section 1 electrical system 1.0 general scope … 2: general and technical specification ct1603b012...

59
PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P1 SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope of works The design proposal and requirements contained herewith shall cover all electrical services and shall include supply, delivery, installation, commissioning and maintenance of all equipment necessary to provide an efficient, safe and satisfactory installation, taking into consideration of all Code of Practices and compliances to authorities for the electrical workers. Contractor shall be responsible to engage the service of licensed electrical worker (LEW) of the appropriate grade to help in the design, planning, endorsement and execution of the works and liaise with building LEW, including fees for shut down, testing, commissioning and turn on arrangement. All materials, equipment and the complete installation work shall comply with the requirements of the current editions of the following Standards, Codes and Guides including the following: (i) SS CP 5: Code of Practice for Electrical Installation (ii) SS 551: Code of Practice for Earthing (iii) SS CP 17: Code of Practice for the Maintenance of Electrical Switchgear for voltage up to and including 22KV (iv) SS 535: Code of Practice for Installation, Operation, Maintenance, Performance and Construction requirements of Mains Failure Standby Generating Systems (v) SS CP 88: Code of Practice for Temporary Electrical Installations for Construction and Building sites Section A - Distribution Boards 1.0 General 1.1 Three phase circuit breaker distribution boards shall be of the dead-front safety type equipped with thermal magnetic miniature circuit breakers of the frame sizes, types and ampere trip ratings specified on the accompanied distribution board drawings. 1.2 All distribution boards shall be rated at 415 Volt A.C. 50 Hz for three phase 4 wire supply and shall comply with the latest British Standard BS 5486 part 12 for distribution boards.

Upload: phungphuc

Post on 12-Mar-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P1

SECTION 1

ELECTRICAL SYSTEM

1.0 General Scope of works

The design proposal and requirements contained herewith shall cover all electrical

services and shall include supply, delivery, installation, commissioning and

maintenance of all equipment necessary to provide an efficient, safe and satisfactory

installation, taking into consideration of all Code of Practices and compliances to

authorities for the electrical workers.

Contractor shall be responsible to engage the service of licensed electrical worker

(LEW) of the appropriate grade to help in the design, planning, endorsement and

execution of the works and liaise with building LEW, including fees for shut down,

testing, commissioning and turn on arrangement.

All materials, equipment and the complete installation work shall comply with the

requirements of the current editions of the following Standards, Codes and Guides

including the following:

(i) SS CP 5: Code of Practice for Electrical Installation

(ii) SS 551: Code of Practice for Earthing

(iii) SS CP 17: Code of Practice for the Maintenance of Electrical

Switchgear for voltage up to and including 22KV

(iv) SS 535: Code of Practice for Installation, Operation, Maintenance,

Performance and Construction requirements of Mains Failure Standby

Generating Systems

(v) SS CP 88: Code of Practice for Temporary Electrical Installations for

Construction and Building sites

Section A - Distribution Boards

1.0 General

1.1 Three phase circuit breaker distribution boards shall be of the dead-front

safety type equipped with thermal magnetic miniature circuit breakers of the

frame sizes, types and ampere trip ratings specified on the accompanied

distribution board drawings.

1.2 All distribution boards shall be rated at 415 Volt A.C. 50 Hz for three phase 4

wire supply and shall comply with the latest British Standard BS 5486 part 12

for distribution boards.

Page 2: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P2

1.3 Distribution boards shall have general purpose enclosures and shall be

surface mounted except where otherwise indicated (FM) for flush mounting.

1.4 All miniature circuit breakers (MCBs), single phase and three phase circuit

breaker distribution boards shall be from the same manufacturer.

1.5 All circuit breaker distribution board shall be of the approved type.

1.6 All doors of circuit breakers distribution boards shall be equipped with master-

keyed safety cylinder locks to prevent unauthorized personnel to switch on or

off the main and branch breakers. The no. of locks depends on the length of

the door.

1.7 The minimum short-circuit capacities of R.M.S. symmetrical amperes of circuit

breaker distribution boards and incoming circuit breakers, if applicable, shall

be of the same kA rating of the specified short-circuit capacities of the

incoming circuit breaker.

1.8 The interior assembly for the connection and mounting of the MCB must be of

good quality, type tested and approved type.

2.0 Construction

2.1 The distribution boards shall conform to the following construction to form a

single or group of boards.

2.1.1 Business Assembly and Temperature Rise

Distribution board bus structure shall have the same current rating (ampere

frame) of the incoming breakers as shown on the accompanied distribution

boards drawings. In any case, a current density of max. 155 Amperes per sq.

cm (1,000 amperes per sq. in.) of cross-sectional area shall be maintained.

However, the ratings shall also be established by heat riser tests with

maximum hot spot temperature on any connector or busbar not exceeding

50C rise above ambient temperature. All the busbar shall be of tinned hard

drawn copper rated at 200 A. Pre-drilled copper neutral bar of full current

rating and pre-drilled copper earth bar of size equal to incoming feeder earth

cable shall be provided and neatly arranged. Neutral and earth bars shall be

of solderless mechanical type connectors. The neutral bars shall be mounted

to the distribution boards by non-hygroscopic insulators. The insulation of

resistance of neutral bars to the metal enclosure shall be infinity and for earth

bars to the metal enclosure shall be zero. The number of neutral bar terminals

to be provided shall be the same as the total number of branch circuit

breakers ways plus one for incoming feeder neutral cable. The number of

earth bar terminals to be provided shall be the same as the total number of

Page 3: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P3

branch circuit breakers ways plus one for incoming feeder earth cable and

plus two for the separate earthing points for the equipment/accessories.

Phase bussing shall be full length without reduction. Busbar taps for

distribution boards with single pole branches shall be arranged for sequence

phase connection of the branch circuit devices that allows complete flexibility

of circuit arrangement (1, 2 or 3 – pole circuit breakers). Phase busbars shall

be fully protected with an integral, high impact, thermoplastic shroud.

2.1.2 Miniature Circuit Breakers (MCB)

Miniature Circuit breakers shall be equipped with individually insulate, braced

and protected connectors. The font face of all miniature circuit breakers shall

be flush with each other. Miniature circuit breakers shall refer to technical

specification miniature circuit breakers (MCBs) for distribution board. Space

provisions for additional circuit breakers shall be so designed that additional

breakers shall be plugged-on to the bus-tap by pressure without using

additional connectors. Cable or copper bar links, modification or alteration to

the distribution board.

2.1.3 Each distribution board

As a complete unit, shall have a rating equal to or greater than the integrated

equipment rating shown on the drawings. Such rating shall be established by

test with the circuit breakers mounted on the distribution boards. The short-

circuit tests on the circuit breaker and on the distribution structure shall be

made simultaneously by connecting the fault to each distribution board circuit

breaker with the distribution board connected to its rated voltage source. The

method of testing shall be according to proposed British Standard (B.S)

pertaining to listing of miniature circuit breakers for high-short circuit capacity

ratings. The source shall be capable of supplying the specified distribution

board short-circuit current or greater. Test data showing the completion of

such test upon the entire range of distribution boards to be furnished shall be

submitted to the Superintending Officer, if requested by him/her, with or

before the submission of drawing for approval. Testing of distribution board

circuit breakers for short-circuit breakers for short-circuit rating only with the

circuit breaker individually mounted and testing of the breaker individually

mounted and testing of the bus structure by applying a fixed fault to the bus

structure alone is not acceptable.

2.1.4 Cabinet

Distribution board assembly shall be enclosed in a Zinc plated sheet steel

cabinet unless otherwise stated. The rigidity and gauge of steel shall be as

specified in British Standard. Doors of all distribution boards shall be lockable

by means of a barrel-type lock with detachable master-keys. Hinged sheet

steel door over 1.2m long shall be equipped with two (2) safety cylinder locks.

Top and bottom wall shall be removable for the ease of cutting rectangular

Page 4: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P4

holes for the connection of metal trunkings. The steel enclosure shall be anti-

rust treated and finished with an electrostatically deposited light grey powder

coating. The hinged door shall conceal the retaining screws of the front cover

to prevent unauthorized personnel removing the front cover. Flush mounting

distribution board shall have removable, adjustable depth interiors to allow for

varying thickness of wall finishes. All the ventilation louvre shall complete with

very fine wire mesh net welded permanently on the inside of the panel.

2.1.5 Safety Barriers

The distribution board interior assembly shall be dead front with distribution

board front removed (i.e. cover with approved thickness of insulation board).

Also, it shall be possible to change branch circuit load connection without

personal exposure to any live side bussing on live terminals. Spaces for future

installation of circuit breakers shall be covered by clip-on type of non-metallic

plates. Main lugs or main circuit breaker shall have barriers on live sides. The

barrier in front of the main lugs shall be hinged to a fixed part of the bus

structure opposite the mains shall have barriers. Ampere clearance shall be

provided between live parts and the sheet-steel protection to allow cables to

be brought to their respective terminals in a neat and workmanlike manner.

2.2 Three phase and neutral distribution boards shall be such a way that three (3)

single-pole breakers shall be replaced by one (1) three-pole breaker of the

same frame size to give 3-phase 415 A.C. Supply or vice versa without

altering the bus or adding jumper cables or copper links. The minimum short-

circuit capacity mentioned in the Technical Specifications or indicated on the

distribution board drawing shall be maintained.

2.3 All distribution board shall also be designed for bottom incoming and top

outing circuitry unless otherwise stated.

3.0 Labelling

3.1 Thermal marking on approved marker label or foil tape system for large

permanent individual number shall be affixed permanently to each branch

circuit breaker and incoming main circuit breaker in an uniform position.

3.2 Each individual cable shall be numbered with thermal marking on PVC or heat

shrinkable tube system according to the As Built distribution board drawing

and the Contractor shall in addition hang a good quality plastic bag beside the

distribution board with a copy of floor plan or a portion of the floor plan which

is served by the associated distribution board, and a typewritten table showing

the circuit numbers and room number/designations in approved arrangement

according to the As Built circuit breakers layout of each distribution board.

Page 5: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P5

3.3 All nature and earth continuity conductors shall be installed in sequence and

numbered with thermal making on PVC or heat shrinkable tubes system to

label according to the circuit numbers shall be as follows.

1L1,1L2, 1L3,2L1, 2L2, 2L3,3L1, L2, 3L3, 4L1,4L2, 4L3, 5L1, 5L2,5L3,6L1,

6L2,6L3 etc.

3.4 All distribution boards shall be clearly, permanently labelled according to the

As built distribution boards (BLACK in white lettering for normal supply, RED

in white lettering for emergency supply).

Section B - Miniature Circuit Breakers (MCB)

1.0 General

1.1 Miniature circuit breakers shall comply with the latest IEC 60898 Standard

with latest amendments test duty sequence 240V, 50Hz for single pole and

230/415V, 50Hz for multi-poles.

1.2 Unless otherwise stated, miniature circuit breakers and distribution boards

shall have minimum short-circuit capacities of R.M.S symmetrical amperes of

6A for lighting circuit distribution boards and 10KA for power or mixture of

lighting power circuit distribution boards at 240 or 230/415,50Hz.

1.3 All miniature circuit breakers (MCB) shall be calibrated at ambient

temperature of 40῾C and carried their rated current continuously when

operated in free air this temperature.

1.4 Miniature circuit breakers and the distribution board enclosure shall be from

the swim manufacturer.

1.5 Irrespective to the mounting positions, the miniature circuit breakers shall be

operated according to the factory calibrated characteristic.

1.6 The contacts shall be maintained minimum 5 mm apart when it is at OFF

position.

1.7 All miniature circuit breakers shall be of position plug-on no error connection

type.

1.8 Miniature circuit breaker must have positive contact position indictor.

2.0 Operation

2.1 Miniature circuit breakers shall be operated by a toggle-type handle and shall

have a quick-made, positive quick-break over centre switching mechanism

that is mechanically trip free from the handle so that the contacts cannot be of

positive quick-make and quick-break on manual and automatic operation.

Page 6: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P6

2.2 Contact position indicator (Coloured) linking physically to the contacts for the

positive indication of isolation-be provided.

2.3 Two and three pole circuit breakers shall be commonly tripped with individual

spring pressure on each contact.

2.4 The magnetic operation (instantaneous Trip) of these MCB shall be tripped

between 3 to 5 millisecond.

3.0 Construction

3.1 The Magnetic operation (Instantaneous Trip) of these MCB shall be tripped 3

to 5 Millisecond.

3.2 Each pole of the circuit breakers shall have a factory calibrated thermal bi-

metal overcurrent element with inverse time delay characteristic and a factory

calibrated thermal bi-metal overcurrent element with inverse time delay

characteristic and a factory calibrated instantaneous magnetic tripping device

for short circuit condition. Ambient temperature compensation shall be

accomplished by a secondary bi-metal that shall allow the circuit breaker to

carry rated current between 25῾C to 40῾C with tripping characteristics that are

the same throughout this temperature range, and that shall not cause

nuisance tripping.

3.3 Circuit breakers shall be completely enclosed in a high dielectric strength

casing. The properties of the dielectric strength casing shall not dielectric

strength casing. The properties of the dielectric strength casing shall not

deteriorate with time.

3.4 Contacts of circuit breaker shall be sliver-tungsten or sliver-graphite for

ensuring a reliable contact of low resistance and highly resistant to welding.

3.5 The high pressure plug-on busbar connector shall assure solid positive

contacts without screw to tighten to tighten and no chance of error.

3.6 Load terminals shall be constructed to assure electrical efficiency and

reliability, with minimized possibility of localized hating, and for straight in

wiring.

3.7 Arcing shall be extinguished rapidly and effectively by arc chute barrier, in

normal switching as well as protective tripping, to minimized deterioration of

contacts and adjacent insulating materials.

3.8 Trip indication shall be by means of the handle position lying between ON and

Off. To reset the tripped mechanism, the handle shall be moved to extreme

OFF position.

4.4 Residual Current Circuit Breakers (RCCB)

Page 7: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P7

4.1 Residual current breakers (RCCB) shall be current operated with milliampere

tripping current and continuous load current as shown on the accompanied

drawing.

4.2 All residual current circuit breakers (RCCB) hall bear with local authority trade

mark.

4.3 For single phase supply, the residual current breaker (RCCB) shall be rated

240 Volt 50Hz A.C 2 poles. For three phase supply, the residual current circuit

breaker (RCCB) shall be rated 415 Volt 50 Hz A.C poles. All RCCB shall be

surge proof design to prevent nuisance tripping due to transient over-voltage.

A local trip indication in the form of window on the front face of the RCCB

shall be provided to differentiate between OFF and TRIPPED position. A test

button shall be incorporated to enable periodic check on the tripping

mechanism of the RCCB.

4.4 All incoming and outgoing cables, and copper links connected to residual

current circuit breakers (RCCB) shall be insulted.

Section C - LV Cables

1.0 General

1.1. This section covers the general requirements for LV cables to be carried out

under this contract.

1.2 The Contractor shall design, supply, deliver, install, test and commission all

cables and accessories for the complete, safe and satisfactory of the plant.

2.0 Codes and Standards

2.1 All cables shall be manufactured to the latest British, IEC and Singapore

Standards, Codes of Practices and statuary Regulations including all

amendments.

3.0 PVC Insulated Cables

3.1 The copper conductor shall be stranded and plain annealed and the insulation

of flame retardant PVC to BS 6004:1984: or SS.50:1981, Cables for single

phase and three circuits shall be 450/750V grade.

4.0 PVC Armoured Cables

4.1 The cables shall be manufactured to BS 6364 and shall be 600/1000V grade.

Page 8: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P8

4.2 Conductors shall be plain annealed copper circular stranded or shape

stranded. Each core shall be PVC insulate, cores laid-up and PVC tape

bedded, and steel or aluminium wire armoured. The cables shall be sheathed

with PVC sheath.

5.0 XLPE/PVC Cables

5.1 XLPE/PVC insulated copper circular stranded or shape stranded. Each core

shall be PVC insulated, cores laid-up and PVC tape bedded. The insulation

shall be XLPE extruding over the conductor to the wall thickness specified in

IEC 502 para 4.2.6. For multi-core are cables, the core are suitably laid-up

with fillers and tape bedded over the entire assembly, the over sheath of cable

shall consist of an extruded layer of black PVC.

5.2 The multi-core cables shall be identified by Black, Brown, Black, and Grey.

5.3 For armoured XLPE/PVC cables, round wire aluminium armour shall be used

and applied on an extruded PVC inner covering.

6.0 Fire Resistance Cables

6.1 Conductor shall be of high conductivity copper wire stranded. Each core is

insulated with flame retardant low smoke halogen free compound. The cores

are suitably laid-up, filled with filler and tape bedded. The cable shall be

manufactured comply with SS 299: Pt1:1985 and related standards.

(i) IEC 331 - Fire resisting characteristics of electric cables

(ii) BS 6387 - Performance requirements for cables required to

maintain circuit integrity under fire conditions

(iii) BS 6724 - Smoke emission test

6.2 The minimum size of each conductor shall be 2.5mm2.

6.3 Fire resistant cable shall be strapped or tied to the cable support system using

stainless steel cable ties or stainless steel strapping which are tested and

approved for use in fire resistant wiring system.

6.4 All relevant test certificates of the cables shall be submitted to the

Architect/S.O for approval prior to ordering.

7.0 Cable Marking

7.1 The standard marking of all cables shall be marked on the external surface of

outlet sheath with voltage designation, manufacture’s name, year of

manufacture with a suitable method.

Page 9: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P9

8.0 Fire Barrier

8.1 Where trunking, ducts and trays pass through fire rated floors and walls, they

must be fitted with internal fire barrier to prevent the spread of fire, and holes

made in the structure must be made good. The fire barrier material must have

the same fire rating as the walls and floors.

9.0 Cable installation

9.1 The cables shall be installed in accordance with the Singapore CP 5:1998.

The cable size shall be selected to ensure that it has adequate current

carrying capacity and that the voltage drop at the apparatus supply does not

exceed the approved limit of 4% from main source.

9.2 The contractor shall provide all the necessary sleeves, trays, conduits,

trunking, supports, glands, shrouds, end boxes, clamps, specialist tools for

cable laying and termination etc, necessary to install and make off cables in

accordance with good engineering practice and as hereunder specified and

shown in the Drawing.

9.3 All cables shall be provided with identification labels at each end at all

positions where cables change direction. In instance where cables are

multiple runs, labels shall be provided at 10m intervals. Labels shall be

manufactured from metal disc engraved to show the size of cable and the

equipment being fed. Cables for 3 phase, 4-wire system shall be colour coded

–red, yellow, blue for phase, black for neutral, green for earth.

9.4 Where multicore cables are for identification, protection and control

applications, each core shall have an identification number. In addition the

cable tails shall be identification number. In addition the cable tails shall be

identified with engraved ferrules. All wires shall be terminal with an approved

type of lamp connector. Pinching screw type connectors, shall not be

acceptable.

9.5 Cables running horizontal at high level shall be in general be supported by hot

dipped galvanised steel perforated trays of minimum 2mm thick and with

returned edges. It shall be supported from the rib of structural slab beams etc

by galvanised steel rods and not less than 15mm diameter, with underslung

steel angle supports, sample of the supporting brackets shall be submitted for

approval.

Page 10: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P10

9.6 The tray shall be supported at such intervals to ensure that tray sag shall not

be more than 1/500 when loaded with cables, otherwise corrective measures

shall be carried out to the Architect/S.O. satisfaction.

9.7 Where cables are clipped to walls or ceilings, they shall be secured by means

of space saddles. The spacer saddles shall e of the hot dipped galvanised

steel deep spacer type fixed to the surface by means of rawl lugs or other

equal manner and fixed to its base by two cadmium plated fixed to tis base by

two cadmium plated fixing screw.

9.8 The contractor shall be responsible for the offloading and handling of the

cables on site and shall ensure that cables are delivered to site on drums and

properly protected against mechanical damage.

9.9 No straight through joints shall be allowed unless approved by the

Architect/S.O.

9.10 No PVC conduit shall be used for concealed wiring.

9.11 All fire resistant cables shall be installed on a separate cable tray without

sharing with other submain /control cables. For emergency final circuit, the FR

cables shall be installed in G.S conduits in concealed slab or wall unless

approved by the Architect/S.O.

9.12 No PVC conduit shall be used for concealed wiring.

9.13 All fire resistant cables shall be installed on a separate cable tray without

sharing with other submain/control cables. For emergency final circuit, the FR

cables shall be installed in G.S conduits in concealed slab or wall unless

approved by the Architect/S.O.

9.14 Each circuit wiring shall have its own protective conductor with adequate

sized in accordance with CP: 1998.

9.15 Cable cores entry into the switchboards shall be made through approved

cable glands adequately sized for all cables.

9.16 Cable cores shall be terminated by compression method only. Cables should

not be bent to radius less than eight times their overall diameter.

9.17 Cables installed in vertical ducts or rises shall be cleated with proper cable

clamps at distances not exceeding one meter.

9.18 In areas where cables pass through floors, walls or partitions, sleeves of an

approved type must be supplied and set in position by the Contractor. After

the installation, the sleeves must be thorough grouted in or otherwise securely

fixed in positon and the space between the cables and the sleeves completely

filled with approved fire-resistance material and which has no detrimental

effect on the cable sheath.

10.0 Cable Tray Installation

Page 11: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P11

10.1 All cable trays shall be perforated manufactured from 2.00mm thick mild steel

and shall be hot-dip galvanized or paint finished after perforation.

10.2 Unless otherwise specified, nominal widths of cable tray and accessories,

thickness of steel, flanges on trays ends or tees, shall be as follows.

Width of Thickness of Flanges on Tray Tray (mm) Steel (mm) Bends or tees (mm) 50 0.9 13 75 0.9 13 100 0.9 13 150 0.9 13 225 0.9 13 300 1.2 20 375 1.6 20 450 1.6 20 600 1.6 20 800 2.0 20 1000 2.0 50

10.3 All bends and tees shall be 90o bends or tee-offs with minimum 50mm inside

bend radius. Bends in cable trays shall be such that the bend radius of the largest cable to be clipped to the tray does not exceed the bend radius shall limit as defined in the Singapore Standard CP5:1998.

10.4 The cable tray shall be fixed in such a manner that it is rigid throughout its

length with a minimum of 13mm clearance between the tray and the structure. Where cables are enquire to pass through the tray, the holes so made shall be protected by means of a lead or grommet which shall be fitted completely round the circumference of the hole.

10.5 When two straight lengths of cable tray are to be joined together, an external

coupler shall be used to prevent any sag or bending at that point. The coupler shall be joined to each length of tray by means of not less than two round-headed screws and nuts. The round –headed screws shall be fixed from the side of the tray on which the cable are to be secured. The screws and nuts shall be non-corrodible, preferably galvanized.

10.6 When a cable tray must be cut, the edge shall be smoothed with a file and

cold gal vanishing paint shall be applied to the exposed metal. Such painting shall be done as the work proceeds.

10.7 Saddles for securing cables to the tray shall be made from flame—retardant

PVC covered metal strip, and shall be secured to the tray by means of non-corrodible cheese-headed screws and nuts. The shanks of the screws shall not protrude beyond the nits by more than three threads. Where saddles exceed 150mm in length, intermediate fixings shall be provided such that the maximum spacing between screws does not exceed 150mm.

Page 12: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P12

10.8 All accessories associated with the cable tray systems, including supporting rods, channels, etc., shall be quick-fixing type to the Architect/S.O approval.

11.0 Trunking Installation 11.1 Trunking shall be manufactured in mild-steel with additional paint finish

applied at manufacturer’s works. Trunking shall have a removable cover throughout its length with certre-screw latch fixing or quick –fixing device to the Architect/S.O approval, size up to 100mmx100mm shall be 1.6mm thick –fixing and 150mm 75mm to 150mmx 150mm shall be 1.8mm thick. The trunking shall normally be supplies in 2400mm lengths, each length being supplied with a sleeve-type coupling and a copper earth bonding link, Bonding Link shall be fixed on external surfaces unless otherwise specified.

11.2 All bends, tee pieces, top ends, outlets, intersections and adaptors shall be of

the same manufacture as the trunking. All inside edges of trunking shall be smooth and provision shall be made to prevent abrasions at bends.

11.3 Trunking shall be adequately support throughout its length. Trunking support

and channel shall be quick-fixing type and shall be such as to space the trunking a minimum of 6mm form any part of the wall or bulkhead. The minimum spacing between fixings shall be as follows.

Trunking Size Maximum Distance Up to 50mm x 50mm 900mm Up to 75mm x 75mm 1200mm Up to 150mm x 150mm 1500mm Up to 225mm x 150mm and greater 1800mm

11.4 A minimum of two fixing shall be provided between joints in the trunking

except where the distance between joints is less than the maximum spacing. 11.5 Where trunking is suspended, the suspension shall be rigid. At the

suspension point the trunking shall be reinforced by a plate or washer of minimum thickness 3mm or 10 s.w.g whose cross-sectional area shall not be less than half that of the trunking (cross-section area). Unless additional stiffening which has been approved by the Architect / S.O is provided, the spacing between suspension points shall not be greater than those shown the table above.

11.6 Every section and joint of metal trunking carrying wires shall be bonded with

3mm x 25mm coper tape to ensure overall continuity and to achieve an acceptable earth loop impedance level in compliance with the latest edition of the Singapore standard CP5:1998. Removal of any lid no matter how it is fitted shall not affect the earth continuity of the trunking.

11.7 Where trunking is cut or drilled, the edges of the trunking which are cut shall

be smoothed to prevent abrasion of the cable and shall be painted with anti-

Page 13: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P13

corrosion paint, to the same colour as the adjacent surface, such painting to be carried out as the work proceeds. In no circumstances will rough screw edges and nuts be allowed in the interior of the trunking where the cables are to be routed.

11.8 The space factor for cables installed in trunking shall not exceed 45%. 11.9 All Lengths of vertical run trunking in excess of 3000mm, shall contain cable

supports made of insulating, non-hygroscope, non-combustible material. The spacing between such supports shall not exceed 1800mm. An additional support shall be provided at the top of all vertical runs exceeding 3000mm, to support the weight of the cable and distribute the cables within the prevent undue compression of the installation.

11.10 Special trunking accessories shall be provided for cable trunking installation at

expansion/movement joints. 12.0 Conduit Installation 12.1 General a) All conduits and fittings used in the installation, except flexible conduit, shall

comply with BS 46568: Part 1 and 2 class 4 and subsequent amendments for surface wiring and Class 3 for concealed wiring.

b) Flexible conduit and fittings shall comply with BS 731 part I and in addition shall

be of the metallic watertight pattern. PVC over sheathed, and with a separate earth wire closed within the conduit.

c) The minimum size of conduit in the installation shall be 20mm dimeter. d) Separate conduits shall be provided for circuits at extra low voltage. e) Inspection – type conduit bends. Elbows and tees shall not be permitted. f) Standard conduit and draw in boxes and covers shall comply with the appropriate

BS and in an addition shall be galvanized malleable cast-iron or steel. Draw in conduit and cables entering the boxes shall be installed accessible positions.

g) All boxes and conduit accessories shall be fully wealth proof when used in outdoor

locations. Weatherproof boxes and conduit accessories shall also be used locations other than outdoors when so specified or as directed by the Architect /S.O Weatherproof boxes and conduit accessories shall also be used in locations other than outdoors when so specified or as directed by the Architect/ S.O

Page 14: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P14

Weatherproof is defined as degree or ingress protection to IP54 in accordance with IEC 529.

h) All draw boxes and junction boxes shall be of ample size to permit the cables

being drawn in and out. They shall be made of galvanised malleable iron with jointing surfaces machined to ensure a dust-tight joint. All circuit boxes shall be provided with long spouts internally threaded incorporating a shoulder for the proper butting of the conduit and a tapped 5mm hole in the base to accept a solid brass earth terminal.

i) The ends of all conduit shall be re made to remove all burrs or sharp edges after the screw threads have been cut. All dirt, paint or oil on the screwed threads have been out. All dirt, paint or oil on the screwed thread of the conduit, sockets and accessories shall be removed before installation.

j) The ends of the conduit shall but solidly in all couplings. Where they terminate in

fuse-switches, fuse boards, adaptor boxes, non-spouted switch boxes, etc.., they shall be connected thereto by means of smooth bore make brass bushes, compression washers and sockets. All exposed threads and all bends shall be painted with an aluminium spirt paint after installation. Exposed metal shall be similarity treated.

k) Particular care shall be taken to ensure that no water is allowed to enter the

conduit at any time and all conduits shall be arranged with arranged with adequate ventilation and drainage. Inaccessible junction boxes will not be allowed.

l) Particular care shall be taken to ensure that no water is allowed to enter the

conduit at any time and all conduits shall be arranged with adequate ventilation and drainage. Inaccessible junction boxes will not be allowed.

m) The ends of conduits or set in formwork prior to concreting shall be temporally

seated off with a coupler and a solid brass plug. n) All bends are to be made on site to suite conditions. An adequate number of

suitably sized hot-dipped galvanized cast iron draw-in boxes shall be provided in conduit runs to enable cables to be drawn in easily and without damage. Draw-in boxes shall be fitted after every two bends, or after a maximum straight run of 15m. Tees, elbows and sleeves with used, shall be of an approved type.

o) All conduits shall be swabbed through, before wiring is commenced and cables

shall not be drawn into any section of the system until all conduits and draw boxes for that particular section are fixe in position.

p) Wiring shall be carried out on the looping-in system and no joints other than at

looping-in points will be allowed. q) No cables installed in conduit shall be laced. 13.0 Surface Conduit

Page 15: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P15

13.1 All conduit boxes and accessories or surface conduits shall be of a type

manufactured specifically for that purpose. 13.2 Where surface conduit is specified, it shall be fixed by means of distance

saddles and shall terminate in deep pattern conduit boxes, Surface conduits shall not be bent or set to enter accessories, and where the turn through walls, back-outlet boxes shall be provided. Conduit in ceiling

14.0 Concealed/Cast-in Conduits 14.1 Conduit installations in some of the main structural members e.g. column,

slab, r.c. wall etc. in conspicuous public areas shall be of concealed/cast-in type as specified and/or shown on the Drawings.

14.2 All conduit boxes and accessories for concealed/cast-in conduit system shall

be of the type specifically manufactured for that purposed. 15.0 Concealed conduits 15.1 Concealed conduits shall be provided. 15.2 All conduit installations shall be carried out by the Contractor, spacing

between concealed conduits entering the draw-in box hall not be less than 25mm so as to allow concealed aggregate to pass and set between conduits.

All plastering-up works consequent to the conduit installation shall be carried out.

16.0 Cast-in Conduit 16.1 Cast-in conduit, if any, shall be supplied and installed by the Contactor, as

shown on the drawings. 16.2 A 1.6mm diameter, galvanized draw-wire shall be left behind in each conduit

to facilities subsequent pulling of cables through the conduit. 16.3 The Conductor shall pick-up the conduit installation form the cast-in outlet

boxes, as shown on the drawing. Part D - Surge Protection Devices 1.0 General

1.1 This section of the specification covers the supply, installation and the testing for the surge protective devices and is to read in conjunction with the drawing.

Page 16: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P16

1.2 The System shall be installed according to the following standards. Where the publications are referenced throughout this specification and shall apply when relevant.

1.2.1 UL 1449-1987 Transient Voltage Surge Suppressors.

1.2.2 ANS/IEEE C62.41-1991 Recommended Practice on Surge Voltage AC Power Circuits.

1.2.3 ANS/IEEE C6233-1982 Standard Test Specifications for Visitor Surge

Protective Devices.

1.2.4 ANS/IEEE C62.45-1987 IEE Guide on Surge testing for Equipment connected to Low-Voltage AC Power Circuits.

1.2.5 IEC 80 1-5 Surge Immunity Requirements

1.2.6 Surge Protection Devices installed should generally comply with either one or more standards listed:

a) ANS/IEEE C62.41-1991 Recommended Practice on Surge Voltage in Low Voltage A.C Power Circuit

b) VED 0675, Part 6 and Part6/A1 over Voltage arrester for the use in a.c networks with nominal voltages between 100v and 1000v

c) BS6651:1992 Protection of structures against lighting Protection d) CP33:1996 Lightning Protection

1.3 All components shall be from the same manufacturer to ensure system

performance is fully coordinated.

1.4 Surge Protective devices (SPD’S) shall be installed at each main switchboards and at distribution switchboard supplying critical equipment (computers, PLC’s etc.) and original devices as indicated in the drawings.

1.5 SPD must be denote its application based on location and/or category, its

MCOV and nominal discharge current on the body of the SPD.

1.6 The coordinated SPD for the low tension main switchboards and distribution boards shall limit the transient voltage to below equipment levels, when tested in accordance with VDE0675 or other international standards.

1.7 Let through voltage for different categories shall comply as closely as possible

with those specified in the table below tested at respective surge current.

BS 6651, CP33 Class C Class B Class A

VDE 0675 Class B Class C Class D

Surge(8/20) Residual Voltage Residual Voltage Residual Voltage

L-E L-E L-E

Page 17: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P17

3kA 600V 600 V 600V

5kA 625V 600V 600V

10kA 668V 600V 580V

15kA 670V 600V 570V

20kA 710V 600V 590V

80KA 840V 750V 680V

100KA 1520v 770v 680v

1.8 Tested to comply with BS6651:1992Category B-High (6V 1.2/50ps open

circuit voltage, 3kA 8/20ps short circuit current)

1.9 Let-through voltage<600V

2.0 Main Switchboard Surge Protective Devices 2.1 The Minimum acceptable requirements for a main switchboard SPD are as

follows

2.2 The maximum continuous operating voltage (MCOV) of the SPD must be 25% above nominal system voltage for example, for use on a 240V AC (phase-neutral) system the SPD’s rated MCOV must exceed 300V AC.

2.3 The Maximum single withstand surge current, phase of the SPD is to be a

minimum of 140kA (8us rise time and 20us delay time to half peak amplitude), including all fusing mechanism under this high current condition is not permissible.

2.4 The complete SPD must be UL 1449 or equivalent, for 230/400V AC (phase-

neutral) systems, the rated suppression voltage for the complete SPD is to be 800V or less.

2.5 The SPD must be modular in design, Surge protection circuitry, fusing

mechanisms and diagnostics are to be housed in a replaceable module, discrete modules are to be housed in a replaceable module. Discrete modules are to be employed for each phase. Each surge protection component within a module is to be individually protected by thermal and short circuit fusing mechanisms that disconnect should a fault occur.

2.6 The SPD must be Include full diagnostics, electrical (LEDs) and mechanical (a

flag visible through window status indications must be presented at the module level. Remote status indication is to be available through be (or voltage free) contacts which can be connected to a PLC/Building Automatic System.

2.7 All surge carrying connections within the SPD are to be heavy duty bolted

connections. Wire less than 8/AWG (10mm2) or friction contacts for replaceable modules are not to be used.

Page 18: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P18

3.0 Distribution Switchboard Surge Protective Devices 3.1 The SPD’s shall be listed to UL 1449 or equivalent, having a maximum

continuous operating voltage greater than 15% or25% above nominal system voltage, have a maximum single withstand surge current of 25kA, or higher, per phase and have a UL suppression voltage of 800V or less for 240V AC system. Status indication shall provide on the nit to shoe operational readiness.

3.2 Performance of these surge protective devices are to be coordinated with the

main switchboard. 4.0 Surge Protective Devices For data-Communication Lines 4.1 SPD’s for data lines shall have aa maximum surge capacity of 10kA per line, less

than 3dB signal attenuation at 5 times the maximum data bit (or baud) rate, have a let-through voltage appropriate for the susceptibility of the interface and a maximum continuous operating voltage 25% above the peak signal voltage 25% above the peak signal voltage.

5.0 Protection Mode for SPD 5.1 The SPD shall be installed to protect the line-ground (L.G), line –neural (L-N)

and Neural-ground (N.G). 5.2 Warning indication shall be provided for high neutral to ground voltage to be

able for identification any potential wiring fault condition which exist within the facility.

6.0 Test 6.1 All test result for relevant testing authorities shall be submitted for approva. 6.2 All test shall be carried out according the approved standard and to the

satisfaction of the superintending officer. 7.0 level 7.1 All labels shall be clearly shown at the side of the devices.

Part E - Earthing System 1.0 General

Page 19: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P19

1.1 A complete Earthing System comprises copper tapes, earth electrodes and warty

connections necessary for effective and permanently bonding to earth the non-current carrying metal work of all ancillary apparatus are described below.

1.2 Earthing tapes shall be of copper and shall be run u approved positions and fixed

in approved manner using saddles of appropriate size for securing tapes at interval not exceeding one meter. Tapes shall be supplied in continuous unbroken lengths, as far as practicable, to avoid unnecessary jointing.

1.3 Mating surfaces of all tapes at joints, etc., shall be tinned, riveted and soldered.

Joints in exposed sections that be protected against corrosion and ingress by the application of at least two coats of approved non-corrosion paint.

1.4 Earth connection for all sections of the electrical works shall be bonded together

and shall be solidly and effective earthed. 1.5 Connections to electrical apparatus shall be made by a bolted connection in a

visible and accessible position. Consideration shall be given so that dissimilar and incompatible imeals are not directly in contact but have a high conductivity barrier between them.

1.6 All exposed metal parts including metal ceilings, handrail in staircases, metal

door, metal gate, balcony railing. 1.7 The earthing system includes measuring, marking off. Cutting, fitting, erection,

testing, supply for necessary tools and materials for fixing, jointing, etc., including consumable stores.

1.8 The earthing installation shall be carried out in accordance with Singapore

Standard CP 5:1998 Code of Practice for Electrical installations and SS51:2009 Code of Practice for Earthing or the latest edition.

2.0 Earthing 2.1 Earth termination shall be approved of hard drawn copper rods. The minimum

diameter of the rod shall not be less than 16 mm and in any circumstance, it shall be so sized that it can be driven into the soil without or deforming the rod. Where two or more electrodes are driven into the ground to forma group which may be a grid, the heads of the electrodes in the group shall be bonded to each other by means of copper tapes of minimum cross section 25mmx3mm laid in the ground at a depth of at least 500mm.

2.2 If the earth resistance of less than 1 ohm cannot be achieved, then separate

addition earth termination with earth electrode and inspection chamber connected to the down conductor shall be provided.

Page 20: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P20

2.3 The distance between the electrodes shall be at least twice their driven length, Precast reinforced concrete inspection chamber complete with labelling shall be provided under this Contract for inspection, testing, and maintenance purposes.

2.4 All electrodes shall be inter-connected together to form a complete earth

termination system by means of 25mmx3mm copper tapes or stranded bare copper conductors of 70mm2. These conductors shall be endorsed in PVC sleeve or pipe laid at minimum depth of 500mm below the surface. The connecting conductions shall be run in direct lines between the rods.

3.0 Earthing of Exposed Conductive Parts 3.1 All exposed conductive parts of electrical parts of electrical equipment should be connected by means of circuit protective conductors to the earth terminal/earth bar and further connected to earth electrode(s) via earthing conductors. 3.2 Exposed conductive parts include:

a) Metallic enclosure of current using equipment.

b) Metallic conduit, trunking and ducting for enclosure of cables.

c) Metallic enclosures of current distribution equipment such as switchgear and control gear assemblies.

4.0 Equip- potential Bonding 4.1 Main equip-potential bonding conductors should be connected to the main earth

bar for all extraneous conductive parts to create an equip-potential zone; such conductive parts include.

a) Main water pipes

b) Gas service pipes and ducting

c) Other service pipes and ducting

d) Riser and ducting of central a/c system

e) Exposed metallic parts of structural framework

5.0 Supplementary Bonding

Page 21: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P21

5.1 Local supplementary bonding connections should be made to metal parts, where those parts are;

(i) Extraneous conductive parts.

(ii) Simultaneously accessible with exposed conductive parts or other extraneous conductive parts. Normally, a separation of not more than 2m is considered to be simultaneously accessible.

(iii) Not electrically connected to the main equipotential bonding by Permanente metal –to metal joints of negligible impendence.

6.0 Earth Leads 6.1 The minimum size of the earth leads shall comply with those specified in the

current edition of the SS551:2009, unless otherwise specified in this section. 6.2 All earth leads shall be copper conductors of the appropriate cross section.

7.0 Earth value

7.1 The Tender Price shall be deemed to include all necessary equipment, instruments, material labour, transportation, etc. connection with the system of earthing point and inter-connections thereof to obtain the required earth resistance value of less than ONE ohm. Contractor is therefore well advised to conduct earth resistivity tests at site before submitting the Tender.

SECTION 2

FIRE PROTECTION SYSTEM

1.0 General Scope of works

1.1 The work to be performed under this Contract consists of the Supply,

Delivery, Installation, Testing, commissioning and free Maintenance and

Warranty during the Defect Liability Period of the Installation, which shall

comprise of the following systems and equipment which are further described

in other sections of this Specification:

a) Automatic Fire Sprinkler System

b) Fire Hose Reel System

c) Fire Extinguishers

Page 22: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P22

d) Automatic Fire Alarm System

e) One Way Emergency Voice Communication System

1.2 The Contractor undertaking this installation shall be a BCA registered

Specialist under ME06 Fire Prevention and Protection Systems work head,

skilled and competent in the design, supply, delivery and installation of the

system The Specialist shall also supervise the testing and commissioning of

the system.

2.0 Statutory Regulations, By-laws, PSB Approvals

2.1 The works and all plant, equipment and materials forming part of this Contract

shall comply in all respect with any relevant Statutory Regulation, By-laws and

other Regulations currently in force. In addition, current Rules and

Requirements of the following bodies (the latest edition) shall be complied

with:

a) The Public Utilities Board i.e., The Public Utilities Act, The Electricity

Regulation, The Public Utilities (Electricity Supply) Regulation.

b) The Ministry of the Environment, i.e., The Water Pollution Control and

Drainage Act, Environment Public Health Act and Regulations.

c) Building and Construction Authority

d) The ministry of Labour, i.e., the factories Act.

e) Fire Safety and Shelter Department (FSSD) and Code Practice (CP) for

Fire Precautions in Buildings 2007.

f) The code of Practice and their latest amendments CP5: 1998, CP10:2005,

SS553:2004, SS530:2006, SS546:2009, CP29:1998, CP51:2004,

CP52:2004.All other Authorities having jurisdiction over the installation of

equipment and carrying out this contract works in the locality.

2.2 The Contractor shall obtain and complete all notice required by the above

Authorities as necessary and shall obtain all consents necessary for the

various work to be executed and shall be pay all fees in connection therewith.

2.3 The work shall also be carried out strictly in accordance with the current

edition of all applicable British Standards or other National Standards

acceptable to the S.O. All electrical installations and materials supplied shall

comply with Singapore Standard CP 5, Code of Practice for Electrical

Installations and to be approved by Power Grid.

2.4 All Codes, Acts, Standards and regulations shall be the latest published

edition unless otherwise state.

2.5 Where discrepancy arises, the provision in the Singapore Standards shall

take precedence on all matters relating to the works.

Page 23: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P23

2.6 The Contractor shall bear the cost for all necessary arrangement to obtain

approval for fittings, values, expansion joints, equipment and materials from

the relevant authority if required.

3.0 Permit and Fees

The Contractor shall procure all permits and pay all fees and charges incurred

in connection with this Contract.

4.0 The Specification

4.1 This Specification is intended to set out in general outline the minimum

requirements and standards of installation for the various units of equipment

and works it covers. Provision set out, or claim made in the successful Tender

which are in excess of, or improved upon the basic requirements of the

Specification shall unless otherwise determined by the Superintendent Officer

(S.O) become part of the requirements of the Specification whether or not

they are subsequently incorporated in addenda to the Specification.

4.2 The S.O shall be judge of what constitute an improvement upon or exceeds

the requirements of the Specification.

5.0 Materials and Workmanship

5.1 Unless expressly stated to the contrary, all materials, and equipment supplied

by the Contractor shall comply with the applicable Singapore standards (S.S)

or British standard (B.S) specifications approved by the S.O.

5.2 Where a standard is referred to, that standard shall be the latest published

edition thereof, unless otherwise stated.

5.3 All materials and equipment supplies shall be new and of the best type for

each particular purpose and of the quality with regard to design, manufacture

and performance.

5.4 The equipment and materials shall be suitably designed and constructed for

safe, proper and continuous operation under all conditions described or

implied in this Specification without undue heat, strain, vibration, corrosion or

other operating difficulties.

5.5 Unless otherwise specified, the equipment and material within the scope of

this shall be of a standard proven design. Design incorporating components

which may be considered prototype in nature will not be accepted.

Page 24: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P24

5.6 Equipment and equipment components shall be designed and supported to

permit free expansion and contraction without causing excessive, distortion or

leakage.

5.7 Parts subject to wear, corrosion or other deterioration, or requiring

adjustment, inspection or repair shall be accessible and capable of

reasonably convenient removal. Replacement and repair. All such parts shall

be of suitable material for keeping maintenance to a minimum.

5.8 The equipment shall be designed to permit replacement of parts and ease of

access during inspection, maintenance and repair.

5.9 Vibration, noise, mechanical and thermal stresses and susceptibility to

corrosion and erosion shall not be greater than with similar plant of first class

design and workmanship operating under similar conditions.

5.10 All works shall be carried out in accordance with the best engineering practice

by experience tradesmen of appropriate grades to the approval of the S.O.

5.11 Where disagreement occur between the Drawings and the Specification or

within either document itself, the item or arrangement of better quality, greater

quantities, or higher cost shall be deemed to be included in this Contract.

6.0 Shop Drawings

6.1 The Contractor shall immediately upon the award of the Contract prepare and

submit to the S.O for approval all plant and equipment layout drawings

showing full details within two (2) weeks. Detailed calculations shall be submit

where applicable. All equipment and materials proposed shall be submitted

for approval.

6.2 Shop drawing shall cover complete details for the following but not limited to;

a) Operation loading of all items of plant, equipment and accessories.

b) Dimensions of all items of plant, equipment and accessories.

c) Layout, showing all clearances for operating and servicing and in sufficient

details to ensure that the provision made shall be adequate and satisfactory.

6.3 Legend for all symbols shall be shown on every drawing.

6.4 Five (5) copies of each drawing shall be submitted for approval not later than

two (2) weeks after award of the Contract. Drawings with inadequate details

and not conforming to the requirements as stated above will not be

considered.

6.5 Upon approval of the drawing, the Contractor shall deliver four (4) copies of

each approved drawing to the S.O. for the purpose of Contract administration.

Page 25: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P25

6.6 The drawing shall be submitted in ample time for review and approval by the

S.O. and no work shall be carried out until such a drawings are approved.

6.7 It is the onus of the Contractor to ensure that his drawings conform to the

requirements of the Specification and that they are approved by S.O. early.

6.8 Inspection of shop and working drawing is not to be considered as a

guarantee of measurements or building conditions. Where drawing are

inspected and approved by the S.O. such approval does not in any way

relieve the Contractor from his responsibility not from the necessity of

furnishing material or performing work required by the Specification.

6.9 Schedule of submission of shop drawings shall be submitted for approval not

later than two (2) weeks after award of the Contract.

7.0 Metrification

7.1 All gauges and indicators shall be provided with scales marked in SI Units as

well as in relevant Imperial units.

8.0 Samples

8.1 The Contractor shall submit the Samples below but not limited for the limited

to the following for approval:

Sprinkler Heads

Sprinkler Flow Nozzles

Fire Hose Reel Nozzles

Fire Detectors

Manual Call Points

Alarms Bells

Fireman Intercom Handset and Cabinets

Fire Extinguisher Cabinets

Isolators

9.0 Jointing of Pipes

9.1 The method of jointing for the various pipes shall be as described hereafter in

the appropriate sections of the specification.

9.2 Where differential movement may occur between two sections of a system or

where excessive expansion and contraction may take place, flexible

connections shall be used.

Page 26: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P26

9.3 Flexible connections shall be of stainless steel bellow type to suit the duty and

temperature requirement of the fluid conveyed in the pipe. They shall be

complete with restraining tie-rods and shall be of approved make.

9.4 Adequate numbers of flanged or unison connections shall be provide

especially in plant rooms, service ducts and adjacent to fixtures so as to

facilitate removal of the pipe and equipment for inspection or repair.

9.5 Where pipes cannot be joined by standard fittings they shall be jointed using

mechanical coupling system.

10.0 Electrical Works

10.1 Electrical supply sub-circuits to pumps and other equipment terminating with

appropriate isolators near to control panels, the control panels being provided

by the Fore protection Contractor.

10.2 Switched socket outlet next to equipment unless otherwise specified.

11.0 Co-ordination or work

11.1 The Contractor shall check and ensure that all equipment provided is suitable

for the space allowed. The Contractor shall, if necessary, locate the

equipment before the erection of the walls and doors. All abortive work arising

from failure to comply with the above shall be paid for by the Contractor.

11.2 The Contractor shall be responsible for the proper and accurate setting out of

his work. He shall furnish all necessary information on the installation to the

S.O and the User for work co-ordination purposes. The Contractor shall also

obtain information on routes of other services form the User for work co-

ordination purposes. The Contractor shall also obtain information on routes of

other services from the User before commencing any works to any floor of the

building. He shall so-operate with the User and all other Contractor on the job

and his work shall be suitably preplanned to ensure proper co-ordination with

other Contractors.

11.3 The Contractor shall inform and check with the User on all building works

(Such as holes, opening, grooves, required on floors, walls, etc) that are

required to be done as early as early as possible in order that holes, opening,

etc, may be formed as the building work proceeds. Should the Contractor

neglect to give the User reasonable notice and full particulars of any building

works required to be done, and there by resulted in delay or additional

expense to be incurred by the User, the Contractor shall be required to

indemnify the User against all charges or additional expense incurred in

respect thereof.

Page 27: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P27

11.4 The Contractor shall be held solely responsible for making necessary

arrangements and/or co-ordinating with all relevant authorities, specialists,

other Contractors, etc, ensure satisfactory completion of this Contract such as

TOP,CSC.etc.

11.5 The Contractor shall inform the S.O of any discrepancies in construction

details installed on site (e.g. Pipe size, etc.) as compared with “approval”

drawing owing to unforeseen site conditions. The Contractor shall bear the full

cost of rectification if the failure to comply with the above clause leads to a

malfunction of the system.

12.0 Testing

12.1 The Contractor shall allow in his Tender price for the cost of all acceptance

tests required as hereinafter specified or as required by the authorities having

jurisdiction over the installation.

12.2 Costs of all water and electricity (temporary or permanent supply) used

during the testing and commissioning of the systems in this Contract shall be

borne by the User including the supply, installation and dismantling of

necessary pipework meters and associated works.

12.3 All pipework which are to be encased or concealed shall be tested and

approved before they are finally enclosed.

12.4 The Contractor shall give the S.O seven (7) days’ notice of his readiness to

carry out acceptance test and shall submit for his approval a complete and

detailed schedule of his tests to be carried out.

12.5 Before the commencement of acceptance tests, the Contractor shall have

brought the installation to a state of practical completion and shall have

completed all of his preliminary testing and adjusted the equipment to its

proper running order.

12.6 During the testing period, no modifications, adjustment or other work on the

installation shall be carried out without the permission of the S.O Should there

be any contravention of this requirement, the results of this requirement, the

results of all tests completed may be rejected and a retest ordered.

12.7 No acceptance test shall be carried out except in the presence of the S.O or

the representative appointed or the purpose.

12.8 Should the installation fail to perform in accordance with the requirements of

the Specification and/or authorities, the S.O may reject the whole or any part

of it.

12.9 The testing period shall form part of the Contract period and on extension of

the time will be granted by reasons of any extension of the testing period to

permit rectification, modification, adjustment or retesting of the installation

Page 28: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P28

except where testing has been delayed or retesting has been necessitated by

circumstances beyond the control of the Contractor.

13.0 Certification by Contractor

13.1 On completion of all performance testing as required in the Specification, the

Contractor shall be required to submit all test reports to the S.O for approval

prior to acceptance of the installation. The Contractor shall also be required to

certify in writing to the S.O. that the installation is compliance with the

requirements of Specification and the Codes to which they are to which they

are designed by a Professional Engineer/Licensed Electrical Worker.

13.2 The Contractor shall engage his own Professional Engineer (PE) to endorse

and submit four (4) sets of the original ‘Certificate of Supervision’ and drawing

for the respective installation works one (1) month before system handing

over date. All tests and inspections required by the relevant authorities for his

installation works for obtaining of TFP/TOP/CSC of the building shall be

carried out by the Contractor. The Contractor’s PE Shall be present during the

TFP/TOP/CSC inspection.

13.3 The Contractor is to note that his Tender Price shall deem to include all

testing requirements.

13.4 The Certification of Practical Completion will not be issued unless the clauses

as stated above are complied with to the satisfaction of the S.O.

14.0 Operation and Maintenance

14.1 The Contractor shall train the User’s operation and maintenance of the plants.

15.0 Maintenance and Guarantee

15.1 The whole of the work to be performed under the Contract shall be completed

and left in running order to the satisfaction of the S.O

15.2 The performance of the whole installation shall be guaranteed to conform to

the requirements of this Specification. The Contractor shall, without additional

charge replace any works which prove faulty from workmanship or materials

and fully maintain the whole installation for a period of twelve (12) months

after the commencement of the Defects Liability Period.

15.3 The Defects Liability Period shall commence from the date of issuing the

Certification of Practical Completion.

15.4 During the Defects Liability Period shall be responsible for all costs involved in

balancing, setting and adjustment of controls, and supplying, during the period

Page 29: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P29

stipulated, all test equipment and instruments deemed necessary by the S.O.

During the Defected Liability period, the Sub- Contractor shall also carry out

the maintenance work as shown in the Schedules.

16.0 Quality Assurance

16.1 The Contractor shall establish, document and maintain a quality system to

demonstrate his commitment to quality in construction. As far as possible, the

quality system shall be formulated in accordance with the latest requirements

of SS 308:

Part 2- Specification for Quality Assurance in Production and Installation.

16.2 Specifically, the Contractor shall plan, establish, implement and maintain a

project quality plan setting out, as a minimum, the following:

a) The quality objectives to be attained.

b) the specific allocation of responsibilities and authority during the different

phases of the project:

c) the specific quality procedures, methods and work instructions to be applied,

including detailed procedures for each of the major work activities:

d) suitable testing, inspection, examination and audit programmers at the

appropriate stages:

e) a method of changes and modifications in a quality plan as the project

proceeds: and

f) Other measures necessary to meet the objectives.

16.3 The Contractor’s project quality plan shall be documented in the form of a

project quality manual and project operating procedures which shall be

submitted to the S.O within fourteen (14) days from the date of letter of

acceptance of tender. The quality control procedures shall be submitted at

least seven (7) days before the commencement of the activity.

16.4 Four (4) copies of the project quality manual and project operating procedures

shall be submitted to the S.O.A further copy shall be retained on the site.

16.5 Any comment, advice or acceptance of the project quality plan by the S.O.

shall not, in any way, alter or diminish the Contractor’s obligations under the

Contract of r the quality of the Work.

16.6 The Contractor shall adequately price for the above provision in the

Preliminaries.

16.7 Every specification should have an indication that it is the end of the

specification “END OF SECTION ONE”

Section B - Fire Hose Reel System

Page 30: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P30

1.0 General

1.1 This section covers the supply, delivery, installation, testing, commissioning

and maintenance and warranty of the Fore Hose Reel System. The water

connection shall be from the supply pipe and is to be provided with outlet

connections, valves, etc.

1.2 The whole of the works covered by this section of the Specification shall be

carried out strictly in compliance with the latest edition of an amendment of the

following:

a) Singapore Standard 575: 1998 Code of Practice for Fire Hydrant Systems and

Hose Reels;

b) Rules and Regulations of the Building Construction Authority (BCA), the Fire

Safety and Shelter Department (FSSD) and Productivity and Standards Board

(PSB):

c) Singapore Standard CP 48: 2005 Code of Practice for Water Services:

d) All other authorities having jurisdiction over the installation and the carrying out

of this contract works in the locality.

2.0 Materials for Installation

2.1 The complete system pipe work shall be carried out in medium grade

galvanised screwed steel pipes conforming to EN 10255;2004 with

galvanised wrought steel fittings conforming to EN 10255:2004 with

galvanised wrought steel fittings conforming to BS 1740.

2.2 All fixings, hangers, brackets, etc, shall be of hot dipped galvanised steel.

Details of all pipe fixings shall be shown in the Drawing. Spacing of fixing shall

not exceed the following:

Size of Pipe (mm) Interval for Horizontal Interval for

Vertical

Run in meter Run in meter

Up to 40 1.2 m 1.2 m

50 1.8 m 1.8 m

75 2.0 m 2.0 m

2.3 All fittings supplied and installed for the hose reel system shall conform to the

following.

a) Hose reels for fixed installation : BS5274

b) Hoses for fire-fighting purposes : BS 3169

c) Ball Valves up to 50 mm : BS 1212

Page 31: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P31

d) Stop valves up to 50 mm : BS 1010

e) Gate valves above 50 mm : BS 5163

f) Check Valves : BS 5153 (M)

g) Pressure gauges : BS 1780

3.0 Hose Reels

3.1 The hose reel shall be of swing, exposed or recessed type as indicated in the

Drawings. Each hose reel shall have a length of 30 m and a bore of 25 mm

unless indicated otherwise, and shall be made of non=kinking reinforced

rubber hose complying to BS 3169 terminating with “shut off” type nozzle and

fitted with 25 mm screw down stop valve at the inlet conforming to BS 1010.

Hose reels should be operation at a working pressure up to 6 bars.

3.2 The hose reel shall be type tested by a recognised testing laboratory to meet

EN671-1 and shall be inspected under PSB inspection scheme. It shall be

provided with PSB labels.

3.3 Particular care should be exercised when fixing and position recessed swing

type hose reels so that they can swing in and out freely and easily form their

normal position to operating position.

3.4 The nozzle shall be capable of giving a cone shaped spray pattern and a jet

type pattern.

4.0 Flow Rate and Pressure Requirement

4.1 As a minimum, the water supply to hose reels shall be such that when two (2)

topmost hose reels with the least hydraulic head in a building are operating

simultaneously, each will provide a jet of at least 10m in length at a flow rate

of minimum 0.4 I/S and a minimum running pressure of 2 bar shall be required

at the entry to each hose reel for a 6mm nozzle and a minimum running

pressure of 6 bar shall be required at the entry to each hose reel for a 6mm

nozzle and a minimum running pressure of 6 bar shall be required at the entry

to each hose reel for 4mm nozzle.

5.0 Water Supply

5.1 The water supply shall be taken from the appropriate storage tank, the tanks

shall be provided with all associated alarm and level controls, valves, pipe

work etc.

Page 32: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P32

6.0 Hose Reel Notices

6.1 Operating instructions shall be affixed to the wall in a prominent position

adjacent to the reel.

6.2 Hose reels located in recesses or cabinets shall bear the words Fire Hose

Reel on the door in red letters at least 50 mm high on a while background.

6.3 All notices shall be prominently displayed and they shall not be unreasonably

affected by weathering or by corrosion caused by industrial processes in the

vicinity. The Contractor is to submit details of the notices for the approval of

the S.O prior to installation.

7.0 Painting

7.1 All pipe work shall be painted as per the section on ‘Painting’

8.0 Maintenance

8.1 Hose reels shall be subjected to regular inspection to ensure that the inlet

valve, the automatic on/off (if any), glands, tubing and shut off nozzle is not

choked.

8.2 Some nozzle, in addition to giving a jet stream, are also capable of producing

a cone spray. In these cases, the correct function of each role shall be

checked.

8.3 The booster pumps and associated mechanical and electrical shall be

checked monthly for their proper functioning as required in the Specification.

8.4 Before the DLP expired and once a year (annual), the hose shall be

completely run out and subject to operational water pressure to ensure that

the hose is in good condition and that all coupling and that all couplings are

water-tight. A flow test shall be carried out to ensure that a water discharge of

at least 0.4 i/s can be achieved.

8.5 All defects shall be rectified in the shortest possible time to ensure that the

installed equipment is restored to a satisfactory condition in as short a time as

possible.

Section C - Fire Extinguishers

1.0 General

1.1 This section covers the supply, delivery, installation, and eighteen (18)

months free maintenance and warranty of the various types of fire

extinguisher.

Page 33: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P33

1.2 The location, type and capacities of all fore extinguishers are as indicated in

the Architectural layout and or fire protection system Drawings.

1.3 All mounting brackets shall be of approved type suitable for the location where

they installed. The performance of all extinguishers shall be to the approval of

the applicable local authorities.

1.4 All fire extinguisher shall be Productivity Standards Board (PSB) approved

type and provided with PSB labels, to approved ratings and comply with SS

CP 55: 1991 and SS 232.

1.5 All fire extinguishers except within plant rooms shall be provided with a steel

cabinet complete with a thumb turn lock in a front glass panel enclosure. The

cabinet shall be manufactured from minimum (16 SWG) 1.6mm gauge

galvanised iron steel sheet using folded sections. It shall be spray painted

with a coat of anti-rust primer and two coats of enamel paint of colour to S.O’s

approval.

2.0 Construction

2.1 The construction of each extinguisher shall be such that it can be handled

easily and is simple to operate by any untrained personnel for extinguishing

isolated fires.

2.2 Each extinguisher shall consist of a sealed pressure charge with solid drawn

alloy steel body, a head assembly, discharge nozzle, and safety devices to

prevent accidental discharge.

2.3 The external of each extinguisher shall be painted red in accordance with BS

381C.

2.4 The necessary operating, maintenance and reloading instruction and date of

last service shall be clearly displayed permanently on the body.

3.0 CO2 Extinguishers

3.1 CO2 Extinguishers shall be manufactured to comply with BS 3326.

4.0 Dry Chemical Extinguisher

4.1 Dry powder chemical extinguishers shall be manufactured to comply with BS

3465.

Section D - Automatic Fire Alarm System

1.0 General

Page 34: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P34

1.1 This section covers the supply, delivery, installation, testing, commissioning

and maintenance and warranty the entire Microprocessor- based Automatic

Individual Addressable Fire Alarm System.

1.2 The fire alarm system shall be designed and installed in accordance with the

latest edition of an amendment to Singapore Standard CP 10: 2005 and in full

compliances with the rules and regulation of the Building Control Division, Fire

Safety and Shelter Department (FSSD) and other relevant authorities.

1.3 Fire Alarm panel shall be type tested by a recognised testing laboratory to

meet SS CP10, BS EN54: Pt2 & 4 and BS 5869 and shall be inspected under

Productivity Standards Board (PSB) inspection scheme. It shall be provided

with PSB labels.

1.4 All equipment proposed to be used for this system shall have obtained

approval form the international recognised testing laboratories such UL, FM,

LPC, .i.e. equipment shall be listed. Two (2) copies of the relevant approval

certificates shall be submitted with the Tender.

1.5 All Main equipment and devices shall be produced by the same manufacturer.

This applies also to the detectors, control units and central data processing

equipment. System formed by equipment. System formed by equipment from

different manufacturers will not be accepted.

1.6 The Super intendant Office (S.O) shall be entitled when enquired to conduct

quality audit of the Contractor and/or Manufacturer’s premises to assess the

quality standard.

1.7 The installation shall include all necessary hardware and software for a

complete operable system in accordance with the requirements of this

specification.

1.8 Tenderers shall note that the Tender submitted must be based on the

requirements of the Specification and Drawings. Alternative offer will only be

considered if the basic tender offer is in full compliance with the requirements

of the tender drawings and specification. Any alternative offer submitted must

be supported by detail descriptions for clause comparison on compliance/non

–compliance with the requirements of the tender specification and the cost

implication for each deviated item. Any non-compliance to the requirements of

the tender specification and the cost implication for each deviated item. Any

non-compliance to the requirements of this clause may result in disqualifying

of the tender submitted.

1.9 The entire system shall be of microprocessor based for complete individual

addressing with peer to peer network capabilities. System applying any form

Page 35: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P35

of master and slave central processing arrangement and not capable to

provide address to every point will not be accepted.

1.10 The entire fire alarm and detection system shall be designed as a peer to peer

network communication and processing system which allows the monitoring

and controlling of the entire system at the Fire Command Centre.

1.11 The system shall provide a peer to peer Backbone communication Network of

distribution intelligence that all devices such as Main Fire Alarm Panel (MAP),

sub Fire Alarm Panel (SAP), etc., which are connected on the network must

be able to operate autonomously (stand-alone) and failure of any one of the

network must be able to operate autonomously (stand-alone) and failure of

any one of the unit shall not affect the proper operation of the others.

2.0 Heat Detector

2.1 Heat Detector shall be listed and of electronic type for combined rate-of-rise

and fixed temperature response. It shall consist of two independent

thermistors, designed to automatically compensate changes in ambient

condition.

2.2 All electronic circuits must be solid state and hermetically sealed to prevent

the operation being impaired by dirt, dust or humidity.

2.3 The detector shall be protected against damage by reverse of polarity or faulty

wirings.

2.4 The response sensitivity of the heat detector shall be with response

temperature at 58 degree C or 10 degree C per minute rise for normal

application and 82 degree C or 10 degree C per minute rise for high

temperature application.

2.5 All heat detectors shall be suitable for direct connecting to the class A four

wires individual addressable loop.

2.6 All heat detectors shall be common and interchangeable to a common type of

base. Heat detector requiring manual setting of address will not be accepted.

2.7 The installation of heat detectors shall include all necessary conduits, wirings,

detector with individual addressable electronic module. All detectors shall be

mounted such that the sensing element is not less than 25mm and not more

than 600mm below the ceiling of floor slab.

Page 36: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P36

2.8 The software shall be able to generate supervisory trouble condition at any

temperature value.

2.9 The detector shall operate reliable within the following specification:

Operating temperature range: 0 to +38°C

Relative humidity: Above 90%

Operating voltage: 24 V DC nominal

Operating current: 150uA

Alarm current: 100mA

Protection category IEC IP-43

Approval: UL/FM/LPC

2.10 For detectors concealed within the false ceiling space, each detector shall be

provide with an auxiliary response (activation) indication light (LED) mounted

in a location where it is clearly visible.

3.0 Smoke Detectors

3.1 All smoke detectors shall be of photo-electric type, multi-sensor type or as

indicated in the drawings. All smoke detectors shall be of UL listed/ FM

approved.

3.2 All smoke detectors shall have the intelligence to process the analog signal in

the detector itself for automatic compensation of signal deviation caused by

contamination and aging means that the detector shall maintain its response

behaviour over a long period of time.

3.3 Any detector reaching the ‘DRIFT’ threshold shall automatically transmit a

signal to the control unit where the corresponding data is stored. Detector in

drift condition shall function normally and identifiable from the control unit

upon request.

3.4 A fault signal shall only be automatically indicated at the control unit when the

upper drift limit is reached at the detector.

Page 37: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P37

3.5 The installation of the smoke detectors shall include all necessary conduit,

wiring, detector with individual addressable module.

3.6 All detectors shall be mounted such that the sensing element is not less than

25mm and not more than 600 mm below ceiling of floor slab.

3.7 Specially designed probe unit provided by others used for monitoring of air

conditioning and ventilation return ductwork in the AHU room, shall be

connected to the fire alarm system for monitoring. Addressable Zone Modules

shall be used to provide an address to the probe unit.

3.8 For detectors concealed within the false ceiling space, each detector shall be

provided with an auxiliary response (activation) indication light (LED) mounted

in a location where it is clearly visible.

3.9 Each smoke detector may be independently selected and be able to be alarm

verified. The alarm verification shall be programmable from 5 to 60 seconds

and the numbers of times that each detector has entered the verification cycle

can be made available.

3.10 Smoke detector sensitivity adjustment shall be provided in the system from

the keyboard of the terminal or system keyboard. The range shall be within

the allowed UL window.

3.11 A maintenance alert verification procedure shall be provided to analyse

detector responses over a period of time. Any smoke detector in the system

responses with a reading that is below or above normal limits, then the

system will enter the Trouble Mode and the particular detector will be

annunciated on the system display with the following message “Maintenance

required”.

4.0 Photoelectric Smoke Detector

4.1 The photoelectric smoke detector must exhibit uniform response behaviour in

course of time. The light source intensity shall automatically adjust to

compensate for possible effects of dirt and dust accumulation.

4.2 All electronic components shall be of Surface Mounted Device Technology

(SMD) and the entire circuitry must be hermetically sealed to prevent the

operation being impaired by dirt, dust or humidity.

4.3 The detector shall be protected against damage by reverse of polarity or faulty

wirings.

Page 38: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P38

4.4 The response sensitivity shall be adjustable from the control panel. It shall be

possible to test the electrical sensitivities of the detector in the field by a

specially designed detector sensitivity tester produced by the same

manufacture.

4.5 The detector shall consist of a built-in barrier to prevent access of insects into

the sensor.

4.6 The activation of a detector shall be indicated by a flashing LED at the

detector base with sufficient brightness.

4.7 The detector shall consist of built-in protection against usual electrical

transients and electromagnetic interference.

4.8 The detectors shall be suitable for direct connecting to the class A four wires

individual addressable loop.

4.9 All detectors shall be common and interchangeable to a common type of

base. Smoke detector which requires manual setting of address will not be

accepted.

4.10 The detector shall be operate reliably within the following specification:

Operating temperature range: -23C° to +75°C

Relative humidity: Above 90%

Operating voltage: 24 V DC nominal

Operating current: 130uA

Alarm current: 100mA

Protection category IEC IP-43

Approval: UL/FM/LPC

4.11 Analog Multi sensor Detector (combination of optical/heat)

a) 8B.2.23.1. the detector shall be of solid state type, addressable with smoke

and heat sensing elements in one head.

b) 8B.2.23.2. it shall be capable of measuring the smoke level through optical

obstruction principle and with heat sensing done by the dual-thermistors for

fast response to measure the temperature.

c) 8B.2.23.3. the performance of this detector shall also complied with the clause

8B.2.21 and 8B2.22 in this section.

Page 39: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P39

5.0 Detector Base

5.1 All detector shall fit into a common standard type base. Everyone base shall

have a built-in option allowing mechanical locking of the detector head to

prevent unauthorised removal or tampering.

5.2 Detector insertion and removal shall be by simple push-twist movement

through the use of an extended tool by one person at the floor level with the

detector mounting height up to 7 metre even with the mechanical locking

device activated.

5.3 The base shall be equipped with screw less terminals capable of securely

retaining wires up to 1.5sq.mm. The base shall be suitable for use in both

Class A and Class B wiring.

5.4 The base shall consist of an electronic module suitable for individual

addressable operation.

5.5 The electronic module shall be solid state and hermetically encapsulated to

protect it against exposure to dust, dirt, humidity, etc.

5.6 The electronic module shall have a built-in red LED which shall flash when the

detector is activated (Alarm). It shall allow connection of one additional remote

LED to indicate the activation of the detector installed in concealed space or

normally locked room at the remote easily accessible area.

5.7 The standard base shall consist of a sealing plate serve to prevent dirt, dust,

condensation or water from the conduit reaching the terminals or detector

contact points.

5.8 The standard base shall be supplied with a removable base cover to protect

the contact area during installation stage and to allow checking and

commissioning of the individual addressable loops before insertion of the

detectors. The dust cover shall be removable by the extended tool up to 7

meters from the floor level.

5.9 Special base assemblies from the same manufacturer shall be available for

special area or applications.

5.10 All individual addressable electronic module shall be identical which allows

interchange between bases. System which requires setting of the detector

address either at the detection or the base will not be accepted.

Page 40: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P40

5.11 All electronic circuity contain in the base must be protected against usual

electrical transients and electromagnetic interference. Reverse in polarity or

faulty wiring shall not cause damage to the base electronic or the detector.

5.12 All detector’s base mounted on false ceiling shall be provided with a hot

dipped galvanised iron ‘knock-out’ metal box complete with copper coupling

and bush for proper securing of flexible conduit.

5.13 The base could be of an electronic module but must be interchangeable with

all type of detectors.

6.0 Manual Call Point

6.1 Manual call point shall be provided at the position as indicated in the

drawings.

6.2 All the manual call point shall be of individual addressable type suitable for

direct connection to the class A individual addressable loop.

6.3 The manual call point shall be red in colour and consists of a built-in red LED

which flashes in case of activation.

6.4 It shall be able to test for alarm at the manual call point without opening the

call point cover or breaking the glass.

6.5 The alarm shall be activated by breaking the glass without the need of an

additional instrument (e.g. hummer). The glass plate shall be designed in a

way to prevent injuries when struck by the user.

7.0 Alarm Bells

7.1 Alarm bell shall be suitable for 24 VDC operation with steel gong of minimum

150mm dia. The operating part of the bell shall be covered by aluminium die

cast housing.

7.2 All bell circus shall be monitored for open and short circuit fault.

7.3 Independent alarm bell circuit shall be provided for each floor. The same

alarm bell circuit shall not be used for connecting alarm bells on the other

floor.

Page 41: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P41

7.4 The sounding of bell shall be on original alarm basis. However, provision shall

be included for selective automatic bell sounding organisation. (I.e. sounding

of bells at the affected floor, two floors above and one floor below) In addition,

manual push button shall be provided for each bell circuit at the Fire

Command Centre for manual activation of bells.

8.0 Sub Fire Alarm Panel (SAP)

8.1 The SAP shall be micro-processor based and control by the program

contained in non-volatile memory.

8.2 It shall be of modular design by means of plug-in cards to allow ease of

maintenance and future system expansion.

8.3 The SAP shall be suitable for use in individual addressable system with

possibilities to integrate minimum of eight (8) collective (conventional) zones

which operate independently with the individual addressable loops. The

integration of additional collective zones shall not involve changes in the

existing modules except adding the collective zone module.

8.4 All sensing devices such as detectors , manual call points etc., shall be

connected along the Class A addressable loop regardless of the number of

zones which shall be formed by programming at the SAP. The number of

devices connected to an addressing loop shall not be more than 75% of the

loop capacity and the same addressable loop shall not be used for more than

one floor.

8.5 A floor mimic board shall be provided with each SAP. The floor mimic board

shall consist of prespex silk screen floor plan with built-in red LEDs for zone

alarm indications. A minimum of five colours (excluding white and black) shall

be provided.

8.6 The following indications shall be provided at each SAP. All system shall be

display by LCD in plain text. The signals to be displayed includes:

- Current day, month, year and time

- Current status summary for:

- Number of alarm remains in system

- Number of fault remaining in system

- Number of zone isolated

- Number of zone in test mode

- Display of zone and point fault condition with 40 characters space for

description of zone location and 40 characters space for description of

point location.

- Display of alarm signal with 40 characters space for description of zone

location and 40 characters space for description of point location.

Page 42: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P42

- Display of guided text for system programming functions.

- The characters display on the LCD shall be in black with background

colour in YELLOW for all signals except for alarm signal which shall

have the background colour in RED.

8.7 The following control functions shall be provided for each SAP.

Alarm acknowledge button

Alarm reset button

Function buttons for recall details of current status

Key-pad for the following functions:

- To perform lamp test

- To isolate entire zone

- To isolate a point within zone

- To switch zone in test mode

8.8 The following master LED indications shall also be provided:

- ‘System On’ with green LED

- ‘Fault’ in yellow LED or amber LED

- ‘Detector Test’ in yellow LED or amber LED

9.0 Power Supply

9.1 The system Terminals shall be able to operate on mains power supply of 230

V AC, -15% to +10% with 48 to 62 Hz.

9.2 The power shall contain suitable over-voltage protection to prevent any

malfunction or damage due to power line surges.

9.3 The power supply for all MAP/SAPs shall be equipped with stand-by battery of

nominal voltage of 24 V DC. The battery and battery charger shall be sized up

and supplied strictly in accordance with the requirements of CP 10:1993. The

Contractor shall submit detailed calculations to justify the capacity of the

batteries and the battery charger for the S.O.’s approval.

9.4 Upon loss of mains power, the power supply unit shall automatically revert to

battery power to maintain the operational condition of the system.

9.5 When the battery voltage drops below 20 V DC, a fault signal shall be

generated and be indicated on the affected unit as well as the Main System

Terminal in the FCC/BAS Room and duplicate system terminal.

9.6 When the AC power is restored, the power unit shall automatically revert to

normal operation without any manual restoring procedure.

9.7 The stand-by batteries shall automatically be maintained in charged condition

by a built-in short circuit proof charger.

Page 43: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P43

9.8 The load shall automatically be switched off when the voltage drops below 19

V DC to protect battery cells from being damaged by complete discharge.

9.9 Gas-tight maintenance free lead-acid batteries shall be used for stand-by

power supply and shall have a minimum life cycle of three (3) years.

9.10 The power supply unit and charger circuit including all fuses shall be

supervised. Any malfunction or blown or missing fuse shall be indicated on

the affected unit as well as the Main System Terminal in the FCC/BAS Room

and the duplicate system terminal.

9.11 All Central Processing equipment such as the CPUs, monitors, computer,

operating consoles, printers, etc. in the FCC/BAS Room and the Central Fire

Command Centre shall be supplied and installed with the stand by power from

a UPS system for four (4) hours minimum. Each location shall be provided

with one UPS system.

10.0 Floor Mimic Board

10.1 The Contractor shall supply and installed floor mimic board on each floor next

to the MAP/SAPs as indicated in the drawings. The floor mimic board shall

either be a standalone type or incorporated into the panel subject to S.O.’s

approval.

10.2 The floor mimic board shall indicate the floor layout in pictorial manner and

consist of red “LED” for each zone to indicate the alarm status.

10.3 The signal transmission from System Terminal to the respective floor mimic

board shall be hardwired or multiplexed data line.

10.4 Upon alarm zone actuated, the corresponding “LED” on the floor mimic board

shall flash and built-in buzzer shall sound. The “LED” shall become steady

and buzzer shall be silenced after the alarm is acknowledged.

10.5 The size of the floor mimic board shall be of reasonable size with 6 mm thick

acrylic or Perspex sheet with indication of the layout of the floor, fire alarm

system with LED indicator, clearly engraved in silk screen printing in black

and minimum of 5 other colours. (Excluding black and white).

10.6 The design and construction of the floor mimic board shall be to the approval

of the S.O.

10.7 Lamp test function shall be provided for testing of all “LED” on the floor mimic

board.

11.0 Interfacing Unit

Page 44: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P44

11.1 Interfacing unit shall be provided for monitoring of external contact signal such

as sprinkler flow switch and etc.

11.2 The interfacing unit of shall be of individual addressable type which can be

connected directly to the class A individual addressable loop.

11.3 The interfacing unit shall consist of a LED which shall flash upon receiving the

actuation signal from the external contact.

12.0 Cable Markers

12.1 Cable markers for the fire resistant cables (buried) shall be provided and

position on each change of direction and at 30m interval subjected to S.O.’s

approval.

13.0 DECAM TAS Line

13.1 The Contractor shall provide the required facilities at the Central MAP for

connection to a TELEPHONE direct “Private Wire” line so that in the event of

operation of the Fire Alarm System, a signal will be automatically transmitted

to the nearest Fire Service fire console via a monitoring company.

13.2 The Contractor shall make all necessary arrangement including applications,

paying all fees, etc., and commission the said facilities.

Section E- Emergency Voice Intercommunication system

1.0 General

1.1 The section covers the supply, delivery, installation, testing, commissioning

and eighteen (18) months free maintenance and warranty of the Emergency

Voice Intercommunication System.

1.2 The Emergency Voice Intercommunication System shall comply with latest

edition of SS 546 “Code of Practice for Emergency Voice Intercommunication

System in Building” and amendments, and Code of Practice for Fire

Precautions in Buildings 2013)

2.0 System Components

2.1 Vestibule Equipment

Page 45: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P45

This consists of a master control console made of heavy sheet metal housing

vertically mounted panels that make up the master control.

The master control shall consist the following units as required:

a) A Master Handset Panel including Handset

b) Handset Selector/Annunciator Panel(s)

c) Common Trouble Audio and Visual Indicator Panel

d) Handset Supervisory Modules

2.2 Remote Equipment

Remote equipment shall consist of the following items:

a) Portable Handset (stored in vestibule panel)

b) Handset Jack

3.0 Specification

The Emergency Voice Intercommunication System shall provide handset

communication in accordance with the following Specification and shall

comply with SS546. Supervision, audible warning devices and auxiliary power

provision shall also be in accordance with the following Specification.

3.1 Vestibule Equipment

a) Master Handset Panel

The master handset Panel shall provide a handset which shall be moulded of

high-impact ABS plastic in signal red and equipped with retractable cord. It

shall be housed in a vertical-style all metal module which occupies one panel

space in the vestibule console. The electronic circuit board which is mounted

behind the hand set shall contain

1) Call Generator circuit

2) Communication circuits

3) Busy Tone Generator

4) Supervisory Circuits

b) Handset elector/Annunciator

Each selector/annunciator unit shall accommodate remote handset zones and

shall be equipped with push on/push off selector switches and LED”CALL”

annunciator and LED fault indicators and audible device in accordance with

the number of handset as shown in the Drawings.

Each selector/annunciator unit shall also provide plug-in facilities in

accordance with the number of handsets as shown in the drawing for the

supervisory module.

Page 46: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P46

Depressing the corresponding selector switch shall illuminate the annunciator

LED continuously. Lifting the master handset shall silence the audible call

signal. Additional handset zones calling shall hear busy tone. A shorted, open

and grounded handset line shall be indicated by the corresponding fault

indicator LED and audible device A shorted line shall be automatically

excluded from selection. Handset line troubles shall also be from selection.

Handset line trouble shall also be summed and indicated by an LED

designated “HANDSETS” on the trouble indicator panel.

c) Line Supervisory

The handset line supervisory shall operate in conjunction with the handset

selector and master handset. Its function shall monitor the handset lines

connected to the terminals and shall issue signals according to line state,

further to enable handset zone selection.

d) Trouble Indicator Panel

The trouble indicator panel shall contain all the LED trouble indicator lamps

(amber), an incandescent general “TRUBLE” indicator, a “SYSTEM READY”

LED indicator (green), an audible device, a lamp- test push-button and a

“SILENCE” push-button.

Any individual trouble LED activation shall be summed to activate the

“TROUBLE” light and audible device.

All trouble indicator lamps and LED’s of the entire system shall be activated

by depression of the lamp- test button and extinguished by releasing the

button.

All audible devices throughout the system shall be silenced by momentary

depression of the “SILENCE” button.

The penal shall be of heavy metal sheet which occupies a vertical panel on

the vestibule console.

3.2 Remotely Located Equipment

a) Remote Handset

The remote handset shall be moulded of high-impact ABS plastic in SIGNAL

red, and equipped with a retractable cord.

The remote handset enclosure shall be constructed of heavy-gauge steel,

finished in red enamel with conduit knock-out at top and bottom.

The enclosure face plate shall be of red enamelled steel with a combination

breakglass/key operated door.

Page 47: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P47

The end-of-line resistor shall be 10 kilo ohm per watt, mounded on the

terminal block on top of the handset base plate. Screw terminals shall be

provided for ease of installation.

b) Portable Handset

The portable handset shall be moulded of high impact ABS plastic in red and

equipped with a retractable cord and phone plug.

Five (5) sets of potable handset shall be provided.

c) Remote Handset Jack

The remote handset jack shall consist of a phone jack on a stainless steel

plate for mounting on a standard single gang electrical box.

4.0 Operations

4.1 The Supervised Emergency Voice Intercommunication System provides

fireman with two-way communication between remote points in the building

and the master control panel. Lifting of any remote handset, or the plugging in

of any remote portable handset is lifted the audible signal and flashes an

annunciator light on the master control panel. When the master handset is

lifted the audible panel is silences and depression of the appropriate selector

button switches off the adjacent flashing light.

4.2 Depression of the selector button(s) also established communication with the

remote telephone(s) selected. Intercepted tone (or busy signal) will be heard

at remote phones not selected by the master control panel.

4.3 Communication by telephone handset may be between the control location

and any one or more remote telephones, or between any numbers of remote

telephones, thus providing a telephone ‘Conference’ Communication network.

4.4 The entire system is under constant surveillance by electronic supervision.

System faults are indicated immediately at the control location. The control

panel signals indicated the type of fault and its location within the system,

providing rapid recognition of fault in the handset lines and emergency power

charging circuits.

5.0 Wiring

Page 48: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P48

5.1 All wiring shall be fire rated conforming to the requirement of SS546 and shall

be installed in conduit/trunking.

6.0 Power Supply

6.1 The Emergency Voice Intercommunication System shall be supplied and

installed with emergency power supply/stand by power as per the

requirements of the relevant regulations.

SECTION 3

ONE WAY EMERGENCY VOICE COMMUNICATION SYSTEM

Section E - One Way Emergency Voice Communication System

1.0 General

1.1 This section of the Specification and the scope of works comprise the design,

supply, installation, testing and commissioning of the complete One way Emergency

Voice Communication system including microphones, preamplifiers amplifiers, racks,

supervisory panels, monitor panels, all necessary equipment and other necessary

associated accessories. The provision of all testing facilities shall also be included.

1.2 The following standards and regulations shall be complied with where applicable.

1.2.1 Latest edition of Singapore Standard CP 5 and SS 546:2009 and

1.2.2 Any other rules and regulations relating to public address equipment

and installation as required by the local authorities.

2.0 Functional Specifications

Page 49: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P49

2.1 The system shall be a one-way voice microprocessor based communication

system which is expandable with a maximum capacity of two hundred and

fifty-six (256) zones. The number of zones and the number of loudspeakers in

each zone shall be specified as shown in the drawings.

2.2 The system shall enable the operator to communicate with each zone via a

sensitive condenser microphone fixed at the console and from any of the

intercom station/phones. A cassette deck recorder, FM radio turner, digital

message recorder, compact disc player shall be provided and integrated into

the system such that it can provide background music or taped messages

through the network.

2.3 Microphone points when required shall be installed in a location determined

by the Architect / S.O.s. All microphone point shall be terminated with a high

quality XLR three pin connectors and shall be connected to the amplifier via

screened cables. Speeches and announcements can then be made over the

public address network via a heavy duty microphone plugged into one of

these points.

2.4 The following functions shall be included:

2.4.1 All zone call:

2.4.2 Emergency or paging override channels for all zone: and

2.4.3 Background music channels.

3.0 System Features

The control console of the public address system shall have the following features:

3.1 Call Station Console

The console must be easy to operate and shall be equipped with definable keys;

display indication and a switch to make announcements to all zones. Command keys

shall be available to assists the operator in the selection of a group of zones. In other

words, selection of, say, 30 zones will not require the depression of 30 keys but will

be made available through the use of a programmable switch. The control circuit

shall be capable of selecting two or more different groups.

3.2 Pre-announcement Tone

Every announcement made through the network shall be preceded by a pre

announcement tone.

3.3 Built-in Master Clock

Page 50: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P50

A built-in Master Clock Bell Schedule for up to 550 events. Over ten unique tones

shall be provided to sound different areas and user programmable. It shall be

provided Secondary Clock correction.

3.4 All Call/ Emergency Paging Key

An emergency paging (or all call) key calls all zone when depressed via any

intercom stations / phones. This enables the principal to have easy access to all

zones should the need arises.

3.5 Siren

The console shall have the function of activation an emergency siren with special

feature(s) to prevent accidental alarm activation. Paging or announcement can be

made in the same time to reinforce the emergency of the siren.

4.0 Equipment

4.1 Ceiling Speakers

It shall meet the minimum requirements as follows:

4.1.1 Recess installation in false ceilings/panels:

4.1.2 Nominal power: 6W/20W

4.1.3 Frequency response: ~80Hz-18 kHz;

4.1.4 Sensitivity: >90dB/1m/1W @1kHz;

4.1.5 Angle of coverage: ~800

4.1.6 Dimensions (dia): ~200mm;

4.1.7 Isolation transformer: and

4.1.8 Multiple tap selection.

4.2 Box/Cabinet Ceiling Speakers

It shall meet the minimum requirements as follows:

4.2.1 Surface-mounted;

4.2.2 Nominal power: 3W/10W;

4.2.3 Frequency response: ~ 150Hz-20 kHz;

4.2.4 Sensitivity :> 90dB/1m/1W @ 1 kHz;

4.2.5 Angle of coverage: ~1700:

4.2.6 Isolation transformer: and

Page 51: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P51

4.2.7 Multiple tap selection.

4.3 Power Amplifier

It shall meet the minimum requirements as follows:

4.3.1 Rates power output shall be of sufficient rating to drive all the

speakers;

4.3.2 Frequency response: ~ 20Hz- 20 kHz;

4.3.3 THD; <1% AT 1 kHz;

4.3.4 Cooling: Internal fan;

4.3.5 LED status indication:

4.3.6 Speaker output short circuit protection; and

4.3.7 Power requirement: 220-240V AC, 50/60Hz

4.4 Pre-amplifier

It shall meet the minimum requirements as follows:

4.4.1 Inputs & outputs: ~9 & 2 nos;

4.4.2 Each input with output selector:

4.4.3 Frequency response: ~20Hz – 20 kHz;

4.4.4 Priority setting;

4.4.5 LED status indication; and

4.4.6 Power requirement: 220-240V AC, 50/60Hz.

4.5 Line Supervisory Panel

It shall meet the minimum requirements as follows:

4.5.1 Independent circuit supervising up to 10 zones;

4.5.2 LED status indication for short/open/normal circuit;

4.5.3 Speaker output short circuit protection; and

4.5.4 Power requirement: 220-240V AC, 50/60Hz.

4.6 Amplifire Change-Over Panel

It shall meet the minimum requirements as follow:

4.6.1 To switch up to min. 5 power amplifiers with one spare amplifier:

4.6.2 LED status indication;

4.6.3 Speaker output short circuit protection: and

Page 52: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P52

4.6.4 Power requirement: 220-240V AC, 50/60Hz.

4.7 Monitor Panel

It shall meet the minimum requirements as follows:

4.7.1 Independent circuit supervising up to 10 zones;

4.7.2 Built-in loudspeaker with volume control;

4.7.3 Graphic LCD display and level meter;

4.7.4 10-zone channel selector switch; and

4.7.5 Power requirement: 220-240V AC, 50/60Hz.

4.8 Receiver-mixer

It shall meet the minimum requirements as follows;

4.8.1 Audio output level adjuster;

4.8.2 Acoustic signal to precede microphone announcements;

4.8.3 Power requirement: 220-240V AC, 50/60Hz.

4.9 Paging Console

It shall meet the minimum requirements as follows;

4.9.1 Priority setting;

4.9.2 Unidirectional microphone;

4.9.3 Frequency response: ~20Hz-20 kHz: and

4.9.4 Power requirement: 220-240V AC, 50/60Hz.

4.10 Zones Decoder Module

It shall meet the minimum requirements as follows;

4.10.1 Switching unit;

4.10.2 Input & Outputs: ~2 & 8 nos;

4.10.3 Each output with input selector;

4.10.4 Frequency response: ~20Hz-20 kHz: and

4.10.5 Power requirement: 220-240V AC, 50/60Hz.

4.11 Digital Message Announcer

It shall meet the minimum requirements as follows;

4.11.1 Recording/playback messages;

Page 53: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P53

4.11.2 Alarm button for transmitting an announcement with the maximum

priority;

4.11.3 Volume control for messages, siren, and monitor loudspeaker;

4.11.4 Frequency response: ~20Hz-20 kHz: and

4.11.5 Power requirement: 220-240V AC, 50/60Hz.

4.12 Equipment Rack

It shall meet the minimum requirements as follows;

4.12.1 Steel frame;

4.12.2 Ventilated top-cover, with exhaust fans on top;

4.12.3 Tempered glass front door with lock;

4.12.4 Steel side door with a lock and the ventilated grid;

4.12.5 Power supply outputs to each equipment

4.12.6 Sliding tray; and

4.12.7 Castor wheel & adjustable feet.

5.0 Disc Compact Player

5.1 It shall meet the minimum requirements as follows;

• Multi-format playback: DVD-RAM/DVD±RW/DVD±R/DVD±R (DL)/DVD-

VIDEO/SVCD/VCD/CD/CD-RW/MP3/WMA/JPEG/MPEG 4/DivX

• Frequency response: ~20Hz-20 kHz;

• Front metal door with lock;

• Signal to noise ratio: >100 dB;

• Total harmonic distortion: <1%

• Power requirement: 220-240V AC, 50/60Hz.

5.2 Event Recorder

It shall meet the minimum requirements as follows;

5.2.1 Recording and playback facility;

5.2.2 Double cassette deck

5.2.3 Microphone input with level control

5.2.4 Headphone output; and

Page 54: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P54

5.2.5 Power requirement: 220-240V AC, 50/60Hz.

5.3 FM Radio Tuner

It shall meet the minimum requirements as follows;

5.3.1 Tuning range: AM & FM;

5.3.2 Frequency response: ~ 30Hz – 15 kHz; and

5.3.3 Power requirement: 220-240V AC, 50/60Hz.

5.4 Speaker Cables

It shall meet the minimum requirements as follows;

5.4.1 AWG16 tinned copper twisted pair;

5.4.2 PVC insulated individually;

5.4.3 Overall PCV insulated jacket; and

5.4.4 Fire rated.

6.0 Surge Protection of Public Address System

6.1 The PA system shall be protected against lightning surge induced over

voltages in accordance to section 5.6 of AS 1768-1991.

6.2 All metal frames of the console shall be effectively earthed and the 230V

single phase power supply shall be protected by serge arrestors.

6.3 The signal circuits shall be protected by combination of gas discharge device,

visitors and Zener diodes. The multi-stage sure protector specially designed

for the purpose shall be suitable for the signalling protocols and of minimum

10kA surge capacity.

7.0 Testing and Commissioning (T&C)

7.1 General

7.1.1 The Contractor shall submit his proposed T&C procedures to

Architect/S.O. For approval

7.1.2 All T&C carried out shall be witnessed by architect/ S.O;

7.1.3 The contractor shall provide all the necessary provision of labour,

specialists, materials, calibrated instruments for carrying out the T&C

work;

Page 55: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P55

7.1.4 Upon completion of the installed works, the Contractor shall give due

advanced notice and provide details of date, time and list of T&C works

to Architect/ S.O. for approval;

7.1.5 Before carrying out any test, the Contractor shall ensure that the

installation complies with the specification requirement and function

well.

7.1.6 The Contractor shall record all commissioning results on record sheets

and submit to Architect/ S.O. for approval. On completion of

commissioning and prior to Final Inspections and Handover, submit

the commissioning results in a bound ‘Operation and Maintenance

Manual’ in triplicate to the Architect/ S.O.s, who reserves the right

to witness such commissioning operations and procedures as

necessary.

7.1.7 The Contractor shall provide and arrange training to Employer’s

operation and maintenance staff including all training facilities, material,

handouts and operation & maintenance manual etc;

7.1.8 The Contractor shall supply and install without additional cost to the

Employer, replacements for all and any equipment or parts thereof,

which may, in the opinion of the Architect/ S.O. s, become

unserviceable, in contract period.

7.2 Functional Performance Tests

The Contractor shall perform, but not limit to, the following tests upon

completion of the system:

7.2.1 Adjustment of the output levels of all pre-amplifiers, power amplifiers

and etc;

7.2.2 Functional test of all equipment;

7.2.3 Functional check of the system under normal, emergency conditions etc.

7.2.4 Check and adjust matching transformer tap setting and trimmer to limit

output level of speaker to not more than 3 watt at maximum volume

setting.

Page 56: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P56

SECTION 4

1.0 FIRE COMMAND CENTRE

1.1 The Contractor has to create a FCC within the main office A Fire Command

Centre which is shall be of adequate size to house all the terminals and

supervisory/control equipment, etc. of the building’s fire protection/detection

systems and a free working space of at least 6m². All other equipment housed

in the FCC must comply with SCDF Chapter 8 Fire Command Centre and the

construction of enclosure, facilities and lighting of a Fire Command Centre

shall comply with the SS 546: Code of Practice for Emergency Voice

Communication Systems in Buildings.

SECTION 5

Section A:

1.0 Air-conditioning system

1.1 The design proposal and requirements contained herewith shall cover all

ACMV services and shall include supply, installation, commissioning and

maintenance of all equipment necessary to provide an efficient, safe and

satisfactory installation, taking into consideration of all Code of practices and

compliances to authorities for the ACMV works.

1.2 Within 2 weeks after award of the contract, contractor shall submit drawings

showing full details of all plant and equipment. Detailed calculations shall be

submitted where applicable.

Section B

2.0 High Volume Low Speed fans (HVLS Fans)

2.1 Contractor to submit the model, brand, capacity, no of the fans and other

information pertaining to the selection of HVLS fans to be installed in the

warehouse. The proposal shall come with PE calculation for the installation

method and the works should come with 36 months free maintenance

quarterly.

Page 57: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P57

SECTION 6

BUILDING WORKS

Section A – Wall Finishes

1. Material s shall be of the best quality and brought on to the site in the

manufacturer’s sealed containers and used strictly in accordance with the

manufacturer’s instructions.

2. The priming, undercoats and finishing coats, together with sundry fillers,

topping, knotting etc. shall conform to British Standard Specifications and be

of type recommended by the manufacturers for the materials in close

proximity. All undercoats shall be from the same manufacture as the finishing

coat.

3. On completion, all defective areas shall be touched-up and made good

cleaned and left in perfect condition to the satisfaction of the User.

4. Colours of final coats shall be approved by the User.

5. The number of coats specified is the minimum to be applied in normal

conditions. Further coats shall be applied as necessary, if in the opinion of the

designer, the coats have been incorrectly applied or the proper cover has not

been obtained.

6. The contractor shall submit samples of all painting materials before

commencing work. All paint and paint products shall liable to chemical

analysis at the contractor’s expense and in all cases, samples taken from the

site shall conform to the samples submitted by the Contractor and approved

by the User.

7. The contractor shall supply dust sheets protect all other surfaces against

discoloration splashes. All marks shall be cleaned from new and existing work

and completed work shall be to the User’s approval.

8. Prices for painting shall include for preparation of surfaces as specified

providing samples, cleaning up of splashes off new and existing work,

protecting adjacent surfaces to areas to be painted and providing and

providing “wet Paint” notices.

9. During the execution of the work, further samples of all or any of the materials

may be taken by User. Any work executed with material found on test not to

fulfil the requirements of the specification shall be burnt off or otherwise

removed and the work redone as directed by the User at the Contractor’s

expense.

Page 58: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P58

10. If any adulteration or substitution of interior and poor quality paints are found

in the works, the Contractor shall re-execute works for which this adulterated

painted is used.

11. All painting and finishing works shall be executed to the satisfactions, any

work done by other instead shall be in this respect be paid by the contractor.

Any defects such as flaking, loss of gloss, development of fungus,

discoloration or powdering which shall appear in the painting work within the

defect liability period, commencing from the completion of the works shall

immediately be made good by the contractor at his own expense and to the

satisfaction of the User.

Section B – Dry Wall Partition

1. All work shall be carried out by skilled tradesmen in a workmanlike manner

and in accordance with good trade practice.

2. Where fire rated partitions are employed, they shall comply with current

Singapore Government Regulation and be PSB approval type. All materials

above the false ceiling shall be non-combustible on any stud wall, fire rated or

non-fire-rated.

3. The contractor shall ascertain the acoustic requirements for partitions prior to

erection and shall vary the thickness and materials to achieve the required

STC rating.

4. All corners shall be finished perfectly square and vertical.

5. Insulation shall be carefully packed to fill up the space within the partition. All

insulation shall be non-combustible.

6. Where partitions are instilled up to the soffit or down to floor slab, all openings

on the partitions above suspended false ceiling shall be properly sealed.

Neoprene seals shall be employed top and bottom continuously where there

is a required acoustic rating.

7. Timber backing for fixing on joinery and electrical accessories shall be

provided. All wall hung items must include reinforcement adequate to the

load.

8. The contractor shall fully comply with the manufacturer’s recommendation on

materials used and installation method. Rectification of defective installation

or replacement of materials not in accordance to the manufacture

specifications shall be the sole responsibility of the Contractor and at his own

cost.

Page 59: SECTION 1 ELECTRICAL SYSTEM 1.0 General Scope … 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1 SECTION 1 TO 9 PART 2 OF P3 branch circuit breakers ways plus

PART 2: GENERAL AND TECHNICAL SPECIFICATION CT1603B012 Appendix C, Annex A1

SECTION 1 TO 9

PART 2 OF P59

SECTION 7

1.0 FIRE RATED ROLLER SHUTTER/SMOKE SHELTER

1.1 The fire resistance for the fire roller shutter should be 2 hour fire rated and

make of insulated type. The work should come with certificate of compliance

and PSB fire rated label.

1.2 The Smoke shelter should be made of non-combustible materials that could

withstand a temperature of 600 degree Celsius for at least half an hour. The

smoke shelter should install at the interface between AFT1 and AFT2 airside

with the use of suitable cladding frame work which hold the smoke shelter.

The installation should come with structural PE calculation for safety load.