sindroma koroner akut

22
dr. Fadel Muhammad Garishah Program Internsip Dokter Indonesia Departemen Kesehatan Republik Indonesia Review Sindroma Koroner Akut

Upload: fadel-muhammad-garishah

Post on 10-Jan-2017

93 views

Category:

Health & Medicine


4 download

TRANSCRIPT

Page 1: Sindroma koroner akut

dr.FadelMuhammadGarishahProgramInternsipDokterIndonesia

DepartemenKesehatanRepublikIndonesia

ReviewSindromaKoronerAkut

Page 2: Sindroma koroner akut

PenyakitJantungIskemik

IschemicHeartDiseases

ChronicCoronaryArtery

DiseaseAcuteCoronary

Syndrome

Page 3: Sindroma koroner akut

PenyakitJantungIskemik

PenyakitJantungIskemik

PenyakitJantungKoroner

SindromaKoronerAkut

Page 4: Sindroma koroner akut

PenyakitJantungIskemik

PenyakitJantungKoroner

AnginaPektorisStabil

SindromaKoronerAkut

AnginaPektorisTidakStabil

InfarkMiokardTanpaElevasiSegmenST

(NSTEMI)

InfarkMiokardDenganElevasi

SegmenST(STEMI)

Page 5: Sindroma koroner akut

SindromaKoronerAkut

AnginaPerubahanEKGNonSTElevasi

AnginaTidakStabil

AnginaPerubahanEKGNonSTElevasi

BiomarkerJantung

InfarkMiokardNonSTElevasi

AnginaPerubahanEKGSTElevasi

BiomarkerJantung

InfarkMiokardSTElevasi

Page 6: Sindroma koroner akut

PenyakitJantungIskemik

¨  SKAmerupakansekumpulangejaladantandayangmerujukpadapenyumbatanarterikoronersecaraakutyangmenyebabkaninfarknyasel-selmiokard

¨  PJKbersifatkronis,nyeridadabersifatintermitendandapatmembaikdenganisDrahat,haltersebutdikarenakansel-selototjantungberadaptasidenganpenyempitanpembuluhkoroneryangsemakinbertambahseKaptahunnya

Page 7: Sindroma koroner akut

FaktorRisiko

¨  Dislipidemia,¨  Merokok¨  Hipertensi,¨  DM,¨  RiwayatCAD,¨  Usia(laki-laki>45,perempuan>55tahun),¨  Gayahidup(obesitas,kurangakKvitasfisik,dietKnggilemak),

¨  Kelainansistemkoagulasi,¨  Inflamasikronis,¨  BerbagairisikogeneKk.

Page 8: Sindroma koroner akut

Aterosklerosis CHAPTER 11 Blood Vessels 501

coincidence from causality is diffi cult. Nevertheless, it is cer-tainly possible that such organisms could infect sites of early atheroma formation; their foreign antigens could potentiate atherogenesis by driving local immune responses, or infec-tious agents could contribute to the local prothrombotic state.47

Smooth Muscle Proliferation

Intimal smooth muscle cell proliferation and ECM deposition convert a fatty streak, the earliest lesion, into a mature ather-oma and contribute to the progressive growth of atheroscle-rotic lesions (see Fig. 11–9, steps 4 and 5). (Recall that the intimal smooth muscle cells may be recruited from circulating precursors and they have a proliferative and synthetic pheno-type distinct from the underlying medial smooth muscle cells.)

Several growth factors are implicated in smooth muscle cell proliferation and ECM synthesis, including PDGF (released by locally adherent platelets, as well as macrophages, endothelial cells, and smooth muscle cells), FGF, and TGF-α. The recruited smooth muscle cells synthesize ECM (notably collagen) that stabilizes atherosclerotic plaques. However, activated infl am-matory cells in atheromas can cause intimal smooth muscle cell apoptosis, and also increase ECM catabolism resulting in unstable plaques (see below).

Overview

Figure 11–10 highlights the concept of atherosclerosis as a chronic infl ammatory response—and ultimately an attempt at vascular “healing”—driven by a variety of insults, including endothelial cell injury, lipid accumulation and oxidation, and

FIGURE 11–10 Hypothetical sequence of cellular interactions in atherosclerosis. Hyperlipidemia and other risk factors are thought to cause endothelial injury, resulting in adhesion of platelets and monocytes and release of growth factors, including platelet-derived growth factor (PDGF), which lead to smooth muscle cell migration and proliferation. Foam cells of atheromatous plaques are derived from both macrophages and smooth muscle cells—from macrophages via the very-low-density lipoprotein (VLDL) receptor and low-density lipoprotein (LDL) modifi cations recognized by scavenger receptors (e.g., oxidized LDL), and from smooth muscle cells by less certain mechanisms. Extracellular lipid is derived from insudation from the vessel lumen, particularly in the presence of hypercholes-terolemia, and also from degenerating foam cells. Cholesterol accumulation in the plaque refl ects an imbalance between infl ux and effl ux, and high-density lipoprotein (HDL) probably helps clear cholesterol from these accumulations. Smooth muscle cells migrate to the intima, proliferate, and produce ECM, including collagen and proteoglycans. IL-1, interleukin-1; MCP-1, monocyte chemoattractant protein 1.

LDL

Lumen

Endothelium

Intima

Internal elastic membrane

Media

LDL Cytokines(e.g., IL-1, MCP-1)

+Oxidized LDL

Macrophage

Lipid uptake

Foam cells

Cytokines/Growth Factors

Smooth muscle cells

Migration of smooth muscle cells

Extracellular lipidsand necrotic cells

Proliferation ofsmooth muscle cells

Extracellularmatrix synthesis

Endothelial Injury/Dysfunction

Hyperlipidemia, Hypertension,Smoking, Toxins, Hemodynamic

factors, Immune reactions, Viruses

Normal vessel Progressive development of artherosclerotic plaque

Monocyte adhesion and emigration into intima

Recruitment of smoothmuscle cell precursors

Cholesterol efflux via HDL

LDL

Page 9: Sindroma koroner akut

ProsesAterosklerosisdanTrombosisAkut

1986

PART 10Disorders of the Cardiovascular System

Arterial remodeling during atheroma formation ( Fig. 241-2 A ) represents a frequently overlooked but clinically important feature of lesion evolution. During the initial phases of atheroma develop-ment, the plaque usually grows outward, in an abluminal direction. Vessels affected by atherogenesis tend to increase in diameter, a phenomenon known as compensatory enlargement , a type of vas-cular remodeling. The growing atheroma does not encroach on the arterial lumen until the burden of atherosclerotic plaque exceeds ~40% of the area encompassed by the internal elastic lamina. Thus, during much of its life history, an atheroma will not cause stenosis that can limit tissue perfusion.

Flow-limiting stenoses commonly form later in the history of the plaque. Many such plaques cause stable syndromes such as demand-induced angina pectoris or intermittent claudication in the extremities. In the coronary circulation and other circulations, even total vascular occlusion by an atheroma does not invariably lead to infarction. The hypoxic stimulus of repeated bouts of isch-emia characteristically induces formation of collateral vessels in the myocardium, mitigating the consequences of an acute occlu-sion of an epicardial coronary artery. By contrast, many lesions that cause acute or unstable atherosclerotic syndromes, particu-larly in the coronary circulation, may arise from atherosclerotic plaques that do not produce a flow-limiting stenosis. Such lesions may produce only minimal luminal irregularities on traditional angiograms and often do not meet the traditional criteria for “significance” by arteriography. Thrombi arising from such non-occlusive stenoses may explain the frequency of MI as an initial manifestation of coronary artery disease (CAD) (in at least one-third of cases) in patients who report no prior history of angina pectoris, a syndrome usually caused by flow-limiting stenoses.

Plaque instability and rupture Postmortem studies afford considerable insight into the microana-tomic substrate underlying the “instability” of plaques that do not cause critical stenoses. A superficial erosion of the endothelium or a frank plaque rupture or fissure usually produces the thrombus that causes episodes of unstable angina pectoris or the occlusive and relatively persistent thrombus that causes acute MI ( Fig. 241-2 B ). In the case of carotid atheromata, a deeper ulceration that provides a nidus for the formation of platelet thrombi may cause transient cerebral ischemic attacks.

Rupture of the plaque’s fibrous cap ( Fig. 241-2 C ) permits contact between coagulation factors in the blood and highly thrombogenic tissue factor expressed by macrophage foam cells in the plaque’s lipid-rich core. If the ensuing thrombus is nonocclusive or tran-sient, the episode of plaque disruption may not cause symptoms or may result in episodic ischemic symptoms such as rest angina. Occlusive thrombi that endure often cause acute MI, particularly in the absence of a well-developed collateral circulation that sup-plies the affected territory. Repetitive episodes of plaque disruption and healing provide one likely mechanism of transition of the fatty streak to a more complex fibrous lesion ( Fig. 241-2 D ). The healing process in arteries, as in skin wounds, involves the laying down of new extracellular matrix and fibrosis.

Not all atheromata exhibit the same propensity to rupture. Pathologic studies of culprit lesions that have caused acute MI reveal several characteristic features. Plaques that have caused fatal throm-boses tend to have thin fibrous caps, relatively large lipid cores, and a high content of macrophages. Morphometric studies of such culprit lesions show that at sites of plaque rupture, macrophages and T lymphocytes predominate and contain relatively few smooth muscle cells. The cells that concentrate at sites of plaque rupture bear markers of inflammatory activation. In addition, patients with active atherosclerosis and acute coronary syndromes display signs of disseminated inflammation. For example, atherosclerotic plaques

Figure 241-2 Plaque rupture, thrombosis, and healing. A. Arterial remodeling during atherogenesis. During the initial part of the life history of an atheroma, growth is often outward, preserving the caliber of the lumen. This phenomenon of “compensatory enlargement” accounts in part for the tendency of coronary arteriography to underestimate the degree of athero-sclerosis. B. Rupture of the plaque’s fibrous cap causes thrombosis. Physical disruption of the atherosclerotic plaque commonly causes arterial thrombosis by allowing blood coagulant factors to contact thrombogenic collagen found in the arterial extracellular matrix and tissue factor produced by macrophage-derived foam cells in the lipid core of lesions. In this manner, sites of plaque rupture form the nidus for thrombi. The normal artery wall has several fibrinolytic or antithrombotic mechanisms that tend to resist thrombosis and lyse clots that begin to form in situ. Such antithrombotic or thrombolytic molecules include thrombomodulin, tissue- and urokinase-type plasminogen activators, heparan sulfate proteoglycans, prostacyclin, and nitric oxide. C. When the clot overwhelms the endogenous fibrinolytic mechanisms, it may propagate and lead to arterial occlusion. The consequences of this occlusion depend on the degree of existing collateral vessels. In a patient with chronic multivessel occlusive coronary artery disease (CAD), collateral channels have often formed. In such circumstances, even a total arterial occlusion may not lead to myocardial infarction (MI), or it may produce an unexpectedly modest or a non-ST-segment elevation infarct because of collateral flow. In a patient with less advanced disease and without substantial stenotic lesions to provide a stimulus for collateral vessel formation, sudden plaque rupture and arterial occlusion commonly produces an ST-segment elevation infarction. These are the types of patients who may present with MI or sudden death as a first manifestation of coronary atherosclerosis. In some cases, the thrombus may lyse or organize into a mural thrombus without occluding the vessel. Such instances may be clinically silent. D. The subsequent thrombin-induced fibrosis and healing causes a fibroproliferative response that can lead to a more fibrous lesion that can produce an eccentric plaque that causes a hemodynamically significant stenosis. In this way, a nonocclusive mural thrombus, even if clinically silent or causing unstable angina rather than infarction, can provoke a healing response that can promote lesion fibrosis and luminal encroachment. Such a sequence of events may convert a “vulnerable” atheroma with a thin fibrous cap that is prone to rupture into a more “stable” fibrous plaque with a reinforced cap. Angioplasty of unstable coronary lesions may “stabilize” the lesions by a similar mechanism, produc-ing a wound followed by healing.

Smooth muscle cells

T-lymphocyte

Macrophage

A

B

C

D

A.  AterosklerosisB.  RupturPlak–Trombosis

C.  TrombosisArterial

D.  FibrinolisisTrombus

Page 10: Sindroma koroner akut

SU

BA

SH

KC

/NM

C-1

5TH

/201

4

Anatomi

Page 11: Sindroma koroner akut

Anamnesis

¨  Anginamerupakanmanifestasinyerialihakibatiskemiamiokardiumyangdigambarkanrasatertekanatauberatdaerahretrosternal,menjalarkelengankiri,rahang,interskapula,bahudanepigastrium,berlangsung20menitataulebih.

¨  Keluhandisertaigejalapenyertakeringatdingin(diaforesis),mual,muntah,nyeriabdominal,sesaknapashinggasinkop.

¨  RiwayatpenyakitduluseperKdiabetes,darahKnggi,hiperkolesterolemia,stroke,penyumbatanpembuluhperiferlain,akKvitasfisik,merokok

Page 12: Sindroma koroner akut

PemeriksaanFisik

¨  Levine’sSign¨  Diaforesis¨  Obese(?)¨  Hipertensi/Syok¨  Takikardia/Bradikardia/Aritmia¨  Takipneu¨  PeningkatanSB¨  Bisingjantung¨  RBK(edemaparuakut)

Page 13: Sindroma koroner akut

Levine’ssign

Page 14: Sindroma koroner akut

Elektrokardiografi

¨  Le\BundleBranchBlockbaruelevasisegmenSTpersisten

¨  depresisegmenSTdenganatautanpainversigelombangT

¨  AmbangelevasisegmenSTyangmenjadipatokanadalah0,1mV.

Page 15: Sindroma koroner akut

LokasiInfarkdariEKG

SadapandenganDeviasiSegmenST

LokasiIskemiaatauInfark

V1-V4 AnteriorV5-V6,I,aVL LateralII,III,aVF InferiorV7-V9 Posterior

V3R,V4R VentrikelKanan

Page 16: Sindroma koroner akut

BiomarkerJantung

CKMB 2-4jampertama,puncaknya12-24jamTroponinI/T 1jampascaserangan,puncakdalam2-3

hari,troponinImenurunpadaharike-7,troponinTmenurunhinggaharike-10

Page 17: Sindroma koroner akut

Penatalaksanaan

¨  Tirahbaring(ICU)¨  Oksigenasimasker8-10LPM¨  Aspirinloadingdose160-320mgdikunyah,maintenancedose

75-100mg/hari¨  PenghambatreseptorADP

¤  Clopidogrelloadingdose300mgdenganmaintenancedose75mg/hari¤  Ticarglerol180mg,denganmaintenancedose2x90mg/hari

¨  Nitrogliserintabletsublingual5-10mg,diberikan3kaliberturut-turutdenganjeda5menit.TDSistolik>100mmHg.¤  ISDN2,5–15mgSL¤  Nitrogliserin0,3-0,6mg-1,5mgSL¤  Isosorbit5mononitrat2x20mgPO

Page 18: Sindroma koroner akut

¨  Morfinsulfat1-5mgIV,diulang10-30menitbilaresponterhadapnitrogliserinsublingualkurangbaik

¨  AnKkoagulan¤  Fondaparinuks2,5mg/hariSC¤  Enoksaparin1mg/kgduakalisehari¤  UnfractonatedHeparinloadingdose60IU/kg,maintenance12U/kg

selama24-48jamdengantargetaPTT1,5-2kalinilaikontrol¨  AnKremodelling

¤  Captopril2-3x6,25-50mg/hari¨  StaKn

¤  SasarankolesterolLDL<100mg/dL¤  SimvastaKn40mg¤  ArtovastaKn20mg

Page 19: Sindroma koroner akut

Dengan anamnesis dan pemeriksaan fisik yang terarah, MONA telah dapat diberikan pada Kemungkinan/Definitif SKA

sesegera mungkin/di layanan primer sebelum dirujuk

Gambar 1. Algoritma evaluasi dan tatalaksana SKA(Dikutip dari Anderson JL, et al. J Am Coll Cardiol 2007;50)

PEDOMAN TATALAKSANA SINDROM KORONER AKUT 13

Page 20: Sindroma koroner akut

ReperfusidanFibrinolisis

TerapireperfusidiindikasikanuntuksemuapasiendengangejalayangKmbuldalam12jamdenganelevasisegmenSTmenetapmaupunLBBBbaru.¨  PrimaryPercutaneousCoronaryIntervenKon¨  FibrinoliKk

¤  FibrinoliKkdiberikansebelumdilakukanPCIbilaKdakdapatdilakukkandalam<120menit.

¤  Streptokinase1,5jutaUdalam100mLD5%atauNaCl0,9%dalam30-60menit

¤  Alteplase(tPA)Bolus15mgIV,0,75mg/kgdalam30menit,lanjut0,5mg/kgdalam60menit

Page 21: Sindroma koroner akut

ManajemenJangkaPanjang

¨  Mengendalikanfaktorrisikohipertensi,diabetes,merokok

¨  Aspirindosisrendah75-100mg/hari¨  PenghambatADPkombinasiaspirin12bulan¨  Profillipidpuasadikontrol¨  ACEIuntukmencegahremodeling¨  Antagonisaldosteron

Page 22: Sindroma koroner akut

Komplikasi

¨  GagalJantung¨  Syokkardiogenik¨  Edemaparu¨  Aritmia(SVT,VT,AV-Blok)¨  RupturKardiak¨  RupturSeptumVentrikel