single event effects test report heavy ion test report

33
HIREX Engineering SAS au capital de 180 000 - RCS Toulouse B 389 715 525 Siège social: 2 rue des Satellites - 31520 Toulouse SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report Part Type DAC5675A Technology - Description Rad-hard 14-bit 400MSPS D/A converter Chip manufacturer Texas Instruments Test facility RADEF/JYFL, Finland Test Date April, 2010 Tesat Spacecom, PO No U07-4500436737 dated 13/01/2010 Tesat Spacecom Technical Officer: Hartwig Storm Hirex reference : HRX/SEE/0293 Issue : 02 Date : July 26th, 2010 Written by : F. Lochon Design Engineer Authorized by: F.X. Guerre Study Manager

Upload: others

Post on 29-Jul-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HIREX Engineering SAS au capital de 180 000 € - RCS Toulouse B 389 715 525 Siège social: 2 rue des Satellites - 31520 Toulouse

SINGLE EVENT EFFECTS TEST REPORT

Heavy Ion Test Report

Part Type DAC5675A

Technology -

Description Rad-hard 14-bit 400MSPS D/A converter

Chip manufacturer Texas Instruments

Test facility RADEF/JYFL, Finland

Test Date April, 2010

Tesat Spacecom, PO No U07-4500436737 dated 13/01/20 10 Tesat Spacecom Technical Officer: Hartwig Storm Hirex reference : HRX/SEE/0293 Issue : 02 Date : July 26th, 2010

Written by : F. Lochon Design Engineer

Authorized by: F.X. Guerre Study Manager

Page 2: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 2

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

RESULTS SUMMARY Facility: RADEF, Jyvaskyla (Finland) Test date: April 2010 Device description: DAC5675A - Rad-tolerant class V, 14 bit, 400 MSPS digital-to-analog converter Heavy ions results:

• SEL: o No SEL occurred during all the tests up to a LET o f 109.9 MeV/(mg/cm2) with a

fluence up to 1E+07 #/cm 2 at 125°C.

• SET on reference voltage output: o No SET bigger than 50 mV have been detected up to a LET of 54.95 MeV/(mg/cm 2)

with a fluence up to 4E+06 #/cm2 at ambient tempera ture (about 60°C). o SET smaller than 50 mV (detection threshold) may s till occur

• SET/SEU on DAC output:

o 79948 events have been detected over the whole LET range from 1.87 to 109.9 MeV/(mg/cm2)

o Several event populations have been identified on the DAC output o SEU occurred at any time and lasted until a new co nversion clock active edge

occurred on the DUT o Positive-only, negative-only and bipolar SET have been observed

o One SEU population consists in “1 DUT clock period (1 µs)” long event with an

arbitrary amplitude (up to 1.73 V), and in rare cas e “2 DUT clock period (2 µs)“ events have been detected

o One SEU population consists in “preferred amplitud e” events with an arbitrary duration (up to 1 µs)

o One SEU population consists in arbitrary amplitude (up to 1 V) and arbitrary duration (up to 0.74 µs) events

o One SET population consists in “single sample” eve nts whose duration is 1 ADC

sample (10 ns) with amplitude up to 0.27 V. o One SET population consists in arbitrary amplitude (up to 0.2 V) and arbitrary

duration (up to 0.45 µs)

• SEFI: o No SEFI occurred during all the tests up to a LET of 109.9 MeV/(mg/cm2) with a

fluence up to 1E+07 #/cm2 at 125°C.

• Error cross-section: o Error cross-section has been determined for both f ull scale current (5 mA and 20

mA), and Weibull parameters have been extracted. o The DUT is more sensitive at 5 mA full scale curre nt than at 20 mA full scale current.

Page 3: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 3

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

DOCUMENTATION CHANGE NOTICE

Issue Date Page Change Item

01

02

04/05/2008

26/07/2010

All

4, 26-33

Original issue Added distribution graphs for Neon, Argon, Iron and Krypton.

Contributors to this work: Frédéric Lochon Hirex Engineering

Page 4: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 4

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

SEE TEST REPORT On DAC5675A

TABLE OF CONTENTS

1 INTRODUCTION.....................................................................................................................................................6

2 APPLICABLE AND REFERENCE DOCUMENTS .............................................................................................6

2.1 APPLICABLE DOCUMENTS ....................................................................................................................................6 2.2 REFERENCE DOCUMENTS......................................................................................................................................6

3 DEVICE INFORMATION.......................................................................................................................................6

3.1 DEVICE DESCRIPTION...........................................................................................................................................6 3.2 SAMPLE IDENTIFICATION ......................................................................................................................................7

4 TEST SET-UP ...........................................................................................................................................................8

4.1 HIREX TEST SYSTEM............................................................................................................................................8 4.2 TEST PRINCIPLE....................................................................................................................................................8 4.3 TEST CONDITIONS................................................................................................................................................8

4.3.1 DUT Bias ....................................................................................................................................................8 4.3.2 Chain calibration .........................................................................................................................................9 4.3.3 Test run conditions ......................................................................................................................................9 4.3.4 Reference voltage monitoring .....................................................................................................................9 4.3.5 Temperature monitoring..............................................................................................................................9

5 TEST FACILITY ....................................................................................................................................................10

6 SEE TEST RESULTS.............................................................................................................................................11

6.1 SEL & SEFI.......................................................................................................................................................11 6.2 SET ON THE REFERENCE VOLTAGE....................................................................................................................11 6.3 SEU & SET AT DUT OUTPUT............................................................................................................................11

7 GLOSSARY.............................................................................................................................................................20

8 PRESENTED EVENTS DETAILED INFORMATION.............. ........................................................................21

9 DETAILED RESULTS PER RUN ........................................................................................................................22

10 DISTRIBUTION GRAPHS AT NEON.............................................................................................................26

11 DISTRIBUTION GRAPHS AT ARGON..........................................................................................................28

12 DISTRIBUTION GRAPHS AT IRON..............................................................................................................30

13 DISTRIBUTION GRAPHS AT KRYPTON.....................................................................................................32

Page 5: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 5

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

LIST OF FIGURES

Figure 1 – Device identification ................... ....................................................................................................... 7 Figure 2 – DUT Bias description .................... .................................................................................................... 8 Figure 3 – Example of initial calibration results.. ................................................................................................ 9 Figure 4 – DAC5675A, Single event cross-section per device ........................................................................ 11 Figure 5 – Typical events .......................... ....................................................................................................... 12 Figure 6 – Amplitude vs duration for “A” events at Nitrogen ............................................................................ 13 Figure 7 – Amplitude vs duration for “B” events at Nitrogen ............................................................................ 13 Figure 8 – Amplitude distribution at Nitrogen ...... ............................................................................................. 14 Figure 9 – Duration distribution at Nitrogen ....... .............................................................................................. 14 Figure 10 – Typical “B” events at Nitrogen......... .............................................................................................. 15 Figure 11 – Worst case “B” events at Nitrogen...... .......................................................................................... 15 Figure 12 – Worst case “A” events at Nitrogen...... .......................................................................................... 15 Figure 13 – Amplitude vs duration for “A” events at Xenon ............................................................................. 16 Figure 14 – Amplitude vs duration for “B” events at Xenon ............................................................................. 16 Figure 15 – Amplitude distribution at Xenon ........ ............................................................................................ 17 Figure 16 – Duration distribution at Xenon......... .............................................................................................. 17 Figure 17 – Typical short “A” events at Xenon...... ........................................................................................... 18 Figure 18 – Typical “A-“ events at Xenon........... .............................................................................................. 18 Figure 19 – Typical “A+” events at Xenon........... ............................................................................................. 18 Figure 20 – Typical “B” event at Xenon............. ............................................................................................... 19 Figure 21 – Worst case “B” events at Xenon......... .......................................................................................... 19 Figure 22 – Worst case “A” events at Xenon......... .......................................................................................... 19 Figure 23 – Amplitude distribution at Neon ......... ............................................................................................. 26 Figure 24 – Duration distribution at Neon .......... .............................................................................................. 26 Figure 25 – Amplitude vs duration for “A” events at Neon ............................................................................... 27 Figure 26 – Amplitude vs duration for “B” events at Neon ............................................................................... 27 Figure 27 – Amplitude distribution at Argon ........ ............................................................................................. 28 Figure 28 – Duration distribution at Argon ......... .............................................................................................. 28 Figure 29 – Amplitude vs duration for “A” events at Argon .............................................................................. 29 Figure 30 – Amplitude vs duration for “B” events at Argon .............................................................................. 29 Figure 31 – Amplitude distribution at Iron ......... ............................................................................................... 30 Figure 32 – Duration distribution at Iron.......... ................................................................................................. 30 Figure 33 – Amplitude vs duration for “A” events at Iron.................................................................................. 31 Figure 34 – Amplitude vs duration for “B” events at Iron.................................................................................. 31 Figure 35 – Amplitude distribution at Krypton ...... ............................................................................................ 32 Figure 36 – Duration distribution at Krypton....... .............................................................................................. 32 Figure 37 – Amplitude vs duration for “A” events at Krypton ........................................................................... 33 Figure 38 – Amplitude vs duration for “B” events at Krypton ........................................................................... 33

LIST OF TABLES Table 1 – Used ions and features thereof ........... ............................................................................................. 10 Table 2 – Weibull parameters for full-scale current of 5mA and 20mA ................................... ........................ 11 Table 3 – Event type proportions with respect to to tal events (all conditions and all DUT taken togeth er) ..... 12 Table 4 – Event detailed information............... ................................................................................................. 21 Table 5 – ADS5463, detailed run results ............ ............................................................................................. 25

Page 6: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 6

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

1 Introduction

This report presents results of heavy ions test pro gram carried out on Texas Instruments 14-bit DAC DAC5675MHFG-V (5962-0720401VXC). 6 samples were delivered by TESAT. 3 samples were exposed using RADEF facility cyclotr on at University of Jyvaskyla (JYFL) in Finland. This work was performed under the Purchase Order re ference No U07-4500436737 dated 13/01/2010. Test set-up allowed detection of Single Event Upse ts (SEU), Single Event Transients (SET) Single Event Latchups (SEL) and Single Event Functional In terrupt (SEFI).

2 Applicable and Reference Documents

2.1 Applicable Documents AD-1 SMD No 5962-07204, MICROCIRCUIT, DIGITAL-LINEA R, 14 BIT, 400 MSPS DIGITAL

TO ANALOG CONVERTER, MONOLITHIC SILICON. AD-2 Hirex proposal, HRX/PRO/2911 Issue 2, December 16, 2009. AD-3 Testplan for SEE Testing of DAC 5675, TES-09/5 7/STO Issue A, 2009-11-17.

2.2 Reference Documents

RD-1 Single Event Effects Test method and Guideline s ESA/SCC basic specification No 25100.

3 DEVICE INFORMATION

3.1 Device description Part Description: Rad-hard 14-bit 500MSPS D/A converter Package: 52-leads Quad flatpack with non-conductive tie b ar Technology: - Marking: logo serial 5962-0720401VXC DAC5675AMHFG-V THA 7A CR 0808A Q Samples Used: 212, 209, 211, 213, 215 and 217

Page 7: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 7

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02 3.2 Sample identification

Package Marking Full die view

Opened device Die marking

Figure 1 – Device identification

Die area: 3.6 mm x 3.2 mm

Page 8: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 8

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

4 Test Set-up

4.1 Hirex Test system The test system is based on a Virtex5 FPGA which ru ns at 200MHz. The test board has 168 I/Os which can be configured using several I/O standards . The test system also features as a standard feature : latchup detection and voltage/current monitoring up to 24 channels, a voltage reference monitor and a DDR2 memory to store data (DDR2 not used in the present test). The communication between the test system and the c omputer is done thanks to a 100 Mbit/s Ethernet link which enables high speed data downloa ding and uploading.

4.2 Test principle In order to test the DUT, a 16-bit ADC was used to convert the differential output voltage. The chain formed by the DUT followed by the ADC can then be calibrated for each value of the word presented to the DAC by observing the word at the A DC output and doing simple statistics (min and max values) during a given sample count. This statistic can then be used during beam exposit ion to detect conversion errors. The conversion clock for the DUT was 1 MHz while th e conversion clock for the 16-bit ADC was 100 MHz. The full scale current could be selected using a multiplexor to connect the “BiasJ” pin to a resistor (either 960 ohms or 3840 ohms).

4.3 Test conditions

4.3.1 DUT Bias

Figure 2 – DUT Bias description

Page 9: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 9

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

4.3.2 Chain calibration

For each DUT, preliminary to the test runs and when ever needed, a calibration was performed in the actual test conditions (under vacuum and at the tes t temperature). This chain calibration consisted in acquiring for e ach input step (16384 steps of the 14-bits DAC), th e 16-bit ADC output value. For each step, 2E+6 conver sions were performed and min and max ADC output values were recorded. Figure 3 shows a calibration example which was used in Run111. Min value, max value and delta (Max-Min) is plotted for each DAC word. 100 LSB for ADC corresponds to a differential output voltage at the DUT of about 3.05mV (about 25 LSB fo r the DAC).

Figure 3 – Example of initial calibration results

4.3.3 Test run conditions

Each run consisted then in continuously applying a ramp at the DAC input, each step being converted 10E+6 times at a conversion sampling frequency of 1 00MSPS, which corresponds to 10ms. For each step, the ADC output is compared with the min and max values recorded at calibration stage (increased by 15 LSB at 5mA full scale curren t and 45 LSB at 20 mA to prevent noisy events) and when these values are exceeded, an error is det ected and counted. The actual settings are the following: Each time a conversion error is detected, the 31 pr evious samples and the subsequent conversions are recorded until 70 successive conversions are wi thin the min and max values for this particular step. If the number of conversion errors exceeds 12 0, the conversions values are no more recorded but the total number of conversions in error is cou nted. Each run consisted in sweeping the whole DAC input range at least twice, resulting in a minimum run duration of about 6 minutes (2 * 16384 * 10ms + dea d times).

4.3.4 Reference voltage monitoring

The internal reference voltage can be measured at E XTIO output pin. The signal is digitized with a 10-bit converter (1LSB~ 4.7mV) at a 400 MHz samplin g frequency and 2 thresholds (low and high) are programmed.

4.3.5 Temperature monitoring

Water cooling and thermal drain were used in conjun ction with DUT package thermal pad. Package temperature was then maintained constant un der vacuum for each test run. Temperature was measured using a thermocouple glued to the DUT package.

Page 10: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 10

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

5 Test Facility Test at the cyclotron accelerator was performed at University of Jyvaskyla (JYFL) (Finland) under HIREX Engineering responsibility. The facility includes a special beam line dedicated to irradiation studies of semiconductor components and devices. It consists of a vacuum cha mber including component movement apparatus and the necessary diagnostic equipment re quired for the beam quality and intensity analysis. The cyclotron is a versatile, sector-focused accele rator of beams from hydrogen to xenon equipped with three external ion sources: two electron cyclo tron resonance (ECR) ion sources designed for high-charge-state heavy ions, and a multicusp ion s ource for intense beams of protons. The ECR's are especially valuable in the study of single even t effects (SEE) in semiconductor devices. For heavy ions, the maximum energy attainable can be determin ed using the formula,

130 Q2/M, where Q is the ion charge state and M is the mass i n Atomic Mass Units. Test chamber Irradiation of components is performed in a vacuum chamber with an inside diameter of 75 cm and a height of 81 cm. The vacuum in the chamber is achieved after 15 minu tes of pumping, and the inflation takes only a few minutes. The position of the components install ed in the linear movement apparatus inside the chamber can be adjusted in the X, Y and Z direction s. The possibility of rotation around the Y-axis is provided by a round table. The free movement area r eserved for the components is 25 cm x 25 cm, which allows one to perform several consecutive irr adiations for several different components without breaking the vacuum. The assembly is equipped with a standard mounting f ixture. The adapters required to accommodate the special board configurations and the vacuum fee d-throughs can also be made in the laboratory’s workshops. The chamber has an entrance door, which allows rapid changing of the circuit board or individual components. A CCD camera with a magnifying telescope is located at the other end of the beam line to determine accurate positioning of the components. The coordin ates are stored in the computer’s memory allowing fast positioning of various targets during the test. Beam quality control For measuring beam uniformity at low intensity, a C sI(Tl) scintillator with a PIN-type photodiode readout is fixed in the mounting fixture. The unifo rmity is measured automatically before component irradiation and the results can be plotted immediat ely for more detailed analysis. A set of four collimated PIN-CsI(Tl) detectors is l ocated in front of the beam entrance. The detectors are operated with step motors and are located at 90 degrees with respect to each other. During the irradiation and uniformity scan they are set to the outer edge of the beam in order to monitor the stability of the homogeneity and flux. Two beam wobblers and/or a 0.5 microns diffusion Go ld foil can be used to achieve good beam homogeneity. The foil is placed 3 m in front of the chamber. The wobbler-coils vibrate the beam horizontally and vertically, the proper sweeping ar ea being attained with the adjustable coil-currents . Dosimetry The flux and intensity dosimeter system contains a Faraday cup, several collimators, a scintillation counter and four PIN-CsI(Tl) detectors. Three colli mators of different size and shape are placed 25 cm in front of the device under test. They can be u sed to limit the beam to the active area to be studied. At low fluxes a plastic scintillator with a photomu ltiplier tube is used as an absolute particle count er. It is located behind the vacuum chamber and is used be fore the irradiation to normalize the count rates of the four PIN-CsI(Tl) detectors. The RADEF ions used are listed in the table below.

Ion Energy [MeV] LETmeas @surface [MeV/mg/cm2]

Range [microns]

15N+4 139 1.87 202 20Ne+6 186 3.68 146 40Ar+12 372 10.08 118 56Fe+15 523 18.84 97 82Kr+22 768 30.44 94 131Xe+35 1217 54.95 89

Table 1 – Used ions and features thereof

Page 11: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 11

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

6 SEE Test Results 3 samples s/n212, s/n216 and s/n217 have been expos ed over an LET range from 1.87 to 54.95 MeV/(mg/cm²) at ambient temperature (about 60°C) an d at 109.90 MeV(mg/cm 2) at 80°C and 125°C. Detailed results per run are presented in section 9 while the corresponding Single event cross-section per device is shown in Figure 4 and Weibull parameters are presented in Table 2.

Figure 4 – DAC5675A, Single event cross-section per device

Full scale current A x0 W s 5mA 3.8E-3 0.3 31 1.1

20mA 2.5E-3 0.3 31 1.1

Table 2 – Weibull parameters for full-scale current of 5mA and 20mA

6.1 SEL & SEFI No SEL nor SEFI was detected on three samples up to an effective LET of 109.90 MeV/(mg/cm2) and with a fluence up to 1E+07 #/cm2 at 125°C.

6.2 SET on the reference voltage A threshold of +/- 50 mV was used when monitoring t he reference voltage output. In this configuration, no SET were observed on the reference voltage output, but smaller SET may exists.

6.3 SEU & SET at DUT output Conversion events were detected over the entire LET range, resulting in a total of 79948 events. To simplify the analysis, events have been assigned a unique number and classified in two categories depending on the ADC samples amplitude d istribution.

• Category A corresponds to events which have less t han 4% of samples between 10% and 90% relative to minimum and maximum sample in the e vent.

• Category B corresponds to events which are not in category A. Moreover, events have been tagged with an attribute “polarity” to determine if the event was:

• only above the maximum threshold (“+” as positive only events), • only below the minimum threshold (“-“ as negative only events), • above the maximum threshold and below the minimum threshold (“0” as bipolar events).

All presented events are summarized in Table 4 in s ection 8 which shows event information.

Page 12: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 12

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02 Figure 5 shows two typical events to illustrate “A- ” and “B-” events. The “A-“ event (set_68422) looks like an SEU while the “B-“ event (set_58791) looks like an SET. More generally:

• “B” events are typically transients • “A” events are typically either SEU which are only corrected after a new DAC input clock

pulse, or very short transients with very few sampl es in error (typically 1 or 2).

Figure 5 – Typical events

Table 3 shows event type proportion for each ion an d tilt. It is possible to observe that:

• “A0” events are quite uncommon which is because “A ” events are mostly SEU, • “B0” events are more common with high LET ions com pared to low LET ions, • while “B” events population is comparable to “A” e vents population at low LET, “B” events are

more common at high LET which is because transients are also becoming bigger in terms of amplitude and finally get detected when going over detection thresholds.

Ion A+ A0 A- B+ B0 B- total A total B total events N 23.0% 0.0% 27.2% 20.8% 0.0% 29.0% 50.2% 49.8% 1909 Ne 25.2% 0.2% 26.8% 21.9% 0.5% 25.5% 52.2% 47.8% 3911 Ne@60° 20.3% 0.0% 21.7% 23.1% 1.2% 33.6% 42.0% 58.0% 4643 Ar 19.5% 0.0% 20.6% 28.4% 2.2% 29.3% 40.1% 59.9% 10661 Fe 19.2% 0.0% 21.8% 29.0% 2.6% 27.4% 41.0% 59.0% 12717 Kr 18.1% 0.0% 19.2% 30.5% 3.3% 28.9% 37.3% 62.7% 16038 Xe 17.5% 0.1% 20.2% 27.7% 5.0% 29.4% 37.9% 62.1% 19037 Xe@60° - sleep 9.7% 0.9% 10.3% 35.1% 0.8% 43.2% 20.9% 79.1% 11032

Table 3 – Event type proportions with respect to to tal events (all conditions and all DUT taken together)

Page 13: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 13

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02 Figure 6 and Figure 7 represents amplitude versus d uration graphs for “A” events and “B” events at Nitrogen (LET = 1.87). It is possible to observe that most “A” events are bigger in terms of amplitude than “B” events which, again, is because “A” events are mostly SEU and thu s amplitude should be arbitrary.

Figure 6 – Amplitude vs duration for “A” events at Nitrogen

It is possible to observe that some “B” events are 100 samples long (1µs), those events are in fact SEU which have not been categorized as “A” events b ecause of their small size (the criteria does not work well because of the noise). Others long (more than 10 samples) “B” events may still be SEU (see Figure 10).

Figure 7 – Amplitude vs duration for “B” events at Nitrogen

Page 14: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 14

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02 To have a more precise idea of the distribution of the events, Figure 8 and Figure 9 shows the distribution of the events at Nitrogen in terms of amplitude and duration. Amplitude distribution has peaks for “4mV to 8mV” a nd “31mV to 63mV” because of “A” events which, for some reason, have some preferred SEU amp litudes as seen on Figure 6. One possibility would be because of an internal pipeline which woul d be sensitive between each stage. In a similar way, duration distribution has peaks b ecause 1µs-long “A” events are important, possibly because the input stage of the DAC is SEE sensitive .

Figure 8 – Amplitude distribution at Nitrogen

Figure 9 – Duration distribution at Nitrogen

Page 15: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 15

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

Figure 10 – Typical “B” events at Nitrogen

Figure 11 – Worst case “B” events at Nitrogen

Figure 12 – Worst case “A” events at Nitrogen

Page 16: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 16

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02 Similar graphs can be built for Xenon (LET = 54.95) . Figure 13 and Figure 14 represents amplitude versus duration graphs for “A” events and “B” events at Xenon (LET = 54.95)

Figure 13 – Amplitude vs duration for “A” events at Xenon

Figure 14 – Amplitude vs duration for “B” events at Xenon

Page 17: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 17

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02 Figure 15 and Figure 16 show amplitude and duration distribution at Xenon. Typical “A” events are shown in Figure 17, Figure 1 8, Figure 19 and Figure 20. Some worst cases (depending on the definition) for both “A” events and “B” events are shown in Figure 21 and Figure 22.

Figure 15 – Amplitude distribution at Xenon

Figure 16 – Duration distribution at Xenon

Page 18: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 18

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

Figure 17 – Typical short “A” events at Xenon

Figure 18 – Typical “A-“ events at Xenon

Figure 19 – Typical “A+” events at Xenon

Page 19: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 19

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

Figure 20 – Typical “B” event at Xenon

Figure 21 – Worst case “B” events at Xenon

Figure 22 – Worst case “A” events at Xenon

Page 20: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 20

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

7 Glossary Most of the definitions here below are from JEDEC s tandard JESD89A DUT: Device under test. Fluence (of particle radiation incident on a surface): Th e total amount of particle radiant energy incident on a surface in a given period of time, di vided by the area of the surface. In this document, Fluence is expressed in ions per cm2. Flux : The time rate of flow of particle radiant energy incident on a surface, divided by the area of that surface. In this document, Flux is expressed in ions per cm2 *s. Single-Event Effect (SEE): Any measurable or observable change in sta te or performance of a microelectronic device, component, subsystem, or system (digital or analog) resulting from a single energetic particle strike. Single-event effects include single-event upset (SE U), multiple-bit upset (MBU), multiple-cell upset (MCU), single-event functional interrupt (SEFI), si ngle-event latch-up (SEL), single-event snap-back (SESB), single-event hard error (SHE) and single-ev ent transient (SET), single-event burnout (SEB), and single-event gate rupture (SEGR). Single-Event Upset (SEU): A soft error caused by the transient signa l induced by a single energetic particle strike. Single-Event Functional Interrupt (SEFI): A soft error that causes the component to r eset, lock-up, or otherwise malfunction in a detectable way, but d oes not require power cycling of the device (off and back on) to restore operability. A SEFI is often associated with an upset in a contr ol bit or register. Single-Event Latch-up (SEL): An abnormal high-current state in a device caused by the passage of a single energetic particle through sensitive regio ns of the device structure and resulting in the los s of device functionality. SEL may cause permanent damage to the device. If th e device is not permanently damaged, power cycling of the device (off and back on) is necessar y to restore normal operation. An example of SEL in a CMOS device is when the pass age of a single particle induces the creation of parasitic bipolar (p-n-p-n) shorting of power to ground. Single-Event Latch-up (SEL) cross-section: the numb er of events per unit fluence. For chip SEL cross-section, the dimensions are cm2 per chip. Single Event Transient (SET): A momentary voltage excursion (voltage spi ke) at a node in an integrated circuit caused by a single energetic par ticle strike. Error cross-section : the number of errors per unit fluence. For device error cross-section, the dimensions are cm2 per device. For bit error cross- section, the dimensions are cm2 per bit. Tilt and Roll angle: tilt angle, rotation axis of the DUT board is perp endicular to the beam axis; roll angle, board rotation axis is parallel to the beam axis Weibull Function: F(x) = A (1- exp{-[(x-x 0)/W]s})

x = effective LET in MeV-cm 2 /milligram; F(x) = SEE cross-section in square-cm2/bit; A = limiting or plateau cross-section; x0 = onset parameter, such that F(x) = 0 for x < x 0; W = width parameter; s = a dimensionless exponent.

Page 21: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 21

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

8 Presented events detailed information

Event number

Run Hirex

DUT Ion Sleep Current Voltage Temperature Tilt DAC input word

Effective LET

19619 118 217 N 0 5 3.5 RT 0 1999 1.87 19625 118 217 N 0 5 3.5 RT 0 3000 1.87 19846 119 217 N 0 5 3.2 RT 0 14853 1.87 20149 124 216 N 0 20 3.2 RT 0 13308 1.87 20759 128 216 N 0 5 3.5 RT 0 13510 1.87 20988 131 216 N 0 20 3.5 RT 0 9160 1.87 50150 158 216 Xe 0 20 3.5 RT 0 5597 54.95 50768 158 216 Xe 0 20 3.5 RT 0 15134 54.95 51517 158 216 Xe 0 20 3.5 RT 0 11825 54.95 51937 158 216 Xe 0 20 3.5 RT 0 3541 54.95 53844 159 216 Xe 0 5 3.5 RT 0 14474 54.95 55633 159 216 Xe 0 5 3.5 RT 0 61 54.95 57608 161 216 Xe 0 20 3.2 RT 0 3392 54.95 58791 161 216 Xe 0 20 3.2 RT 0 6369 54.95 60269 162 217 Xe 0 20 3.2 RT 0 2080 54.95 60915 164 217 Xe 0 5 3.2 RT 0 753 54.95 62856 164 217 Xe 0 5 3.2 RT 0 4129 54.95 63972 165 217 Xe 0 5 3.5 RT 0 8924 54.95 68422 166 217 Xe 0 20 3.5 RT 0 10545 54.95 70947 186 217 Xe 1 20 3.5 80 60 8483 109.9

Table 4 – Event detailed information

Page 22: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

H

RX

/SE

E/0

293

Issu

e 02

P

age

22

Ref. : HRX/SEE/0293

Hirex Engineering

SEE Test Report

Issue : 02

9 D

etai

led

resu

lts p

er ru

n Run # Hirex

Run # JYFL

Irradiated DUT

Tested DUT

Voltage

Sleep

temperature

current

Ion

Energy

LET

Range

TILT

SEL Fluence

TIME

Mean flux

Run Dose

Eff, LET

SET

SET Fluence

SET X-SECTION

6 2

212

212

3,

2 0

RT

20

A

r 37

2 10

,08

11

8 0

1,21

E+

06

480

2521

19

5 10

,08

822

1,16

E+

06

7,07

E-0

4 15

6

212

212

3,

2 0

RT

5

Ar

372

10,0

8

118

0 1,

29E

+06

58

0 22

24

208

10,0

8 10

11

1,01

E+

06

1,00

E-0

3 17

7

212

212

3,

5 0

RT

5

Ar

372

10,0

8

118

0 1,

68E

+06

38

9 43

19

271

10,0

8 14

45

1,39

E+

06

1,04

E-0

3 20

8

212

212

3,

5 0

RT

20

A

r 37

2 10

,08

11

8 0

1,48

E+

06

506

2925

23

9 10

,08

1149

1,

19E

+06

9,

65E

-04

41

9 21

7 21

7

3,2

0 R

T

20

Ar

372

10,0

8

118

0 1,

85E

+06

39

5 46

84

298

10,0

8 89

8 1,

54E

+06

5,

83E

-04

45

10

217

217

3,

2 0

RT

5

Ar

372

10,0

8

118

0 1,

40E

+06

34

2 40

94

226

10,0

8 10

63

1,24

E+

06

8,60

E-0

4 47

11

21

7 21

7

3,5

0 R

T

5 A

r 37

2 10

,08

11

8 0

1,08

E+

06

422

2559

17

4 10

,08

799

8,75

E+

05

9,14

E-0

4 51

12

21

7 21

7

3,5

0 R

T

20

Ar

372

10,0

8

118

0 1,

26E

+06

46

3 27

21

203

10,0

8 63

7 1,

12E

+06

5,

68E

-04

55

13

216

216

3,

5 0

RT

20

A

r 37

2 10

,08

11

8 0

1,12

E+

06

522

2146

18

1 10

,08

499

9,63

E+

05

5,18

E-0

4 61

14

21

6 21

6

3,5

0 R

T

5 A

r 37

2 10

,08

11

8 0

1,20

E+

06

419

2864

19

4 10

,08

891

1,07

E+

06

8,34

E-0

4 66

16

21

6 21

6

3,2

0 R

T

5 A

r 37

2 10

,08

11

8 0

1,20

E+

06

642

1869

19

4 10

,08

887

1,07

E+

06

8,25

E-0

4 72

18

21

6 21

6

3,2

0 R

T

20

Ar

372

10,0

8

118

0 1,

23E

+06

58

9 20

88

198

10,0

8 56

0 1,

08E

+06

5,

17E

-04

73

20

216

216

3,

2 0

RT

20

N

e 18

6 3,

68

146

0

1,06

E+

06

370

2865

62

3,

68

230

9,58

E+

05

2,40

E-0

4 74

21

21

6 21

6

3,2

0 R

T

5 N

e

186

3,68

14

6

0 1,

28E

+06

54

6 23

44

75

3,68

26

5 1,

08E

+06

2,

46E

-04

75

22

216

216

3,

5 0

RT

5

Ne

18

6 3,

68

146

0

1,36

E+

06

513

2651

80

3,

68

270

1,20

E+

06

2,25

E-0

4 76

23

21

6 21

6

3,5

0 R

T

20

Ne

186

3,68

14

6

0 1,

22E

+06

47

6 25

63

72

3,68

27

1 1,

08E

+06

2,

52E

-04

77

24

216

216

3,

5 0

RT

20

N

e 18

6 3,

68

146

60

1,

14E

+06

43

0 26

51

134

7,36

52

0 1,

03E

+06

5,

04E

-04

78

25

216

216

3,

5 0

RT

5

Ne

18

6 3,

68

146

60

1,

34E

+06

52

3 25

62

158

7,36

55

5 1,

19E

+06

4,

66E

-04

80

26

216

216

3,

2 0

RT

5

Ne

18

6 3,

68

146

60

1,

29E

+06

37

3 34

58

152

7,36

61

9 1,

16E

+06

5,

34E

-04

81

27

216

216

3,

2 0

RT

20

N

e 18

6 3,

68

146

60

1,

30E

+06

41

1 31

63

153

7,36

53

3 1,

16E

+06

4,

58E

-04

86

28

217

217

3,

2 0

RT

20

N

e 18

6 3,

68

146

60

1,

21E

+06

40

9 29

58

142

7,36

32

7 1,

08E

+06

3,

04E

-04

92

29

217

217

3,

2 0

RT

5

Ne

18

6 3,

68

146

60

1,

56E

+06

37

3 41

82

184

7,36

75

9 1,

40E

+06

5,

43E

-04

93

30

217

217

3,

5 0

RT

5

Ne

18

6 3,

68

146

60

1,

75E

+06

38

5 45

45

206

7,36

85

8 1,

55E

+06

5,

55E

-04

94

31

217

217

3,

5 0

RT

20

N

e 18

6 3,

68

146

60

1,

60E

+06

37

0 43

24

188

7,36

47

2 1,

42E

+06

3,

32E

-04

Page 23: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

H

RX

/SE

E/0

293

Issu

e 02

P

age

23

Ref. : HRX/SEE/0293

Hirex Engineering

SEE Test Report

Issue : 02

Run # Hirex

Run # JYFL

Irradiated DUT

Tested DUT

Voltage

Sleep

temperature

current

Ion

Energy

LET

Range

TILT

SEL Fluence

TIME

Mean flux

Run Dose

Eff, LET

SET

SET Fluence

SET X-SECTION

95

32

217

217

3,

5 0

RT

20

N

e 18

6 3,

68

146

0

1,31

E+

06

393

3333

77

3,

68

251

1,16

E+

06

2,16

E-0

4 96

33

21

7 21

7

3,5

0 R

T

5 N

e

186

3,68

14

6

0 1,

30E

+06

46

2 28

14

77

3,68

36

4 1,

16E

+06

3,

14E

-04

97

34

217

217

3,

2 0

RT

5

Ne

18

6 3,

68

146

0

1,23

E+

06

468

2628

72

3,

68

396

1,09

E+

06

3,64

E-0

4 10

2 35

21

7 21

7

3,2

0 R

T

20

Ne

186

3,68

14

6

0 1,

22E

+06

45

8 26

64

72

3,68

23

3 1,

11E

+06

2,

11E

-04

106

36

212

212

3,

2 0

RT

20

N

e 18

6 3,

68

146

0

1,53

E+

06

412

3714

90

3,

68

369

1,35

E+

06

2,73

E-0

4 10

8 37

21

2 21

2

3,2

0 R

T

5 N

e

186

3,68

14

6

0 1,

38E

+06

36

9 37

40

81

3,68

37

2 1,

26E

+06

2,

96E

-04

111

38

212

212

3,

5 0

RT

5

Ne

18

6 3,

68

146

0

1,68

E+

06

376

4468

99

3,

68

440

1,50

E+

06

2,93

E-0

4 11

4 39

21

2 21

2

3,5

0 R

T

20

Ne

186

3,68

14

6

0 1,

91E

+06

39

6 48

23

112

3,68

45

0 1,

71E

+06

2,

63E

-04

117

138

217

217

3,

5 0

RT

20

N

13

9 1,

87

202

0

1,68

E+

06

388

4330

50

1,

87

188

1,49

E+

06

1,26

E-0

4 11

8 13

9 21

7 21

7

3,5

0 R

T

5 N

13

9 1,

87

202

0

1,77

E+

06

418

4234

53

1,

87

240

1,58

E+

06

1,52

E-0

4 11

9 14

0 21

7 21

7

3,2

0 R

T

5 N

13

9 1,

87

202

0

1,83

E+

06

434

4217

55

1,

87

255

1,62

E+

06

1,57

E-0

4 12

0 14

1 21

7 21

7

3,2

0 R

T

20

N

139

1,87

20

2

0 1,

63E

+06

39

1 41

69

49

1,87

16

5 1,

44E

+06

1,

14E

-04

124

143

216

216

3,

2 0

RT

20

N

13

9 1,

87

202

0

1,58

E+

06

385

4104

47

1,

87

306

1,40

E+

06

2,19

E-0

4 12

5 14

4 21

6 21

6

3,2

0 R

T

5 N

13

9 1,

87

202

0

1,98

E+

06

481

4116

59

1,

87

306

1,76

E+

06

1,74

E-0

4 12

8 14

5 21

6 21

6

3,5

0 R

T

5 N

13

9 1,

87

202

0

1,94

E+

06

469

4136

58

1,

87

272

1,73

E+

06

1,58

E-0

4 13

1 14

6 21

6 21

6

3,5

0 R

T

20

N

139

1,87

20

2

0 1,

72E

+06

41

3 41

65

51

1,87

17

7 1,

52E

+06

1,

16E

-04

132

148

216

216

3,

5 0

RT

20

F

e 52

3 18

,84

97

0

1,20

E+

06

591

2030

36

2 18

,84

1224

1,

07E

+06

1,

15E

-03

134

149

216

216

3,

5 0

RT

5

Fe

52

3 18

,84

97

0

1,21

E+

06

605

2000

36

5 18

,84

1884

1,

07E

+06

1,

77E

-03

137

150

216

216

3,

2 0

RT

5

Fe

52

3 18

,84

97

0

1,16

E+

06

684

1696

35

0 18

,84

1635

1,

02E

+06

1,

60E

-03

141

151

216

216

3,

2 0

RT

20

F

e 52

3 18

,84

97

0

1,33

E+

06

398

3342

40

1 18

,84

1107

1,

18E

+06

9,

38E

-04

142

152

217

217

3,

2 0

RT

20

F

e 52

3 18

,84

97

0

2,09

E+

06

413

5061

63

0 18

,84

1872

1,

84E

+06

1,

02E

-03

143

153

217

217

3,

2 0

RT

5

Fe

52

3 18

,84

97

0

2,60

E+

06

588

4422

78

4 18

,84

830

7,15

E+

05

1,16

E-0

3 14

6 15

6 21

7 21

7

3,5

0 R

T

5 F

e

523

18,8

4

97

0 1,

86E

+06

10

94

1700

56

1 18

,84

2855

1,

58E

+06

1,

80E

-03

147

157

217

217

3,

5 0

RT

20

F

e 52

3 18

,84

97

0

1,38

E+

06

462

2987

41

6 18

,84

1312

1,

22E

+06

1,

08E

-03

Page 24: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

H

RX

/SE

E/0

293

Issu

e 02

P

age

24

Ref. : HRX/SEE/0293

Hirex Engineering

SEE Test Report

Issue : 02

Run # Hirex

Run # JYFL

Irradiated DUT

Tested DUT

Voltage

Sleep

temperature

current

Ion

Energy

LET

Range

TILT

SEL Fluence

TIME

Mean flux

Run Dose

Eff, LET

SET

SET Fluence

SET X-SECTION

150

159

217

217

3,

5 0

RT

20

K

r 76

8 30

,44

94

0

1,22

E+

06

450

2711

59

4 30

,44

1764

1,

07E

+06

1,

65E

-03

151

160

217

217

3,

5 0

RT

5

Kr

768

30,4

4

94

0 1,

10E

+06

41

7 26

38

536

30,4

4 25

63

9,40

E+

05

2,73

E-0

3 15

2 16

1 21

7 21

7

3,2

0 R

T

5 K

r 76

8 30

,44

94

0

1,06

E+

06

440

2409

51

6 30

,44

2418

9,

28E

+05

2,

60E

-03

153

162

217

217

3,

2 0

RT

20

K

r 76

8 30

,44

94

0

1,05

E+

06

398

2638

51

1 30

,44

1432

9,

15E

+05

1,

56E

-03

154

163

216

216

3,

2 0

RT

20

K

r 76

8 30

,44

94

0

1,06

E+

06

438

2420

51

6 30

,44

1406

9,

26E

+05

1,

52E

-03

155

164

216

216

3,

2 0

RT

5

Kr

768

30,4

4

94

0 1,

23E

+06

51

3 23

98

599

30,4

4 25

40

1,08

E+

06

2,36

E-0

3 15

6 16

5 21

6 21

6

3,5

0 R

T

5 K

r 76

8 30

,44

94

0

1,01

E+

06

547

1846

49

2 30

,44

2299

8,

78E

+05

2,

62E

-03

157

166

216

216

3,

5 0

RT

20

K

r 76

8 30

,44

94

0

1,13

E+

06

511

2211

55

0 30

,44

1616

9,

89E

+05

1,

63E

-03

158

168

216

216

3,

5 0

RT

20

X

e 12

17

54,9

5 89

0

1,68

E+

06

554

3032

14

77

54,9

5 28

49

1,47

E+

06

1,93

E-0

3 15

9 16

9 21

6 21

6

3,5

0 R

T

5 X

e

1217

54

,95

89

0 1,

12E

+06

37

5 29

87

985

54,9

5 31

47

9,93

E+

05

3,17

E-0

3 16

0 17

0 21

6 21

6

3,2

0 R

T

5 X

e

1217

54

,95

89

0 6,

28E

+05

20

8 30

19

552

54,9

5 16

61

5,50

E+

05

3,02

E-0

3 16

1 17

1 21

6 21

6

3,2

0 R

T

20

Xe

1217

54

,95

89

0 9,

54E

+05

31

1 30

68

839

54,9

5 16

65

8,34

E+

05

2,00

E-0

3 16

2 17

2 21

7 21

7

3,2

0 R

T

20

Xe

1217

54

,95

89

0 9,

36E

+05

30

1 31

10

823

54,9

5 17

07

8,24

E+

05

2,07

E-0

3 16

4 17

3 21

7 21

7

3,2

0 R

T

5 X

e

1217

54

,95

89

0 8,

14E

+05

26

7 30

49

716

54,9

5 22

26

7,11

E+

05

3,13

E-0

3 16

5 17

4 21

7 21

7

3,5

0 R

T

5 X

e

1217

54

,95

89

0 1,

28E

+06

42

0 30

48

1125

54

,95

3658

1,

12E

+06

3,

26E

-03

166

175

217

217

3,

5 0

RT

20

X

e 12

17

54,9

5 89

0

1,25

E+

06

409

3056

10

99

54,9

5 21

25

1,05

E+

06

2,03

E-0

3

175

176

217-

216

217

3,

5 0

80

20

Xe

1217

54

,95

89

60

1,01

E+

06

397

2544

17

76

109,

90

17

6 17

7 21

7-21

6 21

7

3,5

0 80

5

Xe

12

17

54,9

5 89

60

1,

00E

+06

40

4 24

75

1758

10

9,90

178

179

217-

216

217

3,

2 0

80

5 X

e

1217

54

,95

89

60

1,00

E+

06

359

2786

17

58

109,

90

17

9 18

0 21

7-21

6 21

7

3,2

0 80

20

X

e 12

17

54,9

5 89

60

1,

00E

+06

35

0 28

57

1758

10

9,90

183

181

217-

216

217

3,

2 1

80

20

Xe

1217

54

,95

89

60

1,00

E+

06

911

1098

17

58

109,

90

448

9,02

E+

05

4,96

E-0

4 18

4 18

2 21

7-21

6 21

7

3,2

1 80

5

Xe

12

17

54,9

5 89

60

1,

00E

+06

75

1 13

32

1758

10

9,90

44

7 8,

80E

+05

5,

08E

-04

185

183

217-

216

217

3,

5 1

80

5 X

e

1217

54

,95

89

60

1,00

E+

06

688

1453

17

58

109,

90

656

8,77

E+

05

7,48

E-0

4 18

6 18

4 21

7-21

6 21

7

3,5

1 80

20

X

e 12

17

54,9

5 89

60

1,

00E

+06

61

7 16

21

1758

10

9,90

65

2 8,

80E

+05

7,

41E

-04

Page 25: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

H

RX

/SE

E/0

293

Issu

e 02

P

age

25

Ref. : HRX/SEE/0293

Hirex Engineering

SEE Test Report

Issue : 02

Run # Hirex

Run # JYFL

Irradiated DUT

Tested DUT

Voltage

Sleep

temperature

current

Ion

Energy

LET

Range

TILT

SEL Fluence

TIME

Mean flux

Run Dose

Eff, LET

SET

SET Fluence

SET X-SECTION

187

185

217

217

3,

5 0

80

20

Xe

1217

54

,95

89

60

1,00

E+

07

694

1440

9

1758

4 10

9,90

188

186

217

217

3,

5 0

80

5 X

e

1217

54

,95

89

60

1,00

E+

07

663

1508

3

1758

4 10

9,90

190

187

216

216

3,

5 1

125

20

X

e 12

17

54,9

5 89

60

1,

00E

+07

65

2 15

337

17

584

109,

90

4567

8,

93E

+06

5,

12E

-04

191

188

216

216

3,

5 1

125

5

Xe

12

17

54,9

5 89

60

1,

00E

+07

65

1 15

361

17

584

109,

90

4263

8,

50E

+06

5,

02E

-04

Tab

le 5

– A

DS

5463

, det

aile

d ru

n re

sults

Page 26: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 26

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

10 Distribution graphs at Neon

Figure 23 – Amplitude distribution at Neon

Figure 24 – Duration distribution at Neon

Page 27: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 27

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

Figure 25 – Amplitude vs duration for “A” events at Neon

Figure 26 – Amplitude vs duration for “B” events at Neon

Page 28: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 28

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

11 Distribution graphs at Argon

Figure 27 – Amplitude distribution at Argon

Figure 28 – Duration distribution at Argon

Page 29: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 29

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

Figure 29 – Amplitude vs duration for “A” events at Argon

Figure 30 – Amplitude vs duration for “B” events at Argon

Page 30: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 30

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

12 Distribution graphs at Iron

Figure 31 – Amplitude distribution at Iron

Figure 32 – Duration distribution at Iron

Page 31: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 31

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

Figure 33 – Amplitude vs duration for “A” events at Iron

Figure 34 – Amplitude vs duration for “B” events at Iron

Page 32: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 32

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

13 Distribution graphs at Krypton

Figure 35 – Amplitude distribution at Krypton

Figure 36 – Duration distribution at Krypton

Page 33: SINGLE EVENT EFFECTS TEST REPORT Heavy Ion Test Report

HRX/SEE/0293 Issue 02 Page 33

Ref. : HRX/SEE/0293 Hirex Engineering SEE Test Report

Issue : 02

Figure 37 – Amplitude vs duration for “A” events at Krypton

Figure 38 – Amplitude vs duration for “B” events at Krypton