shruba gangopadhyay 1,2 & artëm e. masunov 1,2,3 1 nanoscience technology center 2 department...

43
Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central Florida Quantum Coherent Properties of Spins - III First Principle Simulations of Molecular Magnets: Hubbard-U is Necessary on Ligand Atoms for Predicting Magnetic Parameters

Upload: eugene-mccoy

Post on 24-Dec-2015

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Shruba Gangopadhyay1,2 & Artëm E. Masunov1,2,3

1NanoScience Technology Center 2Department of Chemistry

3Department of PhysicsUniversity of Central Florida

Quantum Coherent Properties of Spins - III

First Principle Simulations of Molecular Magnets: Hubbard-U is Necessary on Ligand Atoms for Predicting Magnetic

Parameters

Page 2: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

2

Page 3: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

3

In this talk

Molecular Magnet as qubit implementation

Use of DFT+U method to predict J coupling

Benchmarking Study Two qubit system: Mn12

(antiferromagnetic wheel) Spin frustrated system: Mn9 Magnetic anisotropy predictions Future plans

Page 4: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

4

Page 5: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Molecular Magnets – possible element in quantum computing

5Leuenberger & Loss Nature 410, 791 (2001)

Molecular Magnet is promising implementation of QubitUtilize the spin eigenstates as qubits Molecular Magnets have higher ground spin states

It can be in |0> and |1> state simultaneously

Advantages of Molecular MagnetsUniform nanoscale size ~1nmSolubility in organic solvents Readily alterable peripheral ligands helps to fine tune the propertyDevice can be controlled by directed assembly or self assembly

Page 6: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

6

2-qubit system: Molecular Magnet [Mn12(Rdea)] contains two weakly coupled subsystems

M=Methyl diethanolamine M=allyl diethanolamine

Subsystem spin should not be identical

Page 7: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

7

Ion substitution may be used to redesign MM

Cr8 Molecular Ring Cr7Ni Molecular Ring

[1] M. Affronte et al., Chemical Communications, 1789 (2007).[2] M. Affronte et al., Polyhedron 24, 2562 (2005).[3] G. A. Timco et al., Nature Nanotechnology 4, 173 (2009).[4] F. Troiani et al., Phys Rev Lett 94, 207208 (2005).

Page 8: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

To redesign MM we need reliable method to predict magnetic properties

Ferromagnetic (F) – when the electrons have Parallel spin Antiferromagnetic (AF) – having Antiparallel spin

2

J)(E)(E

ZeemanAnisotropyHeisenbergMagnetic HHHH

8

Heisenberg-Dirac-Van Vleck Hamiltonian

J = exchange coupling constant

Si= spin on magnetic center i

21HDVV SJSH

J>0 indicates antiferromagnetic (anti-parallel ) ground stateJ < 0 indicates ferromagnetic (parallel) ground state

Page 9: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

9

iiieff rV

)(

2

1 2(1)

i

i rrn2

)()( (2)

Kohn-Sham equations

][)()(

][][][)]([

nFdrrvrn

nVnVnTrnE

HKext

eeext

Hohenberg-Kohn functional

Electronic density n(r) determines all ground state properties of multi-electron system. Energy of the ground state is a functional of electronic density:

Density Functional Theory (DFT)prediction of J from first principles

Where are KS orbitals, is the system of N effective one-particle equations

Page 10: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Energy can be predicted for high and low spin states

10

Density Functional Theory (DFT) E=E[ρ]to simplify Kinetic part, total electron density is separated into KS orbitals, describing 1e each:

Electron interaction accounted for self-consistently via exchange-correlation potential

)()()'|'|

)'(( 2

21 rrVdr

rr

rV iiixcext

2

1

|)(|)( rr i

N

ii

Page 11: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Hybrid DFT and DFT+U can be used for prediction of J

Pure DFT is not accurate enough due to self interaction error Broken Symmetry DFT (BSDFT) – Hybrid DFT (The most used method so far)

Unrestricted HF or DFT Low spin –Open shell

(spin up) β (spin down) are allowed to localized on different atomic centers

Representation of J in Broken symmetry terms is now

E(HS) - E(BS) = 2JS1S2 Another alternative for Molecular Magnet DFT+U

11

Page 12: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

12

DFT+U may reduce self-interaction error

The +U correction is the one needed to recover the exact behavior of theenergy. What is the physical meaning of U?

From self-consistent ground state (screened response)

From fixed-potential diagonalization(Kohn-Sham response)

U “on-site” electron-electron repulsion

We used DFT+U implemented in Quantum Espresso

Page 13: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Both metal and ligand need Hubbard term U

Idea: Empirically Adjust U parameter on both Metal and the coordinated ligand

Complex –Ni4(Hmp)

DFT DFT+U(d) DFT+U(p+d)

S=0 0.0000 0.00000 0.00000

S=2 0.0011 0.00012 -0.000069

S=4 0.0026 0.00019 -0.000368

13

U parameter on Oxygen not only changing the numerical result

It is changing the nature of splitting – preference of ground state

C. Cao, S. Hill, and H.-P. Cheng, Phys. Rev. Lett. 100 (16), 167206/1 (2008)

Page 14: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

14

Numeric values of U parameters for different atom types are fitted using benchmark set

Chemical formulaJ (cm-1)

Plane Wave calculations

BS-DFT Expt

DFT+Umetal+ligand

DFT+Umetal only

[Mn2 (IV)(μO)2 (phen)4]4+ -143.6 -166.6 -131.9 -147.0

[Mn2(IV)(μO)2((ac))(Me4dtne)]3+ -74.9 -87.4 -37.5 -100.0

[Mn2(III) (μO)(ac)2(tacn)2]2+ 5.6 -3.64 -40.0 10.0[Mn2(II) (ac)3(bpea)2]+ -7.7 -18.8 - -1.3[Mn(III)Mn(IV)(μO)2(ac)(tacn)2]2+ -234.0 -247.6 -405 -220

U (Mn)=2.1 eV, U(O)=1.0 eV, U(N)=0.2 eV

Page 15: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

(Mn(IV))2 (OAc)

Exp BSDFT DFT+U

-100 -37 -74.9

Computational DetailsCutoff

25 RydSmearing

Marzari-Vanderbilt cold smearingSmearing Factor 0.0008For better convergence Local Thomas Fermi screening

15

Evaluation of J(cm-1)

We modify the source code of Quantum ESPRESSO to incorporate U on Nitrogen

[Mn2(IV)(μO)2((ac))(Me4dtne)]3+

Page 16: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Mn(IV)- no acetate bridge

Exp BSDFT DFT+U

-147 -131 -164

16

Evaluation of J(cm-1)

[Mn2 (IV)(μO)2 (phen)4]4+

Page 17: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Exp BSDFT DFT+U

10 -40 2917

Mn(III) two acetate bridges

Evaluation of J(cm-1)

Exp BSDFT DFT+U

-1.5 -8

Mn(II) three acetate bridges

[Mn2(II) (ac)3(bpea)2]+[Mn2(III) (μO)(ac)2(tacn)2]2+

Page 18: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

18

J cm-1 (MnIII-MnIV)

Exp BSDFT DFT+U

-220 -155 -234

Mixed valence Mn(III)-Mn(IV)

[Mn(III)Mn(IV)(μO)2(ac)(tacn)2]2+

Page 19: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

19

Löwdin population analysis

The oxide dianions (Oµ), and aliphatic N atoms pure σ-donors- have spin polarization opposite to that of the nearest Mn ion, in agreement with superexchange

The aromatic N atoms have nearly zero spin-polarization. O atoms of the acetate cations have the same spin polarization as the nearest Mn cations.

This observation contradicts simple superexchange picture and can be explained with dative mechanism.

The acetate has vacant π-orbital extended over 3 atoms, and can serve as π-acceptor for the d-electrons of the Mn cation. As a result, Anderson’s superexchange mechanism, developed for σ-bonding metal-ligand interactions, no longer holds.

Atom AFM FM

Mn1 3.00 3.08Mn2 -3.00 3.08Oµ1 0.00 -0.03Oµ2 0.00 -0.03

Oac1 -0.05 0.08Oac2 0.05 0.08

N1 -0.07 -0.05N2 -0.07 -0.05N3 -0.07 -0.07

N′1 0.07 -0.05N′2 0.07 -0.05N′3 0.07 -0.07

Page 20: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

20

Dependence of J on U

U (ev)J cm-1Mn O N

1 1 0.2 -147.772.1 1 0.2 -71.923 1 0.2 -13.844 1 0.2 48.766 1 0.2 169.84

2.1 3 0.2 -55.272.1 5 0.2 -50.802.1 1 2.0 -62.03

Page 21: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

21

Failure of BSDFT

Bimetallic complexes with Acetate Bridging ligand Complexes with Ferromagnetic Coupling Mix valence complexes

Chemical formulaJ (cm-1)

Plane Wave calculations

BS-DFT Expt

DFT+Umetal+ligand

DFT+Umetal only

[Mn2(IV)(μO)2((ac))(Me4dtne)]3+ -74.9 -87.4 -37.5 -100.0

[Mn2(III) (μO)(ac)2(tacn)2]2+ 5.6 -3.64 -40.0 10.0[Mn(III)Mn(IV)(μO)2(ac)(tacn)2]2+ -234.0 -247.6 -405 -220

Page 22: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

22

Two qubit system-[Mn12(Reda)] complex with weakly coupled subsystems

Predict J for two coupled sub system

Previous DFT Study predicted J=0Whereas the J>0 experimentally

Methyl diethanolamine Allyl diethanolamine

Page 23: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

23

Page 24: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

24

Mdea Adea

Bond Length (Å)

J(cm-1)

X-ray OptPBE B3LYP B3LYP

(Cluster) DFT+U(X-ray)

DFT+U(Opt)

DFT+U(Opt)

Mn1-Mn6΄ 3.46 3.44 +1.2 -3.5 +0.04 4.6 -0.8 -2.38Mn1-Mn2 3.21 3.21 -6.0 -5.6 -2.8 -20.8 -3.7 -23.93Mn2-Mn3 3.15 3.18 -14.9 -2.5 -9.2 -26.8 -23.5 -31.02Mn3-Mn4 3.17 3.17 +10.9 +6.3 +7.0 50.5 44.0 57.58Mn4-Mn5 3.18 3.15 +9.2 +5.4 +8.0 56.9 54.1 45.89Mn5-Mn6 3.20 3.21 -5.4 -5.9 -5.0 -13.6 -14.2 -35.48

Page 25: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Spin frustrated system –Mn9

25

Experimental Spin Ground state S =

Molecules can be divided into two identical part passing through an axis from Mn+2

The Only Possible Combination if one Mn+3 from each half shows spin down

orientation

2

21

Page 26: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

J1

J2

J3

J4

J5

J 6

J 7

J8

J6

J4

J1

J 2

J3

J 5 J7

1

2

3

4

5

6

79

8

S=-2(Mn+3)

S=2 (Mn+3)

S=5/2(Mn+3)

)SS(J)SSSS(J)SSSS(J)SSSS(J

)SSSS(J)SSSS(J)SSSS(J)SSSS(JH

648783275654667435

57534684238921279311

Mn-Mn Ǻ

J (cm-1)

J1 3.35 7.48

J2 2.95 -16.87

J3 3.53 1.14

J4 3.43 25.07

J5 3.21 7.92

J6 3.38 3.15

J7 3.46 4.02

J8 2.86 27.32

Page 27: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Anisotropy –in Molecular Magnet

ZeemanAnisotropyHeisenbergMagnetic HHHH

27

2Zanisotropy DSH

Resulting from spin–orbit coupling, Produces a uniaxial anisotropy barrier Separating opposite projections of the spin along the axis

Relativistic Pseudopotential

Non-Collinear Magnetism

Page 28: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

28

Prediction of Anisotropy for Ce based Complex

U(eV)J

(cm-1)Ce O N 0  0  0  -359.023 0.5 0.2 -12.574 0.5 0.2 -4.034 0.8 0.2 -3.86 U(eV)

  D(cm-1)Ce O N

0 0 0 169.92

4 0.5 0.2 8.38

4 0.8 0.2 0.16

Jexpt=-0.75 cm-1, Dexpt= 0.21 cm-1

Page 29: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

29

Summary

To predict correct J values we need to include U parameters on both metal and ligand

Geometry Optimization of ground state is extremely important for correct prediction of J values

Exclusion of U Parameters on ligand atoms leads incorrect ferromagnetic ground state

Anisoptropy prediction needs relativistic pseudopotential For Anisotropy we need good starting wave function for

ground spin state of the molecule

Page 30: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

30

Prediction of Anisotropy for Mn12 based wheel Heisenberg Exchange constants

Ion substituted Mn12 wheel Mn12 cation/anion Mn12 wheel on the metal surface

Future Work

Page 31: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

31

Acknowledgements

Prof. Michael Leuenberger Eliza Poalelungi Prof. George Christou Arpita Pal NERSC Supercomputing Facilities (m990) ACS Supercomputing Award for Teragrid

Page 32: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

32

tunneling from macroscopic world

to quantumland through the

rabbit hole

Page 33: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Questions &

Suggestions

Page 34: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

34

Page 35: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

35

PseudopotentialPseudopotentials replace electronic degrees of freedom in the Hamiltonian of chemically inactive electron by an effective potential

A sphere of radius (rc) defines a boundary between the core and valence regions

For r ≥ rc the pseudopotential and wave function are required to be the same as for real potential.

Pseudopotential excludes (does not reproduce) core states – solutions are only valence states

Inside the sphere r ≤ rc , pseudopotential is such that wave functions are nodeless εi(at) = εi(PS)

For Iron

1s2 2s2 2p6 3s2 3p6 3d6 4s2

Page 36: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Faliure of bs-dft

Bimetallic complexes with Acetate Bridging ligand

Complexes with Ferromagnetic Coupling Mix valence complexes

36

Page 37: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Different transition metals in molecular magnets

37

Page 38: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

38

J for other transition metal complexes

J cm-1(FeIII-FeIII)

Exp BSDFT DFT+U

-121 -77 -141

J cm-1(FeIII-FeIII)

Exp BSDFT DFT+U

-16 -10

Page 39: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

39

J cm-1 (CrIII-CrIII)

Exp BSDFT DFT+U

-15 -10

J cm-1(CrIII-MnIII)

Exp BSDFT DFT+U

-17 -29

Page 40: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Application- biocatalysis

Polyneuclear – Transition metal centers in the enzyme

Important for biocatalysis -Understand the stability of biradical at transition state

40S Sinnecker, F Neese, W Lubitz, J Biol Inorg Chem (2005) 10: 231–238

Page 41: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

DFT+U in Quantum Espresso

The formulation developed by Liechtenstein, Anisimov and Zaanen, referred as basis set independent generalization

41

}]n[{E}]n[{E)]r(n[E)]r(n[E IDC

ImHubLDAULDA

n(r) is the electronic density

the atomic orbital occupations for the atom I experiencing the “Hubbard” term

The last term in the above equation is then subtracted in order to avoid double counting of the interactions contained both in EHub and, in some average way, in ELDA.

Imn

Page 42: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Future Plans

Compute J for heteroatom (Cr)

containing molecular magnetic

wheel

42

Page 43: Shruba Gangopadhyay 1,2 & Artëm E. Masunov 1,2,3 1 NanoScience Technology Center 2 Department of Chemistry 3 Department of Physics University of Central

Alternative Approach: DFT+U

The DFT+U method consists in a correction to the LDA (or GGA) energy functional to give a better description of electronic correlations. It is shaped on a Hubbard-like Hamiltonian including effective on-site interactions

It was introduced and developed by Anisimov and coworkers (1990-1995)

Advantages Over Hybrid DFT Computationally less expensive Possibility to treat large systems

43