simulation studies of the panda detector at gsi

20
DPG 2003 Tübingen C. Schwarz Simulation studies of the PANDA detector at GSI Carsten Schwarz for the Antiproton Physics Study Group PANDA = Proton ANtiproton at DArmstadt Introduction HESR (High Energy Storage Ring) Physics program Simulation of Detector components Micro Vertex Tracker Straw Tube Tracker DIRC RICH Calorimeter Summary & Outlook

Upload: others

Post on 15-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Simulation studies of the PANDA detector at GSI

Carsten Schwarz for the Antiproton Physics Study Group

PANDA = Proton ANtiproton at DArmstadt

IntroductionHESR (High Energy Storage Ring)Physics program

Simulation of Detector componentsMicro Vertex TrackerStraw Tube TrackerDIRCRICHCalorimeter

Summary & Outlook

Page 2: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

HESR@Future GSI

High Energy Storage Ring

Momenta 1.5-15 GeV/c Spread 10-4

10-5 (<8 GeV/c) Beam Ø 100 um p stored in ring 5 x 1010

L (pellet target) 2 x 1032 cm-2 s-1

Int. L 10 pb-1/day

HESR

Page 3: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Physics Program

Charmoniumspectroscopy

Medium modificationsof D mesons and J/Ψ in nuclei

HypernucleiCP violation

GlueballsHybrids

Page 4: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Simulation framework: C++ Geant4 Root

Event Generation

DPM pbar+p background

UrQMD pbar+A

PndEvtGen (Pluto)

PndSimApp

GEANT4 modelling of the detector

PndRecoApp

Tracking, EMC-cluster finding, RICH rings...

PandaApp

'user analysis', PID, spectra

Full simulation

Fast simulation

Page 5: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Angular AcceptanceFormation of ψ’ and decay in muons

ψ’ µ+ µ-

µ+µ-

ψ’ J/ψ + X

similarly electrons:-->for large angles calorimeter needed.

Page 6: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

PANDA Detector

Target spectrometer Forward spectrometer

Page 7: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Micro Vertex Detector (MVD)

7.2 mio. barrel pixels50 x 300 µm

2 mio. forward pixels100 x 150 µm

beam pipe

pelle

t pip

e

Readout: ASICs (ATLAS/CMS) 0.37% X0

or pixel one side - readout other side (TESLA)

Layers 5 barrel, 5 endcapthickness 200 µmthick. 5 layers 1-3.5 % X0

resolution σφz ≈ 25 ... 100 µm

Page 8: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

MVD geometry

x

y

zD0

Z0

Page 9: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Geant4 and multiple scattering

0

� 13.6 MeV

pcz

xX0

1

0.038lnxX0

Page 10: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

MVD

DIRC

STT

Straw tubes

Number of double layersSkew angle of double layers 1 and 15 Skew angle of double layers 2-14

150o

2o-3o

Straw tube wall thicknessWire thicknessGasLengthDiameter of tubes in double layers 1-5, 6-10, and 11-15Number of straw tubes

26 µm20 µm90%He+10%C4H10 150 cm4, 6, 8 mm8734

Transverse resolution σx,y

Longitudinal resolution σz

150 µm 1 mm

Event example:pp --> φφ --> 4K

Page 11: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

DIRC

less space than aerogelscosts of calorimeterno problems with field

Detecting Internally Reflected -light

PID: tracking --> p, RICH --> β --> m

Page 12: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

DIRC

K eff.

π miss-id.

reaction pp � � � φφ at √s = 3.6 GeV/c2

degree

degree

degr

ee

degr

ee

χ2/n=2.4pion beta=0.974547 photons

Page 13: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

DIRC Time Of Propagation

∆T ,

T2

T1 (discussed at Belle)

⇒reduced # of PMT for Kaon PID ⇒very good time resolution required (~ 100 ps)

Page 14: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

DIRC radiator qualityEdge losses

Edge thickn.

Sharpness of edges should be ≈ 50 µm

Page 15: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Forward RICH Search for good combination radiator ↔ photon detector ↕ magnetic field

4 10 cm

Aerogel (n=1.02) ↔ visible light PD HPD

C6F14 (n=1.24) ↔ CsI coated photo cath.

(λ < 210 nm = UV)

Proximity "focussing"compact detector

Page 16: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Aerogel and Rayleigh scatteringP

hoto

n # generated

Rayleigh scattered

Detected

Det. Eff.

Wavelength [nm]

Combination of aerogel radiator and CsI-photo cathode is not working.

Visible light???

Wavelength [nm]

Aerogel C6F14

Page 17: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Forward RICH

Aerogel n=1.02

Multi pad gasDetector

Mismatch photons<->CsI photon conversion

LHCb

proximity focusing ��� � � �

mirrors

Page 18: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Calorimeter

PbWO4

Length = 17 X0

APD readout (in field)σ(E) = 1.54% / E½ + 0.3% (PM)

pp → J/ψ + η γγ

Page 19: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Summary & Outlook

Status

Design of PANDA for GSI Future Project

Simulations in a framework of C++, Geant4, and ROOT

Target spectrometer nearly implemented

Future tasks

Completion of detector implementation (forward spectrometer)

Intensive background simulations

Annihilations ~ 100 mb Reactions nb need 108 events for each valid event to prove background supression --> fast simulation

Page 20: Simulation studies of the PANDA detector at GSI

DPG 2003 Tübingen C. Schwarz

Antiproton Physics Study Group

T. Barnes1, D. Bettoni2, R. Calabrese2, W. Cassing3, M. Düren3, P.Thörngren Engblom4, S. Ganzhur5, A. Gillitzer6, O. Hartmann7, V. Hejny6, P. Kienle8, H. Koch5, W. Kühn3, Agnes Lundborg9, Elin Lundström9, U. Lynen7, R. Meier10, V. Metag3, P. Moskal6, Örjan Nordhage9, H. Orth7, S. Paul8, K. Peters5, J. Pochodzalla11, J. Ritman3, Y. Rogov12, H. Rohdjess13, M. Sapozhnikov12, L. Schmitt8, C. Schwarz7, K. Seth14, A. Sokolov7, V. Uzhinsky12, N. Vlassov12, W. Weise8, U. Wiedner9

1) University of Tennessee, Knoxville2) INFN, Ferrara3) Universität Gießen4) Uppsala University5) Experimentalphysik 1, Bochum6) Institut für Kernphysik, FZ Jülich7) GSI Darmstadt8) Technische Universität München9) ISV, Uppsala10) Physikalisches Institut, Tübingen11) Institut für Kernphysik, Mainz12) JINR, Dubna13)Universität Bonn14) Northwestern University, Evanston