seismic

27
Jaime Almeida Practical Applications and Novel EOR Methods

Upload: petro0703

Post on 09-Nov-2015

17 views

Category:

Documents


0 download

TRANSCRIPT

  • Jaime Almeida

    Practical Applicationsand Novel EOR Methods

  • 2009 Halliburton. All Rights Reserved. 2

    Typical IOR/EOR Project Workflow

    Project Management Screening for EOR methods.

    Screening based in reservoir properties Predictive models Dynamic simulation

    Laboratory investigation Wettability, Relative permeability Swelling test, MMP, MEC SWTT (Single Well Tracer Test) Sor Rock-Fluid compatibility test

    Pilot test Pilot design Pilot implementation Pilot Monitoring Reservoir and EOR parameter calibration.

    Field Plan implementation Full field simulation after model calibration with pilot test. Economic analysis

  • 2009 Halliburton. All Rights Reserved. 3

    Project Life Cycle (Front-End Loading)

    Initialization (Pre-FEL)

    Visualization

    Conceptualization

    Definition

    Execution

    Operation

    FrontFront--End Loading (FEL)End Loading (FEL)

    Value Identification Value Realization

  • 2009 Halliburton. All Rights Reserved. 4

    FEL applied to an EOR projectScenario analysis and Design Optimization, South America (National Oil Company) using DMS

    1800 MMSTB oilfield under decline, Evaluate 4 potential scenarios for enhanced recovery and compare with base case. Optimize design parameters for water alternating gas scenario.

    SITUATION

    CHALLENGE

    TOOLS

    VALUE ADDED BY DMS

    Identify an optimal recovery scenario based on an economic objective function (NPV). Rapidly optimize the design parameters for the WAG scenario using distributed computation (for DMS) with a combined spreadsheet model.

    Fast determination optimal recovery scenario based on NPV using distributed computation.

    Optimized WAG ratio, cycle length, injection rate, number of cycles.

    DMS ( with distributed computing)

    VIP

    EXCEL (proprietary economics)

    SPOTFIRE ( Data visualization package)

    WAG OptimizationScenario Analysis

    Optimum design

    Best scenario

    NPV Vs. RF

  • 2009 Halliburton. All Rights Reserved. 5

  • 2009 Halliburton. All Rights Reserved. 6

    Screening criteria for EOR Methods

  • 2009 Halliburton. All Rights Reserved. 7

    Steam/Polymer/Surfactant

    Surfactant/Polymer/CO2

    CO2/Polymer/Hydrocarbon/Surf. CO2/Hydrocarbon

    Nitrogen/Hydrocarbon

    Polymer degradation limit

    Thermal limit

    0

    1000

    2000

    3000

    4000

    5000

    6000

    0 10 20 30 40 50 60

    APID

    e

    p

    t

    h

    (

    m

    )

    Steam

    Polymer

    CO2

    HydrocarbonN2

    Combustion

    Hot Water

    Miscellar/PolymerSurfactant

    Waterflooding

    Screening for IOR/EOR methods

  • 2009 Halliburton. All Rights Reserved. 8

    Steam/Polymer/Surfactant

    Surfactant/Polymer/CO2

    CO2/Polymer/Hydrocarbon/Surf. CO2/Hydrocarbon

    Nitrogen/Hydrocarbon

    Polymer degradation limit

    Thermal limit

    0

    1000

    2000

    3000

    4000

    5000

    6000

    0 10 20 30 40 50 60

    API

    D

    e

    p

    t

    h

    (

    m

    )

    Steam

    Polymer

    CO2

    HydrocarbonN2

    Combustion

    Hot WaterMiscellar/Polymer

    Surfactant

    Waterflooding

    What is missing?Reservoir heterogeneity

    Relative permeability/rock wettability

    Reservoir geometry

    Minimum Miscible Pressure (MMP)

    Minimum Miscible Enrichment (MME)

    Screening for IOR/EOR methods

  • 2009 Halliburton. All Rights Reserved. 9

    Screening for IOR/EOR methods

    Predictive models DOE Predictive models

    Steamflood, In-situ Combustion, Polymer, Chemical Flood, CO2 Miscible Flood, Infill, Single-Well Chemical Tracer

    CO2 Prophet and other commercial software SINTEF Petroleum Research CO2 predictive model (2007). EOR RATE MODEL (2008) (*)

    Correlations Computer methods of Screening MAESTRO SelectEOR (ALBERTA RESEARCH COUNCIL) (2009)

    (*) Source: Danish Energy Agency

  • 2009 Halliburton. All Rights Reserved. 10

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

    SW

    K

    R

    W

    /

    K

    R

    O

    W

    Wettability effect in Sor

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

    SW

    K

    R

    W

    /

    K

    R

    O

    W

    Residual Oil Saturation

    Sorw=100-90=10%

    Target for EOR after Waterflooding

    Strong water wet system

    Residual Oil Saturation

    Sorw=100-70=30%

    Target for EOR after Waterflooding

    What is the target oil for EOR?

  • 2009 Halliburton. All Rights Reserved. 11

    Conformance Control Solutions DUAL FLOW HORIZONTAL WELL DESIGN

    Well Oil (QL= 1,000 bbl/day)

    0

    100,000

    200,000

    300,000

    400,000

    500,000

    600,000

    700,000

    800,000

    900,000

    Apr/2004

    May/200

    5Jul/2

    006Aug

    /2007Sep/

    2008Nov/

    2009Dec/

    2010Feb/

    2012Mar/

    2013Apr/2

    014

    Time (m/y)

    W

    e

    l

    l

    O

    i

    l

    P

    r

    o

    d

    u

    c

    t

    i

    o

    n

    T

    o

    t

    a

    l

    (

    b

    b

    l

    )

    Qw = 0 bbl/dQw = 500 bbl/dQw = 1000 bbl/dQw = 1500 bbl/dQw = 2000 bbl/dQw = 2500 bbl/dQw = 3000 bbl/d

    Temperature 65 to 160 oC

  • 2009 Halliburton. All Rights Reserved. 12

    Lpk

    Nc

    =

    Importance of capillary number in defining EOR

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

    Nc

    S

    o

    r

    (

    E

    O

    R

    )

    /

    S

    o

    r

    w

    Dombroski & BrownellFosterTaberDu PreyGupta

    Wetting

    Nonwetting

  • 2009 Halliburton. All Rights Reserved. 13

    Effect on reducing interfacial tension

    Source: Bardon & Longeron SPE 7609

  • 2009 Halliburton. All Rights Reserved. 14

    wro

    orw

    kk

    owM

    ==

    Effect of mobility ratio in Sweep efficiency

  • 2009 Halliburton. All Rights Reserved. 15

    Laboratory investigation Wettability, Relative permeability Swelling test, MMP, MME SWTT (Single Well Tracer Test) for Sor estimation Rock-Fluid compatibility test

    Slim tube test

    Rising Bubble method

    Vanishing interfacial tension

  • 2009 Halliburton. All Rights Reserved. 16

    MMP CorrelationsPure CO2

    YearHolm and Josendal 1974 T MWC5+Cronquist 1977 T MWC5+ C1Yellin and Metcalfe 1980 TJohnson and Pollin 1981 T MWC7+Glaso 1985 T MWC7+ C2-C6Alston 1985 T C1N2 C2-C4,CO2Yuan et al. 2004 T MWC7+ C2-C6Shokir 2007 T MWC5+ C1N2 C2-C4,H2S,CO2

    CO2 with ImpuritiesYear

    Johnson and Pollin 1981 Gas compositionSebastian et al 1985 Gas compositionYuan et al. 2004 T MWC7+ C2-C6 Gas compositionShokir 2007 T MWC7+ C2-C6 Gas composition

    N2 and lean gas YearFiroozabadi and Aziz 1986 T MWC7+ C2-C5

    Hydrocarbon gas YearKuo 1985 T MWC5+

    Parameters

    Parameters

    Gas composition

    Parameters

    Parameters

    Estimation based on EOS calculations (T, compositions oil and gas).

  • 2009 Halliburton. All Rights Reserved. 17

    Shokir method

    Linear regression MethodsAlternating Conditional Expectation (ACE) Algorithms

    JPSE, 58 (2007) 173-185

  • 2009 Halliburton. All Rights Reserved. 18

    0 2000 4000 6000X

    -15100

    -15000

    -14900

    -14800

    -14700

    -14600

    -14500

    -14400

    -14300

    -14200

    -14100

    E

    L

    E

    V

    AQS0.550.50.450.40.350.30.250.20.15

    Run: wf-5sowsWaterflood (5-spot, original well spacing)Model 2 (24 Layer 3D)

    WCE

    WLWWater SaturationGrid Plane j=6

    WRW

    t = yr 2003.55 yrs Waterflooding

    API = 16o

    API = 8o

    API = 4o

    j=1

    j=6

    j=1k=12

    0

    500

    1000

    1500

    2000

    Y

    AQS0.550.50.450.40.350.30.250.20.15

    Run: wf-5sowsWaterflood (5-spot, original well spacing)Model 2 (24 Layer 3D)

    WLW

    Water Saturation

    WRW

    t = yr 2003.55 yrs Waterflooding

    WCEGrid Plane K=12

    J=1

    Pilot project design

    Reservoir parametersDepth 4421 mThickness 213 mPorosity 8 - 12 %Permeability 10-150 mDOil Gravity 26 APITemperature 146 CInitial pressure 791 BARBubble point pressure 267 BARMMP 499 BARRes. Pressure 506 BAR

  • 2009 Halliburton. All Rights Reserved. 19

    Cross section study results

    2000 2005 2010 2015 2020 2025 2030YEAR

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    0.55

    0.6

    0.65

    O

    i

    l

    R

    e

    c

    o

    v

    e

    r

    y

    (

    f

    r

    a

    c

    t

    i

    o

    n

    O

    O

    I

    P

    w

    i

    t

    h

    A

    P

    I

    >

    8

    o

    )

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    0.55

    0.6

    0.65

    5-spot-owsoriginal well spacing 5spt with infill

    9-spot with infill

    gas inj5-spt if9-spt if

    5-spt ows wf

    9-spt if wf

    9-spt if wag

    5-spt if wf

    5-spt if wag

    gas inj5-spt ows

    5-spt ows wag

    WaterfloodGas Injection1:1 WAG

  • 2009 Halliburton. All Rights Reserved. 20

    r, ft

    e

    l

    e

    v

    a

    t

    i

    o

    n

    0 100 200 300 400 500

    -14800

    -14700

    -14600

    -14500

    -14400

    InjectWaterat10,400psi Initial60dayswaterinjection GasSaturation

    31m 50m 75m 150mRUNwbprf360halfcycle

    r, ft

    e

    l

    e

    v

    a

    t

    i

    o

    n

    0 100 200 300 400 500

    -14800

    -14700

    -14600

    -14500

    -14400 AQSAT0.60.550.50.450.40.350.30.25

    InjectWaterat10,400psi

    Sw=Swi=.14

    WaterSaturation31m 50m 75m 150m

    .2cut-off

    r,ft

    e

    l

    e

    v

    a

    t

    i

    o

    n

    0 100 200 300 400 500

    -14800

    -14700

    -14600

    -14500

    -14400

    PRESSURE900089008800870086008500840083008200810080007900780077007600750074007300720071007000

    InjectWaterat10,400psi

    Pressure(psi)31m 50m 75m 150m

    presentation/wbprf3-xs.lay

    r,ft

    e

    l

    e

    v

    a

    t

    i

    o

    n

    0 100 200 300 400 500

    -14800

    -14700

    -14600

    -14500

    -14400 HCSAT0.80.750.70.650.60.550.50.450.40.350.30.250.20.15

    InjectWaterat10,400psi

    So=Sorw=.34 So=Soi=.86

    OilSaturation31m 50m 75m 150m

    Pilot test monitoring

    InjectorProduction Profile Log (PLT)

    Down Hole P and T measurements

    Water chemical tracer

    Gas Chemical tracer

    Observation wellProduction Profile Log (PLT)

    Down Hole P and T measurements

    Saturation logs

    Tracers

    Fluorbenzoic acid (Water)

    Perfluorcarbon Hydrocarbon (Gas)

    WAG Pilot Project Design

  • 2009 Halliburton. All Rights Reserved. 21

    Monitoring

    The Weyburn Monitoring Project

    3D- 3component and 3D-9 component geophysical survey

    Vertical Seismic Profiling (VSP) from surface to horizontal well

    Cross-well seismic between parallel

    Horizontal wells

    Single horizontal well seismic

    Source: K. Brown et al, Role of Enhanced Oil Recovery in carbon Dioxide Sequestration the Weyburn Monitoring Project, a case Study

  • 2009 Halliburton. All Rights Reserved. 22

    Novel EOR Technology

    Integration of CO2 storage and EOR

    Toe to heel air injection THAI (CAPRI)

    Solvent Vapour Extraction (SVX)

  • 2009 Halliburton. All Rights Reserved. 23

    Source: Gulraiz Khan, M.Sc. Dissertation 2009.

    Integration of CO2 storage and EOR

  • 2009 Halliburton. All Rights Reserved. 24

    Integration of CO2 storage and EOR

    Source: DOE/NETL Feb 2008

  • 2009 Halliburton. All Rights Reserved. 25

    THAI is a new combustion process

    Toe to heel air injection (THAI) is a new method of extracting oil from heavy oil deposits which may have significant advantages over existing methods. The method was developed by Malcolm Greaves of the University of Bath and has been patented by Petrobank.

  • 2009 Halliburton. All Rights Reserved. 26

    Solvent Vapour Extraction (SVX)

    Source: Petroleum Technology Research Centre (PTRC) JIVE Program

    JIVE said: For every billion barrels of oil produced by SVX instead of SAGD:

    85 millions tones of CO2 prevented form entering the atmosfere

    400 millions barrels of fresh water saved

    1.65 trillion cubit feet of natural gas not burned

  • Practical Applicationsand Novel EOR Methods Typical IOR/EOR Project WorkflowScreening criteria for EOR MethodsScreening for IOR/EOR methodsImportance of capillary number in defining EOREffect on reducing interfacial tensionEffect of mobility ratio in Sweep efficiency Laboratory investigationMMP CorrelationsShokir methodCross section study resultsMonitoringNovel EOR TechnologySolvent Vapour Extraction (SVX)