sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semedp.pdf ·...

34
Sensitivity analysis for nonlinear hyperbolic equations 7/4/2016 - Séminaire EDP Camilla Fiorini

Upload: others

Post on 26-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Sensitivity analysis for nonlinear hyperbolic equations

7/4/2016 - Séminaire EDP

Camilla Fiorini

Page 2: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

General framework

Model: PDEs with i.c and b.c. depending on parameters

Sensitivity Analysis: the study of how variations in the output of a model

can be attributed to different sources of uncertainty in the model input.

parameters = model inputs state variable = model output

1

Possible applications: optimisation estimate of close solutions uncertainty propagation

Page 3: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Sensitivity Analysis for PDEs

Continuous approach “differentiate then discretise”

Discrete approach “discretise then differentiate”

well-suited for realistic situations

no theoretical insight

must be repeated for new situations

differentiation of all numerical tricks required

difficult to deal with changing domains

non consistent with discrete evaluation of perturbed configuration

well-suited for a well-defined reduced set of equations

2

Page 4: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

State equations

If A(u) is diagonalisable, the system is strictly hyperbolic.

A(u) =@f

@u

Let be the vector of the state variables.u(x, t) 2 Rn

(@

t

u+ @

x

f(u) = 0 x 2 R, t > 0

u(x, 0) = g(x) x 2 R

(@

t

u+A(u)@x

u = 0 x 2 R, t > 0

u(x, 0) = g(x) x 2 R

3

Page 5: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Sensitivity equations

By a formal differentiation of the state equations, one obtains:

(@

t

u

p

+A(u)@x

u

p

+ @

p

(A(u))@x

u = 0 x 2 R, t > 0

u

p

(x, 0) = @

p

g(x) x 2 R

Let be the sensitivity with respect to the parameter p.@pu = up

(@

t

u

p

+ @

x

(A(u)up

) = 0 x 2 R, t > 0

u

p

(x, 0) = @

p

g(x) x 2 R

4

Page 6: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Global system

U =

uup

�M(U) =

A(u) 0

@p(A(u)) A(u)

Generally speaking, the global system is weakly hyperbolic.

By defining

one can write:

(@

t

U+M(U)@x

U = 0 x 2 R, t > 0

U(x, 0) = G(x) x 2 R

5

Page 7: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Weakly hyperbolic systems

Features of weakly hyperbolic systems: generation of Dirac’s distribution.

Example: Burger’s equation

If we consider the Riemann problem:

u(x, 0) =

(uL x < 0

uR x > 0

From another point of view: the sensitivity is the distributional derivative of the state.

6

with , in the sensitivityuL > uR

(@t

u+ u@x

u = 0

@t

up

+ u@x

(up

) + @x

(u)up

= 0

there’s a source term with as a coefficient @x

u

which generates a Dirac’s distribution.

Page 8: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Weakly hyperbolic systems

AIM: remove the Dirac from the simulations

kup(x, t)� u

np,ik 9 0 h ! 0

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3 Density sensitivity wrt left pressure - shock tubeAnalytical solutionNumerical solution

Page 9: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Numerical solution

Step 1: solution of the state with numerical methods for hyperbolic system

Step 2: solution of the sensitivity with a corrected numerical scheme

@t

u+A(u)@x

u = 0

@t

up

+ @p

(A(u))@x

u+A(u)@x

up

= 0

Suggested strategy

8

Page 10: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Numerical solution

Finite Volumes schemes:

HLL Roe

simple implementation

neglect contact discontinuities

solves exactly the shock

non entropic

Step 1: solution of the state with numerical methods for hyperbolic system

@t

u+A(u)@x

u = 0

Suggested strategy

8

u

n+1j = u

nj +

�x

�t

(Fj+ 12� Fj� 1

2)

Page 11: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Scheme correction

Rankine-Hugoniot conditions for the state:

f(uL)� f(uR) = (uL � uR)cs

Differentiation with respect to the parameter:

@p(f(uL)� f(uR)) = (up,L � up,R)cs + (uL � uR)@pcs

Difficulties:

estimate of

shock detection

@pcs

Suggested strategy

Step 2: solution of the sensitivity with a corrected numerical scheme

@t

up

+ @p

(A(u))@x

u+A(u)@x

up

= 0

9

Idea: apply the same scheme used for the state plus a correction.

Page 12: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Burger’s equation

M(U) =

u 0ua u

State equation:

Sensitivity equation:

Matrix of the global system:

M is not diagonalisable

(@

t

u

p

+ u@

x

u

p

+ u

p

@

x

u = 0

u

p

(x, 0) = h(x)

(@

t

u+ u@

x

u = 0

u(x, 0) = g(x)

10

Page 13: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Burger’s equation

It is possible to find an analytical solution using the method of characteristics

We look for a curve such that:xc(t)

0 =d

dt

u(xc(t), t) =@

@x

u(xc(t), t)dxc

dt

+@

@t

u(xc(t), t),

) dxc

dt

= u(xc(t), t), xc(0) = x0

Remark: u(xc(t), t) ⌘ u(xc(0), 0) = g(x0) 8t > 0

The characteristics are straight lines

11

Page 14: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Burger’s equation

Problem: intersection of characteristics

xc,1(t) = x1 + g(x1)t xc,2(t) = x2 + g(x2)t

Breaking time: the smallest t such that xc,1(t) = xc,2(t)

ts := � 1

min g0(x)

if

if

g

0(x) > 0 8x

9x : g

0(x) < 0

no intersection, the method is valid

the method is valid 8t < ts

8t

12

Page 15: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Burger’s equation

The state solution is known in an implicit form:

u(x, t) = g(x0 � u(x, t)t)

By differentiating it, we find an explicit form for the sensitivity:

up(x, t; p) =@

@x

g(x� u(x, t; p)t; p)(�up(x, t; p)t) +@

@p

g(x� u(x, t; p)t; p)

up(x, t) =h(x� u(x, t)t)

1 + tg

0(x� u(x, t)t)

13

Page 16: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Burger’s equation

When the characteristics intersect, a shock is generated

Rankine-Hugoniot conditions:(

dx

dt

= f(uR)�f(uL)uR�uL

= uR+uL2

x(ts

) = x

s

The mathematical solution is not unique, but the physical one is.

14

Page 17: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Burger’s equation

u

n+1j = u

nj � �t

�x

(f(unj )� f(un

j�1))

Roe’s scheme for the state:

Scheme for the sensitivity:

u

n+1aj = u

naj �

�t

�x

f(unj )� f(un

j�1)

u

nj � u

nj�1

(unaj � u

naj�1)

jj-1 j-½ j+½ … …

σ } Δt

15

Page 18: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Burger’s equation

u

n+1j = u

nj � �t

�x

(f(unj )� f(un

j�1))

u

n+1aj = u

naj �

�t

�x

(unajf

0(unj )� u

naj�1f

0(unj�1)) +

�t

�x

�aj(unj � u

nj�1)

�aj(unj � un

j�1) = (unajf

0(unj )� un

aj�1f0(un

j�1))�f(un

j )� f(unj�1)

unj � un

j�1

(unaj � un

aj�1).

Roe’s scheme for the state:

Scheme for the sensitivity:

u

n+1aj = u

naj �

�t

�x

f(unj )� f(un

j�1)

u

nj � u

nj�1

(unaj � u

naj�1)

correction

15

Page 19: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Numerical results

The Riemann problem

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

12

14t = 0.2205

NumericalAnalyticalNumerical wo corr

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25t = 0.5

NumericalAnalyticalNumerical wo corr

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0.2205

NumericalAnalytical

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0.5

NumericalAnalytical

g(x) =

(uL x < xc

uR x > xc.

h(x) =

(1 x < xc

0 x > xc.

16

Page 20: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Numerical results

The Riemann problem

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0.2205

NumericalAnalytical

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0.5

NumericalAnalytical

g(x) =

(uL x < xc

uR x > xc.

h(x) =

(1 x < xc

0 x > xc.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0.2205

NumericalAnalytical

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t = 0.5

NumericalAnalytical

16

Page 21: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Numerical results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

17

Page 22: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Numerical results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

18

Page 23: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Numerical results

g(x) =

(A sin

2(

⇡L (x� xc) +

⇡2 ) x 2 (xc � L

2 , xc +L2 )

0 sinon.

without shock detection

0 0.2 0.4 0.6 0.8 1-6

-4

-2

0

2

4

6

8

10t = 0.085568

NumericalAnalyticalNumerical wo corr

0 0.2 0.4 0.6 0.8 1-10

0

10

20

30

40

50

60

70t = 0.17575

NumericalAnalyticalNumerical wo corr

ts ' 0.191 p = xc

19

Page 24: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

Numerical results

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

Page 25: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

0 0.2 0.4 0.6 0.8 1-4

-2

0

2

4

6

8

10t = 0.085568

NumericalAnalyticalNumerical wo corr

0 0.2 0.4 0.6 0.8 1-10

0

10

20

30

40

50

60

70t = 0.17575

NumericalAnalyticalNumerical wo corr

Numerical results

g(x) =

(A sin

2(

⇡L (x� xc) +

⇡2 ) x 2 (xc � L

2 , xc +L2 )

0 sinon.

ts ' 0.191 p = xc

with a simple shock detector: uj�1 > uj > uj+1

21

Page 26: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

Numerical results

22

Page 27: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

1D Euler system

@F(U)

@U= M(U) =

A 0B A

U =

2

6666664

⇢⇢uEs⇢s⇢usE

3

7777775F(U) =

2

6666664

⇢u⇢u2 + pu(E + p)

s⇢us⇢u2 + 2⇢usu + sp

su(E + p) + u(sE + sp)

3

7777775

23

The matrix M(U) is not diagonalisable.

Page 28: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

1D Euler system

Riemann problem - analytical solution

24

Page 29: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

1D Euler system

Riemann problem - analytical solution

25

Page 30: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

1D Euler system

Riemann problem - shock detection

26

Page 31: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

1D Euler system

Riemann problem - shock detection

26

Page 32: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

1D Euler system

Shock tube

Velocity sensitivity Density sensitivity Pressure sensitivity

27

Page 33: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Camilla Fiorini Sensitivity analysis for hyperbolic equations / 28Séminaire EDP

Future developments

Develop better shock detection techniques

Implement Roe (or a more accurate scheme) for systems and compare with other approximate Riemann solvers

Sensitivity analysis for Euler 2D/3D equations

28

Page 34: Sensitivity analysis for nonlinear hyperbolic equationsfiorini.perso.math.cnrs.fr/semEDP.pdf · Camilla Fiorini Sensitivity analysis for hyperbolic equations Séminaire EDP / 28 General

Thank you for your attention