shock heating of ions and electrons as:

21
shock heating of Ions and electrons as: Canonical Scenario of Dynamical Evolution This determines the shell- like morphology and thermal spectrum Ion temperature, Ti Enegy transfer Ionization temeprature: Tz mv 2 = 3kT NEI CIE Electron temperature: Te

Upload: debra-joseph

Post on 01-Jan-2016

44 views

Category:

Documents


1 download

DESCRIPTION

Ion temperature, T i. Ionization temeprature: T z. shock  heating of Ions and electrons as:. Study of SNR Canonical Scenario of Dynamical Evolution This determines the shell-like morphology and thermal spectrum. mv 2 = 3 kT. Enegy transfer. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: shock  heating of  Ions  and  electrons as:

shock heating of

Ions and electrons

as:

Study of SNRCanonical Scenario of DynamicalEvolution

This determines the shell-like morphology

and thermal spectrum

Ion temperature, Ti

Enegy transfer

Ionization temeprature: Tz

mv2 = 3kT

NEI CIE

Electron temperature: Te

Page 2: shock  heating of  Ions  and  electrons as:

Key Project Make a New Scenario of Thermal Plasma in MM-SNRs. This is not theory-oriented, but observation-oriented project : Spectrum Survey of bright MM-SNRs

1. Shell-like SNR Canonical evolution of dynamics :   Canonical model & analysis: NEI, PSHOCK Many proposal, Observations & Papers 2. Mixed Morphology (MM) SNR No Canonical Model No analysis method A few observations

Thin thermal spectra = 2 Type of SNRs

Page 3: shock  heating of  Ions  and  electrons as:

○ Are Spectra of MM-SNR Suzaku Legacy ? Yes, because1.A few Observation Unexpected facts may be found   ( Observation-Oriented study = DNA of X -ray Astronomy)2.Suzaku has Low background, High energy resolution and Large effective area.

Radiative Recombination Continuum (RRC: 1-st time for Collisional Ionized Plasma) Over-ionized Plasma ( Recombining Plasma: RP):  

vs  ( Ionizing Plasma :IP=NEI)

Paradigm isSSS (Einstein)

RP may provide a New Science of Suzaku

○ What progress would be in RP ? Hint: RP-detected MM-SNRs ( IC443, W44, W28, W49B, G359.1-0.5) are all TeV/GeV Sources

Page 4: shock  heating of  Ions  and  electrons as:

         Spectrum of W28-Center (Sawada et al.) kTe=kTz= 0.90 keV kTe=0.47, kTz=0.96     

RRC has large Impacts on the Abundances

RRC

Bremss

Relaiable abundances Proper model of the Plasma Line and RRC based diagnosis is essential (not bremss) Revise the abundances using Suzaku (in particular, those in MM-SNR) Path Finder of Astro-H

CIE model RP model

In RP, Radiative Recombination Continuum (RRC) is Dominant.kTe becomes low-> emissivity of collisional excitation small. bremss becomes small Abundances become large On the other hand, Line flux becomes large by cascade after recombination Abundances become small

G359.1-0.51-CIE

kT Ab(Si) Ab(S) 0.77 2.3 2.5 2-CIE (abundances-link)0.55 11 23 5

RP Model0.29 12 17 0.77 (kTz)

Page 5: shock  heating of  Ions  and  electrons as:

G359.1

ASCA:    Shell-like    MM SNR

Suzaku A few MM -SNR ,Compared to Shell-like SNRs

Added a few MM-SNR with AO5Then, what does Suzaku change from ASCA ?kTe , Abundances

RP Region

Kawasaki et al.

IP (NEI)

Page 6: shock  heating of  Ions  and  electrons as:

List of RP SNRs and our Progress of the RP Analysis

W44 W28

IC443Brems+lines

G359.1-0.51CIE+Ly+RRCs

W49BICIE+Ly+RRC

Upper: 1CIELower: Full RP

Page 7: shock  heating of  Ions  and  electrons as:

Our mission is to search for these some events.We provide observational evidence for the events.

Science of Recombining Plasma

Ionizing Plasma (IP) traces standard evolution of shock dynamics Canonical model : Shell-llike, NEI, PSHOCKRecombining Plasma (RP) remembers some events in the early phase of MM-SNR.

Page 8: shock  heating of  Ions  and  electrons as:

RP is not Local but Glo b al

W49B

IC443

○ Initial photo ionization such as GRB ? f > 1050 erg (Same order of UV photons in HII region)

○ Rarefaction in initial phase ○ Related to the particle accelaration (CR) ?

Tz/Te mapall > 1

Page 9: shock  heating of  Ions  and  electrons as:

CSMn ~ 大

ISMn ~小

log t (year)

         Initial rarefactionHigh density CSM: Te=Tz break out to low density ISM adiabatic cooling Te decrease○ Sudden increase shock velocity ( >normal case) High Energy (∝ v2 ) Low density of ISM suppress the Coulomb interaction with thermal particles more efficient acceleration

log

r

(pc)

1 2 3

1

0

Diffusive Shock Acceleration model does not reach to the Knee Energy( The problem of Cosmic Ray Acceleration )The rarefaction Scinario may solve this problem ?

Itoh & Masai

Page 10: shock  heating of  Ions  and  electrons as:

Big solar flare RP associated with Hard X-ray T

Te

Time  (~ 1000 sec )  (Kato and Masai)

kTe

CIE

Hard X

kT

z

event

Memory

Normalized by nt , A few thousand years for SNRs

Page 11: shock  heating of  Ions  and  electrons as:

GeV ・ TeV/RP : What is a key ?   May be Supra Thermal ( = CR Injector)

0.5keV

Supra Thermal (2 keV) :  Highly Ionize  

Flu

x

X-ray EnergyIonization of Si

Recombination

Only a few % of Thermal can make RRC, R P

2-componentC ross-Coupling

: CR Injector GeV/TeVStrong Injector for MM-SNR Effective acceleration for Shell-like ?

+2keV

Page 12: shock  heating of  Ions  and  electrons as:

What will the RP Science tell us ? Possible answers are;

Cosmic Ray Injector Supra Thermal RP GeV, TeV astronomy

RRC: kT e and Bremss are separately determined      Abundances      Search for hidden h ard components

Information of Line and RRC is essential for the  Plasma Diagnosis          Path Finder for Astro-H

Page 13: shock  heating of  Ions  and  electrons as:

(Yamaguchi et al., submitted to ApJ

| |

G344

StrongAl !

3C397

G344

Tycho

Very strongCr-line (and Ni) !

Unexpectd discovery may not be only RP

Unbiased MM-SNR study will make the Suzaku legacy

Obserbation-oriented science which is the DNA of X-ray astronomy

(Nature may be much more imaginative than we are)

There must be unknown Gold Mines .

Lets search for Gold Mines !

Page 14: shock  heating of  Ions  and  electrons as:

       Target selection from ASCA-----------------------------------------------------------------------------------------------Name kTe He-α(Si)* Size(arcmin) Obs(ksec) &

------------------------------------------------------------------------------------------------

G292.0+1.8 0.5    0.5   12×8 40Kes 79+ 0.7    0.5 10 50G350.1-0.3 1.46    0.3 4 70G290.1-0.8 0.63    0.2 19×14 110Kes27 0.55    0.2 21 120G272.2-3.2 0.73 0.15 15 150 G349.7+0.2+ \ 1.1    0.13 3 160G337.2-0.7 0.85    0.08 6 200 $$

--------------------------------------------------------------------------------------------- * peak values of Si Heα (unit is arbitrary) from ASCA, For comparison, the Heα flux in W49B is ~1. + maser source \ GeV source $$Truncated to 2/3

& Observation time is estimated by the simulation assuming that RP spectrum is Tz/Te = 1.4 (typical) and that CIE model is rejected with ~3σ level.

Page 15: shock  heating of  Ions  and  electrons as:

e.g. Simulation for G337.2-0.7 (200ksec ob.)

Te (keV) 0.635 (0.626 -- 0.645)

Tz (keV) 0.635 (0.626 -- 0.645)

Tz/Te ---

Z_Si (solar) 1.23 (1.17 -- 1.29)

Z_S (solar) 1.39 (1.32 -- 1.47)

Z_Ar (solar) 1.11 (0.843 -- 1.38)

chi2/dof 572.43/418 = 1.40

Te (keV) 0.495 (0.477 -- 0.514)

Tz (keV) 0.713 (0.675 -- 0.750)

Tz/Te 1.44 (1.38 -- 1.49)

Z_Si (solar) 1.82 (1.71 -- 1.93)

Z_S (solar) 2.25 (2.05 -- 2.45)

Z_Ar (solar) 2.19 (1.64 -- 2.79)

chi2/dof 447.50/417 = 1.07

CIE RP

Page 16: shock  heating of  Ions  and  electrons as:

The End

Page 17: shock  heating of  Ions  and  electrons as:

Path Finder for Astro-H= Physics of high Temperature Space Plasma ( Pure Plasma )

kTe

kT

z

0.3 kTe 1.2

1.2

kTz

0.3

z/w

e.g. : z/w is not only for density diagnosisPlasma is more fantastic

Diagnosis with degenerated Kα Line Energy Diagnosis with resolved lines ( New Science )Excitation (w) vsCascade, Recombination line (z) : RP

e.g.1.Suzaku can plot data on the kTe-kTz plane.The center energy of He-like Kα should be give by fine structure2. If it deviates , then the plasma has bulk motion, or non/Supra-thermal components or Else ?These are the subjects of Astro-HSuzaku is the path-finder

Page 18: shock  heating of  Ions  and  electrons as:

Fe Kα < 6.7 keV

Ionizing Plasma k Te=3 keV kTz=1 keVCas A

Recombining Plasmak Te=1keVkTz=3 keVW49B

Page 19: shock  heating of  Ions  and  electrons as:

(1) Initial condition kTz >>kTe Canonical SNR Photo-ionization by GRB and Afterglow: W49B (2) Canonical SNR, kTe is cooled down by thermal conduction to clouds. (3) Explosion in a dense CSM (high kT CIE plasma) break-out to the ISM kTe cooling by adiabatic expansion. (4) Ionization by supra /non-thermal electrons (big solar flares: a RP phenomena and a hard X-ray tail ). Hard X-ray is hidden behind the continuum . All the RP-detected SNRs (5 MM-SNRs) are TeV/GeV sources .

Page 20: shock  heating of  Ions  and  electrons as:

--------------------------------------------------------------------------------------Name kTe He-α(Si) * (Fe)* --------------------------------------------------------------------------------------Kes 79 0.7 0.5G272.2-3.2 0.73 0.15G290.1-0.8 0.63 0.2G292.0+1.8 0.5+1.5 0.5  G309.2-0.6 1.96 0.07Kes27 0.4-0.7 0.2G337.2-0.7 0.85 0.06 G349.7+0.2 1.1 0.13 0.003G350.1-0.3 1.46 0.3 0.0015G352.7-0.1 1.6 0.05 0.001--------------------------------------------------------------------------------------Caption: * peak values of Heα (Si) and Fe (unit is arbitrary), For comparison, W49B are 0.55 (Heα, Si) and 0.15 (Fe). With XIS, these values become 2 time(for Si) and 10 times (for Fe) larger. ------------------------------------------------------------------------------------

Thse are the ASCA pictureSuzaku make revolution on the ASCA picture

And move on Astro-HWhich is Line+ RRC based Plasma Diagnosis

Page 21: shock  heating of  Ions  and  electrons as:

-------------------------------------------------------------------------------------Name     kTe1   kTz kTe2 TeV GeV

--------------------------------------------------------------------------------------------RP detected------

W28 0.47 0.96 Y YW44 0.55 0.71 Y YW49B 1.5 2.7 Y YIC443 0.6 1-1.2 Y YG359.1-0.5 0.29 0.77 Y ----possibly detected------ G346.6-0.2 0.7 1.0       ----Non-detection of RP ------G344.7-0.1 0.95 5.0G348.5+0.1 0.4 0.9 Y YG355.6-0.0 0.6 3C397 ?3C391 ?----------------------------------------------------------------------------------------Captions: “Y” marks in the row of TeV, GeV, OH and MC

Back: Proper ProjectBlue: Sub ProductRed :AO5

IP