sim sbo demopreci-mdt 27/10/2015 steel degradation in offshore – from model to prediction 1

29
SIM SBO DeMoPreCI-MDT 27/10/2015 Steel degradation in Offshore – from model to prediction 1

Upload: harry-gregory

Post on 29-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

PowerPoint Presentation

SIM SBO DeMoPreCI-MDT27/10/2015Steel degradation in Offshore from model to prediction

1

QueDeDevelopmentMo MonitoringPre Prediction

CICoupled Interactions

MDTMaterial Durability Testing2

The concept3 damage modesAbrasionCorrosion (dissolution / H embrittlement)Fatigue

1 forming processWelding3

Industrial cases45

6

7

8

9

10

11

Starting pointDo often occur simultaneously offshoreAll have their state of the art

But: interaction not well understood over-estimation in real applications12

Marry + further develop understandingCorrosion (H embrittlement) + fatigueAbrasion + corrosion (material dissolution)Fatigue + abrasion

First attempt to corrosion + fatigue + abrasion13

For each damage modeGenerate a numerical modelTo understand behaviorTo predict behavior

Experiments: improve understanding + generate input to build the models

14

Industrial parties15

16Abrasion - corrosionDredging MaterialHigh Cr IronLC high tensile structural steelAbrasive type (2B/3B)Two-bodyTwo-bodyDry or wetWetWetDominant MechanismErosionAbrasion - corrosionParticle typeDepends on soil conditionsDepends on soil conditionParticle size4mm max Typical sea sandImpact velocity22 30 m/s (speed of the impeller)8-20 m/s (Wind speed)Operational hours40 60 hours20 25 years (design life)SourceLehigh Univeristy/Jan De NulM. Damgard et. al., Engineering Structures, 2014

Offshore wind

17Design of abrasion testerConfigurations realized in this design Single asperityMultiple asperityAbrasion-corrosion

Configurations not realized in this designImpact abrasion/erosion

FN

18

Resonant Bending Fatigue Test Setup Corrosion fatigue instrumentationMTS universal test machine

19

Environmental controlled chamberCorrosion fatigue instrumentation

20Scripting in ABAQUS with PythonParameterized Model3D solid single-edge notch in a specimen along an arbitrary path.Fixed load cyclic load in environment

21

Cathodic cellAnodic cellHydrogen diffusionHydrogen diffusion coefficientHydrogen provided from the cathodic cellHydrogen diffusion through the sampleOxidation Hads at surface in the anodic cell generating an anodic current

Permeation cell

22

j/jExperimentalTheoreticalPermeation results

t23H evolution and transport experiments

(*Ref 1): A.V. Uluc, F.D. Tichelaar, H. Terryn, A.J. Bottger: Journal of Electroanalytical Chemistry 739 (2015) 130-136

24

H evolution and transport experiments

25

Governing equation for each species:Domain 1: metalDomain 2: interfaceNa+OH-Fe2+H2O + e- Hads + OH- Fe Fe2+ + 2e-HadsH diffusionDomain 3: solutionH evolution and transport model

26

H evolution and transport model27Interaction with heat transfer analysisProduction of ferrite at initial transformation temperatureWeight percentage:C% -- 0.39 Si% -- 2.05Ni% -- 4.08 Ae3 = 660 C Th = 460 CMs = 319 CTest with JMAK modelf = 1 - exp( -btn )

660 C

SDV1 = volume fraction of ferrite and pearliteSDV2 = volume fraction of Bainite and W-ferriteTemperature distribution where temperature initially falls below 660 C

Welds: thermal analysis

28Heat sourceheat transfer analysisMetallurgical analysisf, carbon diffusionHETVALOutput: Moving heat sourceHETVAL

Simulation of heat source of double ellipsoidal distributionInput: Ae3, Th, Ms , iUSDFLDChemical compositionGrain sizeWelds: thermal analysis

29Questions?:

More information: posters 23 28 at the poster session