shear stresses (2nd year)

52
Shear stress distribu-on + Shear centre Dr Alessandro Palmeri <[email protected]>

Upload: alessandro-palmeri

Post on 22-May-2015

5.484 views

Category:

Engineering


5 download

DESCRIPTION

Lecture slides on the evaluation of the shear stresses in solid, thick-walled and thin-walled cross sections, and the determination of the shear centre

TRANSCRIPT

Page 1: Shear stresses (2nd year)

Shear  stress  distribu-on  +  Shear  centre  

Dr  Alessandro  Palmeri  <[email protected]>  

Page 2: Shear stresses (2nd year)

Teaching  schedule  Week Lecture 1 Staff Lecture 2 Staff Tutorial Staff 1 Beam Shear Stresses 1 A P Beam Shear Stresses 2 A P --- --- 2 Shear centres A P Basic Concepts J E-R Shear Centre A P 3 Principle of Virtual

forces J E-R Indeterminate Structures J E-R Virtual Forces J E-R

4 The Compatibility Method

J E-R Examples J E-R Virtual Forces J E-R

5 Examples J E-R Moment Distribution -Basics

J E-R Comp. Method J E-R

6 The Hardy Cross Method

J E-R Fixed End Moments J E-R Comp. Method J E-R

7 Examples J E-R Non Sway Frames J E-R Mom. Dist J E-R 8 Column Stability 1 A P Sway Frames J E-R Mom. Dist J E-R 9 Column Stability 2 A P Unsymmetric Bending 1 A P Colum Stability A P 10 Unsymmetric Bending 2 A P Complex Stress/Strain A P Unsymmetric

Bending A P

11 Complex Stress/Strain A P Complex Stress/Strain A P Complex Stress/Strain

A P

Christmas Holiday

12 Revision 13 14 Exams 15 2  

Page 3: Shear stresses (2nd year)

Mo-va-ons  

Shear failure of a RC beam and (b) load–displacement curve. Engineering Structures, Volume 59, 2014, 399 - 410

Diagonal failure: short beam (a) and long beam (b); crushing of the compressive zone (c). Engineering Structures, Volume 59, 2014, 399 - 410 3  

Page 4: Shear stresses (2nd year)

Learning  Outcomes  When  we  have  completed  this  unit  (3  lectures  +  1  tutorial),  you  should  be  able  to:  •  Apply  the  Jourawski’s  formula  for  solid,  thick-­‐walled  and  

thin-­‐walled  sec-ons,  including  rectangular  and  circular  sec-ons,  T,  I  and  channel  sec-ons  

•  Iden-fy  the  posi-on  of  shear  centre  for  beam  sec-ons  with  one  or  two  axes  of  symmetry  

 Schedule:  •  Lecture  #1:  Review  of  Jourawski’s  formula  •  Lecture  #2:  Applica-on  to  thin-­‐walled  cross  sec-ons  •  Lecture  #3:  Shear  centre  •  Tutorial  (week  2)    

4  

Page 5: Shear stresses (2nd year)

Further  reading  

•  R  C  Hibbeler,  “Mechanics  of  Materials”,  8th  Ed,  Pren-ce  Hall  –  Chapter  7  on  “Transverse  Shear”  

•  T  H  G  Megson,  “Structural  and  Stress  Analysis”,  2nd  Ed,  Elsevier  –  Chapter  10  on  “Shear  of  Beams”  (eBook)  

5  

Page 6: Shear stresses (2nd year)

Stresses  in  beams  (1/2)  When  a  beam  is  subjected  to  external  forces  or  deforma-ons,  different  stresses  may  rise.    Engineers  need  to  know  the  level  of  stress  in  the  material,  and  specifically  they  need  to  check:  •  Normal  stress  σx  (parallel  to  the  

beam’s  axis),  which  tends  to  stretch  (or  shorten)  the  longitudinal  fibres  of  the  beam  (Greek  leger  sigma)  

•  Shear  stresses  τxz  and  τxy  (orthogonal  to  the  x  axis  in  the  beam’s  cross  sec-on),  which  tend  to  produce  a  rela-ve  slipping  between  adjacent  fibres  (Greek  leger  tau)  

6  

Page 7: Shear stresses (2nd year)

Stresses  in  beams  (2/2)  Integra-ng  the  stresses  σx,  τxz  and  τxy  over  the  beam’s  cross  sec-onal  area  A,  one  obtains  the  internal  forces,  which  are  in  equilibrium  with  external  forces  and  support  reac-ons  

N = σ x dAA∫

!!Vz = τ xz dA

A∫ Vy = τ xy dA

A∫

My = σ xzdAA∫

!!Mz = − σ xydA

A∫

T = τ xzy−τ xyz( )dAA∫

Normal  force:  

Shear  forces:  

Bending  moments:  

Torque:  7  

Page 8: Shear stresses (2nd year)

Jourawski’s  formula  for  thick  beam  sec-ons  with  axis  of  symmetry  (1/3)  

The  Jourawski’s  formula  gives  the  average  shear  stress          on  a  generic  chord  of  length  b,  orthogonal  to  the  shear  force  V  applied  along  the  axis  of  symmetry  

!!τ =

Vz ′Qy

bIyy

τ

8  

Jourawski  (1821-­‐1891)  was  a  Russian  engineer  and  one  of  the  pioneers  of  bridge  construc-on  and  structural  mechanics  in  Russia.  

Page 9: Shear stresses (2nd year)

Jourawski’s  formula  for  thick  beam  sec-ons  with  axis  of  symmetry  (2/3)  

In  the  Jourawski’s  formula,              is  the  first  moment  of  the  par-al  area          below  the  chord  b,  that  is:      while  Iyy  is  the  second  moment  of  area  about  the  y  axis  (orthogonal  to  the  shear  force  Vz  and  passing  through  the  centroid  G)  

!!′Qy = zdA

′A∫ = b

′A∫ zdz

′Qy

′A

!!Iyy = z2 dA

A∫ = b

A∫ z2 dz

9  

Page 10: Shear stresses (2nd year)

Jourawski’s  formula  for  thick  beam  sec-ons  with  axis  of  symmetry  (3/3)  

The  average  shear  stress  along  the  chord  goes  to  zero  at  the  top  and  bogom  fibres,  and  take  the  maximum  value                  close  to  the  centroid  G    If  the  length  of  the  chord  b  does  not  vary  along  the  depth  of  the  cross  sec-on  (e.g.  in  a  rectangular  cross  sec-on),  the  the  maximum  of  the  shear  stress  happens  at  the  centroidal  posi-on  

!τmax

10  

Page 11: Shear stresses (2nd year)

Limita-ons  of  the  Jourawski’s  formula  

As  only  the  average  value  of  the  shear  stress  along  is  computed,  the  Jourawski’s  formula  should  only  be  used  for  design  purposes  when  ligle  varia-ons  are  expected  for  the  shear  stress  along  the  chord  b,  e.g.  in  the  web,  not  for  the  ver-cal  component  of  the  shear  stress  in  the  flanges  of  an  I  sec-on    

11  

Page 12: Shear stresses (2nd year)

Rectangular  cross  sec-on  (1/3)  First  moment  of  the  par-al  area:              Second  moment  of  area:  

!!

′Qy = ′A ′z = b d2− z

⎛⎝⎜

⎞⎠⎟

′A

d4+ z2

⎛⎝⎜

⎞⎠⎟

′z

= b2

d2

4− z2

⎝⎜⎞

⎠⎟

Iyy =bd3

1212  

Page 13: Shear stresses (2nd year)

Rectangular  cross  sec-on  (2/3)  Shear  stress  (quadra-c  func-on  of  the  depth  z,  i.e.  parabolic  distribu-on)  

!!

τ =Vz ′Qy

bIyy=

Vz b 2

b 2 d3 12d2

4− z2

⎝⎜⎞

⎠⎟

=6Vz d

2

4bd 31− 4z2

d2

⎝⎜⎞

⎠⎟

= 32Vzbd

1− 2zd

⎛⎝⎜

⎞⎠⎟

2⎡

⎣⎢⎢

⎦⎥⎥

13  

Page 14: Shear stresses (2nd year)

Rectangular  cross  sec-on  (3/3)  The  maximum  value  of  the  shear  stress  then  happens  at  the  centroidal  posi-on  (z=0):          while  for  z=±d/2  (bogom  and  top  fibres)  one  gets    

τmax =32Vz

bd=1.5

Vz

A

τ = 0

14  

Page 15: Shear stresses (2nd year)

Circular  cross  sec-on  (1/3)  In  this  case  we  have:              

b = 2Rcos(α )

!!z = Rsin(α ) dz = Rcos(α )dα

′Qy = b′A∫ zdz= 2R3 cos2(α )sin(α )dα

α

π /2

= 23R3 cos3(α )

!!

Iyy = bA∫ z2 dz= 2R4 cos2(α )sin2(α )dα

−π /2

π /2

= π R4

415  

Page 16: Shear stresses (2nd year)

Circular  cross  sec-on  (2/3)  According  to  the  Jourawski’s  formula,  the  average  shear  stress  along  the  ver-cal  axis  is:              

τ =Vz ′Qy

bIyy=Vz

23R3 cos 3 2(α )

π R 5 2

2cos(α )

= 43

Vz

π R2cos2(α )= 4

3Vz

π R21− z

R⎛⎝⎜

⎞⎠⎟

2⎡

⎣⎢⎢

⎦⎥⎥

16  

Page 17: Shear stresses (2nd year)

Circular  cross  sec-on  (3/3)  The  maximum  value  of  the  shear  stress  then  happens  at  the  centroidal  posi-on  (z=0):        while  again  for  the  extreme  fibres,  when  z=±R,  one  gets    Moreover,  also  in  this  case  the  distribu-on  of  the  shear  stress  is  parabolic  along  along  the  depth  of  the  cross  sec-on          

τmax =43

Vz

π R2=1.33

Vz

A

τ = 0

17  

Page 18: Shear stresses (2nd year)

Thick-­‐walled  I  sec-on  with  unsymmetrical  flanges  (1/10)  

The  Jourawski’s  formula  can  also  be  used  to  evaluate  the  average  shear  stress  in  the  web  and  the  flanges  of  an  I  sec-on    Let’s  find  the  area  first  of  the  thick-­‐walled  example  sec-on:    A = 8u2

At

+8u2

Aw

+6u2

Ab

= 22u2

18  

Page 19: Shear stresses (2nd year)

Thick-­‐walled  I  sec-on  with  unsymmetrical  flanges  (2/10)  

To  find  the  posi-on  of  the  centroid  G,  the  first  moment  of  the  cross  sec-onal  area  about  a  reference  axis  Y  must  be  evaluated:    

!!

QY = At

t2+ Aw t + d

2⎛⎝⎜

⎞⎠⎟+ Ab d + 3

2t

⎛⎝⎜

⎞⎠⎟

= 4u3 +24u3 +33u3 = 61u3

dG =QY

A= 61u3

22u2= 2.77u

19  

Page 20: Shear stresses (2nd year)

Thick-­‐walled  I  sec-on  with  unsymmetrical  flanges  (3/10)  

Iyy =Bt3

12+ At dG −

t2

⎛⎝⎜

⎞⎠⎟

2

+ 2td3

12+ Aw t + d

2−dG

⎛⎝⎜

⎞⎠⎟

2

+ bt3

12+ Ab d + 3

2t −dG

⎛⎝⎜

⎞⎠⎟

2

= 98.20u4

It  is  now  possible  to  calculate  the  second  moment  of  area:  

 

20  

Page 21: Shear stresses (2nd year)

Thick-­‐walled  I  sec-on  with  unsymmetrical  flanges  (4/10)  

Let’s  also  define  the  radius  of  gyra-on  (denoted  with  the  Greek  leger  rho):        This  allows  rewri-ng  the  Jurawsky’s  formula  in  the  equivalent  form:    

!!ρy =

IyyA

= 98.20u4

22u2= 2.11u

τ =′Qy

bρy2

Vz

A

21  

Page 22: Shear stresses (2nd year)

Thick-­‐walled  I  sec-on  with  unsymmetrical  flanges  (5/10)  

We  can  then  calculate  the  average  shear  stress  at  the  key  loca-ons  in  the  beam  sec-on              The  minus  sign  means  that  the  flow  of  shear  stresses  exits  the  area    

τ1 =′Qy (1)

b1 ρy2

Vz

A=− ′A1 ⋅ dG −

t2( )⎡

⎣⎤⎦

t ⋅4.45t2Vz

A

=− 3t2 ⋅2.27u⎡⎣ ⎤⎦

4.45u3

Vz

A= −1.53

Vz

A

!! ′A122  

Page 23: Shear stresses (2nd year)

Thick-­‐walled  I  sec-on  with  unsymmetrical  flanges  (6/10)  

!!

τ 2 =′Qy (2)

b2 ρy2

VzA=− At ⋅ dG −

t2( )⎡⎣ ⎤⎦

2t ⋅4.45t2VzA

=− 8u2 ⋅2.27u⎡⎣ ⎤⎦

8.90u3

VzA= −2.04

VzA

23  

Page 24: Shear stresses (2nd year)

Thick-­‐walled  I  sec-on  with  unsymmetrical  flanges  (7/10)  

!!

τG =′Qy (G)

bG ρy2

VzA

=′Qy (2)− 2t ⋅ 12 dG − t( )2⎡

⎣⎢⎤⎦⎥

2t ⋅4.45t2VzA

=−18.16u3 − 2u ⋅ 12 1.77u( )2⎡

⎣⎢⎤⎦⎥

8.90u3

VzA

= −2.39VzA

24  

Page 25: Shear stresses (2nd year)

Thick-­‐walled  I  sec-on  with  unsymmetrical  flanges  (8/10)  

τ 3 =′Qy (3)

b3 ρy2

Vz

A=

Ab ⋅32 t +d −dG( )⎡

⎣⎤⎦

2t ⋅4.45t2Vz

A

=6u2 ⋅2.73u⎡⎣ ⎤⎦8.90u3

Vz

A=1.84

Vz

A

!!

τ 4 =′Qy (4)

b4 ρy2

VzA=

′A4 ⋅32 t +d −dG( )⎡⎣ ⎤⎦t ⋅4.45t2

VzA

=2u2 ⋅2.73u⎡⎣ ⎤⎦4.45u3

VzA=1.23

VzA

25  

Page 26: Shear stresses (2nd year)

Thick-­‐walled  I  sec-on  with  unsymmetrical  flanges  (9/10)  

For  this  loading  condi-on,  with  the  shear  force  Vz  ac-ng  along  the  web,  the  varia-on  of  the  shear  stresses  is:  •  Linear  in  the  flanges  (which  

are  orthogonal  to  Vz)  •  Quadra-c  in  the  web  (which  

is  parallel  to  Vz)  •  Zero  at  extreme  fibres  of  

the  flanges  •  Maximum  at  the  posi-on  of  

the  centroid  G  in  the  web  

26  

Page 27: Shear stresses (2nd year)

Thick-­‐walled  I  sec-on  with  unsymmetrical  flanges  (10/10)  

If  the  I  beam  is  made  of  two  -mber  board  glued  to  a  -mber  shaq,            and            are  the  values  of  the  average  shear  stress  in  the  top  and  bogom  layers  of  glue    Shear  stresses  in  orthogonal  planes  take  the  same  values  (complementary  shear  stresses)  

!τ 2 τ 3

27  

Page 28: Shear stresses (2nd year)

Thin-­‐walled  sec-ons  If  the  thickness  of  the  panels  cons-tu-ng  open  or  closed  cross  sec-ons  is  negligible  in  comparison  with  their  width  and  depth,  the  cross  sec-on  is  said  to  be  thin-­‐walled    The  shear  stress          can  be  assumed  to  be  uniform  over  the  thickness  of  the  panels    It  is  possible  to  work  all  the  quan--es  with  respect  to  the  centreline  of  each  panel    

τ

28  

Page 29: Shear stresses (2nd year)

Thin-­‐walled  I  sec-on  with  unsymmetrical  flanges  (1/5)  

Let’s  analyse  the  same  cross  sec-on  studied  before,  assuming  this  -me  that  the  thickness  t  is  much  less  than  all  the  other  geometrical  dimensions      A = 8ut

At

+8utAw

+6utAb

= 22ut

QY = Aw

d2+ Abd

=16u2t +24u2t = 40u3

!!dG =

QY

A= 40u 2 t22 u t

=1.82u29  

dG  

Page 30: Shear stresses (2nd year)

Thin-­‐walled  I  sec-on  with  unsymmetrical  flanges  (2/5)  

!!

Iyy = At dG2

+2td3

12+ Aw

d2−dG

⎛⎝⎜

⎞⎠⎟

2

+Ab d −dG( )2= 66u3t

!!ρy =

IyyA

= 66u3t22ut

=1.73u

30  

Page 31: Shear stresses (2nd year)

Thin-­‐walled  I  sec-on  with  unsymmetrical  flanges  (3/5)  

!!

τ1 =′Qy (1)

b1 ρy2

VzA=− ′A1 ⋅dG⎡⎣ ⎤⎦t ⋅3u2

VzA

=− 4ut ⋅1.82u⎡⎣ ⎤⎦

3u2tVzA= −2.43

VzA

τ 2 =′Qy (2)

b2 ρy2

Vz

A=− At ⋅dG⎡⎣ ⎤⎦2t ⋅3u2

Vz

A

=− 8ut ⋅1.82u⎡⎣ ⎤⎦

6u2tVz

A= −2.43

Vz

A

31  

Page 32: Shear stresses (2nd year)

Thin-­‐walled  I  sec-on  with  unsymmetrical  flanges  (4/5)  

τG =′Qy (G)

bG ρy2

Vz

A=

′Qy (2)− 2t ⋅ 12dG2⎡⎣ ⎤⎦

2t ⋅3u2

Vz

A

=−14.56u2t − t ⋅ 1.82u( )2⎡

⎣⎢⎤⎦⎥

6u2tVz

A

= −2.99Vz

A

!!

τ 3 =′Qy (3)

b3 ρy2

VzA=

Ab ⋅ d −dG( )⎡⎣

⎤⎦

2t ⋅3u2

VzA

=6ut ⋅2.18u⎡⎣ ⎤⎦

6u2tVzA= 2.18

VzA= τ 4

32  

Page 33: Shear stresses (2nd year)

Thin-­‐walled  I  sec-on  with  unsymmetrical  flanges  (5/5)  

The  distribu-on  of  the  shear  stresses  is  similar  to  what  we  have  seem  for  the  thick-­‐walled  case,  with  the  important  difference  that  this  -me  we  consider  the  centrelines  

33  

Page 34: Shear stresses (2nd year)

Shear-­‐stress  resultants  in  thin-­‐walled  cross  sec-ons  (1/3)    

If  the  thin-­‐walled  panel  is  orthogonal  to  the  shear  force,  the  shear  stress  varies  linearly  along  the  panel,  meaning  that  the  resultant  shear  force  in  the  panel  can  be  computed  knowing  the  value  of  the  shear  stress  at  the  extreme  fibres  

For  instance,  let’s  consider  the  resultant  forces  Rt  and  Rb  at  the  top  and  bogom  flanges  in  the  previous  example,  respec-vely  

           

34  

Rt = τ t

At

2=0+ τ1

2τ t

4

2ut

At

= 2.43Vz

2211ut

2 ut = 0.221Vz

!!

Rb = τb

Ab2=0+ τ 4

2τb

3utAb

=1.82Vz

44 ut3 ut = 0.149Vz

Page 35: Shear stresses (2nd year)

Shear-­‐stress  resultants  in  thin-­‐walled  cross  sec-ons  (2/3)    

If  the  thin-­‐walled  panel  is  parallel  to  the  shear  force,  the  varia-on  of  the  shear  stress  is  quadra?c,  meaning  that  evaliua-ng  the  resultant  shear  force  in  the  panel  requires  also  the  value  of  the  shear  stress  at  midpoint  (this  scheme  of  integra-on  is  known  as  the  Simpson’s  rule)  

This  is  the  case  of  the  resultant  force  Rw  in  the  web  of  the  previous  example  

           

35  

Rw = τw Aw =τ 2 + 4 τ 5 + τ 3

6τw

Aw

Page 36: Shear stresses (2nd year)

Shear-­‐stress  resultants  in  thin-­‐walled  cross  sec-ons  (3/3)    

We  can  consider  the  top  flange  and  the  top  half  of  the  web  to  calculate  the  shear  stress  at  the  mid-­‐web  posi-on  (point  5  in  the  figure)  

         

!!

τ 5 =′Qy (5)

b5 ρy2

VzA=− Bt( )dG − 2t d

2( ) dG −d4( )

2t 1.73u( )2VzA

= −8ut( ) 1.82u( )+ 2t 2u( ) 0.82u( )

2t3u2

VzA

= −17.846

VzA= −2.77

VzA

36  

Rw = 2.43+ 4×2.97+2.186

Vz

AAw = 2.75

Vz

22 ut8 ut =Vz

Page 37: Shear stresses (2nd year)

Shear  force  not  passing  through  an  axis  of  symmetry  (1/4)    

 

 

           

The  Jourawski’s  formula  can  also  be  applied  if  the  shear  force  does  not  pass  through  an  axis  of  symmetry,  e.g.  in  the  case  in  which  a  horizontal  shear  force  Vy  is  applied  orthogonally  to  the  web  of  the  I  sec-on  considered  before  

 

37  

Izz =t 8u( )312

+t 6u( )312

= 60.67u3t

ρz =IzzA= 60.67u3t

22ut=1.66u

Page 38: Shear stresses (2nd year)

Shear  force  not  passing  through  an  axis  of  symmetry  (2/4)    

 

 

           

This  -me  the  flanges  are  parallel  to  the  shear  force,  and  therefore  the  varia-on  of  the  shear  stress  is  quadra-c,  with  the  maxima  happening  at  the  centroidal  posi-ons  (points  6  and  7  in  the  figure)  and  zero  values  of  the  extreme  fibres  

 

38  

!!

τ 6 =′Qz(6)

b6 ρz2

Vy

A=

4 u t( )2 ut 2.76 u2( )

Vy

A= 2.90

Vy

A

τ 7 =′Qz(7)

b7 ρz2

Vy

A=

3 u t( )1.50 ut 2.76 u2( )

Vy

A=1.63

Vy

A

Page 39: Shear stresses (2nd year)

Shear  force  not  passing  through  an  axis  of  symmetry  (3/4)    

If  the  shear  force  Vz  is  parallel  to  the  web,  then  the  web  takes  the  whole  shear  force  

 

           

39  Rw =Vy

Page 40: Shear stresses (2nd year)

Shear  force  not  passing  through  an  axis  of  symmetry  (4/4)    

 

 

           

If  the  shear  force  Vz  is  parallel  to  the  flanges,  then  the  flanges  takes  the  whole  shear  force  

40  

!!

Rt = τ t At =0+ 4

2τ 6 +0

63

Vy

AAt

= 232.90

Vy

22 ut8 ut = 0.70Vy

Rb = τb Ab =0+ 4

2τ 7 + 0

63

Vy

AAt

= 231.63

Vy

22 ut6 ut = 0.30Vy!!Rt +Rb = 0.70Vy +0.30Vy =Vy

Page 41: Shear stresses (2nd year)

Shear  centre  (1/2)  The  distribu-on  of  the  shear  stress  in  the  cross  sec-on  must  give  the  same  resultant  ac?ons  in  the  horizontal  (y)  direc-on  and  ver-cal  (z)  direc-on,  as  well  as  the  same  moment  about  any  given  point  In  the  case  when  the  shear  force  is  horizontal,  let’s  use  the  resultant  forces  in  the  two  flanges  to  calculate  the  moment  Mτ  of  the  shear  stresses  about  the  centroid  G  (taken  as  posi-ve  if  an-clockwise)      

         

41  

Mτ = Rt dG −Rb d −dG( )= 0.70Vy( ) 1.82u( )− 0.30Vy( ) 2.18u( )= 1.274−0.654( )Vy u = 0.62Vy u

Page 42: Shear stresses (2nd year)

Shear  centre  (2/2)    

This  allows  calcula-ng  the  posi-on  where  the  shear  force  needs  to  applied  in  order  to  have  a  distribu-on  of  the  shear  stresses  consistent  with  the  Jourawski  formula  (of  pure  shear)  

This  is  the  posi-on  of  the  so-­‐called  “shear  centre”      

         

42  

!!MV =Vy dG −dC( )MV =Mτ ⇒ Vy 1.82u−dC( ) = 0.62Vy u

1.82u−dC = 0.62 u⇒ dC =1.20 u

The  moment  of  the  shear  stresses  must  be  equal  to  the  moment  of  the  shear  force  Vy  about  the  same  point  (in  this  example,  the  centroid  G)  

Page 43: Shear stresses (2nd year)

Centroid  and  shear  centre  (1/2)  If  the  axial  force  N  is  not  applied  at  the  centroid  G  (or  centre  of  mass),  then  the  cross  sec-on  is  subjected  to  a  bending  moment  M=N  d  

If  the  shear  force  V  does  not  pass  through  the  shear  centre  C,  then  the  cross  sec-on  is  subjected  to  a  torque  (twis?ng  moment)  T=V  d  

43  

Page 44: Shear stresses (2nd year)

Centroid  and  shear  centre  (2/2)  Some  key  points  to  remember  1.  To  avoid  the  addi-onal  shear  stresses  due  to  the  torque  T,  the  shear  

force  must  pass  through  the  shear  centre  2.  Addi-onally,  if  the  line  of  ac-on  of  the  shear  force  does  not  pass  

through  the  shear  centre,  then  the  cross  sec-on  is  subjected  to  a  rotatory  (in-­‐plane)  movement  

3.  If  a  cross  sec-on  has  an  axis  of  symmetry,  then  both  the  centroid  G  and  the  shear  centre  C  belong  to  it,  but  in  general  they  do  not  coincide  

4.  The  posi-on  of  the  centroid  along  the  axis  of  symmetry  can  be  obtained  by  dividing  the  first  moment  Q  about  an  orthogonal  axis  by  the  area  A  

5.  The  posi-on  of  the  shear  shear  centre  along  the  axis  of  symmetry  requires:  i)  considering  a  dummy  shear  force  V,  which  is  fic--ously  applied  orthogonally  it;  and  ii)  equa-ng  the  twis-ng  moment  due  to  the  shear  force,  MV,  to  the  twis-ng  moment  due  to  the  distribu-on  of  the  shear  stresses,  Mτ  

             

44  

Page 45: Shear stresses (2nd year)

Channel  sec-on  (1/6)      

         

In  the  case  of  a  thin-­‐walled  channel  sec-on  with  symmetrical  flanges,  one  can  show  that  the  shear  centre  C  is  ‘outside’  the  cross  sec-on,  on  the  axis  of  symmetry,  opposite  to  the  centroid  G  with  respect  to  the  web    A  shear  force  Vz  parallel  to  the  web  is  necessary  to  find  the  posi-on  dC  of  the  shear  centre    

45  

Page 46: Shear stresses (2nd year)

Channel  sec-on  (2/6)      

         

Let’s  find  first  the  posi-on  of  the  centroid  G  

46  

!!

A= 2Af + Aw = 2btf +dtw= 2⋅120⋅3+200⋅5=1,720mm2

!!QZ = 2 Af

b2= b 2 tw = 43,200mm3

dG =QZ

A= 43,200

1,720= 25.1mm

Page 47: Shear stresses (2nd year)

Channel  sec-on  (3/6)      

         

The  second  moment  of  area  about  the  horizontal  axis  y  can  be  computed  assumed  that  web  and  flanges  are  thin  

47  

Iyy =tw d

3

12+2Af

d2

⎛⎝⎜

⎞⎠⎟

2

= 5⋅2003

12+2⋅360 ⋅1002

=10.53×106

Page 48: Shear stresses (2nd year)

Channel  sec-on  (4/6)      

         

A  dummy  shear  force  Vz=  1  kN  is  used  to  find  the  posi-on  of  the  shear  centre  C  

48  

!!

τ1 =′Qy (1)Vzb1 Iyy

= −Af

d2Vz

tf Iyy

= −360 ⋅ 100 ⋅ 1,000

3⋅10.53× 106= −1.14MPa

τ1 tf = τ 2 tw ⇒ τ 2 =τ1 tftw

= −0.68MPa

τG =′Qy (G)Vz

bG Iyy== −1.16MPa

Page 49: Shear stresses (2nd year)

Channel  sec-on  (5/6)      

         

Once  the  distribu-on  of  the  shear  stresses  is  known,  one  can  compute  the  resultant  shear  forces  

49  

Rf = τ f Af =τ1

2Af = 0.57 ⋅360 = 205N

!!

Rw = τw Aw =τ 2 + 4 τG + τ 2

6Aw

= 0.68+ 4⋅1.16+0.686

1,000

=1,000N =Vz

Page 50: Shear stresses (2nd year)

Channel  sec-on  (6/6)      

         

The  posi-on  of  the  shear  centre  is  then  obtained  by  enforcing  the  equivalence  between  the  moment  Mτ  due  to  the  shear  stresses  and  the  moment  due  to  the  shear  force  MV  

50  

Mτ (1)= Rf d

!!MV (1)=VzdC

!!

MV (1)=Mτ (1) ⇒ VzdC = Rf d

dC =Rf dVz

= 205⋅ 200

1,0005

= 41mm

Page 51: Shear stresses (2nd year)

Shear  centre  of  typical  cross  sec-ons  

In  many  cases  the  posi-on  of  the  shear  centre  can  be  immediately  determined,  based  on  simple  geometrical  considera-ons  

51  

Page 52: Shear stresses (2nd year)

Key  learning  points  1.  The  Jourawski’s  formula  can  be  used  to  calculate  the  distribu-on  of  

the  shear  stresses  when  they  can  be  considered  almost  constant  along  a  chord  which  splits  the  cross  sec-ons  in  two  parts  

2.  In  thin-­‐walled  cross  sec?ons,  one  can  neglect  the  thickness  of  the  cons-tu-ng  panels  in  comparison  to  the  other  geometrical  dimensions,  and  the  shear  stresses  are  uniform  along  the  thickness  

3.  The  distribu-on  of  the  shear  stresses  must  be  equivalent  to  the  applied  shear  force,  and  the  equivalence  of  moments  allow  calcula-ng  the  posi-on  of  the  shear  centr  

4.  There  is  no  twis-ng  moment  (and  therefore  no  in-­‐plane  rota-on  of  the  cross  sec-on)  if  and  only  if  the  shear  force  passes  through  the  shear  centre  

5.  Similarly  to  the  centroid,  the  shear  centre  always  belongs  to  an  axis  of  symmetry  

52