sfgsfdgsdfg

21
Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws § Maxwell’s Displacement Curre nt; Maxwell Equations Ampere’s Law: J B 0  µ = ×   0 =  J  for steady state In general case 0 0  =       + = + t t E J J  ε  ρ Then Maxwell replaced J in Ampere’s law by its generalization  J  t +  E J 0 ε for time-dependent fields Th!s Ampere’s law became        + = × t E J B 0 0  ε  µ The Maxwell e"!ations can be written as follows:        + = × = = × = t t E J B B B E E 0 0 0  #i$%  & 0  #iii%  #ii%  &  #i% ε  µ ε  ρ  § Vector an !calar "otential  0 =  B   # B  × =  t = ×  B E   0 =       + × t # E   t Φ −∇ =  # E Then the inhomogeneo!s e"!ations can be written in terms of the potentials '

Upload: a2618765

Post on 17-Feb-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 1/21

Maxwell Equations, Macroscopic Electromagnetism,

Conservation Laws

§ Maxwell’s Displacement Current; Maxwell Equations

Ampere’s Law: JB 0 µ =×∇   ⇒  0=⋅∇   J   for steady state

In general case 00   = 

 

 

 

 

∂+⋅∇=

∂+⋅∇

t t 

EJJ   ε 

 ρ 

Then Maxwell replaced J in Ampere’s law by its generalization

  J → t ∂

∂+

  EJ 0ε 

for time-dependent fields Th!s Ampere’s law became

        ∂∂+=×∇ t 

EJB 00   ε  µ 

The Maxwell e"!ations can be written as follows:

    

  

∂∂+=×∇=⋅∇

∂∂−=×∇=⋅∇

EJBB

BEE

00

0

 #i$% &0 #iii%

 #ii% & #i%

ε  µ 

ε  ρ 

 

§ Vector an !calar "otential

  0=⋅∇   B   ⇒  #B   ×∇=

 t ∂

∂−=×∇   BE   ⇒  0= 

  

  

∂∂+×∇t 

#E   ⇒ 

t ∂∂−Φ−∇=   #

E

Then the inhomogeneo!s e"!ations can be written in terms of the potentials

'

Page 2: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 2/21

as

  0( )%#   ε  ρ −=⋅∇

∂∂+Φ∇   #t 

  #'%

  J### 0((

(

(

( ''  µ −=   

  

∂Φ∂+⋅∇∇−

∂∂−∇

t ct c  #(%

*e can find that the electromagnetic fields are in$ariant !nder the  gauge

transformations: Λ∇+=′→   ###  

t ∂

Λ∂−Φ=Φ′→Φ  

§ $auge %rans&ormations, Lorent' $auge, Coulom( $auge

)i* Lorent' $auge+ 0'(

  =∂Φ∂

+⋅∇t c

#

  The e"!ations #'% and #(% becomes

  0(

(

(

( )' ε  ρ −=∂Φ∂−Φ∇t c

  #+%

  J#

# 0(

(

(

( ' µ −=

∂∂−∇t c

  #,%

)ii* Coulom( $auge+ 0=⋅∇   #

rom #'% we see that the scalar potential satisfies the .oisson e"!ation&

  0( )ε  ρ −=Φ∇

with sol!tion&  xd t 

t    ′′−

′=Φ ∫  +

0

%&#

,

'

xx

x*)x,

  ρ 

πε 

The $ector potential satisfies the inhomogeneo!s wa$e e"!ation&

     

  ∂Φ∂∇+−=

∂∂−∇

t ct c (0(

(

(

( ''J

##   µ 

(

Page 3: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 3/21

§ %e -elmolt' %eorem

Theorem+ .artial Integral  xd   f  da  f   xd   f  V S V 

+

 

+

 

#/%#   #*n##   ⋅∇−⋅=∇⋅ ∫ ∫ ∫    where ##x%

is a $ector field and f #x% a scalar field

 Proof  +

se the 1a!ss’s theorem da  f   xd   f  S V 

 /# 

+

 

n##*   ⋅=⋅∇ ∫ ∫ 

and the $ector form!la xd   f   xd   f   xd   f  

V V V 

+

 

+

 

+

 

#%##   #*##*   ⋅∇+∇⋅=⋅∇

∫ ∫ ∫ 

inally we obtain the partial integral

 xd   f  da  f   xd   f  V S V 

+

 

+

 

#/%#   #*n##   ⋅∇−⋅=∇⋅ ∫ ∫ ∫ 

The Helmholtz Theorem

Let -#x% be differentiable at all points in space& with di$ergence ∇  2 - 3

d #x% and c!rl ∇ × - 3 c#x% If d #x% and c#x% approach to 0 faster than r −2 as r 

→ ∞& and -#x% → 0 as r → ∞& then - 3 −∇φ  4 ∇ × # where

   xd d  ′

′−′

= ∫  + %#

,

'%#

xx

xx

π φ 

   xd    ′′−

′= ∫  + 

,

'%#

xx

*xc)x#

π 

 Proof  + 

+

Page 4: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 4/21

( )

-)x*nxx

-

xx

-

xx*x-)xx

.*x-)

xx

.*x-)

xx

.*x-)

xx

*x-)

xx

*x-)

xx

*x-)

π 

δ π 

,/ 

+

++

+(+

+(++

+

′⋅

′−+′

′−⋅∇′

−−∇=

′′−⋅′+′   

  

 ′−∇′⋅′−∇=

′   

  

 ′−

∇⋅′−′   

  

 ′−

∇⋅′∇=

′′−′

∇−   

  

 ′

′−′

⋅∇∇=′′−′

×∇×∇

∫ ∫ ∫ ∫ 

∫ ∫ 

∫ ∫ ∫ 

ad  xd 

 xd  xd 

 xd  xd 

 xd  xd  xd 

ad  xd 

 xd  xd 

 xd  xd 

′×′−′

×∇+′′−′×∇′

×∇=

  

 

 

 

 ′−′

×∇′−′−′×∇′

×∇=′  

 

 

 

 ′−

∇′×′×∇=

′   

  

 ′−

∇×′×−∇=′′−′

×∇×∇

∫ ∫  ∫ ∫ 

∫ ∫ 

 /  +

++

++

nxx

*x-)

xx

*x-)

xx

*x-)

xx

*x-)

xx

.*x-)

xx

.*x-)

xx

*x-)

Let ∞→=′−   r xx &

then we ha$e

 xd  xd    ′′−′×∇′

×∇+′′−

⋅∇′−∇= ∫ ∫  ++  

xx

*x-)

xx

--)x*

π π 

5o that -#x% 3 −∇φ  4 ∇ × #

where  xd d  ′

′−′

= ∫  + %#

,

'%#

xx

xx

π φ   and  xd    ′

′−′

= ∫  + ,

'%#

xx

*xc)x#

π 

The $ector field -#x% can be written as the s!m of two terms&

  -#x% 3 /#x% 4 $#x%

where /#x% is call the longit!dinal or irrotational field and has ∇ × / 3 0&

while $#x% is call the trans$erse or solenoidal field and has ∇ 2 $ 3 0

§ Maxwell’s Equations in Matter

*e consider the static case that an electric polarization " prod!ces a bo!nd

,

Page 5: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 5/21

charge density

  "⋅−∇=b ρ 

Li6ewise& a magnetic polarization #or 7magnetization8% M res!lts in a bo!nd

c!rrent

  MJ   ×∇=b

There’s 9!st one new feat!re to consider in the non-static case: Any change in

" in$ol$es a flow of bo!nd charge #call it J p%& which m!st be incl!ded in the

total c!rrent If "  increases a bit& the charge on each end increases

accordingly& gi$ing a net c!rrent

  ⊥⊥∂

∂=

∂=   dA

 P dAt 

dI    bσ 

The c!rrent density& therefore& is

  t  p ∂

=

  "

J

This polarization c!rrent  J p  has nothing whate$er to do with the bo!nd

c!rrent Jb *e co!ld chec6 that the abo$e e"!ation for J p is consistent with

the contin!ity e"!ation:

  ( )t t t 

b p

∂−=⋅∇

∂=

∂⋅∇=⋅∇

  ρ "

"J  

In $iew of all this& the total charge density can be separated into two parts:

  "⋅∇−=+=   f b f    ρ  ρ  ρ  ρ  & and the c!rrent density into

three parts:

 t 

 f   pb f  ∂

∂+×∇+=++=

  "MJJJJJ

1a!ss’s law can now be written as

"

−σ b

+σ bdA

⊥ 

Page 6: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 6/21

  ( ) ( )"E   ⋅∇−=+=⋅∇   f  b f     ρ ε 

 ρ  ρ ε  00

'' 

or   f   ρ =⋅∇  D

where "ED   +≡ 0ε  Meanwhile& Amp;re’s law becomes

  ( ) ( )   ( )

t t   f  pb f 

+∂+×∇+=

∂+++=×∇

  "EMJ

EJJJB

  000000

ε  µ  µ ε  µ  µ 

ort 

 f  ∂∂+=×∇   D

J-

where MB-   −≡ 0) µ  Therefore the Maxwell’s e"!ations in matter can be

written as follows:

 

  f  

  f  

∂∂+=×∇=⋅∇

∂∂−=×∇=⋅∇

DJ-B

BED

 #i$% &0 #iii%

 #ii% & #i%  ρ 

 

5ome people regard these as the 7tr!e8 Maxwell’s e"!ations& b!t please

!nderstand that they are 9!st only the 7approximate form!la8& they are in no

way more 7general8 than the original Maxwell’s e"!ations

§ Bounar0 Conitions

#i%   f   ρ =⋅∇  D   ⇒    f  S 

Qd    =⋅∫    aD

  ⇒   f  D D   σ =− ⊥⊥   ('

#ii% 0=⋅∇   B   ⇒  0=⋅∫    aB   d S 

<

Page 7: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 7/21

  ⇒  0('

  =− ⊥⊥   B B

#iii%t ∂

∂−=×∇   BE  ⇒  ∫ ∫    ⋅−=⋅

S cd 

dt 

d d    aBE   l 

  ⇒  0))())'   =−  E  E 

#i$%t 

 f  ∂∂+=×∇   D

J-

⇒  ∫ ∫    ⋅+=⋅S 

  f  c

d dt 

d  I d    aD-   l   

⇒   f  I =⋅−⋅   l l   ('   --

⇒  n1 -- /))())'   ×=−   f  

§ "o0nting’s %eorem an Conservation o& Energ0

According to the Lorentz force law& the wor6 done on a charge q with an

infinitesimal displacement dl  is

  dt qdt qd dW    vEvB*v)E/   ⋅=⋅×+=⋅=   l 

If there exists a contin!o!s distrib!tion of charge and c!rrent& the total rate of 

doing wor6 by the =M fields in a finite $ol!me V  is

   xd t 

 xd dt 

dW 

V V 

+

 

+

 

∂∂⋅−×∇⋅=⋅= ∫ ∫ 

  DE-*)EEJ

>

Page 8: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 8/21

If we now employ the $ector identity&

  -*)EE*)--E   ×∇⋅−×∇⋅=×⋅∇ %#

we ha$e

 xd t t 

 xd V V 

+

 

+

 

∂∂⋅+

∂∂⋅+×⋅∇−=⋅ ∫ ∫    B

-D

E-*)EEJ   #%

The energy density stored in the =M fields is

%#(

'em   -BDE   ⋅+⋅=u

If we denote the total energy density of the charged particles within the

$ol!me V  as umech #the mechanical energy density%& so that

  +mech

 

+mech

  xd 

u xd u

dt 

dt 

dW 

V V    ∂

∂== ∫ ∫ 

Then ="#% can be written

   xd t 

u

 xd t 

u

V V 

+em

 

+mech

 

×⋅∇+∂∂

−=∂∂

∫ ∫    -*)E

5ince the $ol!me V   is arbitrary& this leads to the contin!ity e"!ation of 

energy&

  ( )   !⋅−∇=+∂∂

emmech   uut 

where ! 2 E × - is called the Poynting vector 

The .oynting’s theorem expresses the conser$ation of energy for the system

of charged particles mo$ing in =M fields as

  a!   d  E  E dt 

dt 

dE ⋅−=+= ∫ %# fieldmech

where

?

Page 9: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 9/21

 xd dt 

dE 

+

 

mech  EJ ⋅= ∫    and  xd u E V 

+em

 field  ∫ =

 Example

Ass!ming that the c!rrent density is

!niform& the electric field parallel to the wire is

  L

V  E  =

The magnetic field at the s!rface has the $al!e

 a

 I  B

π 

 µ 

(

0=

Accordingly& the magnit!de of the .oynting $ector is

 aL

VI S 

π (=

Therefore the energy per !nit time passing in thro!gh the s!rface of the wire

is

  VI aLS d    ==⋅∫  %(#   π  a!

@

Page 10: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 10/21

§ Maxwell !tress %ensor an Conservation o& Momentum

The conser$ation of linear moment!m can be similarly considered *e can

write& from the Lorentz force and ewton’s second law&

 xd dt 

+

 

mech  %#   BJE"

×+= ∫    ρ    #<%

*e !se the Maxwell e"!ations to eliminate  ρ  and J from ="#<%:

[ ]   B*)EB*BE*EB*BE*E)

B*)EB*BB

EE*E)

BEB*E*E)BJE

×∂∂−×∇×−×∇×−⋅∇+⋅∇=

×∂∂−

×∇×−

∂∂×+⋅∇=

× ∂∂−×∇+⋅∇=×+

t cc

t c

0((

0

0(

0

00

0

### 

#'

ε ε 

ε ε 

ε  µ 

ε  ρ 

The rate of change mechanical moment!m ="#<% can now be written

 [ ]   xd cc

 xd dt 

dt 

+((

 0

+

 

mech

 ###  B*BB*BE*EE*E)

B*)E

"3

×∇×−⋅∇+×∇×−⋅∇=×+

∫ ∫ 

ε 

ε    #>%

*e may identify the total =M moment!m "field in the $ol!me V :

   xd  xd V V 

+

 0

+

 field  !BE" 33 ∫ ∫    =×=   µ ε ε 

5o that the density of moment!m in the =M fields is

(0em  c

!!3  ==   µ ε  p

If we employ the $ector identity&

  [ ] %## (

('

ij  ji

  j   ji   E  E  E 

 xδ −

∂=×∇×−⋅∇   ∑E*EE*E)

the right hand side of ="#>% has the form of a di$ergence of a second ran6 

'0

Page 11: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 11/21

tensor *ith the definition of the Maxwell stress tensor  T ij as

ij ji jiij   Bc E  B Bc E  E T    δ ε  %#(((

('(

0   +−+=

Therefore we can write ="#>% as

  %# 

+

 fieldmech   da xd 

dt 

S V n%%""   ⋅=⋅∇=+ ∫ ∫ 

 

  #?%

where ( ) ( )   jij

  j

iij  j  j

i   nT T  x   ∑∑   =⋅∂∂=⋅∇   n%%

 and 

.hysically& %  is the force per !nit area #or stress% acting on the s!rface More

 precisely& T ij  is the force per !nit area in the i-th direction acting on an

element of s!rface oriented in the j-th direction   7diagonal8 elements #T  xx&

T  yy& T  zz % represent press!res& and 7off-diagonal8 elements #T  xy& T  yz & T  zx&% are

shears ="#?% can be written in the differential form as follow:

  %# emmech   %

⋅∇=+∂∂

 p pt 

 Example

The fields are

 ρ  ρ 

λ 

πε eE /

(

'

0

=   &

φ  ρ π 

 µ  eB /(

0   I =

''

Page 12: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 12/21

The .oynting $ector is therefore

   z 

 I e! /

, (0

(  ρ ε π 

λ =

The power transported is

 IV ab I 

d  I 

d  P b

a===⋅= ∫ ∫  %)ln#

( (

'

, 0(

 

0( πε 

λ  ρ πρ 

 ρ ε π 

λ a!

The moment!m in the fields is

   z 

b

a z    ab

 Il d 

 Il d    ee!" /%)ln#

( (

'/

,  0

(

 

(

000field

π 

λ  µ  ρ πρ 

 ρ π 

λ  µ τ ε  µ    === ∫ ∫ 

5!ppose now that we t!rn !p the resistance& so the c!rrent decrease The

changing magnetic field will ind!ce an electric field:

   z cdt 

dI eE /ln

(

0

+=   ρ 

π 

 µ 

The field exerts a force on ±λ  :

   z  z  z    abdt 

dI l cb

dt 

dI l ca

dt 

dI l    eee/ /%)ln#

(/ln

(/ln

(

000

π 

λ  µ 

π 

 µ λ 

π 

 µ λ    −=

+−

+=

The total moment!m imparted to the cable& as the c!rrent drops from  I  to 0&

is therefore

   z ab Il 

 dt    e/" /%)ln#(0mechπ 

λ  µ 

== ∫ 

Example+ %e /e0nman is4 paraox5

In ig an ins!lator dis6 is free to rotate

on its axis Attached to the dis6 

coaxially there are: #i% a solenoid coil #(%

'(

Page 13: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 13/21

a ring of positi$e charge fixed on the dis6 Initially the battery is not

connected to the coil& no c!rrent flows& and the system is at rest *hen the

switch is closed there is an imp!lsi$e tor"!e on the dis6 Is the ang!lar 

moment!m conser$edB

§ #ngular Momentum

The =M fields carry the energy density

  %#(

'em   -BDE   ⋅+⋅=u &

and the moment!m density

  %#000em   BE!   ×==   ε  µ ε  p &

and& for that matter& the ang!lar moment!m density:

  [ ]%#0emem   BErr   ××=×=   ε  pl 

Example 657

Cefore the c!rrent was switched off& there was an

electric field&

  %# /'

( 0bal 

Q

<<=   ρ  ρ πε   ρ eE &

'+

Page 14: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 14/21

and a magnetic field&

  %# /0   RnI   z    <=   ρ  µ    eB

The moment!m density was therefore

  %# /(

0em   Ra

nIQ<<−=   ρ 

 ρ π 

 µ φ e p  

The ang!lar moment!m density was

%# /(

0emem   Ra

nIQ z    <<−=×=   ρ 

π 

 µ er   pl   

The total ang!lar moment!m in the fields was

( )   z a RnIQ   eL /(

' ((0em   −−=   µ 

*hen the c!rrent is t!rned off& the changing magnetic field ind!ces a electric

field& gi$en by araday’s law:

 

<−

>−=

%# &/(

%&# &/(' 

0

(

0

 Rdt 

dI n

 R

 R

dt 

dI 

n

 ρ  ρ  µ 

 ρ  ρ 

 µ 

φ 

φ 

e

e

E

Th!s the tor"!e on the o!ter cylinder is

   z b dt 

dI nQRQ   eEr8 /

(

'%#

(

0 µ =−×=

and it pic6s !p an ang!lar moment!m

   z  I  z 

 z b   nIQRdI nQRdt dt 

dI nQR   eeeL /

(

'/

(

'/

(

' (0

0

 

(0

 

0

(0

0

 µ  µ  µ    −=== ∫ ∫ 

5imilarly& the tor"!e on the inner cylinder is

   z adt dI nQa   e8 /

(' (

0 µ −=

',

Page 15: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 15/21

and it pic6s !p an ang!lar moment!m

   z a   nIQa   eL /(

' (0 µ =

5o it all wor6s o!t: Lem 3 La 4 Lb

#ppenices+

)9* Multi:pole Expansion

 +

′⋅+=

′− +

''

x

xx

xxx

%&#%&#'(

',

' D

'0

φ θ φ θ π  lll 

l l 

l l 

! ! r 

l ′′

+=

′−   +>

<

−=

=∑∑

xx  #A'%

The electrostatic potential for the charge density ρ  #x’% is

   xd    ′′−′

=Φ ∫  +

0

 %#

,

'%#

xx

xx

  ρ 

πε   #A(%

5!bstit!tion #A'% into #A(% leads to

'00

%&#

'(

'%#

+−=

=   +=Φ   ∑∑   l 

lll 

l l    r 

q   φ θ 

ε x

where  xd r ! q  l ll   ′′′′′= ∫ 

+D %#%&#   x ρ φ θ 

#i% The electric monopole moment # the total charge % is q

#ii% The electric dipole moment is

   xd    ′′′= ∫ +

%#xx  ρ 

'

Page 16: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 16/21

#iii% The electric "!adr!pole moment tensor is

   xd r  x xQ ij jiij   ′′′−′′= ∫    +( %#%+#   x ρ δ 

Then we ha$e

 

++⋅+=Φ ∑  

:+0 (

'

,

'%#

 x xQ

r r 

q   jiij

ij

xpx

πε 

)99*  Elementar0 %reatment o& Electrostatics wit "onera(le

Meia

*hen an a$eraging is made of the microscopic e"!ation& 0micro  =×∇   E & the

macroscopic e"!ation& namely&

  0=×∇   E

holds for the a$eraged Eere E is the macroscopic electric field

The electric polarization in a medi!m is gi$en by

  ∑=i

ii "    px" %#  

The charge density at the macroscopic le$el will be

  excess%#   ρ  ρ    += ∑i

ii   # " x  

Th!s the charge of ∆V  is  ρ #x′%∆V  and the dipole moment of ∆V  is "#x′%∆V   If 

there are no higher macroscopic m!ltipole moment densities& the potential

ca!sed by the config!ration of moments in ∆V  is gi$en by

  V ∆

′−

′−⋅′+

′−′

=′∆Φ  %#%#

,

'%#

+0   xx

*x)xx"

xx

xxx,

  ρ 

πε 

Then

   

  

 ′−

∇′⋅′+′−′

′=Φ ∫    xxx"

xx

xx

'%#

%# 

,

'%# +

 0

 ρ 

πε  xd 

V  

An integration by part for the second term yields

'<

Page 17: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 17/21

 [ ]

ad  xd S V 

′′−

′⋅′+′

′−

′⋅∇′−′=Φ ∫ ∫   

%# 

,

%#%# 

,

'%#

 0

+

 0   xx

nx"

xx

x"xx

πε 

 ρ 

πε 

*ith E 3 −∇Φ & the first Maxwell e"!ation therefore reads

  [ ]":E   ⋅∇=⋅∇   ρ ε 0

'

*e can define the $ol!me bo!nd charge density

  "⋅−∇=b ρ 

And the s!rface bo!nd charge density

  n" ⋅=bσ 

Fefine the electric displacement  D:  "ED   += 0ε 

*e ha$e

   ρ =⋅∇   D

*e ass!me that the medi!m is isotropic Then

  E" # χ ε 0=

The constant  χ #  is called the electric s!sceptibility of the medi!m The

displacement D is therefore proportional to E

  ED   ε =   and ε  ρ )=⋅∇   E

where the electric permitti$ity ε  = ε 0(1+  χ #) 

'>

Page 18: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 18/21

)999* Magnetic /iels o& a Locali'e Current Distri(ution,

Magnetic Moment

The Ciot-5a$art law:

 

∫ 

∫ ∫ ′

′−

′=⇒

×∇=′′−′

×∇=′′−

′−×′=

 xd 

 xd  xd 

+0

+0+

+0

%#

,

%#

, %#

,

xx

xJ#)x*

#xx

xJ

xx

xxxJ)x*B

π 

 µ 

π 

 µ 

π 

 µ 

  #A+%

The Taylor expansion

+′⋅

+=′− +

''

x

xx

xxx

5!bstit!tion of this into #A+% yield

 

+′′′⋅+′′= ∫ ∫    xd  $  xd  $  A iii

+

+

+0 %#%#

'

, xxx

xxx)x* π 

 µ 

  #A,%

If J#x′% is localized b!t not necessarily di$ergenceless ha$e the identity

  ( ) ( ) 0+ =′′⋅=′⋅∇′ ∫ ∫    ad   f%  xd   f% S 

nJJ 

Then

  ( )   0+ =′⋅∇′+⋅∇′⋅+∇′⋅∫    xd  f%  f  %  %  f    JJJ   #A%

#i% *ith f  3 '& %  3 x′ i and ∇′2J 3 0& #A% yields

  0%#+ =′′∫    xd  $ i   x

'?

Page 19: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 19/21

#ii% *ith f  3 x′ i& %  3 x′  j and ∇′2J 3 0& #A% yields

  0%#+ =′′+′∫    xd  $  x $  x i  j  ji

 The integral in the second term of #A,% can be therefore written

 

( )

( ) ( )i

&   j

&   jij& 

  j

i  j  ji  j

  j

i  j  ji

 xd  xd  x

 xd  $  x $  x x xd  $  x x xd  $ 

′×′×−=′×′−=

′′−′⋅−=′′⋅=′′⋅

∫ ∑   ∫ 

∑   ∫ ∑   ∫ ∫ +

&

+

+++

 (

(

(

JxxJx

xx

ε 

Fefine the magnetic moment m :

  ∫    ′′×′=   xd + #(

'*xJxm   #A<%

Then the $ector potential from the second term in #A,% is the magnetic

dipole $ector potential&

 +

0

,   x

xm#)x*

  ×=π 

 µ 

The magnetic B ind!ction can be calc!lated directly

 

+−⋅= %#

+

?+

, +

0 xmx

mm*n)nB)x*   δ 

π 

π 

 µ 

If the c!rrent  I   flows in a closed circ!it whose line element is d l & #A<%

 becomes

  l d  I  ×= ∫   xm(

Therefore the magnetic moment has magnit!de&

  %Area#×=  I m

'@

Page 20: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 20/21

)9V* Macroscopic Equations o& B an -

The a$eraging of the microscopic e"!ation& 0micro =⋅∇   B & leads to the same

macroscopic e"!ation  0=⋅∇   B

The large n!mber of molec!les per !nit $ol!me& each with its molec!lar 

magnetic moment mi& gi$e rise to an a$erage macroscopic magnetization or 

magnetic moment density&

  ∑=i

ii "    mxM %#  

Then the $ector potential from a small $ol!me ∆V  at the point x′ will be

  V ∆

′−

′−×′+

′−′

=∆  %#%#

,%#

+

0

xx

*x)xxM

xx

xJx#

π 

 µ 

Then

 xd V 

′−

′−×′+

′−′

= ∫  +

+

0  %#%#

,%#

xx

*x)xxM

xx

xJx#

π 

 µ  

An integration by part for the second term yields

   xd  xd ad V V S 

′−

′−×′−

′−′×∇′

=′   

  

 ′−′

×∇′=′   

  

 ′−′

×′ ∫ ∫ ∫  +

+

+  %#%#%#%#

 /xx

*x)xxM

xx

xM

xx

xM

xx

xMn

Then

  ad  xd S V 

′′−′×′

+′

′−

′×∇′+′= ∫ ∫    xx

nxM

xx

xMxJx#

/%# 

%#%#

,%# 0+0

π 

 µ 

π 

 µ 

The magnetization is seen to contrib!te an effective current density 

MJ   ×∇= ' 

5o that

  [ ]MJB   ×∇+=×∇ 0 µ 

*e can define a new macroscopic field -&

  MB-   −=0

' µ 

(0

Page 21: sfgsfdgsdfg

7/23/2019 sfgsfdgsdfg

http://slidepdf.com/reader/full/sfgsfdgsdfg 21/21

Then the macroscopic e"!ations are

  J- =×∇

  0=⋅∇   B

*e ass!me that the medi!m is isotropic Then

  -B   µ =   #?,%

The parameter  µ   is called the magnetic permeability # µ  >  µ 0  for 

 paramagnetic s!bstances and  µ  <  µ 0 for diamagnetic s!bstances%

or the ferromagnetic s!bstances& #?,% m!st

 be replaced by a nonlinear relationship&

  -*/B #=  

('