new data that has become available since the last edition. In order to conform more closely to the objectives of this volume, however, most of the theoretical data, and data on isotropic solids, has been omitted. Most of the “Other references” from the earlier chapters have been deleted from the tables, figures, and bibliography, and their reference numbers left vacant. New references have been numbered consecutively with the earlier ones. The literature was searched to early 1990, but some later papers are included.

Russian references are to the original journal of publication. Most of these are available in translation as shown in the list in Section 1.1.10. For most papers, the volume number and year of the translation are the same as those of the original, but the page numbers differ.

Acknowledgment is made to authors cited in the bibliography who have supplied basic data and reprints of their papers, and for valuable discussions.

Landoh-BBmslein New Series Ill.f-29a

Page 662: Second and Higher Order Elastic Constants

646 2.1 Introduction [Ref. p. 674

Similarly,

3r 1, = Cl11 + 2c112, (20)

3r12 = Cl23 + 2c112. (21) Thus by measuring dc/dp, the quantities F,,, can be determined if the second-order constants are known. Equations (19). . * (21) apply strictly only to isothermal or adiabatic pressure derivatives, whereas the Frjti in (18) are defined in terms of mixed derivatives. As already pointed out in Section 2.1.2, the pairs of suffixes are not freely interchangeable for mixed derivatives, so (19) . . . (21) should really be modified to take this into account. However, these equations will give a useful approximation, the errors of which will probably not greatly exceed the experimental error of the measurements, and the full equations will not therefore be derived here.

Table 23 contains some complete sets of fourth-order stiffnesses for cubic metals. The results quoted under [74S2] and [66Rl] are purely theoretical, whereas those under [6783] are based on cl,, , estimated from the temperature variation of the second-order stiffnesses. The remaining constants are then obtained by assuming the truth of Eqs. (15).

Incomplete sets of fourth-order stiffnesses are given in Table 24. In [75G2] the results were obtained from the temperature variation of the second-order stiffnesses, and in [67Fl, 7262,7263] from the response to shock loading.

Values of some combinations of fourth-order constants are given in Table 25. Chang and Barsch [67C2] have shown that the second derivative of the second-order stiffnesses cijkl with respect to hydrostatic pressure (2 *cijk’/i?p2) depends on the quantities F@, in Eq. (18) and on the quantities r$,, defined as the contractions

rI% = Cijklmmpp.

Using a notation analogous to that in Eqs. (19). . . (21), the contractions when applied to specific cases become

4rll = cllll + 4~ 1112 + 2c1122 + 2c1123, (23) 4r12 = 2c1112 + 2c1122 + 5cl123,

4r 44=c1144 + 2c1155 +%244 + h266r (25) and numerical values of 4rr,, 4r1 2, and 4F44 are given in Table 25.

Further values of some combinations of fourth-order constants for Cu and Ag are given in [69Pl]; among third-order constants some information on cJJ3 of PbMo04 and 2c133 + 0.70~~~~ of ZnO is given in [72T2] and [69Tl] respectively.

Fourth-order constants are difficult to determine experimentally, not least of all because the large stresses that the sample must be subjected to tend to cause plastic flow, dislocation line movement and cracking of the sample. The problems have been highlighted by a dispute in the literature concerning a scheme for measuring cr, r i of cubic crystals [82P2, 84Gl].

2.1.10 Notes on bibliography

The bibliography contains two sets of references: “General references”, identified by a lower-case letter, which are to sources of background information such as textbooks and review articles, and “Special references”, identified by a capital letter, which supply information on specific substances.

All the experimental data on crystals from Chaps. 2 of Landolt-Bornstein, New Series, Vol. III/l1 and Vol. III/l8 has been retained in the present chapter, and has been supplemented by new data that has become available since the last edition. In order to conform more closely to the objectives of this volume, however, most of the theoretical data, and data on isotropic solids, has been omitted. Most of the “Other references” from the earlier chapters have been deleted from the tables, figures, and bibliography, and their reference numbers left vacant. New references have been numbered consecutively with the earlier ones. The literature was searched to early 1990, but some later papers are included.

Russian references are to the original journal of publication. Most of these are available in translation as shown in the list in Section 1.1.10. For most papers, the volume number and year of the translation are the same as those of the original, but the page numbers differ.

Acknowledgment is made to authors cited in the bibliography who have supplied basic data and reprints of their papers, and for valuable discussions.

Landoh-BBmslein New Series Ill.f-29a

Page 663: Second and Higher Order Elastic Constants

Ref.p.6741 2.2 Third-order stiffnesses Q,, 647

2.2 Tables of third-order stiffnesses

Table 9. Cubic system VIIb. Third-order stiffnesses. Ionic compounds and oxides,

Material Cl11

GPa

Cl12 c123 Cl44 Cl55 c456 Refs., Fig.

Bfl2

cap, CuCl LiP

MgO KBr KC1

KF KI RbBr RbCl RbF RbI AgBr AgCl NaBr NaCl

NaF SrF2

-584 -299 -206 -1246 -400 -254 -264 -172 -112 -1420 -264 +156 -1920 -330 -40 -4900 -95 -69 -532 -49 +69 -701 -22 +13 -726 -24 +ll -610 -31 +9 -1078 -54 +15 -499 +5 -95 -580 -30 +28 -617 -67 +87 -671 -18 +5 -463 -20 +20 -948 -286 +130 -947 -301 +159 -659 -49 +48

298K -880 -57 +28

RT -843 -50 295K -823 +2 RT -864 -50 RT -950 -79 RT -866 -37

-1480 -270 -821 -309

+46 +53 +9 +90 +38 +280 -181

-121 -89 -124 -214 0 -21 +85 -273 +lOO -325 +113 -659 +22 -28 +13 -24.5 +23 -26 +19 -35 +123 -92 +54 -41 +30 -27 +25 -26 +ll -17 +24 -22 +46 -68 +61 -64 +56 -74 +26 -61

+29 -60 +23 -61 +7 -59 +19 -83 +25 -78 +46 -114 -95 -175

-27 -75 -18 +94 +43 +147 -35 +12 +16 +17 -125 -38 -31 -38 +14 -26 -115 -116 -77 +27

+26 +20 +13 +19 +18 0 -42

68G2 69Al 77Hl 67D2 67H2 65B2 78Pl 65Cl*) 67D2 83H3 78Pl 78Pl 77P3 77P3 77Wl 77P3 78Pl 78Pl 78Pl 65Cl *ab)

’ Fig. 2 67D2 b, 67Gl b, 6785 b, 72T3 4 83H3 72Bl 70Al

*) Cauchy relations assumed to hold. b, Wave propagation under stress. c) Second-harmonic generation (assuming c144 = c456 ),

Land&-Bhmteh New Series JlIn9a

Page 664: Second and Higher Order Elastic Constants

648 2.2 Third-order stiffnesses cam,, pef.p.674

Table 10. Cubic system VIIb. Third-order stiffnesses. Semiconductors and insulators.

Material Cl11 Cl12 c123 Cl44 Cl55 C456 Main Other refs., refs. Figs.

GPa

CdS a) CdTe Diamond GaSb G&

Ge 298K c) 298K c) 298K c) 293K d, 77K d, 293K e, 77K e, 298K fl 298K s) RT h, RT c)

InSb 8OK 300K

InAs InP PbTe HgTe SmS Si

Pure Doped n-type

4K 77K 298K

Doped p-type ZnSe ZnTe

-250 -280 -190 +30 -60 +40 -213 -210 -42 -14 -65 -5 -6260 -2260 +112 -674 -2860 -823 -475 -308 -44 +50 -216 -25 -675 402 4 -70 -320 -69 -622 -387 -57 +2 -269 -39 -620 -392 -62 +8 -274 -43 -737 -474 -131 -107 -234 +67 b, -732 -290 216 -8 -304 41 -710 -389 -18 -23 -292 -53 -716 403 -18 -53 -315 -47 -720 -380 -30 -10 -305 -45 -760 -410 -70 0 -310 -46 -780 -420 -70 -10 -310 33 -820 -400 -50 -70 -350 319 -743 -374 -51 -1 -303 -82 -743 -391 -59 9 -296 -114 -714 -388 -34 -9 -303 48 -696 -340 +25 +18 -296 -42 -314 -210 -48 +9 -118 +0.2 -371 -283 -115 +21 -141 +3 -356 -266 -100 +16 -139 -0.4 -560 -300 -240 -140 -90 -90 -860 -185 -510 -650 +160 -4.2 -1850 +35 -97 +44 -98 +12 -260 -170 -77 -17 -57 -1 -2820 +490 -285 +25 -95 0 -744 -418 +2 29 -315 -70 -825 -451 -64 +12 -310 -64 -795 -445 -75 +15 -310 -86 -658 -511 +60 +65 -336 -86 -880 -515 +74 +27 -385 -40 -849 -524 -49 -8 -323 -21 -834 -531 -95 -2 -296 -7

-827 -136 -511 +222 -265 -278 -707 -121 -412 +183 -217 -229

74Fl 85Wl 7862 76Rl 66Dl 67M2 86Al 79Yl 61Bl 83R1,85Al 64Ml Fig. 3 65B2 Fig. 4 67D3 Fig. 5 67D3 67D3 67D3 74Yl 74Yl 86Al 65D1 67Dl 77R7

71S3,80Nl 80Nl 79Yl 79Yl 84Hl 64Dl 83Rl 64Ml Fig. 6 67Hl Fig. 7 67Hl 81P2

87Al 78Pl 78Pl

8) Cubic modification. Indirect estimates. b, Given as +62 in [81Y 13. c) Wave propagation under stress. d, Undoped; wave propagation under stress. e) Sb-doped, n-type; wave propagation under stress. 0 Second harmonic generation plus hydrostatic pressure data from [64Ml].

Lmdolt-Bhatcin New Saia IG29r

Page 665: Second and Higher Order Elastic Constants

Ref.p.6741 2.2 Third-order stiffnesses cam,, 649

Footnotes for Table 10 (continued)

s) Second harmonic generation plus hydrostatic pressure data from [65B2]. h, Second harmonic generation with aid of Keating-Martin-Fuller theory.

Table 11. Cubic system VIIb. Third-order stiffnesses. Metals and alloys.

Material Cl11 Cl12 c123 Cl44 Cl55 c456 Main Other refs., refs. Figs.

GPa

Al 80K 298K

Co-32 at % Ni cu RT a)

295K b, 77K b, 4.2K b, RT c) RT d, RT e, RTf) RT s)

Cu-3.1 at % Al Cu-7.4 at % Al Cu-10.8 at % Al Cu-9 at % Ni Cu-23 at % Ni Cu-44.3 at % Zn Cu-48.3 at % Zn cu-17 % Al-

14.3 % Zn cu66.5zn20.8A112.7

183K 213K 253K 293K

cu67.7zn19.3‘%3.0 Au. Au-33 % Cu- 47%Zn

In-T1 at%Tl 22 h) 23 24 25 30

-1080 -315 +36 -23 -340 -30 68Tl -1427 -408 +32 -85 -396 -42 7383 -1224 -373 +25 -64 -368 -27 72Sl -2550 -1210 -10 -160 -1020 -120 74Wl -1271 -814 -50 -3 -780 -95 66Hl Fig.8 -1500 -850 -250 -135 -645 -16 67s 1 Fig.9 -1950 -1150 -420 -125 -725 12 67s 1 Fig. 10 -2000 -1220 -500 -132 -705 25 67Sl -1427 -778 -265 -6 -771 117 68Gl -1427 -887 -177 -63 -744 66 68Gl -1240 -820 -110 -100 -700 70 73R4 -1270 -820 -72 -69 -67 40 73R4 -1350 -800 -120 66 -720 -32 7411 -1360 -797 -80 -42 -706 -32 73Cl -1330 -793 -75 -20 -700 -43 73Cl -1320 -781 -98 -66 -666 -36 73Cl -1450 -838 -169 -181 -660 -90 68S1,7733 -1480 -880 -175 -180 -720 -80 68S1,77S3 -1220 -511 -440 -460 -509 -269 7533 -1250 -475 -467 -385 -396 -399 7533 -1548 -703 -836 -762 -760 -501 82N1

-1720 -680 -1740 -800 -1760 -790 -2080 -1060 -1330 -650 -1730 -922 -1583 -654

-571 -221 -475 -139 -490 -147 -437 -143 -380 -220

-570 -720

-920 -600 -233

-358 -308 -112

-720 -690 -470 -690 -700 -640 -790 -790 -680 -1020 -1020 -660 -630 -500 -600 -13 -648 -12 -697 -633 -568

+30 -138 +26 -144 -10 -127 -15 -126 -63 -111

+280 -1300 +325

-8

84Vl 86V1,88Vl

78Gl 66Hl 82Nl

82Bl

continued

Iandolt-Bernstein New Series IQZ9a

Page 666: Second and Higher Order Elastic Constants

Ref.p.6741 2.2 Third-order stiffnesses cam,, 649

Footnotes for Table 10 (continued)

s) Second harmonic generation plus hydrostatic pressure data from [65B2]. h, Second harmonic generation with aid of Keating-Martin-Fuller theory.

Table 11. Cubic system VIIb. Third-order stiffnesses. Metals and alloys.

Material Cl11 Cl12 c123 Cl44 Cl55 c456 Main Other refs., refs. Figs.

GPa

Al 80K 298K

Co-32 at % Ni cu RT a)

295K b, 77K b, 4.2K b, RT c) RT d, RT e, RTf) RT s)

Cu-3.1 at % Al Cu-7.4 at % Al Cu-10.8 at % Al Cu-9 at % Ni Cu-23 at % Ni Cu-44.3 at % Zn Cu-48.3 at % Zn cu-17 % Al-

14.3 % Zn cu66.5zn20.8A112.7

183K 213K 253K 293K

cu67.7zn19.3‘%3.0 Au. Au-33 % Cu- 47%Zn

In-T1 at%Tl 22 h) 23 24 25 30

-1080 -315 +36 -23 -340 -30 68Tl -1427 -408 +32 -85 -396 -42 7383 -1224 -373 +25 -64 -368 -27 72Sl -2550 -1210 -10 -160 -1020 -120 74Wl -1271 -814 -50 -3 -780 -95 66Hl Fig.8 -1500 -850 -250 -135 -645 -16 67s 1 Fig.9 -1950 -1150 -420 -125 -725 12 67s 1 Fig. 10 -2000 -1220 -500 -132 -705 25 67Sl -1427 -778 -265 -6 -771 117 68Gl -1427 -887 -177 -63 -744 66 68Gl -1240 -820 -110 -100 -700 70 73R4 -1270 -820 -72 -69 -67 40 73R4 -1350 -800 -120 66 -720 -32 7411 -1360 -797 -80 -42 -706 -32 73Cl -1330 -793 -75 -20 -700 -43 73Cl -1320 -781 -98 -66 -666 -36 73Cl -1450 -838 -169 -181 -660 -90 68S1,7733 -1480 -880 -175 -180 -720 -80 68S1,77S3 -1220 -511 -440 -460 -509 -269 7533 -1250 -475 -467 -385 -396 -399 7533 -1548 -703 -836 -762 -760 -501 82N1

-1720 -680 -1740 -800 -1760 -790 -2080 -1060 -1330 -650 -1730 -922 -1583 -654

-571 -221 -475 -139 -490 -147 -437 -143 -380 -220

-570 -720

-920 -600 -233

-358 -308 -112

-720 -690 -470 -690 -700 -640 -790 -790 -680 -1020 -1020 -660 -630 -500 -600 -13 -648 -12 -697 -633 -568

+30 -138 +26 -144 -10 -127 -15 -126 -63 -111

+280 -1300 +325

-8

84Vl 86V1,88Vl

78Gl 66Hl 82Nl

82Bl

continued

Iandolt-Bernstein New Series IQZ9a

Page 667: Second and Higher Order Elastic Constants

650 2.2 Third-order stiffnesses +u wef.p.674

Table 11 (continued)

Material Cl11 Cl12 c123 Cl44 Cl55 C456 Main Other refs., refs. Figs.

GPa

Fe

MO

Ni

Nb Nb-H

Ag Na

77K 273K

iI D

80K 298K

at%H 0 1.2 2.7

-2876 -542 -747 -869 -533 -557 -2705 -626 -575 -836 -531 -721 -3557 -1333 -617 -269 -893 -555 -3598 -1311 -572 -221 -868 -554 -2030 -1040 -220 -138 -910 -70 -2370 -1475 +46 -215 -867 -44 -2104 -1345 +59 -180 -757 -42 -2560 -1140 -467 -343 -168 +137

-2545 -1126 -433 -343 -163 -2518 -1103 -459 -387 -137 -2486 -1069 -485 -442 -101 -843 -529 +189 +56 -637

+135 +126 +113 +83

69R2 69R2 78Vl

68S1,77S3 73Sl 7332 68G3 8221

77Bl

66Hl Fig.11

a) Wave propagation under stress. b, Wave propagation under stress (irradiated specimens). c) Second harmonic generation plus hydrostatic pressure data from [66Hl]. d, Second harmonic generation plus hydrostatic pressure data from [67S 11. e) Static deformation plus hydrostatic pressure data from [66Hl]. Isothermal constants. 0 Static deformation plus hydrostatic pressure data from [67S 11. Isothermal constants. s) Average of 14 published values. h, FC tetragonal but treated as cubic. i) Calculated from Sekoyan’s formula [7534]. fl Calculated from Thurston and Brugger’s formula [64Tl].

Land&-B6mneh New Saia lIIj29r

Page 668: Second and Higher Order Elastic Constants

Table 12. Cubic system VIIb. Third-order stiffnesses. Miscellaneous compounds including solid solutions.

Material Cl11 Cl12 c123 Cl44 Cl55 c456 Main refs.

Gpa

other refs. Figs.

NH4Br

@%)2cd2(so4)3 NH4Cl

m4cPrl-x

cscdF3 b)

cuGezp3 KCl-7 mole % KBr KCN -3

K2Hg(CFQ4 =) 253K 273K 293K

K2=% 293K 283K 273K 267K 266K 265K 264K 263K 262.5K

-3

W(W4 RbMnF3

-1340

-1320 -845 -628 -129 -1367

+26.7 +4.3 -21.8 -242 -239 -304

-427 -488 -527 -590 -1660 -91.8 -1840

-445 +240

-455 +260 a) -349 -113 -66 +92 -55 -101 -25 -440

+151 +130 +lOl -85 -73 -39 +20 +23 +39 +74 +117 +192 -475 -12.1 -240

+88.2 +69.1 +46.6 -117 -162 -230 -360 -367 -405 -484 -624 -905 +320 -4.5

-310 -70 -380

-312 -69 -380 -282 -144 -69 +28 -33 -45 +16 -27 -8 +18 -140 -25

+10.9 -1.6 -2.3 +9.5 -1.6 -2.7 +15.2 -4.9 -3.0 +47 -124 +74 50 -125 77 46 -122 76 40 -120 77 46 -122 81 45 -121 80 30 -113 70 6 -98 47 -81 -41 -8.7 -52 -179 -687 -0.8 -4.3 -1.0 -60 -180 -50

81B2,82F2

83B3 84H4 78Pl 79Hl 88C2

8OHl

84H2

84b1,83B3 8OHl 73Nl

84B3,84bl

Fig. 12 Fig. 13 Fig. 14 Fig. 15

Figs.16,17

88Cl Fig.18

84B3 Figs. 19,20

continued

Page 669: Second and Higher Order Elastic Constants

‘Ihble 12 (continued)

Material Cl11 Cl12 ‘123 Cl44 Cl55 C456 Main refs. Ofhcr refs. Figs.

RbAg4% AgBr-AgCl

mole%AgCl 0 19.5 39.1 56.6 78.7 100

*g6~1$12 NaCN Sir i0,

Yttrium aluminum garnet

Yttrium iron garnet a)

-223

-948 -286 +130 +46 -69 -115 -911 -275 +81 +55 -70 -103 -899 -273 +113 +58 -69 -109 -890 -273 +114 +57 -67 -107 -907 -283 +116 +60 -66 -110 -947 -301 +159 +61 -64 -116 -857 -730 -109 -147 -463 -550 -162 -97 -68 +24 -27 -14 4%0 -770 +20 -810 -300 +90

-56 -70 +25 -46 -41 78P2

78Pl

85Ml 79Hl 71Bl Figs. 21,22

-3110 -586 -398 -82 -385 -62 8OYl

-2330 -717 -33 -148 -306 -97 66FJ

4 Magnetically satmated. b, Individual values derived from the combinations reported in [81B2,82F2]. See Table 13. 4 Phase transition at 110.5K. d, Given as +216 in [84bl].

Page 670: Second and Higher Order Elastic Constants

Ref.p.6741 2.2 Third-order stiffnesses CX~,, 653

Table 13. Cubic system VIIb. Third-order stiffnesses. Combinations and partial sets of constants.

Material Cl11 - c123 Cl11 + %12 2c112 + c123 Cl44 + 2% Refs.

t3r11 - 3r12) t3r1 1) (3r12) (3r44)

GPa

m-J%@nBr6 (NH4)2snc16 (NH4)2sG6

cd54

Ce3S4 CsBr cscdF3 b)

CsCl CSI al20 4

Sample I A B C

II III

EuS Euo.fFO.2S

Ni(N03)2 * 6NH3 In-76.5 % Tl F&2

La3S4 PbSe PbS MgAl,O, (Spinel)

ms2 K,Recl,

&!hc16

RbBr d, RbCdF3 b, RbCaF3 b, RbCl d, RbI d, Rb 44% SmS Sm0.SSY0.42S

Ag6Sn4P12Ge6

TIM3 b)

TlCl

Landolt-BBmstein New Series W9a

-425 -247 -164 85W2 ‘-464 -259 -222 85W2 -360 -140 -110 85W2 (-)2630 (-)1430 (-)732 7oA2 -3030 -730 -730 88Fl -362 -189 -214 67C2 -2230 -650 -450 82F2 -439 -217 -244 67C2 -300 -154 -179 67C2

-1750 -2280 -2780

-560 -2725 -230 -1790

-2250 -1410 -188

-221 -645 -7040 -2320 -2280 -2640 -3880 -1834 -350 -410 -593 -1190 -1700 -698 -486

-150 -330 -1800 -3500 -1360 -1430

-224 -599

79B2 -80

-630 +210 -160

-90 -60 -250 -140

89B2 87Sl

-1360 -1080 +78 -170 -2350 -337 -181 -290 -14.8 +210 -430 -27.0 -14.1

-6 -424 -1490 -930 -160 -170 -1260 -886 -139 -200 -21.0 -220 -370 -23.2 -18.8 -66

81H3 81S5 89Bl 88Fl 87Wl 81Ll 73C2 89Wl 85W2 85W2 71c3 82F2

+380 f) -89 -623 -650

-160 -55 -660 -210 -242

82F2 71c3 71c3 75G4 8234 84H3 86Cl 82F2 72Kl

Page 671: Second and Higher Order Elastic Constants

654 2.2 Third-order stiffnesses ckPu mef.p.674

‘Ihble 13 (continued)

Material Cl11 - c123 Cl11 +%I2 2c112 + c123 Cl44 + %55 Refs.

t3r,, - 3q2) t3r1 1) C52) t3r44>

GPa

Sn0.92Ge0.08Te SnTe UN

-1640 -1770 -158 79Yl -1670 -1720 -134 79Yl

-7230 -5390 -240 8682

Cl11 Cl12 c123

Fe e, V3Si (21K)

-2830 -800 -607 -50500 +23900 48600

Cl11 Cl 12 + 4C155 6c144 + c123

+ 8c456

CsCdF, -1340 -724 -4660 =*3 -1680 -1130

clll - c123 c111+ Cl12 Cl44 + Cl55

+ Cl13 + Cl66

68P2 74B2

81B2 81B2

NaClO, -647 -11030 -1650 7!IFl

a) The minus signs are not in the original paper. b, Some of the cpa vs. p relationships, on which the estimates are based, are curvilinear. c) Values depend on composition, origin, and thermal cycling. d, See also Table 9. e, Isothermal constants. See also Table 11. 0 Reported as -380 in [87Sl].

Lmdolt-Bhtstein New S&a W29a

Page 672: Second and Higher Order Elastic Constants

PE Table 14. Cubic system VIIa. Third-order stiffnesses. @ at2 81

Material Cl11 Cl12 Cl13 c123 Cl44 Cl55 Cl66 c456 Refs.

GPa

x a) NH4

a3m3 cs K

%2~20 Bi12Si0, NaBrO, _

Na,SbS, * 9H20

Nfl(cH,CW,

-75 -237 -212 -222 -585

-780

-247 -331

-11 -20 -19 -29 -119 -115 -104 -11 -111 -126 -90 -27 -71 -86 -134 -23 +171 -323 +82 -35 -106 -150 +67 -92 -123 -126 -20 -10

-91 -92 -79 -5 -103 -82 +47 -17

-56 -49 -6 78Hl -43 -29 -6 -59 -54 -16 -80 -74 -20 -161 -81 +28 79A1 -66 -297 -3 79Al -101 -83 +lO 86H2

-56 -44 -9 86H2 -15 -16 -1 86H2

a) X is the monovalent atom or radical in the general formula XAl(SO4)2 * 12H20.

Page 673: Second and Higher Order Elastic Constants

Table 15. Hexagonal system VJa. Third-order stiffnesses. Experimental values.

Material Cl11 Cl12 Cl13 c116 c123 Cl33 %4 Cl45 Cl55 %22 c333 c344 Refs.

=5Ge3011 a) 468 +23 +68 0 138 -82 +19 0 -141 -462 -683 -80 79A2 pb5Geo4~od2 -898 -96 -215 +102 -67 -183 -120 -1 -26 -889 -357 -16 79A2 pb5SiO40104)2 -1070 -113 -334 +195 43 -71 -157 -3 -53 -1051 -740 -82 79A2

a) Treated in the hexagonal approximation. See also Table 17.

Table 16. Hexagonal system VTb. Third-order stiffixsses. Experimental values.

Material Cl11 Cl12 Cl13 c123 Cl33 Cl44 Cl55 522 c333 c34-4 Main

refs. Gpa

Cd -2060 -114 -197 -110 -268 227 -332 -2020 -516 -171 8653 CdS -459 -207 -182 -235 -306 -27 +9 -355 -327 -69 73Fl co -6710 -1454 -766 -429 -511 133 -1486 -5788 -6347 -210 85Y2 Co32 wt % Ni a) -4668 -564 186 -256 -337 -500 178 -4152 -5330 -1008 74Fl Fir -384 -340 -30 +711 -300 -80 +9.5 -95 -150 -220 81Jl Mg -663 -178 30 -76 -86 -30 -58 -864 -726 -193 71Nl Zn -1760 440 -270 -210 -350 -10 +250 -2410 -720 -440 7OS2 b,

a) Composition as specified in [75Wl]. b, [73Pl] also contains a combination of third-order stiffnesses.

Page 674: Second and Higher Order Elastic Constants

gf Table 17. Trigonal system Vb. Third-order stiffhesses. Experimental values.

gg Malcrial 511 512

51

Cl13 Cl14 Cl23 524 533 Cl34 Cl44 Cl55 522 e333 5344 %44 Main ocber

I&. refs., p5 GPa fig.

A1203’ -3932 -1120 -922 +98 -215 -53 -970 -104 -382

Almlilla -3870 -1090 -%3 +55 -289 -39 -922 -131 -302 Sb -2110 980 -187 844 -418 -808 381 -1.8 294 Bi -714 116 -178 -377 -127 -70 -162 43 -50 taco, -579 -147 -193 +218 -41 +lO -239 +82 -69

w%Pll c) -506 -24.8 -169 30 -81 18 -420 -54 -71

m4.+oP3°11 c) -535

LiNbG3 4 -512

-2120 -1783 -1610

&Si02 -210

-218 -215

-33

+454

-530

-345 -336

-150

+72a

-570

+13

+25

-1076

-139

-136

-4515 -3100 -1137 23

-4520 -3340 -1090 -19w -1150 -596 272 645 -577 -403 -95 177 -675 -498 -195 +33

-550 -706 -49 -12

52 -165 -31

-410 +7194 +55 2m -250 40

-498

-34

-74 -102 -150 -530

-1 -37 -599 -478 150 -300 -670 -2330

-163 -294 -15 -312 +2 -134 -200 -332 -147 -270 -26 -324 +5 -182 -157 -341

-470 -29

-363 0 -540

-2960 -680 -833 ~3

-815 -110 -837 -148 -834

-37

-41

-30

-276 -176

69G13

7OHl 84Sl 81Sl 83Hl 84Sl 68Kl

86A2 87B1,

Pig. 23

86A2

73N2

87Cl 86c2 84FM 82F’3 66Tl 68S4 84B4

a) Quoted in [7OHl]. b, Negative sign omitted in III/l 1, p. 269. c) Since the acoustic symmetry axes of 3is so close to the crystal symmetry axes, this structure is essentially ?;n. As a result this material is treated in

the 6 SOEC (trigonal6) and the 14 HOEC approximations (trigonal Vb) [86Al]. d) CE +“. Some of the reported errors are unusually large. e, This value was misquoted as +79 in III/l 1, p. 269. fl [84EM] reports that the data of [73N2] for this constant actually includes an undetermined coefficient As a result the value of this constant is actually

between $333 and p333.

Page 675: Second and Higher Order Elastic Constants

Table 18. Tetragonal system IVb. Third-order stiffnesses. Experimental values.

Material Cl11 Cl12 Cl13 c123 Cl33 Cl44 Cl55 Cl66 c333 c344 c366 c456 Main Figs. refs.

Gpa

SbSI BaTiO, BaTi03 (Fe or

Cr doping) BaTiO,:CeO, m2m4

T&2

Scheelite, b, CaW04 Cl

Sn Sn-0.3 at % In

-538 -291 -259 -258 +67 -8 -35 -30 -912 -27 -160 -600 -140 -110 +180 -41 +36 -640 -2110 -54

-2620 -2A50 70 -6360 -180 -180 -220 -320 -1460 -200 -3700 -2420 -3300 -2500 -170 -110 -290 40 -1480 -230 -410 -583 -467 +128 -186 -162 -177 -191 -1427 -212 -432 -482 -451 +272 -255 -214 a) -187 -1537 -158

-19 -260

-400 2860 -78 -50

8621 24 75B3 25 85Dl 26

8621 27 +8 78Kl -250 79A4

-100 83B4 -90 83B4 -52 72S2 -46 72S2

al c 144 + c155.

b, Referred to one set of acoustic symmetry axes (a, a + z/2, z). 4 Referred to the other set of acoustic symmetry axes (86 + z/2, z) where 8 = 90 - a.

Third-order elastic constants referred to a basis XY’Z where X’ = X cos + + Y sin I$, Y = -X sin + + Y cos @ [83B4].

c’111= Cl11 -3c1 c’112 = %21= Cl 12 + Cl

c’113 = Cl13 - c2 “116 = c116 cos4+-c*sin4ql .

c’123 = c123 + c2 c’133 = Cl33

c’136 = c136 cos4+cgsin~ c’144=c144+c3

c’145 = Cl45 - c4 c’155 = Cl55 - c3

Cl166 = Cl66 + Cl cl333 = c333

c’344 = c344 c’366 = c366 + c2

Page 676: Second and Higher Order Elastic Constants

Footnotes for Table 18 (continued)

646 = %ui + =4 c’456 = c456 + c3

cl = [cA(l - cos 4@) - cl16 sin 4$],2 CA= (cl11 -cl12-4c1fjt$4 c2 = cB(l - cos 44) - [Cl36 sin 4$,,2 CB = (Cl 13 - Cl23 - 2C366Y4 c3 = (1 - cos 44$[(c 155 - Cl44 - 2C456)/41 + k446 - Cl45)/21 sin 4$

c4 = (1 - COS 4mq45 - C446)/23 - [(Cl44 - cl55 - 2C456)/4] sin 4’9 c”lll = (dill + 3c’,,.94 + 3~2’~~~ where dQv refers to the (a, Q + n/2, z) axes, c”tiv refers to the (l3, B + x/2, z) axes [83B4]. c”112 = (c’111 + 3C’l12)14 - C.166 C”1*3 = (C’ll3 + c’1&/2 + Cl366

c”123 = Vll3 + C’l23)/2 - C’366

C”133 = Cl133 c”144 = (c’144 + C’155)n - C’456

C”155 = (c’l* + C’155)/2 + C’456

C”166 = (c’111 - c’112)/4 Cl.333 = C’333

C”344 = C’344 Cl’366 = (C’l13 - C’123W

Cl’456 = (Cl155 - c’&/2

Page 677: Second and Higher Order Elastic Constants

660 2.2 Third-order stiffnesses ~~~~

mef.p.674

Landoh-Bhmtein

New Saia III/291

Page 678: Second and Higher Order Elastic Constants

Ref.p.6741 2.2 Third-order stiffnesses chCcu

661

Land&B6mstein

New Series IIIt29a

Page 679: Second and Higher Order Elastic Constants

Ma&al Cl11 Cl12 Cl13 Cl14 c123 k24 Cl33 Cl34 %4 Cl55 c222 c333 c344 c444

Gpa

F-3 -1202 -283 -300 +222 -70 -5 MO3 -1802 407 -481 +271 -127 +5 mp3 -1101 -254 -335 -257 -84 +l mm3 -1091 -253 -321 +251 -79 +9 znco3 -1536 -354 -390 +235 -98 -5

Cdc03 -767 -184 -252 +240 -59 +14 -323 +91 -88 -194 -868 -839 -276 +30

caco3 a) -579 -147 -193 +218 -41 +lO -239 +82 -69 -139 -675 498 -195 +33 -587 +80 -105 -231 -1330 -2251 -531 -166 -879 +115 -166 -407 -1941 -3440 -819 +43

1 -503 +lOO -117 -271 -1212 -1634 -450 +36 -500 +98 -113 -257 -1203 -1653 -447 -40 -783 +91 -136 -318 -1673 -3144 -724 +63

a) Experimental values [68Kl].

Table 22. Monoclinic system II . Temperature coefficients of the third-order stiffhesses [89B3]. a) Experimental values. 0, axis is L2).

Table 21. Trigonal system Vb. Semiempirical estimates of third-order stiffnesses for some calcite-type compounds [68Kl].

Iklakd =c,,, %I2 =%, ==**5 ==m ==,, ==,, ==m %5 %44 ==*46 %55 =%5 =%z =%z3 =%?5 10-W

~u(No33 * 9H.p -375 -1060 -50 459 110 -99 -1530 500 210 -65 215 -160 900 -210 -93 -1220

Material Tern Tcps TcvGo Tcm Tcv5 Tea Tess3 Tc335 Tcw Tcm Tcss5 Tc% %45 %56 =c555 Tc566

10-W

Jwq& .gHp -985 -370 50 750 50 -110 -13200 -33 -1100 -115 -35 -70 130 -110 81 -73

a) Tc Q,,, = (l/c@k~,v@T ; temperature range 273”293K.

Page 680: Second and Higher Order Elastic Constants

2.3 Tables of fourth-order stiffnesses

Table 23. Cubic system VIIb. Fourth order stiffnesses for metals. Complete sets.

Metal Cl111 Cl112 Cl 122 c1123 Cl144 Cl155 c1244 c1266 c1456 c4444 c4455 Ref.

Ag =) b)

Al b) Au =) cu

4 b)

Ni b,

+8000 +5780 +3900 +10300 +9587 +I0100 +7449 +10270

+4ooo +3495 +2173 +5150 +6052 +5050 +4233 +5863

+4000 0 0 +3818 -172 -172 +2471 -146 -146 +5150 0 0 +6623 +56 -287 +5050 0 0 +4756 -262 -262 +6548 -347 -347

+4000 +3495 +2173 +5150 +8701 +5050 +4233 +5863

0 +4000 0 -172 +3818 -172 -146 +2471 -146 0 +5150 0 -390 +4100 -43 0 +5050 0 -262 +4756 -262 -347 +6548 -347

+4000 +3818 +2471 +5150 +6527 +5050 +4756 +6548

0 67H3 -172 66Rl -146 66Rl 0 67H3 -404 7482 0 67H3 -262 66Rl -350 66Rl

al Assuming the validity of Eqs.(lS). b, Assuming the validity of the Cauchy relations (16).

Page 681: Second and Higher Order Elastic Constants

664 2.3 Fourth-order stiffnesses Cabs,, mef.p.674

Table 24. Fourth order stiffnesses. Incomplete sets.

Material Crystal system Cl111 Cl112 c3333 Ref.

GPa

Sapphire Al203

Ag

Au

cu

CuZn(&brass) KC1 LiBr RbF Quartz SiO,

Trigonal Vb Cubic VIIb

Cubic VIIb

Cubic VIIb

Cubic VIIb Cubic VIIb Cubic VIIb Cubic VIIb Trigonal Vb

+5oooo +10500 +I3000 +lloOO +10300 +lOOOO +lOlOO +13300 +8280 +12000 +6600 +7500 +15900 +llOOO

+50000

+1400 +56 +35 +310

+18500

+49oooa) +lOOOO b)

7263 75G2 67H3 75G2 67H3 75G2 67H3 75G2 75G2 75G2 75G2 7262 67Fl 7263 75G3 86Al

*) c2222 ’

b, C6666 *

Table 25. Cubic system VI%. Combinations of fourth-order stiffnesses. For notation, see introduction.

GPa

CsBr CsCdF,

CsCl Cd MgAl,O, spine1 -3 RbBr RbCaP, =c@3 RbCl RbI Na TlcdF,

+6000 +3600 496000 -373000 +7300 +4100 +4900 +2900 -109000 -116000 -39000 +33000 +9100 -300 -1995000 3116000 105000 4773000 +11200 -200 +7700 -10 +842.6 +225.8 -516000 1088000

+4200 -1351000 +4600 +3500 +11200 +840 +180 -792000

+160 +210 +86.0 -448000

67C2 82F’Z 67C2 67C2 73C2 88Cl 71c3 82F2 82P2 71c3 71c3 88Rl 82F2

Landoh-B&stein New SaicaIUf291

Page 682: Second and Higher Order Elastic Constants

Table 26. Hexagonal system VIb. Fourth-order stiffnesses. Calculations based on fits to experimental SOEC and TOEC data.

Material Cl111 Cl112 Cl113 Cl122 c1123 Cl133 Cl144 Cl155 Cl166 c1233

Er 7500 2550 -105 913 196 210 128 30 2545 558 Mg a) 8165 2789 -44 974 190 320 142 52 2751 624

Material Cl244 %I55 Cl333 Cl344

Gh

Er 128 128 1425 474 Mg a) 142 142 1866 503

a) Combinations of fourth-order stiffhesses are also given in [89Rl].

Cl355 c2223 c3333

293 -37 5290 383 4 7383

c3344 c4444 Refs.

1425 576 9ORl 1866 708 9ORl

Table 27. Hexagonal system VIb. Combinations of the fourth-order stiffnesses. Calculations based on SOEC and TOEC experimental data.

Material l-2 r4 Ref.

TPa

Zn a) 174 39 1109 506 89Rl

a) For zinc the combinations I’i are: rl = cl111 + cl122 + 2cll12 + 26c1113 + 26c1123 + 16gc1133

r2 = cl112 + 2cl122 + c1222 + 16gc1233 + 26c1123 + 26c1223

l-3 = 2Cll33 + 2c1233 + 16gc3333 + 52c1333

r4 = 2C1144 + 2Cll55 + cl255 + $244 + 338c3344 + 52c1344 + 52c1355

Page 683: Second and Higher Order Elastic Constants

666 2.4 Third and higher-order elastic constants (Figs. 1 . , , 4) [Ref. .p. 674

2.4 Figures

Ill11 -1300 Qcm,,” 0

ocxs- 0 OOOO .***,,

-1400 .*I)- U...‘H ”

6; -15000-

50 100 150 200 250 300 K 3 I-

I

Fig. 1. Block diagram of apparatus for measuring stress- Fig. 3. Ge. Effect of temperature on nonlinearity parameter induced shifts of resonance frequencies [78Hl]. CR crystal; K1. [74Yl]. See also [74Bl]. For K, see Table 8. Q quartz transducer; M mirror; S shield; L lens; P polariser, PM photomultiplier.

I -600 GPO

;-800 u”

- 80 GPO

I -100 $ 3

-120

250 300 350 400 450 500 K 550

Fig. 2. NaCl. Effect of temperature on combinations of third-order stiffnesses. Full curve: experiment [65B3]; dashed curve: theory [63Nl, 65B3].

-200

I -400

-6W

g-800 3

-1000

-1200

-1600

-2Gflo 0 50 100 150 200 250 K 300

T -

Fig. 4. Ge. Effect of temperature on c, r, and combinations of third-order stiffnesses. [76Bl].

Laadolt-B&r&a New Saia IiIf291

Page 684: Second and Higher Order Elastic Constants

Ref. .p. 6741 2.4 Third and higher-order elastic constants (Figs. 5 . . . 8) 667

I -a2

j -0.4

-0.6

-1.0 0 50 100 150 200 250 K 300

Fig. 5. Ge. cl,,” vs. T. [SlPl, 83Pl]. The curves were ob- tained by combining the results of second-harmonic genera- tion experiments (Fig. 4) with a Keating-type lattice dynam- ical model.

0.2 TPO

0 1 I

l- \

‘\\ Cl23 +---- ---. -- ____

Cl55

I -0.2

'I u"

-0.4

-0.6

: 'i----.- Cl12 -----------

-0.8

0 50 100 150 200 250 K 3 T-

ioo

0.5 TPO

0

-2.5 -2.5 1 I I I I I 0 0 50 50 100 100 150 150 200 200 250 250 K K 300 300

I-

Fig. 6. Si. Effect of temperature on c1 1 r and combinations of third-order stiffnesses. [81Pl, 81P2].

-1000 GPO

-1500

I -2000

c -2500

-3000

-3500 0 50 100 150 200 250 K 300

T-

Fig. 8. Cu. Effect of temperature on nonlinearity parameter Ks. [7OP3]. For Ks see Table 8.

Fig. 7. Si. c~,,~ vs. T. [SlPl, 83Pl]. The curves were obtained by combining the results of second-harmonic generation experiments (Fig. 6) with a Keating-type lattice dynamical model.

Landolt-Blmstein New soric=3 nltcI9a

Page 685: Second and Higher Order Elastic Constants

668 2.4 Third and higher-order elastic constants (Figs. 9 . . . 13) [Ref. .p. 674

I -1000 LLI 4

2 -1200

-1400

-1600

I-

-2200 -I

0 50 100 150 200 250 K 3OU

Fig. 9. Cu. Effect of temperature on third-order stiffnesses. [67Sl]. Error Limits are shown by vertical lines.

-CO I tm C111+C123

-60 I

-140 0 50 100 150 200 250 K 300

Fig. 11. Na. Effect of temperature on combinations of third- order stiffnesses. [66Ml].

0

-0.2

-0.4

-0.6

g-1.2 3

-1.4

-1.6

-3.6

-3.8

-4.0 -4.2

0 50 100 150 200 250 K 300 I-

Fig. 10. Cu. Effect of temperature on combinations of third- order stiffnesses. [81Y2].

0 0 4 4 8 12 8 12 16 16 K 20 K 20 I- r, -

Fig. 12. NH,Br. clpV vs. T above the order-disorder (cu- bic + tegragonal) transition at Tl. [84Yl].

0 90 100 110 120 130 K 140

Fig. 13. (NH&CdZ(SO.&. Effect of temperature on s’r , r of a 45” bar. [78B2].

LJlldOlI-Blmadn NowSdmIUR9a

Page 686: Second and Higher Order Elastic Constants

Ref. .p. 6741 2.4 Third and higher-order elastic constants (Figs. 14 . . . 17) 669

0.2 TPC

0

-0.6

-0.8

-1.0 4 8 12 16 K 20

T-T, -

Fig. 14. NH4Cl. cANV vs. Tabove the L-transition (cf. Fig. 12). From (a) ultrasonics [84Y2,84Y3], (b) Brillouin scattering [87Yl].

0.94

50 100 150 200 250 K 300 T-

Fig. 16. CsCdF,. Effect of temperature on nonlinearity parameter Ks. [84bl]. I

b Fig. 17. CsCdFa. Effect of temperature on combinations of third-order stiffnesses. [84bl].

-0.004 -0.04 TPa . l ; . . . .cA . l TPa

-0.006 “cs

0 -0.06 0 ’ (Scale -1

-o.oo8-,oo -0.08

-0.010 a -0.10

0.5 TPa

0.4

0.3

0.2

0.1

0

-0.1 4 8 12 16 K :

0.’ TPa

0

-0.1 I

T-T, -

Fig. 15. NH,CI,Br,-,.c, = &(cII1 - 3cI12 + &,,) and cr, = ft(cIll + 6cii2 + 2cIz3) vs. (T- 4) near the A- transition. (a) x = 1 [84Y2,84Y3], (b) x = 0.87 [85Yl], (c)x = 0.77 [85Yl], (d) x = 0 [84Y2,84113].

-0.4 TPc

-0.6

-0.8

I -1.0 k

0

il.2

-1.4

-1.6 I I I J

100 150 200 250 K 300 T-

Landok-B&astain Now Sala IUR9a

Page 687: Second and Higher Order Elastic Constants

670 2.4 Third and higher-order elastic constants (Figs. 18 . . . 21) [Ref. .p. 674

Fig. 18. KMnF,. cl,,” vs. T. [88C2]. Note the different ordi- nate scales.

-1.5

-1.7 /

I

/

: -1.9 / cm c

1’ -5.3

-5.9 50 100 150 200 250 K 300

I- EO 0 140 150 160 170

I-

Fig. 20. KZnF,. Effect of temperature on combinations of Fig. 21. SrTi03. Effect of temperature on s1 I,. [75B3]. third-order stiffnesscs. [84bl].

I-

Fig. 19. KZnF3. Effect of temperature on nonlinearity para- meter K3. [84bl]. For K, see Table 8.

0.025 .1p mYN2 0.020

I 0.015

E 0.010

0.005

hdOl!-BOmrtcin New SaiaIBf&

Page 688: Second and Higher Order Elastic Constants

Ref. .p. 6741 2.4 Third and higher-order elastic constants (Figs. 22 . . . 26) 671

100 125 150 175 200 225 250 275 K 300 T-

Fig. 22. SrTiOB. Effect of temperature on third-order stiff- nesses. [70M5]. Calculated from results of second-harmonic generation experiments assuming the validity of the Cauchy relations (14). Cubic + tetragonal phase transition at T franS = 102.5 K.

251 I I I I TPa

10' I I I I 0 100 200 300 400 kV/m !

E- 0

Fig. 24. SbSI. Effect of dc electric field E on cl,, at T = 305 K. [86Zl]. Ferroelectric T, = 292 K. The ordinate scale has been reduced by a factor of 10.

380 380 390 390 400 400 410 410 420 420 430 430 440 440 K K 450 450 T- T-

Fig. 25. BaTiO+ Effect of temperature on s, r r . [75B3]. Fig. 25. BaTiO+ Effect of temperature on s, r r . [75B3].

-2.5

16 -4 -2 0 2 4 6 K 8 r-7,-

Fig. 23. Pb5Ge30i1. Effect of temperature on c2a2 and c333 around the ferroelectric transition. [87Bl]. T, = 450 K. Above 450 K, hexagonal; below 450 K, trigonal.

400 405 410 415 420 425 430 K 4 T-

Fig. 26. BaTiO,. Effect of temperature and Fe or Cr doping on sf, I . [SSDl]. Curve 1: pure; 2: 0.01 wt% Fe; 3: 0.02 wt% Fe; 4: 0.03 wt% Fe; 5: 0.23 wt% Cr.

hdolt-Bbmstein New S& IIIl29a

Page 689: Second and Higher Order Elastic Constants

672 2.4 Third and higher-order elastic constants (Figs. 27 . . . 30) [Ref. .p. 674

100

80

I

2

60 .’ I

PE c,

0 100 200 300 400 kV/m 500 E-

240 TPa

200

160

I 120 uz

80

0 200 400 600 800 kV/mlOOO E-

Fig. 27. BaTiOa:CeO,. Effect of dc electric field E on c:rr and c& [86Zl]. Ferroelectric Tc = 306 K. Curve 1: T = 315 K; 2: T = 342 K. The ordinate scale has been re- duced by a factor of 10.

15 0 2 6 8 K 10

Fig. 28. Rochelle salt. KNa(C4H406).4Ha0. Ferroelectric between 255.2 K and 297.2 K. Effect of temperature on the third- and fourth-order compliances S& and S& around the higher ferroelectric transition. [SSBl].

80

I I I

0 2 4 K (T-f,, -

Fig. 29. NaND4Se04*2D20. Ferroelectric Tc z 180 K.

sf,j. vs. (T- Tc). [78Sl].

Fig. 30. NaND&Ol~2D,0. I$,,” vs. (T- Tc). [78Sl]. Ferroelectric Tc % 180 K.

Lll&lI-BbmU6ill Now !kioo IlW!h

Page 690: Second and Higher Order Elastic Constants

Ref. .p. 6741 2.4 Third and higher-order elastic constants (Figs. 31, 32) 673

25 TPO

20

I 15

f '- 10

5

i I 350 400 450 K 500 T-

325 330 335 340 345 350 K 355 T-

Fig. 31. _Tbz(MoO&. ElIi vs. T. [78El]. Phase transition mm2 + 42m at ferroelectric Tc = 432.2 K. c”r r r is the third- order elastic stiffness along the x-direction of the high tem- perature paraelectric crystalline axes. The coordinate axes of the paraelectric phase is rotated 45” about the z axis with respect to the low temperature crystalline axes.

Fig. 32. Triglycine sulfate. Effect of temperature on s3s3. [75B3]. Other reference [89R2].

Jandolt-B6mstch New Se&a WZ9a

Page 691: Second and Higher Order Elastic Constants

674 2.5 References for 2

51ml

52tl

57nl 62tl

64tl

65bl 650 65t2

65~1

67~1

6gPl

69tl

70ml 70wl

71hl

72bl

72kl

73bl

73dl

73gl

7311

74fl

2.5 Bibliography

23.1 General References

Murnaghan, F. D.: Finite deformation of an elastic solid. New York: John Wiley and Sons Inc.; London: Chapman and Hall Ltd. 1951. Truesdell, C.: The mechanical foundations of elasticity and fluid dynamics. J. Rational Mech. and Anal. l(l952) 125; 2 (1953) 593. Nye, J. F.: Physical properties of crystals. Oxford: Clarendon Press 1957. Truesdell, C.: Second-order effects in the mechanics of materials. Proc. Int. Symp. on second- order effects, in elasticity, plasticity, and fluid dynamics. Haifa 1962 (eds. Reiner, M., Abir, D.), Oxford etc: Pergamon Press, 1964 , p. 1. Thurston, R. N.: Wave propagation in fluids and normal solids. Physical Acoustics (ed. Mason, W. P.), New York and London: Academic Press, l-A, 1964. Biot, M. A.: Mechanics of incremental deformation. New York etc.: John Wiley 1965. ‘Ihurston, R. N.: Ultrasonic data and the thermodynamics of solids. Proc. IEEE 53 (1965) 1320. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. Encyclopedia of Physics (ed. Fltigge, S.), Vol. III/X Berlin: Springer-Verlag 1965. Wallace, D. C.: Lattice dynamics and elasticity of stressed crystals. Rev. Mod. Phys. 37 (1965) 57. Wallace, D. C.: Thermoelasticity of stressed materials and comparison of various elastic constants. Phys. Rev. 162 (1967) 776. Pomerance, H.: Bibliography of second- and third-order elastic constants. Oak Ridge Nat. Lab. Res. Mater. Inf. Center ONRL-RMIC-9,1968. Truell, R., Chick, B. B., Elbaum, C.: Ultrasonic methods in solid-state physics. New York and London: Academic Press, 1969. Musgrave, M. J. P.: Crystal acoustics. San Francisco etc.: Holden Day, 1970. Wallace, D. C.: Thermoelastic theory of stressed crystals and higher-order elastic constants. Solid State Phys. Adv. in Res. and Appl. (eds. Ehrenreich, H., Seitz, F., TumbuIl, D.), New York and London: Academic Press 25 (1970) 302. Holder, J., Granato, A. V.: Third-order elastic constants and thermal equilibrium properties of solids. Physical Acoustics (eds. Mason, W. P., Thurston, R. N.), New York and London: Academic Press 7 (1971) 237. Breazeale, M. A.: Ultrasonic studies of the nonlinear properties of solids, Int. J. Nondestr. Test. 4 (1972) 149. Korpel, A.: Acousto-optics. Appl. Solid State Sci., Mater. and Device Res. 3 (ed. Wolfe, R.), New York and London: Academic Press 1972, p. 71. Bell, J. F.: The experimental foundations of solid mechanics. Encyclopedia of Physics (ed. FliIgge, S.), Vol. Via/l. Berlin: Springer-Verlag 1973. Donnay, G., Ondik, H. M.: Crystal data: Determinative tables, 3rd edn. US Dept. Commerce Nat. Bur. Stds. and the Joint Committee on Powder Diffraction Standards, 1972-3. Green, R. L.: Ultrasonic investigation of mechanical properties. Treatise on Materials Science and Technology (ed. Herman, H.), New York and London: Academic Press, 1973. Ledbetter, H. M., Reed, R. P.: Elastic properties of metals and alloys I. iron, nickel, and iron- nickel alloys. J. Phys. Chem. Ref. Data 2 (1973) 531. Fuller, E. R., Granato, A. V., Holder, J., Naimon, E. R.: Ultrasonic studies of the properties of solids. Methods of Experimental Physics (ed. Coleman, R. V.), New York and London: Academic Press 11(1974) 371.

La&At-Bhstein New Series IIK29a

Page 692: Second and Higher Order Elastic Constants

2.5 References for 2 675

7411

74t1

76~1 77rl 80bl

8orl

81hl 8211

82ml 82~1 84bl

86sl

87tl

9Ogl

47Bl 51Fl 52Fl 53Hl 54Kl 57Bl 58Sl 59Sl 6OBl 6OB2 6OCl 6OSl 61Bl 61T2 62Pl 62Sl 63Cl 63Nl 63N2 63Sl 64Bl 64B2

Ledbetter, H. M., Naimon, E. R.: Elastic properties of metals and alloys II. Copper. J. Phys. Chem. Ref. Data 3 (1974) 897. Thurston, R. N.: Waves in solids. Encyclopedia of Physics (ed. Fliigge, S.), Vol. Via/4. Berlin: Springer-Verlag 1974, p. 109. Stephens, R. W. B.: Roe. Int. School of Physics “Enrico Fermi” 63 (1976)409. Reddy, P. J.: Crystal elasticity. Tirupat? Sri Venkateswara University, 1977. Bajak, I. L., Breaxeale, M. A.: Quantum mechanical theory of non-linear interaction of ultrasound and waves. J. Acoust. Sot. Am. 68 (1980) 1245. Ramji Rao, R., Ramanand, A.: Third-order elastic constants of uniaxial crystals. Phys. Status Solidi a58 (1980) 11. Hiki, Y.: Higher-order elastic constants of solids. Annu. Rev. Mater. Sci. ll(l981) 51. Liakos, J. K., Saunders, G. A.: Application of the Landau theory to elastic phase transitions. Philos. Mag. A46 (1982) 217. Milstein, F., Resky, D.: Anharmonicity and symmetry in crystals. Philos. Mag. A45 (1982) 49. Singh, R. K.: Many-body interactions in binary ionic solids. Phys. Rep. 85 (1982) 259. Breazeale, M. A., Philip, J.: Determination of third-order elastic constants from ultrasonic harmonic generation experiments. Physical Acoustics (eds. W. P. Mason and R. N. Thurston), New York Academic Press XVII (1984) 1. Shanker, J., Bhende, W. N.: Higher order elastic constants and thermoelastic properties of ionic solids. Phys. Status Solidi b136 (1986) 11. Takahashi, S., Motegi, R.: Stress dependency on ultrasonic wave velocity. J. Mater. Sci. 22 (1987) 1850,1857. Gerlich, D., Breazeale, M. A.: Determination of the fourth-order elastic moduli by acoustic harmonic generation in stressed crystals. J. Appl. Phys. 67 (1990) 3287.

2.5.2 Special Reference-s

Birch, F.: Phys. Rev. 71(1947) 809. Fumi, F. G.: Phys. Rev. 83 (1951) 1274. Fumi, F. G.: Phys. Rev. 86 (1952) 561. Hearmon, R. F. S.: Acta Cry& 6 (1953) 331. Keane, A.: Aust. J. Phys. 7 (1954) 322. Bhagavantam, S.: Proc. 3rd Congr. on Theor. and Appl. Mech., Bangalore, Dec. 24-27,1957. Sheard, F. W.: Philos. Msg. 3 (1958) 1381. Seeger, A., Mann, E.: Z. Naturforsch. 14a (1959) 154. Bhagavantam, S., Chelam, E. V.: Proc. Indian Acad Sci. 52 (1960) 3. Bhagavantam, S., Chelam, E. V.: J. Indian Inst. Sci. 42 (1960) 29. Chelam, E. V.: J. Indian Inst. Sci. 42 (1960) 41,101. Seeger, A., Buck, 0.: Z. Naturforsch. 15a (1960) 1056. Bateman, T., Mason,W. P., McSkimin, I-I. J.: J. Appl. Phys. 32 (1961) 928. Toupin, R. A., Bernstein, B.: J. Acoust. Sot. Am. 33 (1961) 216. Pfieiderer, H.: Phys. Status Solidi 2 (1%2) 1539. Seed, A.: Proc. Int. Congr. Acoust. 4th Copenhagen, 1962 (ed. Nielsen, A.), p. N54. Coldwell-Horsfall, R. A.: Phys. Rev. 129 (1963) 22. Nranyan, A. A.: Fix. Tverd. Tela 5 (1963) 177. Nranyan, A. A.: Fix. Tverd. Tela 5 (1963) 1865. Smith, R. T.: Ultrasonics 1(1963) 135. Blackman, M.: Proc. Phys. Sot. (London) 84 (1964) 371. Brugger, K.: Phys. Rev. 133 (1964) A1611.

Land&Bcimtein New Series W29a

Page 693: Second and Higher Order Elastic Constants

2.5 References for 2 675

7411

74t1

76~1 77rl 80bl

8orl

81hl 8211

82ml 82~1 84bl

86sl

87tl

9Ogl

47Bl 51Fl 52Fl 53Hl 54Kl 57Bl 58Sl 59Sl 6OBl 6OB2 6OCl 6OSl 61Bl 61T2 62Pl 62Sl 63Cl 63Nl 63N2 63Sl 64Bl 64B2

Ledbetter, H. M., Naimon, E. R.: Elastic properties of metals and alloys II. Copper. J. Phys. Chem. Ref. Data 3 (1974) 897. Thurston, R. N.: Waves in solids. Encyclopedia of Physics (ed. Fliigge, S.), Vol. Via/4. Berlin: Springer-Verlag 1974, p. 109. Stephens, R. W. B.: Roe. Int. School of Physics “Enrico Fermi” 63 (1976)409. Reddy, P. J.: Crystal elasticity. Tirupat? Sri Venkateswara University, 1977. Bajak, I. L., Breaxeale, M. A.: Quantum mechanical theory of non-linear interaction of ultrasound and waves. J. Acoust. Sot. Am. 68 (1980) 1245. Ramji Rao, R., Ramanand, A.: Third-order elastic constants of uniaxial crystals. Phys. Status Solidi a58 (1980) 11. Hiki, Y.: Higher-order elastic constants of solids. Annu. Rev. Mater. Sci. ll(l981) 51. Liakos, J. K., Saunders, G. A.: Application of the Landau theory to elastic phase transitions. Philos. Mag. A46 (1982) 217. Milstein, F., Resky, D.: Anharmonicity and symmetry in crystals. Philos. Mag. A45 (1982) 49. Singh, R. K.: Many-body interactions in binary ionic solids. Phys. Rep. 85 (1982) 259. Breazeale, M. A., Philip, J.: Determination of third-order elastic constants from ultrasonic harmonic generation experiments. Physical Acoustics (eds. W. P. Mason and R. N. Thurston), New York Academic Press XVII (1984) 1. Shanker, J., Bhende, W. N.: Higher order elastic constants and thermoelastic properties of ionic solids. Phys. Status Solidi b136 (1986) 11. Takahashi, S., Motegi, R.: Stress dependency on ultrasonic wave velocity. J. Mater. Sci. 22 (1987) 1850,1857. Gerlich, D., Breazeale, M. A.: Determination of the fourth-order elastic moduli by acoustic harmonic generation in stressed crystals. J. Appl. Phys. 67 (1990) 3287.

2.5.2 Special Reference-s

Birch, F.: Phys. Rev. 71(1947) 809. Fumi, F. G.: Phys. Rev. 83 (1951) 1274. Fumi, F. G.: Phys. Rev. 86 (1952) 561. Hearmon, R. F. S.: Acta Cry& 6 (1953) 331. Keane, A.: Aust. J. Phys. 7 (1954) 322. Bhagavantam, S.: Proc. 3rd Congr. on Theor. and Appl. Mech., Bangalore, Dec. 24-27,1957. Sheard, F. W.: Philos. Msg. 3 (1958) 1381. Seeger, A., Mann, E.: Z. Naturforsch. 14a (1959) 154. Bhagavantam, S., Chelam, E. V.: Proc. Indian Acad Sci. 52 (1960) 3. Bhagavantam, S., Chelam, E. V.: J. Indian Inst. Sci. 42 (1960) 29. Chelam, E. V.: J. Indian Inst. Sci. 42 (1960) 41,101. Seeger, A., Buck, 0.: Z. Naturforsch. 15a (1960) 1056. Bateman, T., Mason,W. P., McSkimin, I-I. J.: J. Appl. Phys. 32 (1961) 928. Toupin, R. A., Bernstein, B.: J. Acoust. Sot. Am. 33 (1961) 216. Pfieiderer, H.: Phys. Status Solidi 2 (1%2) 1539. Seed, A.: Proc. Int. Congr. Acoust. 4th Copenhagen, 1962 (ed. Nielsen, A.), p. N54. Coldwell-Horsfall, R. A.: Phys. Rev. 129 (1963) 22. Nranyan, A. A.: Fix. Tverd. Tela 5 (1963) 177. Nranyan, A. A.: Fix. Tverd. Tela 5 (1963) 1865. Smith, R. T.: Ultrasonics 1(1963) 135. Blackman, M.: Proc. Phys. Sot. (London) 84 (1964) 371. Brugger, K.: Phys. Rev. 133 (1964) A1611.

Land&Bcimtein New Series W29a

Page 694: Second and Higher Order Elastic Constants

676 2.5 References for 2

64D1

64Gl 64Ml 64M2 64Nl 64Tl 65B2 65B3 65B4 65B5 6586 6X1 65Dl 65G2 6563 65Hl 65Nl 65N2 65Pl 65P2 65Sl 65Tl 66Bl 66D1 66El 66G2 66Hl 66K1 66Ll 66Ml 66M2 66Rl 66Tl 67Bl 67B2 67B3 67Cl 67C2 67C3 67C4 67C5 67Dl 67D2 67D3 67Fl 67Gl 67Hl 67H2 67H3 67H4 67K1

Drabble, J. R., Gluyas, M.: J. Phys. Chem. Solids Suppl. 1(1964) 607 (Proc. Jnt. Conf. on Lattice Dynamics Copenhagen 1963, ed. Wallis, R. F.). Ghate, P. B.: J. Appl. Phys. 35 (1964) 337. McSkimin, H. J., Anckatch, P.: J. Appl. Phys. 35 (1964) 3312. Mason, W. P., Bateman, T. B.: J. Acoust. Sot. Am. 36 (1964) 644. Nranyan, A. A.: Fiz. Tverd. TeJa 6 (1964) 785. Thurston, R. N., Bagger, K.: Phys. Rev. 133 (1964) Al604. Bogardus, E. H.: J. Appl. Phys. 36 (1965) 2504. Bogardus, E. H.: J. Appl. Phys. 36 (l%S) 3544. Brugger, K.: J. Appl. Phys. 36 (1%5) 768; Errata: 36 (1965) 3364. kugger, K.: J. Appl. Phys. 36 (1%5) 759. Breazeale, M. A., Ford, J.: J. Appl. Phys. 36 (1965) 3486. Clung, 2. P.: Phys. Rev. 140 (1965) A1788. Drabble, J. R., Gluyas, M.: J. Phys. Chem. Solids Suppl. l(l965) 607; reported in [84bll. Ghate, P. B.: Phys. Rev. 139 (1965) Al666. Ghate, P. B.: Indian J. Phys. 39 (1965) 257. Hall, J. J.: Phys. Rev. 137 (1%5) A960. Nranyan, A. A.: Fiz. Tverd. Tela 7 (1965) 345. Nranyan, A. A.: Fiz. Tverd. Tela 7 (1965) 917. Pomerantz, M.: Phys. Rev. 139 (1965) A501. Pomerantz, M.: b. IEEE 53 (1965) 1438. Shiren, N. S.: Proc. JEEE 53 (l%S) 1540. Thurston, R. N.: J. Acoust. Sot. Am. 37 (1%5) 348; Errata: 37 (1965) 1147. Buck, O., Thompson, D. 0.: Mater. Sci. Eng. 1(1966) 117. Drabble, J. R., Brammer, A. J.: Solid State Commun. 4 (1966) 467. Eastman, D. E.: J. Appl. Phys. 37 (1966) 2312. Ghate, P. B.: Phys. Status Solidi 14 (1966) 325. H&i, Y., Granato, A. V.: Phys.Rev. 144 (1966) 411. Keating, P. N.: Phys. Rev. 149 (1966) 674. Lincoln, R. C., Koliwad, K. M., Ghate, P. B.: Phys. Status Solidi 18 (1966) 265. Martinson, R. H.: PhD Thesis, Cornell Univ. 1966; USAEC Document NYO-2504-15. Mason, W. P., Bateman, T. B.: J. Acoust. See. Am. 48 (1966) 852. Rose, M. F.: Phys. Status Solidi 17 (1966) K199. Thurston, R. N., McSkimin, H. J., Andmatch, P.: J. Appl. Phys. 37 (1966) 267. Barsch, G. R.: Phys. Status Solidi 19 (1967) 129. Barsch, G. R., Chang, 2. P.: Phys. Status Solidi 19 (1967) 139. Brugger, K., Fritz, T. C.: Phys. Rev. 157 (1967) 5%. Chang, R.: Appl. Phys. Lea. 11(1967) 305. Chang, 2. P., Barsch, G. R.: Phys. Rev. Lea. 19 (1967) 1381. Chung, D. H.: J. Appl. Phys. 38 (1967) 5104. Cousins, C. S. G.: Pm. Phys. Sot. (London) 91(1967) 235. Carr,P. H., Slobodnik, A. J.: J. Appl. Phys. 38 (1%7) 5153. Drabble, J. R., Brammer, A. J.: Proc. Phys. Sot. (London) 91(1967) 959. Drabble, J. R., Strathen, R. E. B.: F?oc. Phys. Sot. (London) 92 (1967) 1090. Drabble, J. R., Fendley, J.: J. Phys. Chem. Solids 28 (1967) 669. Fowles, R.: J. Geophys. Res. 72 (1967) 5729. Gluyas, M.: Brit. J. Appl. Phys. 18 (1967) 913. Hall, J. J.: Phys. Rev. 161(1%7) 756. Hanson, R. C.: J. Phys. Chem. Solids 28 (1967) 475. Hiki, Y., Thomas, J. R., Granato, A. V.: Phys. Rev. 153 (1967) 764. Holt, A. C., Ford, J.: J. Appl. Phys. 38 (1967) 42. Keyes, R. W., Blair, F. W.: Proc. IEEE 55 (1967) 565.

Lmdolt-Biimtein NEW Series llIJ29a

Page 695: Second and Higher Order Elastic Constants

2.5 References for 2 677

67M2 67Pl 67Sl 6782 6735 67Tl 68Bl 68B2 68B3 68Cl 68c2 68C3 68c4 68C5 68C6 68Gl 6862 6863 68Hl 6811 68Kl 68Ll 68P2 68P3 68Rl 68R2 68Sl

6882 6834 68Tl 69Al 69Gl 69Kl 69Pl 69R2 6932

McSkimin, H. J., Andreatch, P.: J. Appl. Phys. 38 (1967) 2610. Powell, B. E., Skove, M. J.: J. Appl. Phys. 38 (1967) 404. Mama, K., Alers, G. A.: Phys. Rev. 61(1967) 673. Skove, M. J., Powell, B. E.: J. Appl. Phys. 38 (1967) 404. Swam, K. D,: J. Acoust. Sot. Am. 41(1967) 1083. Thurston, R. N.: J. Acoust. Sot. Am. 41(1%7) 1093. Barsch, G. R.: J. Appl. Phys. 39 (1968) 3780. Barsch, G. R., Chang, Z. P.: J. Appl. Phys. 39 (1968) 3276. Borg, S. F.: Ann. N. Y. Acad. Sci. 147 (1968) 221. Carr, P. H.: Phys. Rev. 169 (1%8) 718. Chang, R., Graham, L. J.: Mater. Res. Bull. 3 (1968) 745. Chang, Z. P.: J. Appl. Phys. 39 (1968) 5669. Chung, D. & J. Phys. Chem. Solids 29 (1968) 417. Cousins, C. S. G.: J. Phys. Cl (1968) 478. Cousins, C. S. G.: J. Phys. Cl (1968) 835. Gauster, W. B., Breazeale, M. A.: Phys. Rev. 168 (1968) 655. Gerlich, D.: Phys. Rev. 168 (1968) 947. Graham, L. J., Nadler, H., Chang, R.: J. Appl. Phys. 39 (1968) 3025. Hamilton, R. A. H., Parrott, J. E.: J. Phys. Cl (1968) 829. Juretschke, H. J.: Appl. Phys. Lett. 12 (1968) 213. Kaga, H.: Phys. Rev. 172 (1968) 900. Lewis, M. F.: J. Acoust. Sot. Am. 44 (1968) 713. Powell, B. E., Skove, M. J.: Phys. Rev. 174 (1%8) 977. Powell, B. E., Skove, M. J.: Bull. Am. Phys. Sot. 13 (1968) 247, Abstr. FC12. Ramji Rao, R., Srinivasan, R.: Phys. Status Solidi 29 (1968) 865. Richardson, L. A., Thompson, R. B., Wilkinson, C. D. W.: J. Acoust. Sot. Am. 44 (1968) 1608. Mama, K., Alers, G. A.: Paper presented at the 1968 symp. on sot-tics and ultrasonics, New York 25-27 Sept. 1968. Singh, R. P., Verma, G. S.: J. Appl. Phys. 39 (1968) 4032. Stern, R., Smith, R. T.: J. Acoust. Sot. Am. 44 (1968) 640. Thomas, J. F.: Phys. Rev. 175 (1968) 955. Merovik, S., Gerlich, D.: Phys. Rev. 184 (1969) 999. Gieske, J. H.: PhD Thesis, Pennsylvania State Univ. ; Dissertation Abstr. Int. B29 (1969) 3701. Krishnamurty, T. S. G., Apalanarasimham, V.: Acta Cryst. A25 (1969) 638. Powell, B. E.: Phys. Status Solidi 35 (1969) K85. Ritchie, A. D.: PhD Thesis, Univ. California; Dissertation Abstr. Int. B30 (1%9) 2375. ShuIl, H. E.: PhD Thesis, Pennsylvania State Univ. 196% Dissertation Abstr. Int. B31(1970) 2228.

69Tl Tamow, V.: J. Phys. D2 (1%9) 1383. 7OAl Alterovitz, S., Gerlich, D.: Phys. Rev. Bl(l970) 2718. 7oA2 Alterovitz, S., Gerlich,D.: Phys. Rev. Bl(l970) 4136. 7ODl Dunham, R. W., Huntington, H. B.: Phys. Rev. B2 (1970) 1098. 7OE2 Elkin, S., GerIich, D.: Bull Am. Phys. Sot. 15 (1970) 790; Abstr. CH12. 7OG2 Guinan, M. W.,Ritchie, A. I).: J. Appl. Phys. 41(1970) 2256. 7OHl Hankey, R. E., Schuele, D. E.: J. Acoust. Sot. Am. 48 (1970) 190. 7OMl Mathur, S. S., Gupta, P. N.: Acustica 23 (1970) 160. 7oM2 Mathur, S. S., Gupta, P. N.: Acustica 23 (1970) 340. 7oM5 Me&s, E. L., Arnold, R. T.: Phys. Rev. Bl(l970) 982. 7ONl Nranyan, A. A.: KristaIlogmfiya 15 (1970) 86. 7OPl Paul, S.: Indian J. Pure Appl. Phys. 8 (1970) 307. 7oP2 Paul, S.: Phys. Status SoIidi 37 (1970) K137. 7oP3 Peters, R. D., Breazeale, M. A., Pare, V. R.: Phys. Rev. Bl(l970) 3245.

Land&B&n&n New Series IW29a

Page 696: Second and Higher Order Elastic Constants

678 2.5 References for 2

7OP4 7os1 7OS2 7OTl 7021 71Bl 7lCl 7x2 71c3 71Nl 7lN2 71Sl 71S2 71s3

72Bl 72C3 72Fl 72Gl 7202 7263 7264 72Kl 72K2 72Ml 72M2 72M3 72P1 72I?2 72Sl 72S2 7212 72T3 73Cl 73C2 73Fl 73Kl 73Nl 73N2 73Pl 73R2 73R4 73Sl 73S2 7383 73Tl 74Bl 74B2 74Cl 74Dl 74Fl

Powell,R. E., Skove, H. J.: J. Appl. Phys. 41(1970) 4913. Sekoyan, S. S.: Akust. Zh. 16 (1970) 453. Swartz, K. D., Elbaurn, C.: Phys. Rev. B4 (1970) 1512. Tripathi, R. C., Verma, G. S.: J. Appl. Phys. 41(1970) 2999. 2hrembo, L. K., Krasilnikov, V. A.: Usp. Fiz. Nauk 102 (1970) 549. Beattie, A. G., Samara, G. A.: J. Appl. Phys. 42 (1971) 2376. Cousins, C. S. G.: J. Phys. Fl(l971) 815. Cousins, C. S. G.: J. Phys. C4 (1971) 1117. Gang, 2. P., Barsch, G. R.: J. Phys. Chem. Solids 32 (1971) 27. Naimon, E. R.: Phys. Rev. B4 (1971) 4291. N&on, E. R., Suzuki, T., Granato, A. V.: Phys. Rev. B4 (1971) 4297. Srinivasan, R., Ramji Rao, R.:‘J. Phys. Chem. Solids 32 (1971) 1769. Suzuki, T.: Phys. Rev. B3 (1971) 4007. Sv@t, D. A.: Solid State Phys. Program, Western Reserve Univ. Rep. (X0623-167, Jan. 1971; Quoted in [8ONl]. Bensch, W. A.: Phys. Rev. B6 (1972) 1504. Cousins, C. S. G.: J. Phys. F’2 (1972) 1. Fuller, E. R., Naimon, E. R.: Phys. Rev. B6 (1972) 3609. Gagnepain, J. J., Besson, R.: Phys. Lett. A42 (1972) 443. Graham, R. A.: Phys. Rev. B6 (1972) 4779. Graham,R. A.: J. Acoust. Sot. Am. Sl(l972) 1576. Gubanov, A. J., Davydov, S. Yu.: Fiz. Tverd. Tela 14 (1972) 1195. Kodama, M., Saito, S., Minomura, S.: J.Phys. Sot. Jpn. 33 (1972) 1361. Kor, S. K., Tandon, U. S., Rai, G.: Phys. Rev. B6 (1972) 2195. MacDonald, R. A.: Phys. Rev. BS (1972) 4139. Menon, C. S., Ramji Rao, R.: J. Phys. Chem. Solids 33 (1972) 1325. Menon, C. S., Ramji Rao, R.: J. Phys. Chem. Solids 33 (1972) 2129. Perrin, G., ham, A.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. A275 (1972) 1007. Powell, B. E., Skove, M. J.: Phys. Status Solidi (a) 9 (1972) Kll. &mm, V. P. N., Reddy, P. J.: Phys. Status Solidi (a) 10 (1972) 563. Swam, K. D., Chua, W. B., Elbaum, C.: Phys. Rev. B6 (1972) 426. Torguet, R., Bridoux, E. V.: Rev. Phys. Appl. 7 (1972) 291. Trebits, R. N.: PhD Thesis, Georgia Institute of Technology; Diss. Abstr. Int B33 (1972) 402. Cain,L. S., Thomas, J. F.: Phys. Rev. B8 (1973) 5372. Chang.2. P., Barsch, G. R.: J. Geophys. Res. 78 (1973) 2418. Fuller, E. R.: PhD Thesis, Univ. of Illinois; Diss. Abstr. Int. B34 (1973) 364. Kobayashi, N., H&i, Y.: Phys. Rev. B7 (1973) 594. Naimon, E. R., Granato, A. V.: Phys. Rev. B7 (1973) 2091. Nokagawa, K., Yamanouchi; K., Shibayama, K.: J. Appl. Phys. 44 (1973) 3969. Powell, B. E., Skove, M. J.: J. Appl. Phys. 44 (1973) 666. Ramji Rao, R., Menon, C. S.: J. Appl. Phys. 44 (1973) 3892. Riley, M. W., Skove, M. J.: Phys. Rev. B8 (1973) 466. &ma, V. P. N., Reddy, P. J.: Phys. Status Solidi (a) 16 (1973) 413. &ma, V. P. N., Reddy, P. J.: Philos. Mag. 27 (1973) 769. &ma, V. P. N., Reddy, P. J.: J. Phys. Chem. Solids 34 (1973) 1593. Thomas, J. F.: Phys. Rev. B7 (1973) 2385. Bains, J. A., Breazeale, M. A.: Bull. Am. Phys. Sot. 19 (1974) 1096, Abstr. BE% Barsch, G. R.: Solid State Commun. 14 (1974) 983. Chung, D. Y., Li, Y.: Acta. Cryst. A30 (1974) 1. Davies,G. F.: J. Phys. Chem. Solids 35 (1974) 1513. Fuller, E. R., Weston, W. F.: J. Appl. Phys. 45 (1974) 3772.

Landok-Bhstein New Series W?.9a

Page 697: Second and Higher Order Elastic Constants

2.5 References for 2

. *

I

679

74Jl

74M2 74Rl 74R2 74R4 74R6 74Sl 7432 74Wl 74Yl 75B3 75Fl 75Gl 75G2 7563

7564 75Ll 75Ml 75M2 75Sl 7582 7533 7584 75Wl 76Bl 76M2 76Rl 76R2 76Sl 77Bl

77Fl 77Hl 77Ml 77Nl 77P2 77P3 77R2 77R7 77Sl 7782 7733 77Wl 78B2 78El

78Gl 78G2 78Hl

Juretschke, H. J.: Crystal Physics: Macroscopic Physics of AnisotropicSolids. Reading, Mass.: Benjamin 1974. Mohajeri, M., Rafiiadeh, H. A.: Physica 78 (1974) 291. Ramji Rao, R.: Phys. Lett. A47 (1974) 407. Ramji Rao, R.: Physic-a 77 (1974) 126. Ramji Rao, R.: Phys. Rev. BlO (1974) 4173. Ramji Rao, R., Peter, M.: Helv. Phys. Acta 47 (1974) 705. G Sekoyan, S. S.: Prikl. Mekh. 10 No. 11(1974) 127. Soma, H., Hiki, Y.: J. Phys. Sot. Jpn. 37 (1974) 544. Weston, W. F.: PhD Thesis, Univ. of Illinois; Diss. Abstr. Int. B34 (1974)4594B. Yost, W. T., Breazeale, M. A.: Phys. Rev. B9 (1974) 510. Beige, H., Schmidt, G.: Izv. Akad. Nauk SSSR, Ser. Fiz. 39 (1975) 970. Fischer, M.: C. R. Hebd. Seances Acad. Sci. Paris, Ser. B280 (1975) 729. Garber, J. A., Granato, A. V.: Phys. Rev. Bll(l975) 3990. Garber, J. A., Granato, A. V.: Phys. Rev. Bll(l975) 3998. Gagnepain, J. J., Besson, R.: Physical Acoustics (eds. Mason, W. P., ‘Iburston, R. N.), New York and London: Academic Press 11(1975) 245. Graham, L. J., Chang, R.: J. Appl. Phys. 46 (1975) 2433. Lee, P. C. Y., Wang, Y. S., Markenscoff, X.: J. Acoust. Sot. Am.‘57 (1975) 95. Martin, J. W.: J. Phys. C8 (1975) 2869. Martin, J. W.: J. Phys. C8 (1975) 2837.2858. Serdobolskaya, 0. Yu., Serikov, V. I.: Fiz. Tverd. Tela 17 (1975) 627. Serikov, V. I.: Fiz. Tverd. Tela 17 (1975) 1844. Swartz, K. D., Bensch, W., Granato, A. V.: Phys. Rev. B12 (1975) 2125. Sekoyau, S. S.: Akust. Zh. 21(1975) 264. Weston, W. F., Granato, A. V.: Phys. Rev. B12 (1975) 5355. Bains, J. A., Breazeale, M. A.: Phys. Rev. B13 (1976) 3623. Markenscoff, X.: Appl. Phys. Lett. 29 (1976) 768. Raja, V. S., Reddy, P. J.: Phys. Lett. A56 (1976) 215. Richter, D. S., Nowick, A. S.: Ser. Metall. 10 (1976) 1043. Sandler, Yu. M., Serikov, V. I.: Fiz. Tverd. Tela 18 (1976) 629. Buck, O., Ahlberg, L. A., Graham, L. J., Alers, G. A., Wert, C. A., Amano, M.: Internal friction and ultrasonic attenuation in solids. Proc. 6th Int. Conf. (eds. Hasiguti, R. R., Mikoshiba, N.), Tokyo:University Press 1977, p. 407. Fritz, I. J.: J. Appl. Phys. 48 (1977) 812. Helliwell, K., Hanson, R. C., Schwab, C.: Proc. IEEE Ultrasonics Symp., 1977 p. 317. Markenscoff, X.: J. Acoust. Sot. Am. 61(1977) 436. Nelson, D. F.: Bell Laboratories preprint, unpublished 1977. Prasad, 0. H., Suryanarayana, M.: Acustica 37 (1977) 284. Prasad, 0. H., Suryanarayana, M.: Acustica 38 (1977) 192. Ramji Rao, R., Ramanand, A.: J. Phys. Chem. Solids 38 (1977) 831. Raja, V. S., Reddy, P. J.: Solid State Commun. 21(1977) 701. Sandler, Yu. M., Serikov, V. I.: Fiz. Tverd. Tela 19 (1977) 575. Sandler, Yu. M., Serikov, V. I.: Fiz. Tverd. Tela 19 (1977) 1054. Salama, K., Alers, G. A.: Phys. Status Solidi a41 (1977) 241. Wallat, R. J., Holder, J.: .J. Phys. Chem. Solids 38 (1977) 1227. Beige, H., Sorge, G., Schmidt, G., Glogarova, M.: Exp. Tech. Phys. 26 (1978) 297. Esayan, S. Kh., Laikhtman, B. D., Lemanov, V. V., Mamatkulov, N.: Fiz. Tverd. Tela 20 (1978) 2823. Guenin, G., Gobin, P. F.: Ser. Metall. 12 (1978) 351. Grimsditch, M. H., Anastassakis,E., Cardona, M.: Phys. Rev. B18 (1978) 901. Haussuhl, S., Preu, P.: Acta Cryst. A34 (1978) 442.

Land&-BBmstein New Series IIV29a

Page 698: Second and Higher Order Elastic Constants

680 2.5 References for 2

78Kl

78N2 78Pl 78p2 78P4 78Sl 78Vl

79Al

79A2

79A4 79B2 79B3 79H1 79H2 79Yl

7922 7923 8OCl 8OC2 8OFl 8OF2 8OHl 8ONl 8OYl 8021 81B2 8lHl 81H3 81Jl 81Ll 81Pl 81P2 81Sl 8lS5 81Yl 8lY2 82Bl 82F2 82Hl 82Nl 82N2 82P2 82P3 82S4

82Tl

Korobov, A. J., Prokhorov, V. M., Serdobolskaya, 0. Yu., Khegedush, P.: Kristallografiya 23 (1978) 566. Nava, R, Romero, J.: J. Acoust. Sot. Am. 64 (1978) 529. Prasad, 0. H.: PhD Thesis, Gsmania Univ., Hydembad 1978. Prasad, 0. H., Smyanarayana, M.: Acustica 40 (1978) 67. Parin, G., Delannoy, M.: J. Phys. (Paris) 39 (1978) 1085. Sandier, Yu. M., Zaitseva, M. P., Sysoev, A. M., Kokorin, Yu. I.: Ferroelectrics 21(1978) 531. Vorcmov, F. F., Prokhurov, V. M., Gromnitskaya, E. L., Bina, G. G.: Fix. Met. Metalloved. 45 (1978) 1263. Antonenko, A. M., Volnyanskii, M. D., Kudzin, A. Yu., Kuchukov, E. G.: Fix. Tverd. Tela 21 (1979) 2461. Antonenko, A. M., Volnyanskii, M. D., Kudzin, A. Yu., Akimov, S. V.: Fix. Tverd. Tela 21 (1979) 2831. Antonenko, A. M., Volnyanskii, M. D., Kudzin, A. Yu.: Kristallografiya 24 (1979) 1071. Berger, J., Castaing, J., Fischer, M.: J. Phys. (Paris) 40 Suppl. (1979) C8-183. Brendl, R.: Acta Cryst. A35 (1979) 535; J. Phys. (Paris) 40 Suppl. (1979) C8-189. Haussuhl, S., Michaelis, W.: Acta Cryst A35 (1979) 240. Hegedus, P., Kolnik, S.: Phys. Status Solidi (a) 54 (1979) 349. Yogurtcu, Y. K., Abey, A. E., Miller, A. J., Saunders, G. A.: High PressureScience and Technology. Rot. Jnt. AJRAPT Conf. 1979 (eds. Vodar, B., Marteau, Ph.), oxford: Pergamon Press 1980, p. 302. Zarochentsev, E. V., Grel, S. M., Varyukhm, V. N.: Phys. Status Solidi (a) 52(1979) 455. Zarochentsev, E. V., Grel, S. M., Varyukhm, V. N.: Phys. Status Solidi (a) 53 (1979) 75. Cantrell&., J. H.: Phys. Rev. B21(1980) 4191. Cantrell jr., J. J-J., Breazeale, M. A., Nakamura, A.: J. Acoust. Sot. Am. 67 (1980) 1477. Fumi, F. G., Ripamonti,%.: Acta Cryst. A36 (1980) 535; A37 (1981) 137. Fumi, F. G., Ripamonti, C.: Acta Cry& A36 (1980) 551; A37 (1981) 137. HaussuN, S., Bunthoff, D., Michaelis, W.: Solid State Commun. 34 (1980)765. Nichols, D. N., Rimai, D. S., Sladek, R. J.: Solid State Commun. 36 (1980)667. Yogmcu, Y. K., Miller, A. J., Saunders, G. A.: J. Phys. Cl3 (1980) 6585. Zarochentsev, E. V., Grel, S. M.: Phys. Status Solidi (a) 57 (1980) 137. Blackbum, B. D.: Diss. Abstr. Int. B42 (1981) 247. Haussuhl, S., Chmielewski, W.: Acta Cryst. A37 (1981) 361. Haussuhl, S.: Solid State Commun. 38 (1981) 329. Jiles, D. C.,Palmer, S. B.: J. Appl. Phys. 52 (1981) 1113. Lippmann, G., Kastner, P., Wanninger, W.: J. Phys. C14, (1981) 1569. Philip, J.: Dept. Phys., Univ. Tennessee, Knoxville, Tech. Rept. 19, March 1981. Philip, J., Breazeale, M. A.: J. Appl. Phys. 52 (1981) 3383. Saunders, G. A., Yogurtcu, Y. K.: Phys. L&t. A81 (1981) 463. Saunders, G. A., Yogurtcu, Y. K.: Phys. J.&t. A84 (1981) 327. Yogurtcu, Y. K., Millet, A. J., Saunders, G. A.: J. Phys. Chem. Solids 42 (1981) 49. Yost, W. T., Cantrell~., J. H., Breazeale, M. A.: J. Appl. Phys. 52 (1981) 126. Bmssington, M. P., Saunders, G. A.: Phys. Rev. L&t. 48 (1982) 159. Fischer, M.: J. Phys. Chem. Solids 43 (1982) 673. Husson, D., Kino, G. S.: J. Appl. Phys. 53 (1982) 7250. Nagasawa, A., Makita, T., Takagi, Y.: J. Phys. Sot Jpn. 51(1982) 3876. Nandanpawar, M., Rajapj-dan, S.: J. Acoust Sot. Am. 71(1982) 1469. Prasad, 0. H., Smyamayana, M.: Phys. Status Solidi (b) 112 (1982) 627. Philip, J., Breaxeale, M. A.: Proc. Ultrasonics Symp. 1982. New York IEEE 1982, p. 1022. Saunders, G. A.,Lambson, W. A., Hailing, T., Bullet&D. M., Bach, H., Methfessel, S.: J. Phys. Cl5 (1982) L551. Tasi, J.: Phys. Rev. BM (1982) 3079.

L8DdOlI-B6mst~itl New Series IIIl29a

Page 699: Second and Higher Order Elastic Constants

2.5 References for 2 681

8221 83B3

83B4 83Hl 83H3 83Pl 83P2 83Rl 8332 84B3 84B4

84Gl 84Hl 84H2 84H3

84H4 84Pl 84Sl 84Vl 84Yl 84Y2 84Y3 85Al 85Bl 85Dl 85Ml

85Tl 85Wl 85W2 85’112 86Al 86A2 86Cl

86C2 86Hl 86H2 86Sl

8632

8633 86Vl 8621 8623 862% 87Al 87Bl

Zarembo, L. K., Karpachev, S. N., Sukhovtsev, V. V.: Fiz. Tverd. Tela 24 (1982) 2514. Breazeale, M. A., Philip, J., Zarembowitch, A., Fischer, M., Gesland, Y.: J. Sound Vib. 88 (1983) 133. Blanchfield, P., Miller, A. J., Saunders, G. A.: J. Phys. Chem. Solids 44 (1983) 569. Hailing, T., Saunders, G. A., : Philos. Mag. A48 (1983) 571. Hegedus, P., Kolnik, S., Musil, C., Varga, I.: Acta Phys. Slovaca 33 (1983) 283. Philip, J., Breazeale, M. A.: J. Appl. Phys. 54 (1983) 752. Powell, B. E., Skove, M. J.: J. Appl. Phys. 54 (1983) 1636. Rajagopalan, S., Joharapurkar, D. N.: J. Appl. Phys. 54 (1983) 3166. Sekoyan, S. S., Subbotina, E. K.: Akust. Zh. 29 (1983) 96. Blackbum, B. D., Breazeale, M. A.: J. Acoust. Sot Am. 76 (1984) 1755. Breazeale, M. A., Latimer, P. J.: Proc. IUTAM-IUPAP Symp. Paris 1983. Amsterdam: North Holland 1984, p. 67. Gerlich, D.: Phys. Status Solidi (b) 123 (1984) K5 Hailing, T., Saunders, G. A., Bach, H.: Phys. Rev. B29 (1984) 1848. Hailing, T., Saunders, G. A., Pelzl, J., Wruk, N.: J. Phys. Cl7 (1984) 5121. Hailing, T., Saunders, G. A., Yogurtcu, Y. K., Bach, H., Methfessel, S.: J. Phys. Cl7 (1984) 4559. Hailing, T., Saunders, G. A., Omar, M. S., Pamplin, B. R.: J. Phys. Chem. Solids 45 (1984) 163. Powell, B. E., Skove, M. J.: J. Appl. Phys. 56 (1984) 1548. Saunders, G. A., Yogurtcu, Y. K.: Phys. Rev. B30 (1984) 5734. Verlinden, B., Suzuki, T., Delaey, L., Guenin, G.: Ser. Metall. 18 (1984)975. Yamashita, H., Tatsuzaki, I.: J. Phys. Sot. Jpn. 53 (1984) 2075. Yamashita, H., Tatsuzaki, I.: Solid State Commun. 49 (1984) 1077. Yamashita, H., Tatsuzaki, I.: J. Phys. Sot. Jpn. 53 (1984) 219. Abe, Y., Imai, K., : Proc. IEEE Ultrasonics Symp. 1985 p. 1109. Beige, H., Albers, J., Petersson, J.: Jpn. J. Appl. Phys. 24 (1985) Suppl. 24-2 715. Diestelhorst, M., Hofmann, R., Beige, H.: Jpn. J. Appl. Phys. 24 (1985) Suppl. 24-2 1019. Macdonald, J. E., Saunders, G. A., Yogurtcu, Y. K., Honle, W.: J. Phys. Chem. Solids 46 (1985) 951. Tamura, S., Maris, H. J.: Phys. Rev. B31(1985) 2595. Walker, N. J., Saunders, G. A., Hawkey, J. E.: Philos. Mag. B52 (1985) 1005. Wruk, N., Pelzl, J., Saunders, G. A., Hailing, T.: J. Phys. Chem. Solids 46 (1985) 1235. Yogurtcu, Y. K., Saunders, G. A., Riedi, P. C.: Philos. Mag. A52 (1985) 833. Abe, Y., Imai, K.: Jpn. J. Appl. Phys. 25 (1986) Suppl. 25-l 67. Al-Mummar, I. J., Saunders, G. A.: Phys. Rev. B34 (1986) 4304. Comins, J. D., Heremans, C., Salleh, M. D., Saunders, G. A., Home, W.: J. Mater. Sci. Lett. 5 (1986) 1195. Cho, Y., Yamanouchi, K.: Proc. IEEE Ultrasonics Symp. 1986. New YorkIEEE 1986, p. 1083. Haussuhl, S., Pahl, M.: Z. Kristallogr. 176 (1986) 147. Haussuhl, S., Homburg, H., Pahl, M.: Z. Kristallogr. 177 (1986) 133. Saunders, G. A., Yogurtcu, Y. K., Macdonald, J. E., Pawley, G. S.: Proc. Roy. Sot. (London) Ser. A 407 (1986) 325. Salleh, M. D., Macdonald, J. E., Saunders, G. A., du Plessis, P. de V.: J. Mater. Sci. 21(1986) 2577. Saunders, G. A., Yogurtcu, Y. K.: J. Phys. Chem. Solids 47 (1986) 421. Verlinden, B., Delaey, L.: J. Phys. F16 (1986) 1391. Zdebskii, A. P.: Fiz. Tverd. Tela 28 (1986) 3525. Zarochentsev, E. V., Orel, S. M., Kochergin, I. V.: Phys. Status Solidi (a) 94 (1986) 105. Zarochentsev, E. V., Grel, S. M., Yakovets, A. Yu.: Phys. Status Solidi (a) 94 (1986) 515. Averkiev, N. S., Ilisavskii, Yu. V., Stemin, V. M.: Fiz. Tverd. Tela 29 (1987) 1450. Belov, V. V., Serdobolskaya, 0. Yu.: Kristallografiya 32 (1987) 503.

Land&-Bijmsteh New Series llJl29a

Page 700: Second and Higher Order Elastic Constants

682 2.5 References for 2

87B2 87Cl 87Fl 87Ml 87Sl 87Wl 87Yl 88Cl 88c2 88Fl 88Gl 88Jl 88Pl 88Rl 88R2 88Sl 88Vl 89Bl 89B2 89B3 89Rl 89R2 89Wl 9OR1

Berke, A.: Solid State Commun. 61(1987) 313. Cho, Y.,Yamanouchi, K.: I. Appl. Phys. 61(1987) 875. Fumi, F. G.: Acta Cryst. A43 (1987) 587. Mayer, A. P.: I. Phys. C20 (1987) L201. Salk%, M. D., Saunders, G. A., Sullivan, R. A. L., Bach,‘H.: Philos. Mag. Lett. 55 (1987) 81. Walker, N. I., Saunders, G. A., Schal, N.: I. whys. Chem. Solids 48 (1987) 91. Yamashita, H., Tatswaki, I.: Solid State Commun. 62 (1987) 723. Cm, W., Barsch, G. R.: Phys. Rev. B38 (1988) 7947. Cao, W., Barsch, G. R., Jiang, W., Breazeale, M. A.: Phys. Rev. B38 (1988) 10244. Futterer, H., Pelzl, I., Bach, H., Saunders, G. A., Sidek, H. A, A.: I. Mater. Sci. 23 (1988) 121. Gerlich, D., Breazeale, M. A.: I. Appl. Phys. 63 (1988) 5712. Joharapurkar, D. N.: I. Appl. Phys. 64 (1988) 1726. Penin, G., Delannoy-Coutris, M.: I. Phys. Chem. Solids 49 (1988) 1397. Ramji Rae, R., Padmaja, A.: Phys. Status Solidi (b) 148 (1988) Kl. Ramji Rao, R., Padmaja, A.: I. Appl. Phys. 63 (1988) 5728; 64 (1988) 3320. Sachs, A.: Phys. Status Solidi (b) 148 (1988) 101. Verlinden, B., Delaey, L.: Metall. Trans. Al9 (1988) 207. Benbattouche, N., Saunders, G. A., Lambson, E. F., Horde, W.: I. Phys. D22 (1989) 670. Benbattouche, N., Saunders, G. A., Bach, H.: Private communication (1989). Bebnke, E., Haussuhl, S.: I. Mater. Sci. 24 (1989) 2209. Ramji Rao, R., I’admaja, A.: Phys. Status Solidi (b) 152 (1989) 455. Ramirez,R.,Prieto,C., Gonzalo, I. A.: Ferroelectrics 100 (1989) 181. Wang, Q., Saunders, G. A., Honle, W.: Private communication (1989). Ramji Rao, R., Padmaja A.: I. Appl. Phys. 67 (1990) 227.

L.dOll-BB~t~ill New Series IW29a