sensitivity analysis for nonlinear hyperbolic systems of ......sensitivity analysis for nonlinear...

47
Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Upload: others

Post on 09-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Sensitivity analysisfor nonlinear hyperbolic systems

of conservation laws

Camilla Fiorini

March 6th, 2019, Roscoff

Page 2: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Outline of the talk

‣ Sensitivity analysis

‣ Sensitivity analysis for hyperbolic equations

‣ Riemann problem for the Euler equations and their sensitivity

‣ Classical numerical schemes

‣ Anti-diffusive numerical schemes

‣ Applications

1

Page 3: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

‣ Sensitivity analysis for hyperbolic equations

‣ Riemann problem for the Euler equations and their sensitivity

‣ Classical numerical schemes

‣ Anti-diffusive numerical schemes

‣ Applications

Sensitivity analysis

Page 4: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Sensitivity analysis: study of how changes in the inputs of a model affect the outputs

inputparameters

output(state)model

a U

Sensitivity:@U

@a= Ua

2

Sensitivity analysis

Page 5: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28 3

analytical state model

analytical sensitivity model

discrete sensitivity model

differentiate

discretise

discrete state model

analytical state model

discrete sensitivity model

discretise

differentiate

Differentiate then discretiseDiscretise then differentiate

analytical sensitivity model

no discretisation of computational

facilitators

could lead to inconsistent gradients

Two approaches

Page 6: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Standard techniques of sensitivity analysis call for the differentiation of the state system:

(@tU+ @xF(U) = 0 ⌦⇥ (0, T ),

U(x, 0) = g(x) ⌦,

4

The global system, without the correction term, is only weakly hyperbolic.

The matrix of the global system has the following structure:

[8] Bardos, C., Pironneau, O. (2002). A formalism for the differentiation of conservation laws. Comptes Rendus Mathematique, 335(10), 839-845.

Standard techniques of sensitivity analysis

Page 7: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Standard techniques of sensitivity analysis call for the differentiation of the state system:

(@a(@tU) + @a(@xF(U)) = 0 ⌦⇥ (0, T ),

@aU(x, 0) = @ag(x) ⌦,

4

The global system, without the correction term, is only weakly hyperbolic.

The matrix of the global system has the following structure:

[8] Bardos, C., Pironneau, O. (2002). A formalism for the differentiation of conservation laws. Comptes Rendus Mathematique, 335(10), 839-845.

Standard techniques of sensitivity analysis

Page 8: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Standard techniques of sensitivity analysis call for the differentiation of the state system:

(@a(@tU) + @a(@xF(U)) = 0 ⌦⇥ (0, T ),

@aU(x, 0) = @ag(x) ⌦,

4

The global system, without the correction term, is only weakly hyperbolic.

The matrix of the global system has the following structure:

[8] Bardos, C., Pironneau, O. (2002). A formalism for the differentiation of conservation laws. Comptes Rendus Mathematique, 335(10), 839-845.

Standard techniques of sensitivity analysis

Page 9: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Standard techniques of sensitivity analysis call for the differentiation of the state system:

This can be done under hypotheses of regularity of the state U [8].

If these techniques are applied to hyperbolic equations, Dirac delta functions will appear in the sensitivity.

(@tUa + @xFa(U,Ua) = 0 ⌦⇥ (0, T ),

Ua(x, 0) = ga(x) ⌦,

4

The global system, without the correction term, is only weakly hyperbolic.

The matrix of the global system has the following structure:

[8] Bardos, C., Pironneau, O. (2002). A formalism for the differentiation of conservation laws. Comptes Rendus Mathematique, 335(10), 839-845.

Standard techniques of sensitivity analysis

Page 10: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

‣ Sensitivity analysis

‣ Riemann problem for the Euler equations and their sensitivity

‣ Classical numerical schemes

‣ Anti-diffusive numerical schemes

‣ Applications

Sensitivity analysis for hyperbolic equations

Page 11: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

In order to have a sensitivity system whose solution does not present Dirac delta functions, even when the state is discontinuous, we add a correction term [9]:

S =NsX

k=1

⇢⇢⇢k�(x� xk,s(t)),

(@tUa + @xFa(U,Ua) = S ⌦⇥ (0, T ),

Ua(x, 0) = ga(x) ⌦,

defined as follows:number of discontinuities

position of the k-th discontinuity

amplitude of the k-th correction (to be computed)

Remark: a shock detector is necessary to discretise such source term.

5

[9] Guinot, V., Delenne, C., Cappelaere, B. (2009). An approximate Riemann solver for sensitivity equations with discontinuous solutions. Advances in Water Resources, 32(1), 61-77.

Definition of the source term

Page 12: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

x1 x2xc

t1

t2�

To compute the amplitude of the correction, we consider an infinitesimal control volume containing a single discontinuity:

By integrating the sensitivity equations with the source term on the control volume, one has:

Rankine-Hugoniot conditions for the state:

Differentiating them w.r.t. the parameter:

Finally, we obtain the following amplitude:

⇢⇢⇢k = (U�a �U+

a )�k + F+a � F�

a

(U+ �U�)�k = F+ � F�

6

Definition of the source term

(U+a �U�

a )�k + (U+ �U�)�k,a + �k(@xU+ � @xU

�)@axk,s(t) =

= F+a � F�

a +

✓@F(U+)

@U@xU

+ � @F(U�)

@U@xU

�◆@axk,s(t).

<latexit sha1_base64="D0ddpcXuqXb2znX6NksrZ5wAeo4=">AAAEVHichVRba9swFHaTbuu6rZftcS9iZeDSJNhZk7YPHYVB2dPoYG4LVRZkWXZE5AuSsjYV+nH7E4P9lz3s2HFo04ZNYDj6vvOdq+2wEFxpz/u90miuPnn6bO35+ouXrzY2t7Zfn6t8IikLaC5yeRkSxQTPWKC5FuyykIykoWAX4fhTyV/8YFLxPPumpwUbpCTJeMwp0QANt1d+4ojFIK5CmZRHkWDWyCS0xuv4B0fefq/ldfofukf9IzAO/V6317frOGPXNE9TkkUGB9bglOhRGJvAPuBO77jTkgtZwjOjoDdtXRwMyfc91EaV0d7FiicpGY7RHgKuZu5wM24RC5zBC9XOVS4uiNSciOFNKW4vXCHI/ErQTRlKWVfvInuMMEbH+HReSWm0lyQRLNYuwrEk1MxDgXdV5669BwV2sY4y6DJV+18q0EiejPTyqm0HMxjubIrDrR2v41UHPTb82thx6nMGS7/FUU4nKcs0FUSpK98r9MCUiSi0uo4nihWEjknCrsDMSMrUwFTjsOg9IBGKcwlPplGF3lcYkio1TUPwLPeuHnIluIy7muj4cGB4Vkw0y+gsUTwRSOeofHNRxCWjWkzBIFRyqBXREYHBani/F7JoPr5d6MIUSVyIXKsaTWLBQ0nkFHqW+XUNl7L/4ZQI+hhVI1Iw1ZqJWjHXrdqvdAJX8/FYaUYEdA7b8h/u5rFx3u348Pl93d85Oaz3tua8dd45ruM7B86J89k5cwKHNtzGl8ZF47L5q/lnFf4SM9fGSq154yyc1Y2/vONvJQ==</latexit><latexit sha1_base64="D0ddpcXuqXb2znX6NksrZ5wAeo4=">AAAEVHichVRba9swFHaTbuu6rZftcS9iZeDSJNhZk7YPHYVB2dPoYG4LVRZkWXZE5AuSsjYV+nH7E4P9lz3s2HFo04ZNYDj6vvOdq+2wEFxpz/u90miuPnn6bO35+ouXrzY2t7Zfn6t8IikLaC5yeRkSxQTPWKC5FuyykIykoWAX4fhTyV/8YFLxPPumpwUbpCTJeMwp0QANt1d+4ojFIK5CmZRHkWDWyCS0xuv4B0fefq/ldfofukf9IzAO/V6317frOGPXNE9TkkUGB9bglOhRGJvAPuBO77jTkgtZwjOjoDdtXRwMyfc91EaV0d7FiicpGY7RHgKuZu5wM24RC5zBC9XOVS4uiNSciOFNKW4vXCHI/ErQTRlKWVfvInuMMEbH+HReSWm0lyQRLNYuwrEk1MxDgXdV5669BwV2sY4y6DJV+18q0EiejPTyqm0HMxjubIrDrR2v41UHPTb82thx6nMGS7/FUU4nKcs0FUSpK98r9MCUiSi0uo4nihWEjknCrsDMSMrUwFTjsOg9IBGKcwlPplGF3lcYkio1TUPwLPeuHnIluIy7muj4cGB4Vkw0y+gsUTwRSOeofHNRxCWjWkzBIFRyqBXREYHBani/F7JoPr5d6MIUSVyIXKsaTWLBQ0nkFHqW+XUNl7L/4ZQI+hhVI1Iw1ZqJWjHXrdqvdAJX8/FYaUYEdA7b8h/u5rFx3u348Pl93d85Oaz3tua8dd45ruM7B86J89k5cwKHNtzGl8ZF47L5q/lnFf4SM9fGSq154yyc1Y2/vONvJQ==</latexit><latexit sha1_base64="D0ddpcXuqXb2znX6NksrZ5wAeo4=">AAAEVHichVRba9swFHaTbuu6rZftcS9iZeDSJNhZk7YPHYVB2dPoYG4LVRZkWXZE5AuSsjYV+nH7E4P9lz3s2HFo04ZNYDj6vvOdq+2wEFxpz/u90miuPnn6bO35+ouXrzY2t7Zfn6t8IikLaC5yeRkSxQTPWKC5FuyykIykoWAX4fhTyV/8YFLxPPumpwUbpCTJeMwp0QANt1d+4ojFIK5CmZRHkWDWyCS0xuv4B0fefq/ldfofukf9IzAO/V6317frOGPXNE9TkkUGB9bglOhRGJvAPuBO77jTkgtZwjOjoDdtXRwMyfc91EaV0d7FiicpGY7RHgKuZu5wM24RC5zBC9XOVS4uiNSciOFNKW4vXCHI/ErQTRlKWVfvInuMMEbH+HReSWm0lyQRLNYuwrEk1MxDgXdV5669BwV2sY4y6DJV+18q0EiejPTyqm0HMxjubIrDrR2v41UHPTb82thx6nMGS7/FUU4nKcs0FUSpK98r9MCUiSi0uo4nihWEjknCrsDMSMrUwFTjsOg9IBGKcwlPplGF3lcYkio1TUPwLPeuHnIluIy7muj4cGB4Vkw0y+gsUTwRSOeofHNRxCWjWkzBIFRyqBXREYHBani/F7JoPr5d6MIUSVyIXKsaTWLBQ0nkFHqW+XUNl7L/4ZQI+hhVI1Iw1ZqJWjHXrdqvdAJX8/FYaUYEdA7b8h/u5rFx3u348Pl93d85Oaz3tua8dd45ruM7B86J89k5cwKHNtzGl8ZF47L5q/lnFf4SM9fGSq154yyc1Y2/vONvJQ==</latexit><latexit sha1_base64="D0ddpcXuqXb2znX6NksrZ5wAeo4=">AAAEVHichVRba9swFHaTbuu6rZftcS9iZeDSJNhZk7YPHYVB2dPoYG4LVRZkWXZE5AuSsjYV+nH7E4P9lz3s2HFo04ZNYDj6vvOdq+2wEFxpz/u90miuPnn6bO35+ouXrzY2t7Zfn6t8IikLaC5yeRkSxQTPWKC5FuyykIykoWAX4fhTyV/8YFLxPPumpwUbpCTJeMwp0QANt1d+4ojFIK5CmZRHkWDWyCS0xuv4B0fefq/ldfofukf9IzAO/V6317frOGPXNE9TkkUGB9bglOhRGJvAPuBO77jTkgtZwjOjoDdtXRwMyfc91EaV0d7FiicpGY7RHgKuZu5wM24RC5zBC9XOVS4uiNSciOFNKW4vXCHI/ErQTRlKWVfvInuMMEbH+HReSWm0lyQRLNYuwrEk1MxDgXdV5669BwV2sY4y6DJV+18q0EiejPTyqm0HMxjubIrDrR2v41UHPTb82thx6nMGS7/FUU4nKcs0FUSpK98r9MCUiSi0uo4nihWEjknCrsDMSMrUwFTjsOg9IBGKcwlPplGF3lcYkio1TUPwLPeuHnIluIy7muj4cGB4Vkw0y+gsUTwRSOeofHNRxCWjWkzBIFRyqBXREYHBani/F7JoPr5d6MIUSVyIXKsaTWLBQ0nkFHqW+XUNl7L/4ZQI+hhVI1Iw1ZqJWjHXrdqvdAJX8/FYaUYEdA7b8h/u5rFx3u348Pl93d85Oaz3tua8dd45ruM7B86J89k5cwKHNtzGl8ZF47L5q/lnFf4SM9fGSq154yyc1Y2/vONvJQ==</latexit>

⇢⇢⇢k = (U+ �U�)�k,a + �k(@xU+ � @xU

�)@axk,s(t)�✓@F(U+)

@U@xU

+ � @F(U�)

@U@xU

�◆@axk,s(t).

<latexit sha1_base64="/26OboynzVG/SjoT7CYjIAORQK8=">AAAEGnichVPLbhMxFJ0kPEp4tcAOgSwipERNopnQpMmiqBJSxLJITFspDpHH45lY43nIdmhTy2t+gq9hh9iy4Sf4BjzJVDQPgaXRXJ9zz3342l7GqJC2/atUrty6fefuzr3q/QcPHz3e3XtyKtIZx8TFKUv5uYcEYTQhrqSSkfOMExR7jJx50bucP/tMuKBp8lHOMzKOUZjQgGIkDTTZK32BPgmMeBFKxdT3GdGKh55Wdts5HNgH3abd7r3pDHoDY/Sdbqfb01WYkAucxjFKfAVdrWCM5NQLlKvXuOFfbphzWewpyKepnkTgCNSh+2kftID5tRpQ0DBGExU1kQb7QMGVmgo2qsMMcUkRm1zm4tbK1gS53iJwmYcSui4bQJsc6/EYCWQdwIAjrK5VAA4XJTX0DcjVqynzerepWv9SGQ2n4VRuL1C3J7s1u20vFtg0nMKoWcU6MaO7gn6KZzFJJGZIiJFjZ3Ks8ujY9FeFM0EyhCMUkpExExQTMVaLM9DgtUF8EKTcfIkEC/SmQqFYiHnsGc98emKdy8Ft3Ggmg/5Y0SSbSZLgZaJgxoBMQX7/gE85wZLNjYEwp6ZWgKfInKY0t3Qli6TR1UoXKguDjKVSFGgYMOpxxOemZ55eFHAu+x+OEcObqJiijIjmUtQMqGwWfrmTcVVvj4QkiJnOzbSc9dlsGqedtmMe0YeD2nG/mNuO9dx6ZdUtxzq0jq331onlWrj0u/ys/KL8svK18q3yvfJj6VouFZqn1sqq/PwDn0JeFQ==</latexit><latexit sha1_base64="/26OboynzVG/SjoT7CYjIAORQK8=">AAAEGnichVPLbhMxFJ0kPEp4tcAOgSwipERNopnQpMmiqBJSxLJITFspDpHH45lY43nIdmhTy2t+gq9hh9iy4Sf4BjzJVDQPgaXRXJ9zz3342l7GqJC2/atUrty6fefuzr3q/QcPHz3e3XtyKtIZx8TFKUv5uYcEYTQhrqSSkfOMExR7jJx50bucP/tMuKBp8lHOMzKOUZjQgGIkDTTZK32BPgmMeBFKxdT3GdGKh55Wdts5HNgH3abd7r3pDHoDY/Sdbqfb01WYkAucxjFKfAVdrWCM5NQLlKvXuOFfbphzWewpyKepnkTgCNSh+2kftID5tRpQ0DBGExU1kQb7QMGVmgo2qsMMcUkRm1zm4tbK1gS53iJwmYcSui4bQJsc6/EYCWQdwIAjrK5VAA4XJTX0DcjVqynzerepWv9SGQ2n4VRuL1C3J7s1u20vFtg0nMKoWcU6MaO7gn6KZzFJJGZIiJFjZ3Ks8ujY9FeFM0EyhCMUkpExExQTMVaLM9DgtUF8EKTcfIkEC/SmQqFYiHnsGc98emKdy8Ft3Ggmg/5Y0SSbSZLgZaJgxoBMQX7/gE85wZLNjYEwp6ZWgKfInKY0t3Qli6TR1UoXKguDjKVSFGgYMOpxxOemZ55eFHAu+x+OEcObqJiijIjmUtQMqGwWfrmTcVVvj4QkiJnOzbSc9dlsGqedtmMe0YeD2nG/mNuO9dx6ZdUtxzq0jq331onlWrj0u/ys/KL8svK18q3yvfJj6VouFZqn1sqq/PwDn0JeFQ==</latexit><latexit sha1_base64="/26OboynzVG/SjoT7CYjIAORQK8=">AAAEGnichVPLbhMxFJ0kPEp4tcAOgSwipERNopnQpMmiqBJSxLJITFspDpHH45lY43nIdmhTy2t+gq9hh9iy4Sf4BjzJVDQPgaXRXJ9zz3342l7GqJC2/atUrty6fefuzr3q/QcPHz3e3XtyKtIZx8TFKUv5uYcEYTQhrqSSkfOMExR7jJx50bucP/tMuKBp8lHOMzKOUZjQgGIkDTTZK32BPgmMeBFKxdT3GdGKh55Wdts5HNgH3abd7r3pDHoDY/Sdbqfb01WYkAucxjFKfAVdrWCM5NQLlKvXuOFfbphzWewpyKepnkTgCNSh+2kftID5tRpQ0DBGExU1kQb7QMGVmgo2qsMMcUkRm1zm4tbK1gS53iJwmYcSui4bQJsc6/EYCWQdwIAjrK5VAA4XJTX0DcjVqynzerepWv9SGQ2n4VRuL1C3J7s1u20vFtg0nMKoWcU6MaO7gn6KZzFJJGZIiJFjZ3Ks8ujY9FeFM0EyhCMUkpExExQTMVaLM9DgtUF8EKTcfIkEC/SmQqFYiHnsGc98emKdy8Ft3Ggmg/5Y0SSbSZLgZaJgxoBMQX7/gE85wZLNjYEwp6ZWgKfInKY0t3Qli6TR1UoXKguDjKVSFGgYMOpxxOemZ55eFHAu+x+OEcObqJiijIjmUtQMqGwWfrmTcVVvj4QkiJnOzbSc9dlsGqedtmMe0YeD2nG/mNuO9dx6ZdUtxzq0jq331onlWrj0u/ys/KL8svK18q3yvfJj6VouFZqn1sqq/PwDn0JeFQ==</latexit><latexit sha1_base64="/26OboynzVG/SjoT7CYjIAORQK8=">AAAEGnichVPLbhMxFJ0kPEp4tcAOgSwipERNopnQpMmiqBJSxLJITFspDpHH45lY43nIdmhTy2t+gq9hh9iy4Sf4BjzJVDQPgaXRXJ9zz3342l7GqJC2/atUrty6fefuzr3q/QcPHz3e3XtyKtIZx8TFKUv5uYcEYTQhrqSSkfOMExR7jJx50bucP/tMuKBp8lHOMzKOUZjQgGIkDTTZK32BPgmMeBFKxdT3GdGKh55Wdts5HNgH3abd7r3pDHoDY/Sdbqfb01WYkAucxjFKfAVdrWCM5NQLlKvXuOFfbphzWewpyKepnkTgCNSh+2kftID5tRpQ0DBGExU1kQb7QMGVmgo2qsMMcUkRm1zm4tbK1gS53iJwmYcSui4bQJsc6/EYCWQdwIAjrK5VAA4XJTX0DcjVqynzerepWv9SGQ2n4VRuL1C3J7s1u20vFtg0nMKoWcU6MaO7gn6KZzFJJGZIiJFjZ3Ks8ujY9FeFM0EyhCMUkpExExQTMVaLM9DgtUF8EKTcfIkEC/SmQqFYiHnsGc98emKdy8Ft3Ggmg/5Y0SSbSZLgZaJgxoBMQX7/gE85wZLNjYEwp6ZWgKfInKY0t3Qli6TR1UoXKguDjKVSFGgYMOpxxOemZ55eFHAu+x+OEcObqJiijIjmUtQMqGwWfrmTcVVvj4QkiJnOzbSc9dlsGqedtmMe0YeD2nG/mNuO9dx6ZdUtxzq0jq331onlWrj0u/ys/KL8svK18q3yvfJj6VouFZqn1sqq/PwDn0JeFQ==</latexit>

Page 13: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

‣ Sensitivity analysis

‣ Sensitivity analysis for hyperbolic equations

‣ Classical numerical schemes

‣ Anti-diffusive numerical schemes

‣ Applications

Riemann problem for the Euler equations and their sensitivity

Page 14: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

The Euler equations are:8<

:

@t⇢+ @x(⇢u) = 0,@t(⇢u) + @x(⇢u2 + p) = 0,@t(⇢E) + @x(u(⇢E + p)) = 0,

�1(U) = u� c,�2(U) = u,�3(U) = u+ c.

r1(U) = (1, u� c,H � uc)t,

r2(U) = (1, u, u2

2 )t,r3(U) = (1, u+ c,H + uc)t.

Eigenvalues: Eigenvectors:

Genuinely nonlinear

\begin{tikzpicture}[scale=1]\draw[->] (0,0) -- (5,0);\draw[->] (0,0) -- (0,2.5);\draw (2.5,-.1) -- (2.5, .1);\draw[blue] (2.5,0) -- (0.9,2.5);\draw[blue] (2.5,0) -- (1.1,2.5);\draw[blue] (2.5,0) -- (1.3,2.5);\draw[blue] (2.5,0) -- (1.5,2.5);\draw[blue] (2.5,0) -- (1.7,2.5);\draw[red, dashed, thick] (2.5,0) -- (2.7,2.5);\draw[red] (2.5,0) -- (4.2,2.5);\node[below] at (5,-.1) {$x$};\node[left] at (-.1,2.5) {$t$};\node[below] at (2.5,-.1) {$x_c$};\node[below] at (1.25,1.25) {$\mathbf{U}_L$};\node[below] at (2.3,2.2) {$\mathbf{U}^*_L$};\node[below] at (3.2,2.2) {$\mathbf{U}^*_R$};\node[below] at (3.75,1.25) {$\mathbf{U}_R$};\node[below] at (1.6,2.2) {$\widehat{\mathbf{U}}$};

\end{tikzpicture}

\begin{tikzpicture}[scale=1] \draw[->] (0,0) -- (5,0); \draw[->] (0,0) -- (0,2.5); \draw (2.5,-.1) -- (2.5, .1); \draw[red, dashed, thick] (2.5,0) -- (2.7,2.5); \draw[red] (2.5,0) -- (4.2,2.5); \node[below] at (2.3,2.2) {$\mathbf{U}^*_L$}; \node[below] at (3.2,2.2) {$\mathbf{U}^*_R$}; \node[below] at (3.75,1.25) {$\mathbf{U}_R$}; \draw[->] (0,0) -- (5,0); \draw[->] (0,0) -- (0,2.5); \draw (2.5,-.1) -- (2.5, .1); \draw[red, dashed, thick] (2.5,0) -- (2.7,2.5); \draw[red] (2.5,0) -- (1.7,2.5); \node[below] at (5,-.1) {$x$};

The Riemann problem for the Euler equations

7

Page 15: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

The Euler equations are:8<

:

@t⇢+ @x(⇢u) = 0,@t(⇢u) + @x(⇢u2 + p) = 0,@t(⇢E) + @x(u(⇢E + p)) = 0,

�1(U) = u� c,�2(U) = u,�3(U) = u+ c.

r1(U) = (1, u� c,H � uc)t,

r2(U) = (1, u, u2

2 )t,r3(U) = (1, u+ c,H + uc)t.

Eigenvalues: Eigenvectors:

Linearly degenerate

\begin{tikzpicture}[scale=1]\draw[->] (0,0) -- (5,0);\draw[->] (0,0) -- (0,2.5);\draw (2.5,-.1) -- (2.5, .1);\draw[blue] (2.5,0) -- (0.9,2.5);\draw[blue] (2.5,0) -- (1.1,2.5);\draw[blue] (2.5,0) -- (1.3,2.5);\draw[blue] (2.5,0) -- (1.5,2.5);\draw[blue] (2.5,0) -- (1.7,2.5);\draw[red, dashed, thick] (2.5,0) -- (2.7,2.5);\draw[red] (2.5,0) -- (4.2,2.5);\node[below] at (5,-.1) {$x$};\node[left] at (-.1,2.5) {$t$};\node[below] at (2.5,-.1) {$x_c$};\node[below] at (1.25,1.25) {$\mathbf{U}_L$};\node[below] at (2.3,2.2) {$\mathbf{U}^*_L$};\node[below] at (3.2,2.2) {$\mathbf{U}^*_R$};\node[below] at (3.75,1.25) {$\mathbf{U}_R$};\node[below] at (1.6,2.2) {$\widehat{\mathbf{U}}$};

\end{tikzpicture}

\begin{tikzpicture}[scale=1] \draw[->] (0,0) -- (5,0); \draw[->] (0,0) -- (0,2.5); \draw (2.5,-.1) -- (2.5, .1); \draw[red, dashed, thick] (2.5,0) -- (2.7,2.5); \draw[red] (2.5,0) -- (4.2,2.5); \node[below] at (2.3,2.2) {$\mathbf{U}^*_L$}; \node[below] at (3.2,2.2) {$\mathbf{U}^*_R$}; \node[below] at (3.75,1.25) {$\mathbf{U}_R$}; \draw[->] (0,0) -- (5,0); \draw[->] (0,0) -- (0,2.5); \draw (2.5,-.1) -- (2.5, .1); \draw[red, dashed, thick] (2.5,0) -- (2.7,2.5); \draw[red] (2.5,0) -- (1.7,2.5); \node[below] at (5,-.1) {$x$};

The Riemann problem for the Euler equations

7

Page 16: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

The Euler equations are:8<

:

@t⇢+ @x(⇢u) = 0,@t(⇢u) + @x(⇢u2 + p) = 0,@t(⇢E) + @x(u(⇢E + p)) = 0,

�1(U) = u� c,�2(U) = u,�3(U) = u+ c.

r1(U) = (1, u� c,H � uc)t,

r2(U) = (1, u, u2

2 )t,r3(U) = (1, u+ c,H + uc)t.

Eigenvalues: Eigenvectors:\begin{tikzpicture}[scale=1]

\draw[->] (0,0) -- (5,0);\draw[->] (0,0) -- (0,2.5);\draw (2.5,-.1) -- (2.5, .1);\draw[blue] (2.5,0) -- (0.9,2.5);\draw[blue] (2.5,0) -- (1.1,2.5);\draw[blue] (2.5,0) -- (1.3,2.5);\draw[blue] (2.5,0) -- (1.5,2.5);\draw[blue] (2.5,0) -- (1.7,2.5);\draw[red, dashed, thick] (2.5,0) -- (2.7,2.5);\draw[red] (2.5,0) -- (4.2,2.5);\node[below] at (5,-.1) {$x$};\node[left] at (-.1,2.5) {$t$};\node[below] at (2.5,-.1) {$x_c$};\node[below] at (1.25,1.25) {$\mathbf{U}_L$};\node[below] at (2.3,2.2) {$\mathbf{U}^*_L$};\node[below] at (3.2,2.2) {$\mathbf{U}^*_R$};\node[below] at (3.75,1.25) {$\mathbf{U}_R$};\node[below] at (1.6,2.2) {$\widehat{\mathbf{U}}$};

\end{tikzpicture}

x

t

xc

UL

U⇤L U⇤

R

UR

bUR

x

t

xc

UL

U⇤L U⇤

R

UR

bUL

bUL

x

t

xc

UL

U⇤L U⇤

R

UR

bURU⇤

L U⇤R

UR

x

t

xc

UL

\begin{tikzpicture}[scale=1] \draw[->] (0,0) -- (5,0); \draw[->] (0,0) -- (0,2.5); \draw (2.5,-.1) -- (2.5, .1); \draw[red, dashed, thick] (2.5,0) -- (2.7,2.5); \draw[red] (2.5,0) -- (4.2,2.5); \node[below] at (2.3,2.2) {$\mathbf{U}^*_L$}; \node[below] at (3.2,2.2) {$\mathbf{U}^*_R$}; \node[below] at (3.75,1.25) {$\mathbf{U}_R$}; \draw[->] (0,0) -- (5,0); \draw[->] (0,0) -- (0,2.5); \draw (2.5,-.1) -- (2.5, .1); \draw[red, dashed, thick] (2.5,0) -- (2.7,2.5); \draw[red] (2.5,0) -- (1.7,2.5); \node[below] at (5,-.1) {$x$};

The Riemann problem for the Euler equations

7

Page 17: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

The sensitivity system is:�1(U) = u� c,�2(U) = u,�3(U) = u+ c.

Eigenvalues:8<

:

@t⇢a + @x(⇢u)a = S1,@t(⇢u)a + @x(⇢au2 + 2⇢uua + pa) = S2,@t(⇢E)a + @x(ua(⇢E + p) + u((⇢E)a + pa)) = S3,

x

t

xc

Ua,L

U⇤a,L U⇤

a,R

Ua,R

bUa,L

\begin{tikzpicture}[scale=1] \draw[->] (0,0) -- (5,0); \draw[->] (0,0) -- (0,2.5); \draw (2.5,-.1) -- (2.5, .1); \draw[blue, very thick] (2.5,0) -- (0.9,2.5); \draw[blue] (2.5,0) -- (1.1,2.5); \draw[blue] (2.5,0) -- (1.3,2.5); \draw[blue] (2.5,0) -- (1.5,2.5); \draw[blue, very thick] (2.5,0) -- (1.7,2.5); \draw[red, dashed, thick] (2.5,0) -- (2.7,2.5); \draw[red] (2.5,0) -- (4.2,2.5); \node[below] at (5,-.1) {$x$}; \node[left] at (-.1,2.5) {$t$}; \node[below] at (2.5,-.1) {$x_c$}; \node[below] at (1.25,1.25) {$\mathbf{U}_{a,L}$}; \node[below] at (2.3,2.2) {$\mathbf{U}^*_{a,L}$}; \node[below] at (3.2,2.2) {$\mathbf{U}^*_{a,R}$}; \node[below] at (3.75,1.25) {$\mathbf{U}_{a,R}$}; \node[below] at (1.6,2.2) {$\widehat{\mathbf{U}}_{a,L}$};\end{tikzpicture}

x

t

xc

Ua,L

U⇤a,L

U⇤a,R

Ua,R

bUa,R

bUa,L

x

t

xc

Ua,L

U⇤a,L

U⇤a,R

Ua,R

bUa,RU⇤a,L U⇤

a,R

Ua,R

x

t

xc

Ua,L

\begin{tikzpicture}[scale=1] \draw[->] (0,0) -- (5,0); \draw[->] (0,0) -- (0,2.5); \draw (2.5,-.1) -- (2.5, .1); \draw[red, dashed, thick] (2.5,0) -- (2.7,2.5); \draw[red] (2.5,0) -- (4.2,2.5); \node[below] at (2.3,2.2) {$\mathbf{U}^*_{a,L}$}; \node[below] at (3.2,2.2) {$\mathbf{U}^*_{a,R}$}; \node[below] at (3.75,1.25) {$\mathbf{U}_{a,R}$}; \draw[->] (0,0) -- (5,0); \draw[->] (0,0) -- (0,2.5); \draw (2.5,-.1) -- (2.5, .1); \draw[red, dashed, thick] (2.5,0) -- (2.7,2.5); \draw[red] (2.5,0) -- (1.7,2.5); \node[below] at (5,-.1) {$x$};

The Riemann problem for the sensitivity equations

8

Page 18: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

‣ Sensitivity analysis

‣ Sensitivity analysis for hyperbolic equations

‣ Riemann problem for the Euler equations and their sensitivity

‣ Anti-diffusive numerical schemes

‣ Applications

Classical numerical schemes

Page 19: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Step 0 : initial data discretisation

Step 1 : solution of a Riemann problem for each interface obtaining

Step 2 : average

Godunov-type schemes

Vn+1j =

1

�x

Z xj+1/2

xj�1/2

v(x, tn+1)dx

\mathbf{V}^{n+1}_j = \frac{1}{\Delta x} v(x, tn+1)xj�1/2

approximate Riemann solvers are used

Remark: the state and the sensitivity systems are not solved as a global system.

Classical numerical schemes

9

Page 20: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Classical numerical schemes

10

(@tU+ @xF(U) = 0

@tUa + @xFa(U,Ua) = S(U) S(U) =NsX

k=1

�a,k(U+k �U�

k )

Remark: HLL-type schemes cannot be used for the state, two intermediate star states are necessary to have a well-defined the source term for the sensitivity.

First order Roe-type scheme

Approximate Riemann solver for the state

�ROE

1 = u� c �ROE

2 = u �ROE

3 = u+ c Roe-averaged eigenvalues

UR �UL =3X

k=1

↵iri decomposition along Roe-averaged eigenvectors

U⇤L = UL + ↵1r1 U⇤

R = UR � ↵3r3

Page 21: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Approximate Riemann solvers for the sensitivity

‣ HLL-type scheme: simpler structure than the state solver. HLL consistency conditions yield:

U⇤a,L = Ua,L + ↵1,ar1 + ↵1r1,a U⇤

a,R = Ua,R � ↵3,ar3 � ↵3r3,a

U⇤a,j�1/2 =

1

�ROE3 � �ROE

1

⇣�ROE

3 Un

a,j� �ROE

1 Un

a,j�1 � Fa(Uj ,Ua,j) + Fa(Uj�1,Ua,j�1) + Sj�1/2

Sj�1/2 =@a�ROE

1,j�1/2(U⇤L,j�1/2 �Uj�1)d1,j�1/2

+@a�ROE

2,j�1/2(U⇤R,j�1/2 �U⇤

L,j�1/2)

+@a�ROE

3,j�1/2(Uj �U⇤R,j�1/2)d3,j�1/2

‣ HLLC-type scheme: same structure as the state. HLL consistency conditions + Rankine-Hugoniot conditions. Equivalent to:

Classical numerical schemes

11

Page 22: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

⇢pL(x, T )

0 0.2 0.4 0.6 0.8 1

�0.5

0

0.5

1

1.5

2 Numerical S = 0Exact

Classical numerical schemes

12

Page 23: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

⇢pL(x, T )

0 0.2 0.4 0.6 0.8 1

�0.4

�0.2

0

Classical numerical schemes

12

Page 24: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

⇢pL(x, T )

0 0.2 0.4 0.6 0.8 1

�0.4

�0.2

0

Exact

1st

order - HLLC

2nd

order - HLLC

Classical numerical schemes

13

Page 25: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5 ExactGodunovRoe IRoe II

0 0.2 0.4 0.6 0.8 1

�3

�2.5

�2

�1.5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

�10

�8

�6

�4

�2

0

⌧(x, T )

⌧a(x, T ) ua(x, T )

u(x, T )

Isolated shock for the p-system

14

Page 26: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

‣ Sensitivity analysis

‣ Sensitivity analysis for hyperbolic equations

‣ Riemann problem for the Euler equations and their sensitivity

‣ Classical numerical schemes

‣ Applications

Anti-diffusive numerical schemes

Page 27: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Step 0 : initial data discretisation

Step 1 : solution of the Riemann problems, one for each interface

Step 2 : average

t

xxj�1/2

Uj�1 Uj

xj+1/2

Uj+1

t

xxj�1/2

Uj�1 Uj

xj+1/2

Uj+1

Scheme without numerical diffusion

15

Page 28: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Step 0 : initial data discretisation

Step 1 : solution of the Riemann problems, one for each interface

Step 2 : definition of a staggered mesh on which the average is performed [11]

xj�1/2 = xj�1/2 + �j�1/2�t

t

x

xj�1/2 xj+1/2

xj�1/2

Uj�1 Uj

xj+1/2

Uj+1

t

xxj�1/2

Uj�1 Uj

xj+1/2

Uj+1

t

xxj�1/2

Uj�1 Uj

xj+1/2

Uj+1

[11] Chalons, C., Goatin, P. (2008). Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling. Interfaces and Free Boundaries, 10(2), 197-221.

Scheme without numerical diffusion

15

Page 29: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Step 0 : initial data discretisation

Step 1 : solution of the Riemann problems, one for each interface

Step 2 : definition of a staggered mesh on which the average is performed

Step 3 : projection on the initial mesh [12]\begin{tikzpicture}% cn\draw[thick, blue] (0, 2) -- (6, 2);\draw[thick, dashed, blue] (-.5, 2) -- (0, 2);\draw[thick, dashed, blue] (6, 2) -- (6.5, 2);\foreach \i in {0,2,4,6} \draw [blue](\i, 1.9) -- (\i, 2.1);\node [above] at (1, 2.1) {${\color{blue}\mathbf{U}_{j-1}}$};\node [above] at (3, 2.1) {${\color{blue}\mathbf{U}_j}$};\node [above] at (5, 2.1) {${\color{blue}\mathbf{U}_{j+1}}$};% cd\def\k{1.7};\draw[thick, red] (0, \k) -- (6, \k);\draw[thick, dashed, red] (-.5, \k) -- (0, \k);\draw[thick, dashed, red] (6,\k) -- (6.5, \k);\draw [red](.15, \k-.1) -- (0.15, \k+.1);\draw [red](2.4, \k-.1) -- (2.4, \k+.1);\draw [red](3.75, \k-.1) -- (3.75, \k+.1);\draw [red](6, \k-.1) -- (6, \k+.1);\node[below] at (1.275, \k-.1) {${\color{red}\overline{\mathbf{U}}_{j-1}}$};\node[below] at (3.075, \k-.1) {${\color{red}\overline{\mathbf{U}}_{j}}$};\node[below] at (4.875, \k-.1) {${\color{red}\overline{\mathbf{U}}_{j+1}}$};

Uj�1 Uj Uj+1

Uj�1 Uj Uj+1

Uj =

8><

>:

Uj�1 if ↵ 2�0, �t

�x max(�j�1/2, 0)�,

Uj if ↵ 2⇥�t�x max(�j�1/2, 0), 1 +

�t�x min(�j+1/2, 0)

�,

Uj+1 if ↵ 2⇥1 + �t

�x min(�j+1/2, 0), 1�.

↵ ⇠ U([0, 1])

[12] Glimm, J. (1965). Solutions in the large for nonlinear hyperbolic systems of equations. Communications on pure and applied mathematics, 18(4), 697-715.

Scheme without numerical diffusion

15

Page 30: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Exact

First order

First order AD

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

�0.4

�0.2

0

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u(x, T )⇢(x, T ) p(x, T )

ppL(x, T )upL(x, T )⇢pL(x, T )

Numerical results

16

Page 31: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

0.64 0.65 0.66 0.67 0.68 0.69 0.7

0

0.2

0.4

0.6

0.8

1

0.64 0.65 0.66 0.67 0.68 0.69 0.7

0.15

0.2

0.25

Exact

First order

First order AD

0.64 0.65 0.66 0.67 0.68 0.69 0.7

0.1

0.15

0.2

0.25

0.3

0.4 0.45 0.5 0.55 0.6 0.65 0.7

0

0.2

0.4

0.6

0.4 0.45 0.5 0.55 0.6 0.65 0.7

0

0.1

0.2

0.3

0.4

0.5

u(x, T )⇢(x, T ) p(x, T )

ppL(x, T )upL(x, T )⇢pL(x, T )

0.6 0.62 0.64 0.66 0.68 0.7

0

0.05

0.1

Numerical results

16

Page 32: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

10�5

10�4

10�3

10�2

10�4

10�3

10�2 Roe I

Roe II

Roe I AD

Roe II AD

10�5

10�4

10�3

10�2

10�5

10�4

10�3

10�2

Roe I

Roe II

Roe I AD

Roe II AD

10�5

10�4

10�3

10�2

10�5

10�4

10�3

10�2 Roe I

Roe II

Roe I AD

Roe II AD

10�5

10�4

10�3

10�2

10�3

10�2

Roe I

Roe II

Roe I AD

Roe II AD

10�5

10�4

10�3

10�2

10�3

10�2

Roe I

Roe II

Roe I AD

Roe II AD

10�5

10�4

10�3

10�2

10�3

10�2

Roe I

Roe II

Roe I AD

Roe II AD

k⇢expL(x, T )� ⇢pL(x, T )kL1(0,1) kuex

pL(x, T )� upL(x, T )kL1(0,1) kpexpL

(x, T )� ppL(x, T )kL1(0,1)

kpex(x, T )� p(x, T )kL1(0,1)kuex(x, T )� u(x, T )kL1(0,1)k⇢ex(x, T )� ⇢(x, T )kL1(0,1)

Convergence

17

Page 33: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

‣ Sensitivity analysis

‣ Sensitivity analysis for hyperbolic equations

‣ Riemann problem for the Euler equations and their sensitivity

‣ Classical numerical schemes

‣ Anti-diffusive numerical schemes

‣ Applications

Page 34: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Let a be a gaussian random vector, with the following average and variance:

µa =

2

64µa1

...µaM

3

75 , �a =

2

6664

�2a1

cov(a1, a2) . . . cov(a1, aM )cov(a1, a2) �2

a2. . . cov(a2, aM )

.... . .

...cov(a1, aM ) . . . �2

aM

3

7775,

Aim: determine a confidence interval CIX = [µX � �X , µX + �X ]

Monte Carlo approach: N samples of the state

�2X =

1

N � 1

NX

k=1

|µX �Xk|2µX =1

N

NX

k=1

Xk

Xk

Uncertainty quantification

18

Page 35: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Sensitivity approach: let us consider the following first order Taylor expansion

µX = E[X(a)] = X(µa) +MX

i=1

Xai(µa)E[ai � µai ] = X(µa),

Then, computing, the average one has:

And for the variance:

�2X = E[(X(a)� µX)2] = E

2

4

MX

i=1

Xai(µa)(ai � µai)

!23

5 =

=MX

i=1

X2ai(µa)E[(ai � µai)

2] +MX

i,j=1i 6=j

Xai(µa)Xaj (µa)E[(ai � µai)(aj � µaj )].

Therefore, we have the following first order estimates:

µX = X(µa), �2X =

MX

i=1

X2ai�2ai

+MX

i,j=1i 6=j

XaiXajcov(ai, aj).

Uncertainty quantification

19

Xpaq “ Xpµaq `Mÿ

i“1

pai ´ µaiqXaipµaq ` op}a ´ µa}2q<latexit sha1_base64="X75wKkvV7dkTRK1BFqQsKUYHr9I=">AAADMHichVFdi9NAFJ3Er3X96io+CTpYhBa7JVmE3ZfKgi++CCvY3ULTDTfTSTt0kgwzN64xmx/gk//FX6NP4qsv/gUnbcDtdsELISfnnpO5d06kpDDoeT8c99r1Gzdvbd3evnP33v0HrZ2HxybLNeNDlslMjyIwXIqUD1Gg5COlOSSR5CfR4k3dP/nItRFZ+gELxScJzFIRCwZoqbD1ZdQJEsB5FJdQdemA1t95eJF7SYOpMEpCYbCQnAYmT8JSDPzq9F0HQrFbG0oLqu5o9b7iF1knOP/H7K4LgvPTvW7Yant9b1l0E/gNaJOmjsId52swzVie8BSZBGPGvqdwUoJGwSSvtoPccAVsATM+tjCFhJtJubyzir6wzJTGmbZPinTJXnSUkBhTJJFV1nOay72avKo3zjE+mJQiVTnylK0OinNJMaN1AHQqNGcoCwuAaWFnpWwOGhjamNZOQbH4vLZFqWaxkhmahp3FUkQadGF31tlZQ9e2//EMJNtkzRwUN72VqRcL7DW6WmSl5euBQQ7Sbr42Vn0JEH2qbIT+5cA2wfFe3/f6/vtX7cODJswt8oQ8Jx3ik31ySN6SIzIkjPxxHjtPnWfuN/e7+9P9tZK6TuN5RNbK/f0XBroMSQ==</latexit><latexit sha1_base64="X75wKkvV7dkTRK1BFqQsKUYHr9I=">AAADMHichVFdi9NAFJ3Er3X96io+CTpYhBa7JVmE3ZfKgi++CCvY3ULTDTfTSTt0kgwzN64xmx/gk//FX6NP4qsv/gUnbcDtdsELISfnnpO5d06kpDDoeT8c99r1Gzdvbd3evnP33v0HrZ2HxybLNeNDlslMjyIwXIqUD1Gg5COlOSSR5CfR4k3dP/nItRFZ+gELxScJzFIRCwZoqbD1ZdQJEsB5FJdQdemA1t95eJF7SYOpMEpCYbCQnAYmT8JSDPzq9F0HQrFbG0oLqu5o9b7iF1knOP/H7K4LgvPTvW7Yant9b1l0E/gNaJOmjsId52swzVie8BSZBGPGvqdwUoJGwSSvtoPccAVsATM+tjCFhJtJubyzir6wzJTGmbZPinTJXnSUkBhTJJFV1nOay72avKo3zjE+mJQiVTnylK0OinNJMaN1AHQqNGcoCwuAaWFnpWwOGhjamNZOQbH4vLZFqWaxkhmahp3FUkQadGF31tlZQ9e2//EMJNtkzRwUN72VqRcL7DW6WmSl5euBQQ7Sbr42Vn0JEH2qbIT+5cA2wfFe3/f6/vtX7cODJswt8oQ8Jx3ik31ySN6SIzIkjPxxHjtPnWfuN/e7+9P9tZK6TuN5RNbK/f0XBroMSQ==</latexit><latexit sha1_base64="X75wKkvV7dkTRK1BFqQsKUYHr9I=">AAADMHichVFdi9NAFJ3Er3X96io+CTpYhBa7JVmE3ZfKgi++CCvY3ULTDTfTSTt0kgwzN64xmx/gk//FX6NP4qsv/gUnbcDtdsELISfnnpO5d06kpDDoeT8c99r1Gzdvbd3evnP33v0HrZ2HxybLNeNDlslMjyIwXIqUD1Gg5COlOSSR5CfR4k3dP/nItRFZ+gELxScJzFIRCwZoqbD1ZdQJEsB5FJdQdemA1t95eJF7SYOpMEpCYbCQnAYmT8JSDPzq9F0HQrFbG0oLqu5o9b7iF1knOP/H7K4LgvPTvW7Yant9b1l0E/gNaJOmjsId52swzVie8BSZBGPGvqdwUoJGwSSvtoPccAVsATM+tjCFhJtJubyzir6wzJTGmbZPinTJXnSUkBhTJJFV1nOay72avKo3zjE+mJQiVTnylK0OinNJMaN1AHQqNGcoCwuAaWFnpWwOGhjamNZOQbH4vLZFqWaxkhmahp3FUkQadGF31tlZQ9e2//EMJNtkzRwUN72VqRcL7DW6WmSl5euBQQ7Sbr42Vn0JEH2qbIT+5cA2wfFe3/f6/vtX7cODJswt8oQ8Jx3ik31ySN6SIzIkjPxxHjtPnWfuN/e7+9P9tZK6TuN5RNbK/f0XBroMSQ==</latexit><latexit sha1_base64="X75wKkvV7dkTRK1BFqQsKUYHr9I=">AAADMHichVFdi9NAFJ3Er3X96io+CTpYhBa7JVmE3ZfKgi++CCvY3ULTDTfTSTt0kgwzN64xmx/gk//FX6NP4qsv/gUnbcDtdsELISfnnpO5d06kpDDoeT8c99r1Gzdvbd3evnP33v0HrZ2HxybLNeNDlslMjyIwXIqUD1Gg5COlOSSR5CfR4k3dP/nItRFZ+gELxScJzFIRCwZoqbD1ZdQJEsB5FJdQdemA1t95eJF7SYOpMEpCYbCQnAYmT8JSDPzq9F0HQrFbG0oLqu5o9b7iF1knOP/H7K4LgvPTvW7Yant9b1l0E/gNaJOmjsId52swzVie8BSZBGPGvqdwUoJGwSSvtoPccAVsATM+tjCFhJtJubyzir6wzJTGmbZPinTJXnSUkBhTJJFV1nOay72avKo3zjE+mJQiVTnylK0OinNJMaN1AHQqNGcoCwuAaWFnpWwOGhjamNZOQbH4vLZFqWaxkhmahp3FUkQadGF31tlZQ9e2//EMJNtkzRwUN72VqRcL7DW6WmSl5euBQQ7Sbr42Vn0JEH2qbIT+5cA2wfFe3/f6/vtX7cODJswt8oQ8Jx3ik31ySN6SIzIkjPxxHjtPnWfuN/e7+9P9tZK6TuN5RNbK/f0XBroMSQ==</latexit>

Page 36: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Test case:

Riemann problem with uncertain parameters: a = (⇢L, ⇢R, uL, uR, pL, pR)t

µa = (1, 0.125, 0, 0, 1, 0.1)t, �a = diag(0.001, 0.000125, 0.0001, 0.0001, 0.001, 0.0001).

with the following average and covariance matrix:

�2X =

6X

i=1

X2ai�2ai

Since the covariance matrix is diagonal, the previous estimate is simplified:

Uncertainty quantification

20

Page 37: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Monte Carlo method:

Sensitivity method without correction:

u

u

p

p

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

�0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

�0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1�6

�4

�2

0

2

4

6

0 0.2 0.4 0.6 0.8 1

�1

0

1

Uncertainty quantification

21

Page 38: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Monte Carlo method:

Sensitivity method without correction:

u

u

p

p

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

�0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1�0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Uncertainty quantification

21

Page 39: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Monte Carlo method:

Sensitivity method with correction (diffusive method):

u

u

p

p

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

�0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Uncertainty quantification

22

Page 40: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

Monte Carlo method:

Sensitivity method with correction (anti-diffusive method):

u

u

p

p

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

�0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Uncertainty quantification

23

Page 41: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

8<

:

@t(h⇢) + @x(h⇢u) = 0,@t(h⇢u) + @x(h⇢u2 + p) = p@xh,@t(h⇢E) + @x(hu(⇢E + p)) = 0,

The quasi-1D Euler equations are:

J(U) =1

2kp� p⇤k2L2Cost functional:

mina2A

J(U)Optimization problem: subject to (1).

(1)

+b.c.

\begin{tikzpicture}

yticklabels={$1$,$2$}]\addplot [samples=200,smooth, very thick, blue] {2-sin(deg((x-0.2)*pi/0.2-pi*0.5))*sin(deg((x-0.2)*pi/0.2-pi*0.5))*(x>0.1)*(x<0.3)};\addplot[|-|] coordinates {(0.1,1.5) (0.3,1.5)};\node[below] at (axis cs: 0.2,1.5) {$\ell$};\end{axis}

xc

1

2

`

h(x)

Parameters: a = (xc, `)t

Target pressure: p⇤ = p(xc = 0.5, ` = 0.5)

Gradient: raJ(U) =

(p� p⇤, pxc)L2

(p� p⇤, p`)L2

Optimization

24

Page 42: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

\begin{tikzpicture}

yticklabels={$1$,$2$}]\addplot [samples=200,smooth, very thick, blue] {2-sin(deg((x-0.2)*pi/0.2-pi*0.5))*sin(deg((x-0.2)*pi/0.2-pi*0.5))*(x>0.1)*(x<0.3)};\addplot[|-|] coordinates {(0.1,1.5) (0.3,1.5)};\node[below] at (axis cs: 0.2,1.5) {$\ell$};\end{axis}

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

p⇤(x) J(xc, `)

Boundary conditions:‣ inlet: enthalpy and total pressure ‣ outlet: pressure

HL ptot,L

pR

8>>>><

>>>>:

H = E +p

⇢,

p = (� � 1)

✓⇢E � 1

2⇢u

2

◆,

ptot = p+1

2⇢u

2.

These b.c. provide a discontinuous solution [13] 8a 2 A.

[13] Giles, M. B., & Pierce, N. A. (2001). Analytic adjoint solutions for the quasi-one-dimensional Euler equations. Journal of Fluid Mechanics, 426, 327-345.

Optimization

25

Page 43: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

�0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

With correctionWithout correction

xc

`

Optimization

26

Page 44: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

0.35 0.4 0.45 0.5 0.55 0.60.35

0.4

0.45

0.5

0.55With correction

Without correction

xc

`

Optimization

26

Page 45: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

log(krJk)log(J)

0 10 20 30

�6

�4

�2

Without correctionWith correction

0 10 20 30

�2

�1

0 Without correctionWith correction

iterations iterations

Optimization

27

Page 46: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Camilla Fiorini Sensitivity Analysis for nonlinear hyperbolic PDEs / 28

‣ Estimate of the variance of the shock position ‣ Effects of the numerical diffusion for the applications ‣ Extension to 2D ‣ Extension to different PDEs systems

‣ We defined a sensitivity system valid in case of discontinuous state ‣ The correction term is well defined ‣ The correction term is important in applications

Conclusion:

Future development:

Conclusion and perspective

28

Page 47: Sensitivity analysis for nonlinear hyperbolic systems of ......Sensitivity analysis for nonlinear hyperbolic systems of conservation laws Camilla Fiorini March 6th, 2019, Roscoff

Thank youfor your attention!