session 3a overheads

35
 Reliability-based Models Ot her Ti me Dependent Fail ure Causes

Upload: rodolfo

Post on 27-Mar-2016

220 views

Category:

Documents


0 download

DESCRIPTION

pipeline risk

TRANSCRIPT

Page 1: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 1/34

Reliability-based Models

Other Time Dependent Failure Causes

Page 2: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 2/34

advantage

technologycreates

C-FERTechnologies

Time-dependent Failure Causes

Mechanisms addressed

Metal loss corrosion● external

● internal

● Cracks● manufacturing induced cracking● stress corrosion cracking

● Dent/gouge defects

Ground movement● transverse

● longitudinal

Page 3: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 3/34

advantage

technologycreates

C-FERTechnologies

Recall Failure Rate Calculation

 f  d  f     pn   ×=

Failure Rate(per km yr)

Probability of Failure(per defect)

Frequency of Defects

(per km yr)

For ground movement: defect = damage site

Page 4: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 4/34

advantage

technologycreates

C-FERTechnologies

Defect Attributes

● Existing damage●

Initiated in the past and is currently present● Density: Number of defects per km

● Severity: Defect size distributions

● Growth: Size growth distributions

● Subsequent damage*● Initiates in the future

● Initiation rate: Number of new defects per km yr 

● Severity: Defect size distributions at initiation

● Growth: Size growth distributions

* Not applicable to manufacturing cracks or ground movement 

Page 5: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 5/34

advantage

technologycreates

C-FERTechnologies

Effect of Maintenance

● Rehabilitation philosophy● Find and eliminate defects before they become critical

● Maintenance options● Above ground surveys

● In-line inspection● Hydrotest

● Other ground movement only

● Maintenance impact● Reduce number of defects per unit line length

● Shift size and growth rate distributions toward smaller values

Page 6: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 6/34

advantage

technologycreates

C-FERTechnologies

Cracks - defect characterization

● Axially oriented planar surface flaws only

● Defined by● maximum depth, h

● length, l

and shape (assume semi-elliptical)

A

A

td

h

hl

Section A-AManufacturing Cracks

hl

Section A-AStress Corrosion Cracking

Page 7: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 7/34

advantage

technologycreates

C-FERTechnologies

Cracks - defect growth model 

● Manufacturing induced cracks● fatigue mechanism (depth growth only)● Paris law growth rate parameters: a, m

● Stress Corrosion Cracking● metal dissolution (depth and length growth)

● depth and length growth rates: gh, gl

( )

( )

∫∆

=→∆=

 f  

i

h

h

m

m

 K a

dh N  K a

dN 

dh

( )l ht d n p f   K    ,,,,,,∆=∆

( ) ( )   l h   g hl  g hh   τ τ    +=+=

Page 8: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 8/34

advantage

technologycreates

C-FERTechnologies

Cracks - performance model 

● Failure strength● Battelle surface flaw model (Kiefner et al. 1973)

● Failure mode (leak vs. rupture)

● Battelle through-wall flaw model

r   ( )

( )

+−

+=

  −

l  s

 E C 

md 

 st  V 

 p

c95.68

5.12expcos

95.684   1

π 

td

h( )l t d  f  mt h

t mhm p   ,,1

1 =−

−=

( )

( )

+−

+=

  −

l  s

 E C 

md 

 st r    V 

c95.68

125.3expcos

95.684   1   π 

π 

Page 9: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 9/34

advantage

technologycreates

C-FERTechnologies

Cracks - inspection methods

● Manufacturing induced cracks● Hi-resolution in-line crack detection tool

● locate and size crack

● measure maximum depth and length

● Hydrotest

● Stress corrosion cracking● Targeted excavation programs

● locate and size ‘significant SCC’ on exposed sections

● measure maximum depth* and length**assume sizing action leaves a blunt defect

● Hi-resolution in-line crack detection tool

● Hydrotest

Page 10: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 10/34

advantage

technologycreates

C-FERTechnologies

Dent/gouge - defect characterization

● Metal loss (gouge) within dent

● Assume gouge work hardened and cracked

● Defined by● dent depth, b

● maximum gouge depth, h● gouge length, l

dt

A

A

b

h

hl

Section A-A

Page 11: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 11/34

advantage

technologycreates

C-FERTechnologies

Dent/gouge - defect growth model 

● Fatigue mechanism (depth growth only)

● Paris law growth rate parameters: a, m

( )( )∫∆

=→∆=

 f  

i

h

h

m

m

 K a

dh N  K a

dN 

dh

( )bht d n p f   K    ,,,,,,   τ ∆=∆

Page 12: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 12/34

advantage

technologycreates

C-FERTechnologies

Dent/gouge - performance model 

● Failure strength● British Gas model (Hopkins et al. 1988)

● Failure mode (leak vs. rupture)

● Battelle through-wall flaw model

( )

( )

+−

+=

  −

l  s

 E C 

md 

 st r    V 

c95.68

125.3expcos

95.684   1   π 

π 

  

  =

  

   −=

t h f  Y and Y 

t h s s 21115.1

dt

b

h

( )

  −

 

  

 +

 

  

 −−=

57.0

9.1lnexp29.757.21

914.0expcos

4  2

212

1   V c

bY 

bY 

h s

 E 

 st r 

  π 

π 

Page 13: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 13/34

advantage

technologycreates

C-FERTechnologies

Dent/gouge - inspection methods

● In-line geometry tool● locate and size dent● measure dent amplitude, no gouge information

● Hi-resolution in-line crack detection tool●

locate and size gouge● measure max. gouge depth & length, no dent information

● Combined geometry & crack detection tool(s)● locate and size combined dent/gouge feature

● measure dent amplitude

● measure maximum gouge depth and length

T G d M t

Page 14: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 14/34

advantage

technologycreatesC-FER

Technologies

Transverse Ground Movement 

- defect characterization

Defined by● free field ground movement, w

● maximum pipe curvature, φ

} Correlated attribute pair 

w = w/2

w

d

1

φ

1

φ

w

Page 15: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 15/34

advantage

technologycreatesC-FER

Technologies

Transverse Ground Movement - defect correlation and pipe soil interaction

Pipe-soil spring model

 

w

Et I

E I

Iterative solution

w

1/φ

M-φ model (Gresnigt 1986)

Closed-form interaction (Rajani and Morgenstern 1993)

Correlation functions relate w toφ

w = f(E, p, d, t, φ, Sy, σ

z, κ

z)

φ

= f(E, p, d, t,

w,

Sy, σz, κz)

line

attributes

defect

attributes

Inelastic pipe behavior in bending

M

Me

φ

Bi-linear soil springs

σz

kz

Transverse Ground Movement

Page 16: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 16/34

advantage

technologycreatesC-FER

Technologies

Transverse Ground Movement 

- growth model 

● Single parameter ●

Free field ground movement rate: g w 

( )   w g ww   +=

Transverse Ground Movement

Page 17: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 17/34

advantage

technologycreatesC-FER

Technologies

Transverse Ground Movement 

- performance model 

Failure condition

 z  z  ycr cr cr    k S t d  p E  f  www   ,,,,,,,   σ φ =≥

or 

cr φ φ  ≥

t d or 

t d of  lesser    cr cr    ct 

cr −−

=ε ε 

φ 22

( )( )

defined user 

n st 

t d  pt d 

cr 

cr 

c

=

+

 

  

    −−+

 

  

 =

ε 

ε    018.053.10021.02

2

5000

/1205.8

22

where

and

Compressive wrinkling model(C-FER 1994)

Transverse Ground Movement

Page 18: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 18/34

advantage

technologycreatesC-FER

Technologies

Transverse Ground Movement 

- inspection methods

● Ground movement survey●

locate movement sites● measure free field ground displacement

● Enhanced ground movement survey● locate movement sites

● for detected sites conduct pipe-soil interaction analysis

● estimate maximum pipe curvature(consistent with measured free field ground movement)

● In-line spatial geometry tool● locate movement sites

● measure maximum pipe curvature

Transverse Ground Movement

Page 19: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 19/34

advantage

technologycreatesC-FER

Technologies

Transverse Ground Movement 

- other maintenance options

● Slope stabilization●

Reduce ground movement growth rate

● Strain relief ● reduce existing damage pipe curvature

● Isolation● modify backfill to reduce soil strength/stiffness

Longitudinal Ground Movement

Page 20: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 20/34

advantage

technologycreatesC-FER

Technologies

Longitudinal Ground Movement 

- defect characterization

Defined by● free field ground movement, u

u

dεt

Tensilestrain

εc

Compressivestrain

u

Longitudinal Ground Movement

Page 21: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 21/34

advantage

technologycreatesC-FER

Technologies

Longitudinal Ground Movement 

- pipe soil interaction

 u

Etkx

σx

Bi-linear soil springs

Closed-form interaction(Yoosef-Ghodsi and Murray 1999)

εt

Tensilestrain

ε

c

Compressivestrain

Pipe-soil spring model

u u u

u u u

Bi-linear pipe behaviour under axial load

Sy

E

Longitudinal Ground Movement

Page 22: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 22/34

advantage

technologycreatesC-FER

Technologies

Longitudinal Ground Movement 

- growth model 

● Single parameter 

Free field ground movement rate: g u 

( )   u g uu   +=

Longitudinal Ground Movement

Page 23: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 23/34

advantage

technologycreatesC-FER

Technologies

Longitudinal Ground Movement 

- performance model 

Failure condition

 x xcr  yt cr cr    k S T t d  p E  E  f  uuu   ,,,,,,,,,,   σ ε ∆=≥

where

Compressive wrinkling model(C-FER 1994)cr cr    ct cr    or of  lesser    ε ε ε    =

( )( )

defined user 

n st 

t d  pt d 

cr 

cr 

c

=

 

 

    −−

  

 =

ε 

ε    018.053.10021.02

2

5000

/1205.8

22

and

Longitudinal Ground Movement

Page 24: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 24/34

advantage

technologycreatesC-FER

Technologies

Longitudinal Ground Movement 

- inspection methods

● Ground movement survey

locate movement sites● measure free field ground displacement

Longitudinal Ground Movement

Page 25: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 25/34

advantage

technologycreatesC-FER

Technologies

Longitudinal Ground Movement 

- other maintenance options

● Slope stabilization

Reduce ground movement growth rate

● Strain relief ● reduce effective damage axial ground displacement

● Isolation● modify backfill to reduce soil strength/stiffness

Page 26: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 26/34

advantage

technologycreatesC-FER

Technologies

Ground Movement Considerations

Damage site characteristics

● Case 1● Where pipe damage attributes are strongly correlated

● Contained ground movement zone

● Consistent soil strength and stiffness properties

Consistent pipe geometry and mechanical properties● One movement zone a single dominant defect

● Case 2

● Where pipe damage attributes are not strongly correlated● Extended ground movement zone● Variable soil strength and stiffness properties

● Variable pipe geometry and mechanical properties

● One movement zone multiple defects

Page 27: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 27/34

advantage

technologycreatesC-FER

Technologies

Damage Site Characteristics – Case 1

E.g. Pipeline crossing a single transverse ground movement site

w

Local curvaturemaxima

Radius of curvature

Far fielddisplacement

Where conditions throughout zone are similar, theperformance will be controlled by a single location

one movement zone has one dominant defect

Page 28: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 28/34

advantage

technologycreatesC-FER

Technologies

Damage Site Characteristics – Case 1

E.g. Single site – conditions consistent throughout

No movement Zone 1 No movement

(200 m)

Zone 1 defect density = 1 dominant feature in 0.2 km = 5 per km

Page 29: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 29/34

advantage

technologycreatesC-FER

Technologies

Damage Site Characteristics – Case 2 

E.g. Single site – conditions vary

No movement No movementNo movement

( 500 m)

Zone 1 Zone 2

(50 m) (50 m)

Zone 1 and 2 defect densities = 1 dominant feature in each 0.05 km transition = 20 per km

Page 30: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 30/34

advantage

technologycreatesC-FERTechnologies

Damage Site Characteristics – Case 2 

E.g. Multiple sites – conditions vary

No movement Zone 1 No movement

( 10 km)

Zone 1 defect density = 6 transitions in 10 km = 0.6 per km

Page 31: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 31/34

advantage

technologycreatesC-FERTechnologies

Demo 1

Longitudinal ground movement problem

2) Characterize movement zone- ground movement rate- current displacement

0 . 5   k m 

914 mm diameter gas pipeline @ 7000 kPain remote land use

3) Consider mitigation scenariosa – slope drains to slow movementb – slope drains to slow movement (alt)c – strain relief

1) Specify interruption costs

Page 32: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 32/34

advantage

technologycreatesC-FERTechnologies

Demo 1

● Metric (SI) example

Gas pipeline –X:\Program Files\C-FER\PIRAMID\2002 Training Seminar\Level 3\Demo 1

Demo 1 – Decision Analysis Results for All

Page 33: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 33/34

advantage

technologycreatesC-FERTechnologies

Maintenance Scenarios on Segment 

Demo 1 – Site Analysis Results for 

Page 34: Session 3A Overheads

7/21/2019 Session 3A Overheads

http://slidepdf.com/reader/full/session-3a-overheads 34/34

advantage

technologycreatesC-FERTechnologies

 All Maintenance Scenarios on Segment