skp eng sanju

Upload: srsriram

Post on 06-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 SKP Eng Sanju

    1/45

    ELECTRONIC TRANSPORT IN

    QUANTIZED LOW DIMENSIONAL

    SEMICONDUCTOR SYSTEMS ANDMETAL NANOPARTICLES

    SanjuSanjuSanjuSanju ShresthaShresthaShresthaShrestha

    Tribhuvan University,

    Kathmandu, Nepal

  • 8/2/2019 SKP Eng Sanju

    2/45

    Compound/Elemental SemiconductorCompound/Elemental SemiconductorCompound/Elemental SemiconductorCompound/Elemental Semiconductor

    E

    (Ef,0)

    (Ef,kf)

    kfElectron &

    photon

    Electron,

    photon &

    k(E

    f

    (E

    ph

    ph

    f

    interaction phononinteraction

    nergy andnergy andnergy andnergy andmomentummomentummomentummomentumconservationconservationconservationconservation

    GaAsGaAsGaAsGaAs SiSiSiSi

    direct & Indirectdirect & Indirectdirect & Indirectdirect & Indirect bandgapbandgapbandgapbandgap::::

  • 8/2/2019 SKP Eng Sanju

    3/45

    3

  • 8/2/2019 SKP Eng Sanju

    4/45

    LOW DIMENSIONAL ELECTRONTRANSPORTSpatial confinement

    Quantum well Quantum well wire :

    Anderson in 1960

    Heterojunction: Sakaki in1980 Sakaki H., Jpn. J.Appl. Phys. 19, L735(1980).

    Quantum dot

    4

  • 8/2/2019 SKP Eng Sanju

    5/45

    3D

    bulk

    2D

    quantum well

    1D

    quantum wire

    0 D

    quantum dot

  • 8/2/2019 SKP Eng Sanju

    6/45

    Only fixedOnly fixedOnly fixedOnly fixedvalues ofvalues ofvalues ofvalues of

    energyenergyenergyenergy

    allowedallowedallowedallowed

    Electron in a potential boxElectron in a potential boxElectron in a potential boxElectron in a potential box

    GeorgeGeorgeGeorgeGeorge TookerTookerTookerTooker

    R

    Man in a boxMan in a boxMan in a boxMan in a boxZero energyZero energyZero energyZero energy

    not allowednot allowednot allowednot allowed

  • 8/2/2019 SKP Eng Sanju

    7/45

    k

    k

    k

    k

    kk

    k

    3

    1

    2

    E

    E

    N(E)

    E

    E

    E

    N(E)

    1

    2

    3 E E E

  • 8/2/2019 SKP Eng Sanju

    8/45

    DENSITY OF STATES

    TheThe numbernumber ofof availableavailable electronicelectronic statesstates perper

    unitunit volumevolume perper unitunit energyenergy aroundaround anan energyenergyE

    ( ) ( ) = EEEN 1

    Quantum numberQuantum number

    In bulk 3D materials, It is given by volume of a

    spherical shell having radius k and thickness

    dk

    szyx

    zyx kkk ,,=

  • 8/2/2019 SKP Eng Sanju

    9/45

    DENSITY OF STATES FOR 3D, 2D, 1D AND 0D

    STRUCTURES

    ( ) ( )0*

    32

    212

    1

    23

    *

    D3zyx

    EmENkkn

    Em

    ENk,k,k

    ==

    == h

    ( ) ( )

    ( ) ( ) ( )0D0

    212

    1

    21

    *

    D1z

    EEENl,m,n

    Em

    ENk,m,n

    ==

    ==

    h

    h

  • 8/2/2019 SKP Eng Sanju

    10/45

    dN/dE = dN/dk .

    dk/dE

    k2222

    . 1/k

    k or E 1/21/21/21/2

    dN dE = dN dk . dk dE

    3D

    A spherical shell of radius k and thickness

    dk

    A circular discof radius k and

    thickness dk

    kx

    ky

    kz

    E

    N

    dN/dE = dN/dk . dk/dE

    = 1 . 1/k

    = 1/k or 1/E1/21/21/21/2

    = k . 1/k

    = 1 or

    constant

    2D

    1D

    A slit ofthickness dk

  • 8/2/2019 SKP Eng Sanju

    11/45

    DOS VERSES ENERGY

    E

    N(E)

    N(E)

    E

    N(E)

    N(E)

    E

    N(E)

    E

  • 8/2/2019 SKP Eng Sanju

    12/45

    DISTRIBUTION FUNCTIONNag B.R., Electron Transport in Compound

    semiconductors(1980).

    MaxwellMaxwell-- BoltzmannBoltzmann

    ( )

    =

    TK

    EEeEf FMB

    FermiFermi-- DirectDirect

    BoseBose-- EinsteinEinstein

    ( )

    +

    =

    TK

    EEEf

    B

    F

    FD

    exp1

    1

    ( )

    =

    TK

    EEEf

    B

    F

    BE

    exp1

    1

  • 8/2/2019 SKP Eng Sanju

    13/45

    BulkBulkBulkBulk How atoms are arranged inHow atoms are arranged inHow atoms are arranged inHow atoms are arranged in

    crystal structurecrystal structurecrystal structurecrystal structure

    MoleculesMoleculesMoleculesMolecules Constituent atoms andConstituent atoms andConstituent atoms andConstituent atoms and

    BulkBulkBulkBulk MoleculesMoleculesMoleculesMolecules ---- AtomsAtomsAtomsAtoms

    how these are bondedhow these are bondedhow these are bondedhow these are bonded

    AtomsAtomsAtomsAtoms Properties depend uponProperties depend uponProperties depend uponProperties depend upon

    atomic numberatomic numberatomic numberatomic number

  • 8/2/2019 SKP Eng Sanju

    14/45

  • 8/2/2019 SKP Eng Sanju

    15/45

    At what size quantum confinement becomesAt what size quantum confinement becomesAt what size quantum confinement becomesAt what size quantum confinement becomes

    importantimportantimportantimportant

  • 8/2/2019 SKP Eng Sanju

    16/45

    Critical dimension for the quantum dot =Critical dimension for the quantum dot =Critical dimension for the quantum dot =Critical dimension for the quantum dot =

    Electron wave lengthElectron wave lengthElectron wave lengthElectron wave length

  • 8/2/2019 SKP Eng Sanju

    17/45

    In absence of any perturbation, the total motion ofIn absence of any perturbation, the total motion of

    electrons gets cancelledelectrons gets cancelled-- Brownian motionBrownian motion..

    Presence of external perturbationPresence of external perturbation

    Magnetic fieldMagnetic field

    Electric fieldElectric field

    Temperature gradientTemperature gradient

  • 8/2/2019 SKP Eng Sanju

    18/45

  • 8/2/2019 SKP Eng Sanju

    19/45

    TRANSPORT PARAMETERS

    Electronic and thermalElectronic and thermal

    MobilityMobilityElectrical ConductivityElectrical Conductivity

    Electronic Thermal conductivityElectronic Thermal conductivity

    Lattice Thermal conductivityLattice Thermal conductivity

    Thermoelectric Figure of meritThermoelectric Figure of merit

  • 8/2/2019 SKP Eng Sanju

    20/45

    Transport ParametersTransport ParametersTransport ParametersTransport ParametersTransport ParametersTransport ParametersTransport ParametersTransport Parameters

    NagNag BB..RR..,, ElectronElectron TransportTransport inin CompoundCompound semiconductors,semiconductors, SpringerSpringer SeriesSeriesinin SolidSolid StateState Sciences,Sciences, eded.. byby MM..CardonaCardona,, PP..FuldeFulde andand HH..JJ..OuessierOuessier(Springer,(Springer, Berlin)Berlin) ((19801980))..

    MobilityMobilityMobilityMobilityMobilityMobilityMobilityMobility

    *m

    e=

    Electrical ConductivityElectrical ConductivityElectrical ConductivityElectrical ConductivityElectrical ConductivityElectrical ConductivityElectrical ConductivityElectrical Conductivity

    =*m

    ne2

  • 8/2/2019 SKP Eng Sanju

    21/45

    Electronic Thermal ConductivityElectronic Thermal ConductivityElectronic Thermal ConductivityElectronic Thermal ConductivityElectronic Thermal ConductivityElectronic Thermal ConductivityElectronic Thermal ConductivityElectronic Thermal Conductivity,,

    Smith R.A., Semiconductors, Academic Publishers,Smith R.A., Semiconductors, Academic Publishers, IIndIInd edition pp.147edition pp.147(1989).(1989).

    wherewhere LotentzLotentz ratioratio

    L= =

    = Le

    2

    2

    e

    k222

    22

    k

    Callaway J., Phys. Rev. 113,1046 (1959).Callaway J., Phys. Rev. 113,1046 (1959).

    Total Thermal ConductivityTotal Thermal ConductivityTotal Thermal ConductivityTotal Thermal ConductivityTotal Thermal ConductivityTotal Thermal ConductivityTotal Thermal ConductivityTotal Thermal Conductivity

    ( )x

    1e

    exT

    2

    kkT

    T

    0

    2x

    xC

    43

    2

    B

    3

    Blatt

    D

    =

    h

    latte +=

  • 8/2/2019 SKP Eng Sanju

    22/45

    SeebeckSeebeckSeebeckSeebeckSeebeckSeebeckSeebeckSeebeck CoefficientCoefficientCoefficientCoefficientCoefficientCoefficientCoefficientCoefficient

    Nag B.R., Electron Transport in Compound semiconductors (1980).Nag B.R., Electron Transport in Compound semiconductors (1980).

    +=

    =

    TkTk

    E

    e

    k

    TS

    BB

    FB

    z

    EgliEgli P.EdP.Ed., Thermoelectricity (Wiley, New York) (1961).., Thermoelectricity (Wiley, New York) (1961).

    Harmon C. andHarmon C. and HonigHonig J.M., J. Appl. Phys. 33, 3178J.M., J. Appl. Phys. 33, 3178--3188 (1962).3188 (1962).

    Rowe D.M. andRowe D.M. and BhandariBhandari C.M., ModernC.M., Modern ThermoelectricsThermoelectrics (Reston, Reston(Reston, Reston

    VA), (1983).VA), (1983).

    = 2SZ

  • 8/2/2019 SKP Eng Sanju

    23/45

    Comparative studies ofComparative studies ofComparative studies ofComparative studies ofReducedReducedReducedReduced

    Dimensionality onDimensionality onDimensionality onDimensionality onelectron transport atelectron transport atelectron transport atelectron transport at

    &&&&Systems at LowSystems at LowSystems at LowSystems at LowTemperaturesTemperaturesTemperaturesTemperatures

    AsGaGaAs/Al x)-(1x As/InInGa x)-(1x

  • 8/2/2019 SKP Eng Sanju

    24/45

    Why GaAs?

    Large band structure: high temperature performanceand radiation hardness

    Direct bandgap: excellent optical properties as well assuperior electron transport in the conduction band

    The band a in eneral decreases as the tem erature

    increases: The band gap of GaAs, for examples, is1.51eV at and 1.43eV at room temperatures

    Importance for both electronic and optoelectronicdevices

    The material has high mobility suitable for high speeddevices

  • 8/2/2019 SKP Eng Sanju

    25/45

    101

    102

    103

    104

    105

    106 2D EG

    GaAs

    n2D

    =1x1014

    m-2

    in

    pzac

    m

    obility

    m

    2V-1S

    -1

    102

    103

    104

    105

    106

    sr

    in

    pz

    1D EG

    GaAs

    n1D

    =1x107m

    -1

    m

    obility

    m

    2V-

    1S-

    1

    Variation of 2D EG dc mobility versus

    temperature for GaAs for various scatteringmechanisms such as acoustic phonon viadeformation potential (ac), piezoelectric (pz),ionized impurity (in), alloy disorder (all) and

    surface roughness (sr) scatteringmechanisms.

    Variation of 1D EG dc mobility versus

    temperature for GaAs for various scatteringmechanisms such as acoustic phonon viadeformation potential (ac), piezoelectric (pz),ionized impurity (in) and surface roughness(sr) scattering mechanisms.

    0 40 80 120 16010

    -1

    100

    Temperature K

    0 40 80 120 16010

    1

    ac

    Temperature K

  • 8/2/2019 SKP Eng Sanju

    26/45

    8

    12

    16

    2

    1

    2D EG

    1: GaAs: ac+pz+in+sr

    2: InGaAs: ac+pz+in+all+srn

    2D=1x10

    14m

    -2

    dc

    m

    obi

    lity

    m

    2V-1S

    -1

    100

    200

    300

    400

    500

    600 2

    1

    1D EG

    1: GaAs

    2: InGaAs

    ac+pz+in+sr

    n1D

    =1x107m

    -1dc

    m

    ob

    ility

    m

    2V-1S-1

    Variation of 2D EG dc mobility versus

    temperature for GaAs (1) and InGaAs (2)with various scattering mechanisms such as acoustic phonon viadeformation potential (ac), piezoelectric(pz), ionized impurity (in) and surfaceroughness (sr) scattering mechanisms.

    Variation of 1D EG dc mobility versus

    temperature for GaAs (1) and InGaAs (2)with various scattering mechanisms such as acoustic phonon viadeformation potential (ac), piezoelectric(pz), ionized impurity (in) and surfaceroughness (sr) scattering mechanisms.

    0 40 80 120 160

    Temperature K

    0 40 80 120 1600

    Temperature K

  • 8/2/2019 SKP Eng Sanju

    27/45

    2

    4

    6

    8

    10

    1

    2

    r

    im

    1

    2

    2D EG

    = 60GHZ

    1: GaAs: ac+pz+in+sr

    2: InGaAs: ac+pz+in+all+sr

    n2D

    =1x1014

    m-2

    ac

    m

    ob

    ility

    m

    2V-

    1S-

    1

    0

    4

    8

    12

    16

    2

    2

    1

    1

    r

    im

    1: GaAs

    2: InGaAs

    ac+pz+in+srn

    1D=1x10

    7m

    -1

    1D EG

    = 60GHz

    ac

    mo

    bility

    m

    2V-1S-1

    Variation of 2D EG ac mobility versustemperature at constant frequency 60GHz forGaAs (1) and InGaAs (2) with various

    scattering mechanisms such as acousticphonon via deformation potential (ac),piezoelectric (pz), ionized impurity (in), alloydisorder (all) and surface roughness (sr)

    scattering mechanisms.

    Variation of 1D EG ac mobility versustemperature at constant frequency 60GHz for

    GaAs (1) and InGaAs (2) with various scattering mechanisms such as acousticphonon via deformation potential (ac),piezoelectric (pz), ionized impurity (in) and

    surface roughness (sr) scatteringmechanisms.

    0 40 80 120 1600

    Temperature K

    0 40 80 120 160

    Temperature K

  • 8/2/2019 SKP Eng Sanju

    28/45

    0

    4

    8

    12

    16

    2

    2

    1

    1

    r

    im

    2D EG

    T= 77K

    1: GaAs: ac+pz+in+sr

    2: InGaAs: ac+pz+in+all+sr

    n2D

    =1x1014

    m-2

    ac

    m

    obility

    m

    2V-1S-1

    0

    20

    40

    60

    80

    100

    1

    2

    2

    1

    r

    im

    1D EG

    T= 77K

    1: GaAs

    2: InGaAsac+pz+in+sr

    n1D

    =1x107m

    -1ac

    m

    obility

    m

    2V-

    1S-

    1

    Variation of 2D EG ac mobility versusfrequency at constant temperature 77K

    for GaAs (1) and InGaAs (2) with variousscattering mechanisms such as acousticphonon via deformation potential (ac),piezoelectric (pz), ionized impurity (in),alloy disorder (all) and surfaceroughness (sr) scattering mechanisms.

    Variation of 1D EG ac mobility versusfrequency at constant temperature 77K

    for GaAs (1) and InGaAs (2) with variousscattering mechanisms such as acousticphonon via deformation potential (ac),piezoelectric (pz), ionized impurity (in)and surface roughness (sr) scatteringmechanisms.

    0 40 80 120 160

    Frequency GHz

    0 40 80 120 160

    Frequency GHz

  • 8/2/2019 SKP Eng Sanju

    29/45

    BAND STRUCTURE EFFECTS ONBAND STRUCTURE EFFECTS ONBAND STRUCTURE EFFECTS ONBAND STRUCTURE EFFECTS ON

    ELECTRICAL AND THERMALELECTRICAL AND THERMALELECTRICAL AND THERMALELECTRICAL AND THERMALPROPERTIES OF MERCURY CADMIUMPROPERTIES OF MERCURY CADMIUMPROPERTIES OF MERCURY CADMIUMPROPERTIES OF MERCURY CADMIUM

    UNDERUNDERUNDERUNDER MAGNETIC QUANTIZATION INMAGNETIC QUANTIZATION INMAGNETIC QUANTIZATION INMAGNETIC QUANTIZATION IN

    LONGITUDINAL CONFIGURATIONLONGITUDINAL CONFIGURATIONLONGITUDINAL CONFIGURATIONLONGITUDINAL CONFIGURATION

    - 0.20.8

  • 8/2/2019 SKP Eng Sanju

    30/45

    WHY MERCURY CADMIUM TELLURIDE (MCT)?

    alloy semiconductor: adjustable bandgap

    very narrow and direct bandgap for intrinsicoperation, as it is associated with a high

    absorption coefficient and a moderate dielectriccoefficient/index of refraction: good applicant invarious electronics and optoelectronics devices

    low effective mass: electrons would occupy thelowest Landau levels at a reasonable highmagnetic field,

    very high mobility of MCT: hence, good applicantfor thermoelectric devices such as cooler,refrigerator etc

  • 8/2/2019 SKP Eng Sanju

    31/45

    10

    100

    1000

    hypernonp

    para

    T=77K

    in+all+ac+pz+pop

    n=1020

    m-3

    Condu

    ctivitym

    2V-1S-1

    100

    hyper

    nonp

    paraB=4Tin+all+ac+pz+pop

    n=1020

    m-3

    Con

    ductivitym

    2V-1S-1

    VARIATION OF CONDUCTIVITY WITHTEMPERATURE AT CONSTANT MAGNETIC

    FIELD 4T FOR NONDEGENERATE N- HG0.8CD0.2TE WITH VARIOUS SCATTERINGMECHANISMS SUCH AS IONIZED IMPURITY(IN), ALLOY DISORDER (ALL), ACOUSTICPHONON VIA DEFORMATION POTENTIAL(AC), PIEZOELECTRIC (PZ) AND POLAROPTICAL PHONON (POP) SCATTERING

    MECHANISMS.

    VARIATION OF CONDUCTIVITY WITH MAGNETICFIELD AT CONSTANT TEMPERATURE 77K FOR

    NONDEGENERATE N-HG0.8CD0.2TE WITHVARIOUS SCATTERING MECHANISMS SUCH ASIONIZED IMPURITY (IN), ALLOY DISORDER(ALL), ACOUSTIC PHONON VIA DEFORMATIONPOTENTIAL (AC), PIEZOELECTRIC (PZ) ANDPOLAR OPTICAL PHONON (POP) SCATTERING

    MECHANISMS.

    0 5 10 15 20

    Magnetic Field T

    0 50 100 150 200 250 300

    Temperature K

  • 8/2/2019 SKP Eng Sanju

    32/45

    -4

    0

    4

    8

    12

    hypernonp

    para

    B=4T

    n=1020

    m-3

    Ferm

    iEn

    ergy

    Level(

    )

    0

    4

    8

    12

    hypernonp

    para

    T=77K

    n=1020

    m-3

    Ferm

    iEnergy

    Level(

    )

    Variation of Fermi Energy Level (

    ) with temperature at constantmagnetic field 4T for

    nondegenerate n-Hg0.8Cd0.2Te.

    Variation of Fermi Energy Level (

    ) with magnetic field at constanttemperature 77K for

    nondegenerate n-Hg0.8Cd0.2Te.

    0 50 100 150 200 250 300-8

    Temperature K

    0 5 10 15 20

    -4

    Magnetic Field T

  • 8/2/2019 SKP Eng Sanju

    33/45

    0.56

    0.60

    0.64

    0.68

    0.72

    hypernonp

    para

    B=4T

    in+all+ac+pz+pop

    n=1020

    m-3

    Seebeck

    Coefficientm

    eVK-

    1

    0.5

    0.6

    0.7

    0.8hypernonp

    paraT=77Kin+all+ac+pz+pop

    n=1020

    m-3

    Seeb

    eck

    Coefficientm

    eVK-1

    Variation of Seebeck coefficient

    with temperature at constant

    magnetic field 4T for nondegenerate n-Hg0.8Cd0.2Te .

    Variation of Seebeck coefficient

    with magnetic field at constant

    temperature 77K for nondegenerate n-Hg0.8Cd0.2Te .

    0 50 100 150 200 250 300

    Temperature K

    0 5 10 15 20

    Magnetic Field T

  • 8/2/2019 SKP Eng Sanju

    34/45

    0

    40

    80

    120

    160

    B=4T

    in+all+ac+pz

    n=1020

    m-3

    AC+PZ nonp

    hyper

    para

    Z

    Tx

    10-6

    0

    1

    2

    3

    4

    5

    hyper

    nonp

    para

    T=30K

    in+all+ac+pz

    n=1020

    m-3

    AC+PZ

    ZT

    x10-

    6

    Variation of with temperature at

    constant magnetic field 4T for

    nondegenerate n-Hg0.8Cd0.2Te.Boundary scatterings due to

    acoustic phonon (AC) and

    piezoelectric (PZ) are included for

    lattice thermal conductivity.

    Variation of with magnetic field at

    constant temperature 30K for

    nondegenerate n-Hg0.8Cd0.2Te.Boundary scatterings due to

    acoustic phonon (AC) and

    piezoelectric (PZ) are included for

    lattice thermal conductivity.

    20 40 60 80 100

    Temperature K

    0 5 10 15 20

    Magnetic Field T

  • 8/2/2019 SKP Eng Sanju

    35/45

    MAGNITUDE AND TIME RESPONSE OFELECTRONIC AND TOPOGRAPHICAL

    CHANGES DURING HYDROGEN

    SENSING IN SIZE SELECTED

    PALLADIUM NANOPARTICLES

  • 8/2/2019 SKP Eng Sanju

    36/45

    TETRAHEDRAL VOID: SHOWING THECHANGE IN THE LATTICE CONSTANTWHEN THE VOID SPACE IS OCCUPIEDBY AN ATOM OF SIZE LARGER THANTHE VOID.

    Octahedral void: showing that there is

    no change in the lattice constant as the

    size of the atom inside the void space

    is smaller than the void.

  • 8/2/2019 SKP Eng Sanju

    37/45

    PHASE TRANSITION IN PDNANOPARTICLES WITH THE ABSORPTION

    OF H: RESULT THE CHANGE IN ELECTRICAL

    RESISTANCE AND THE PROPERTY IS USED

    IN THE DETECTION OF H.

  • 8/2/2019 SKP Eng Sanju

    38/45

    -15

    -10

    -5

    0

    5

    Pd15 CH =4% T = 20oC

    R/R0%

    Sensing response of sample Pd15 at forSensing response of sample Pd15 at forSensing response of sample Pd15 at forSensing response of sample Pd15 at for .... Solid andSolid andSolid andSolid and

    dotted line represent gas on and off conditions.dotted line represent gas on and off conditions.dotted line represent gas on and off conditions.dotted line represent gas on and off conditions.

    0 500 1000 1500 2000 2500 3000-25

    -20

    Time (s)

    PdH with a rate constant k

  • 8/2/2019 SKP Eng Sanju

    39/45

    PdH with a rate constant k1

    -PdH with a reaction rate constant k2

  • 8/2/2019 SKP Eng Sanju

    40/45

    0

    20

    0 100 200 300

    0

    20

    Fitted curve

    EE

    Pd15

    CH: 4%

    T: 20oC0%

    t>>>>>>>> =11.200.63 =7.50

    t

  • 8/2/2019 SKP Eng Sanju

    41/45

    6

    8

    10

    12

    15 20 25

    30

    60

    90(a)

    (s)

    CH: 4%

    T: 20oC

    %%%%

    Electronic Effect

    32

    40

    48

    15 20 25

    40

    80

    120

    0000

    (b) Topographical Effect

    (s)

    ||||

    ||||%%%%

    CH: 4%

    T: 20oC

    15 20 25

    Nanoparticle Size (nm)

    15 20 25

    Nanoparticle Size (nm)

    (a) and (b) Magnitude and response time for EE and TE, respectively, as

    a function of nanoparticle size at 20o C and CH: 4%. in Fig. (b) is the

    delay time for TE. It may be noted that is negative hence only the

    magnitude of it is shown. Error bar represents the deviation from the

    mean value in the fitting. The curves show only the nature of the trend.

  • 8/2/2019 SKP Eng Sanju

    42/45

    4

    8

    12

    20 30 40 50 60

    8

    10

    12

    14

    16

    (a)

    Electronic Effect

    ((((s))))

    %%%% Pd15

    CH: 4%

    0

    15

    30

    20 40 60

    0

    80

    160

    (b)

    ((((s))))

    0000

    Topographical Effect

    ||||

    |%|%|%|%

    Pd15

    CH: 4%

    Temperature (o

    C)

    20 40 60

    Temperature (o

    C)

    (a)(a)(a)(a) andandandand (b)(b)(b)(b) MagnitudeMagnitudeMagnitudeMagnitude andandandand responseresponseresponseresponse timetimetimetime forforforfor EEEEEEEE andandandand TE,TE,TE,TE, respectively,respectively,respectively,respectively, forforforfor

    samplesamplesamplesample PdPdPdPd15151515 asasasas aaaa functionfunctionfunctionfunction ofofofof temperaturetemperaturetemperaturetemperature atatatat CCCCHHHH====4444%%%% inininin Fig FigFigFig.... (b)(b)(b)(b) isisisis thethethethe

    delaydelaydelaydelay timetimetimetime forforforfor TETETETE.... ItItItIt isisisis notednotednotednoted thatthatthatthat isisisis negativenegativenegativenegative hencehencehencehence onlyonlyonlyonly thethethethe magnitudemagnitudemagnitudemagnitude ofofofofitititit isisisis shownshownshownshown.... ErrorErrorErrorError barbarbarbar representsrepresentsrepresentsrepresents thethethethe deviationdeviationdeviationdeviation fromfromfromfrom thethethethe meanmeanmeanmean valuevaluevaluevalue inininin thethethethe

    fittingfittingfittingfitting.... TheTheTheThe curvescurvescurvescurves showshowshowshow onlyonlyonlyonly thethethethe naturenaturenaturenature ofofofof thethethethe trendtrendtrendtrend....

  • 8/2/2019 SKP Eng Sanju

    43/45

    -0.09

    -0.06

    -0.03Electronic Effect

    ln(R

    /R0)-

    1

    E=14.90 meV

    Pd15

    CH=4%

    -172.85492

    (a)

    0.0

    0.2

    0.4(b)

    Pd15

    CH=4%

    Topographical Effect

    ln(R

    /R0)-

    1

    (a)a)a)a) AAAA plotplotplotplot showingshowingshowingshowing variationvariationvariationvariation ofofofof lnlnlnln(R(R(R(REEEE/R/R/R/R0000))))----1111 versusversusversusversus TTTT----1111 forforforfor samplesamplesamplesample PdPdPdPd15151515 atatatat

    CCCCHHHH====4444%%%%,,,, withwithwithwith givengivengivengiven activationactivationactivationactivation energyenergyenergyenergy 14141414....90909090meVmeVmeVmeV.... (b)(b)(b)(b) VariationVariationVariationVariation ofofofof

    lnlnlnln(R(R(R(REEEE/R/R/R/R0000))))----1111 versusversusversusversus TTTT----((((1111////2222))))forforforfor PdPdPdPd15151515....

    0.0030 0.0032 0.0034

    (Temperature)-1 (K-1)

    0.055 0.056 0.057 0.058

    (Temperature)-1/2 (K-1/2)

  • 8/2/2019 SKP Eng Sanju

    44/45

    ACKNOWLEDGEMENT

    I am grateful to,

    Prof. C. K. Sarkar, Dept. of ETCE, JadavpurUniversity, Kolkata

    ,

    Indian National Science Academy, New Delhi

    Prof. B. R. Mehta, TFL, Physics Department,,,,

    IITD

    TWAS

    44

  • 8/2/2019 SKP Eng Sanju

    45/45

    45