slides electrical instrumentation lecture 2

26
1 ET8.017 El. Instr. Delft University of Technology Electronic Instrumentation [email protected] Lecturer: Kofi Makinwa 015-27 86466 Room. HB13.270 EWI building Also involved: Saleh Heidary ([email protected]) ET8.017 El. Instr. Delft University of Technology Monday Sept. 16: Transduction of information (Chapter 2) - Sensitivity and cross-sensitivities - Resistive transducers - Capacitive transducers Content and Schedule Wednesday Sept. 18: Submit Assignment 1 Detection limit due to offset

Upload: tu-delft-opencourseware

Post on 26-May-2015

706 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Slides electrical instrumentation lecture 2

1

ET8.017El. Instr.Delft University of Technology

Electronic Instrumentation

[email protected]

Lecturer: Kofi Makinwa

015-27 86466Room. HB13.270 EWI building

Also involved:Saleh Heidary([email protected])

ET8.017El. Instr.Delft University of Technology

Monday Sept. 16: Transduction of information (Chapter 2) - Sensitivity and cross-sensitivities- Resistive transducers- Capacitive transducers

Content and Schedule

Wednesday Sept. 18: Submit Assignment 1Detection limit due to offset

Page 2: Slides electrical instrumentation lecture 2

2

ET8.017El. Instr.Delft University of Technology

What Is A Sensor?

A device that converts information from one energy domain into the electrical domainWhere it can be easily (digitally) processed and stored

ET8.017El. Instr.Delft University of Technology

010010111010001011110000111101101101011010011110000111111010101010101000001101111111111111010101010000000000010101000110111010101010111101010011110110101010011010101110011110100001010100110010011101011001010101101101000111010101101110111101010101011101101110110110111101000001111011000000001111010101100110111111111111101010010000111100010101010100111111111110101001001001010101000000000011010101010101000010110101010111010101001001011101000101111000011110110110101101001111000011111101010101010100000110111111111111101010101000000000001010100011011101010101011110101001111011010101001101010111001111010000101010011001001110101100101010110110100011101010110111011110101010101110110111011011011110100000111101100000000111101010110011011111111111110101001000011110001010101010011111111111010100100100101010100000000001101010101010100001011010101011101010100100101110100010111100001111011011010110100111100001111110101010101010000011011111111111110101010100000000000101010001101110101010101111010100111101101010100110101011100111101000010101001100100111010110010101011011010001110101011011101111010101010111011011101101101111010000011110110000000011110101011001101111111111111010100100001111000101010101001111111111101010010010010101010000000000110101010101010000101101010101110101010101111001011111110100000101010000001110110110001101001010101111

The World Is Analog

So sensors output analog informationRequires analog-to-digital conversionNote: transducer = sensor OR actuator

Page 3: Slides electrical instrumentation lecture 2

3

ET8.017El. Instr.Delft University of Technology

• Source loading by the measurement• Sensitivity to unintended el. and non-el. quantities• Electro-magnetic interference• Thermal noise• Many more…..

Signal domains:

Sources of uncertainty (error) :

• Magnetic (Ma), • Mechanical (Me),• Thermal (Th),• Optical (Op),• Chemical (Ch) and• Electrical (El).

Transduction

ET8.017El. Instr.Delft University of Technology

Transduction matrix:

Transduction

ma,ma me,ma th,ma opt,ma ch,ma el,ma

ma,me me,me th,me opt,me ch,me el,me

ma,th me,th th,th opt,th ch,th el,th

ma,opt me,opt th,opt opt,opt ch,opt el,opt

ma,ch me,ch

Ma t t t t t tMe t t t t t tTh t t t t t t = Opt t t t t t tCh tEl

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

os

os

os

os

th,ch opt,ch ch,ch el,ch os

ma,el me,el th,el opt,el ch,el el,el os

Ma MaMe MeTh Th +Opt OptCht t t t t ChElt t t t t t El

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

Page 4: Slides electrical instrumentation lecture 2

4

ET8.017El. Instr.Delft University of Technology

Transduction matrix:

Transduction

ma,ma me,ma th,ma opt,ma ch,ma el,ma

ma,me me,me th,me opt,me ch,me el,me

ma,th me,th th,th opt,th ch,th el,th

ma,opt me,opt th,opt opt,opt ch,opt el,opt

ma,ch me,ch

Ma t t t t t tMe t t t t t tTh t t t t t t = Opt t t t t t tCh tEl

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

os

os

os

os

th,ch opt,ch ch,ch el,ch os

ma,el me,el th,el opt,el ch,el el,el os

Ma MaMe MeTh Th +Opt OptCht t t t t ChElt t t t t t El

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

Acceleration to displ. = Transduction from mechanical to mechanical

ET8.017El. Instr.Delft University of Technology

Transduction matrix (red text ⇒ non-zero coefs):

Transduction

ma,ma me,ma th,ma opt,ma ch,ma el,ma

ma,me th,me opt,me ch,me el,me

ma,th me,th th,th opt,th ch,th el,th

ma,opt me,opt th,opt opt,opt ch,opt el,opt

ma,ch me,c

me,me

h

Ma t t t t t tt t t t t

Th t t t t t t = Opt t t t t t tCh tE

Me

l

t⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

os

os

os

th,ch opt,ch ch,ch el,ch os

ma,el me,el th,el opt,el ch,el el,el o

os

s

Ma Ma

Th Th +Opt OptCht t t t t ChElt t t t t

Me

El

M

t

e⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

Acceleration to displ. = Transduction from mechanical to mechanical

Page 5: Slides electrical instrumentation lecture 2

5

ET8.017El. Instr.Delft University of Technology

Transduction matrix:

Transduction

ma,ma me,ma th,ma opt,ma ch,ma el,ma

ma,me me,me th,me opt,me ch,me el,me

ma,th me,th th,th opt,th ch,th el,th

ma,opt me,opt th,opt opt,opt ch,opt el,opt

ma,ch me,ch

Ma t t t t t tMe t t t t t tTh t t t t t t = Opt t t t t t tCh tEl

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

os

os

os

os

th,ch opt,ch ch,ch el,ch os

ma,el me,el th,el opt,el ch,el el,el os

Ma MaMe MeTh Th +Opt OptCht t t t t ChElt t t t t t El

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

ET8.017El. Instr.Delft University of Technology

Transduction matrix:

Transduction

ma,ma me,ma th,ma opt,ma ch,ma el,ma

ma,me me,me th,me opt,me ch,me el,me

ma,th me,th th,th opt,th ch,th el,th

ma,opt me,opt th,opt opt,opt ch,opt el,opt

ma,ch me,ch

Ma t t t t t tMe t t t t t tTh t t t t t t = Opt t t t t t tCh tEl

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

os

os

os

os

th,ch opt,ch ch,ch el,ch os

ma,el me,el th,el opt,el ch,el el,el os

Ma MaMe MeTh Th +Opt OptCht t t t t ChElt t t t t t El

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

Transduction in two steps:1. from optical to thermal, followed by 2. thermal to mechanical

= tandem transducer

Page 6: Slides electrical instrumentation lecture 2

6

ET8.017El. Instr.Delft University of Technology

Tandem transduction:

Transduction

Transduction in two steps:1. from optical to thermal, followed by 2. thermal to mechanical

= tandem transducer

( )ma,me me,me opt,me ch,me el,me

ma,ma me,ma th,ma opt,ma ch,ma el,ma

ma,me me,me th,me opt,me ch,me el,me

ma,th me,th th,th ch,th el,

t

topt,th h

ma,opt me,opt th,opt opt,opt ch,opt

h,

e

m

l,o

e

p

= s s s s s

t t t t t tt t t t t tt t t t t

t t t t t

Me

t

s •

os

os

os

t

ma,ch me,ch th,ch opt,ch ch,ch el,ch os

ma,el me,el th,el opt,el ch,el el,el

o

o

oss2

s1

Ma MaMe MeT

Opth Th + +

tCht t t t t t ChElt t t t t

t

l

p

t E

O Me

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

ET8.017El. Instr.Delft University of Technology

Tandem transduction requires an intermediate non-electrical domain:

Transduction

So:

1. Acceleration to displacement(within mechanical domain),

⇒ not a tandem transducer

followed by 2. displacement to capacitance

(to the electrical domain)

Page 7: Slides electrical instrumentation lecture 2

7

ET8.017El. Instr.Delft University of Technology

Transduction to the electrical domain:

One sensitivity plus up to 5 cross-sensitivities

Transduction

ma,ma me,ma th,ma opt,ma ch,ma el,ma

ma,me me,me th,me opt,me ch,me el,me

ma,th me,th th,th opt,th ch,th el,th

ma,opt me,opt th,opt opt,opt ch,opt el,opt

ma,ch me,ch

Ma t t t t t tMe t t t t t tTh t t t t t t = Opt t t t t t t

ElCh t

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ma,el me,el th,el opt,el ch,el el,el

os

os

os

os

th,ch opt,ch ch,ch el,ch

s

o

o

s

MaMeTh +Op

MaMeThOptChElt t t

tt t t t t Ch

t t t El

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

Example: A photodiodeSensitivity: topt,el

Cross-sensitivities: tel,el (?) tth,el (?)Offset: due to dark current

ET8.017El. Instr.Delft University of Technology

• Self generating sensors• Modulating sensors

Transduction to the electrical domain:

Transduction

ma,ma me,ma th,ma opt,ma ch,ma el,ma

ma,me me,me th,me opt,me ch,me el,me

ma,th me,th th,th opt,th ch,th el,th

ma,opt me,opt th,opt opt,opt ch,opt el,opt

ma,ch me,ch

Ma t t t t t tMe t t t t t tTh t t t t t t = Opt t t t t t t

ElCh t

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ma,el me,el th,el opt,el ch,el el,el

os

os

os

os

th,ch opt,ch ch,ch el,ch

s

o

o

s

MaMeTh +Op

MaMeThOptChElt t t

tt t t t t Ch

t t t El

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

Two types of sensors:

Page 8: Slides electrical instrumentation lecture 2

8

ET8.017El. Instr.Delft University of Technology

+ No additional sources of uncertainty+ No external power supply- Draws all its energy from the measurand

(mechanical source loading)

Self-generating sensors: Example: Potentiometer

Transduction

ET8.017El. Instr.Delft University of Technology

- Optical domain ⇒ additional sourcesof uncertainty (e.g. light intensity)

+ Takes less energy from the measurand(non-contact displacement measurement)

Modulating sensors:Example: Optical encoder

Transduction

Page 9: Slides electrical instrumentation lecture 2

9

ET8.017El. Instr.Delft University of Technology

Resistive sensors

Force sensors using strain gaugesResistance value is defined by specific resistivity and dimensions:

ρρ

∂ ∂ ∂ ∂R L A= + -R L A

ρ LR =A

In case of strain (deformation) due to mechanical stress:

When assuming constant volume:

V L A0V L A∂ ∂ ∂

= → = −

ET8.017El. Instr.Delft University of Technology

Resistive sensors

Force sensors using strain gaugesResistance value is defined by specific resistivity and dimensions:

ρρ

∂ ∂ ∂ ∂R L A= + -R L A

ρ LR =A

In case of strain (deformation) due to mechanical stress:

When assuming constant volume:

k= gauge factor

TENSILE STRESS in sensitive direction:

strain

R 0RΔ⎛ ⎞ >⎜ ⎟

⎝ ⎠

ρρ

:

V L A0R L LV L A 2L R L LMetal film

k

L

∂ ∂ ∂ ⎫= → = − ⎪ ∂ ∂ ∂⎪ → = =⎬∂ ∂ ⎪∝⎪⎭

Page 10: Slides electrical instrumentation lecture 2

10

ET8.017El. Instr.Delft University of Technology

Force sensors using strain gaugesResistance value is defined by specific resistivity and dimensions:

ρρ

∂ ∂ ∂ ∂R L A= + -R L A

ρρ

:

V L A0R L LV L A 2

L R L Lk

Metal filmL

∂ ∂ ∂ ⎫= → = − ⎪ ∂ ∂ ∂⎪ → = =⎬∂ ∂ ⎪⎪⎭

ρ LR =A

In case of strain (deformation) due to mechanical stress:

When assuming constant volume:

k= gauge factor

comp tens

R RR RΔ Δ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

COMPRESSIVESTRESS in sensitive direction:

Resistive sensors

ET8.017El. Instr.Delft University of Technology

Force sensors using strain gaugesResistance value is defined by specific resistivity and dimensions:

ρρ

∂ ∂ ∂ ∂R L A= + -R L A

ρ LR =A

In case of strain (deformation) due to mechanical stress:

When assuming constant volume:

k= gauge factor

Applying load in insensitive direction:

Δ

.perp

R 0R

⎛ ⎞ ≈⎜ ⎟⎝ ⎠

Resistive sensors

ρρ

:

V L A0R L LV L A 2

L R L Lk

Metal filmL

∂ ∂ ∂ ⎫= → = − ⎪ ∂ ∂ ∂⎪ → = =⎬∂ ∂ ⎪⎪⎭

Page 11: Slides electrical instrumentation lecture 2

11

ET8.017El. Instr.Delft University of Technology

Measuring force in two dimensions

Resistive sensors

ET8.017El. Instr.Delft University of Technology

Wheatstone bridge:

Information is contained in the differential signal:

( ) ( )1 2b bR R R RU = U U

R R R R R+ Δ + Δ

=+ Δ + − Δ

1 2 10 10b bdR= mV at U VU U U UR

Δ< == −

( ) ( )2 2b bR R R RU = U U

R R R R R− Δ − Δ

=+ Δ + − Δ

Which, however, is superimposed on the common-mode signal:

1 2 5 102 2

bc b

U U UU V at U V+= = = =

The Wheatstone bridge

Page 12: Slides electrical instrumentation lecture 2

12

ET8.017El. Instr.Delft University of Technology

Bridge configurations

• Linear• All elements onstructure

• Increasing ANDdecreasing withmeasurand

Full bridge

1/2 bridge• Non-linear• ½ of elements onstructure

• Increasing ORdecreasing withmeasurand

1/4 bridge• Non-linear• 1/4 of elements onstructure-minimumdimensions.

ET8.017El. Instr.Delft University of Technology

Very suitable for displacement measurements

Capacitive sensor readout

ε ε ε= =o r oA ACh h

Lateral

From the parallel-plate approximation:

( )Δε

−= o

ow x x

Ch

εΔ

ε

=+

=

o

o o

ACh zACh

εΔ

εΔ

=+

=−

u o

l o

ACh z

ACh z

( )

εΔ Δ

εΔΔ ε ΔΔ

⎛ ⎞− = − =⎜ ⎟− +⎝ ⎠⎛ ⎞⎜ ⎟= ≈⎜ ⎟+⎝ ⎠

/ /

//

l u o

oo 2 2

A 1 1C Ch 1 z h 1 z h

2 AA 2 z hC zh h1 z h

Vertical Vert. differentially

Non-linearity reduced by differential measurement

o o1 1C C C Ah h z

Δ εΔ

⎛ ⎞= − = − =⎜ ⎟+⎝ ⎠

Non-linear/

o o2 2

z1 z

A A zh h hε ε ΔΔ

Δ+≈

Linear

Page 13: Slides electrical instrumentation lecture 2

13

ET8.017El. Instr.Delft University of Technology

MEMS Microphone

Sound waves move membrane ⇒ capacitance between the membrane and the fixed back plate variesFound in many cell phones

Courtesy: R. van Veldhoven, NXPCourtesy: Akustica (website)

ET8.017El. Instr.Delft University of Technology

The charge amplifier (1)

For an “ideal” opamp:

(a) U-= U+= 0(b) Is(ω)= jωCs. Ui(ω)(c2) It(ω) = -jωCt. Uo(ω), hence:

Uo(ω)/ Ui(ω) = -Cs/Ct

(can also be derived from the expression of an inverting amplifier with: Zs=1/ jωCs and Zt= 1/ jωCt)

Capacitive sensor readout

Use Cs for lateral displacement sensing (Uo∝A) and Ct for vertical displacement sensing with linear output (Uo∝ 1/(1/d)=d) .

ε ε ε= =o r oA ACh h

Page 14: Slides electrical instrumentation lecture 2

14

ET8.017El. Instr.Delft University of Technology

The charge amplifier (2)

In practice:1. Rt required to avoid saturation

of the output by Ibias.

2. Open-loop gain is finite: A(ω) = Ao/(1+jωτv).

For an “ideal” opamp:

Uo(ω)/ Ui(ω) = -Cs/Ct

Capacitive sensor readout

ET8.017El. Instr.Delft University of Technology

Modulus transfer of the charge amplifier

2. U- is virtual ground and can be used for adding currents in a differential sensor structure.

For sensor readout the charge amplifier typically attenuates the excitation voltage Ui (Cs«Ct).

Features:1. Can be used for excitation voltage frequencies up to ωT.

( )1 1

to s

i vt t

o

-jU CR=U + j + j R C

A

ωτω ω⎛ ⎞

⎜ ⎟⎝ ⎠

Capacitive sensor readout

Page 15: Slides electrical instrumentation lecture 2

15

ET8.017El. Instr.Delft University of Technology

Application in differential sensor readout

Capacitive sensor readout

Topology is often used for the readout of MEMS accelerometers and gyroscopes

ET8.017El. Instr.Delft University of Technology

Piezo-electricityPiezo-electric force sensors

Not deformed: no polarization charge

Shear piezo-electric sensitivity (Normal) piezo-

electric sensitivityPiezo-electricity is reversible: connecting voltage source results ina deformation and, hence, in force.

Piezo-electricity in all crystal directions: described by a matrix.

Page 16: Slides electrical instrumentation lecture 2

16

ET8.017El. Instr.Delft University of Technology

Application in acceleration sensing

Charge sensitivity: Sq= 5 pC/N.Capacitance: Cs= 20 pFMass: M= 100 g.

Uoa @ 1 m/s2 ?

Piezo-electric force sensors

Force due to load: F= M.a= 0.1 NVoltage sensitivity: Su= Sq/Cs= 250 mV/N.Hence: Uo= 25 mV

ET8.017El. Instr.Delft University of Technology

Magnetic field sensor using the Hall Effect

The Hall effect is based on the Lorentz force acting on electrons moving through a (semi)conductor.

The deflection results in charge accumulation. The electrostatic field due to the charge counteracts the Lorentz force and equilibrium is reached at the Hall field, EH= FL/e= vB.The Hall voltage UH= EH.w is the output signal and is proportional to both I and B.

Note that UH/I=f(B) is like a resistance measured in a 4-terminal resistance measurement.

Page 17: Slides electrical instrumentation lecture 2

17

ET8.017El. Instr.Delft University of Technology

Magnetic field sensor using the Hall Effect

Stress in the conductive layer results in offset.

Wheatstone bridge not balanced at B= 0 T.

ET8.017El. Instr.Delft University of Technology

Changing the direction of the bias current changes the relative polarity of Voff & Vhall

So averaging the bridge output cancels Voff !

In practicen-well resistance depends on current direction (anisotropic)

⇒ 3 current directions needed for optimal offset cancellation!

The spinning current technique

Page 18: Slides electrical instrumentation lecture 2

18

ET8.017El. Instr.Delft University of Technology

Spinning-Current Hall Plate

3 current directions ⇒ Octagonal Hall plateBias current rotated, while Hall voltages are summedCancels offset due to static bridge mismatch

⇒ 10 - 100µT offset

Earth’s magnetic field ~ 50µT

So electronic compass applications are possible …

ET8.017El. Instr.Delft University of Technology

Smart Hall Sensor

Standard 0.5μm CMOSSpinning current technique + low-offset amplifier⇒ 4µT offsetState-of-the-art!

J. van der Meeret al., ISSCC ‘05

Hall Sensor Inst. Amp. ADC

Timing, Control & Interfaces

Page 19: Slides electrical instrumentation lecture 2

19

ET8.017El. Instr.Delft University of Technology

The Seebeck effect is due to the excess kinetic energy of free carriers at the hot side of a (semi)-conducting material, which results in a net diffusion of carriers towards the cold side. The resulting charge build-up creates an internal electric field that opposes further diffusion and is externally measurable as an open-circuit potential, ΔV (conventional).

Equivalent definition: The Seebeck effect is due to the temperature–dependence of the Fermi level in a material (quantum mechanical).

F

T

E1q T∂

=∂

α

,T

VT∂

=∂

α where α is the temperature coef of the Seebeck voltage at temperature T⇒ the Seebeck coefficient

The Seebeck effectTemperature sensors

ET8.017El. Instr.Delft University of Technology

Practical use of the Seebeck effect:a thermocouple with two different materialsand a temperature difference

( ) ( ) ( )α α α α

α α α, , , ,. . . .a T1 1 b T1 1 b T 2 2 a T 2 2

a b 1 2 ab 1 2

T - T T - T

- T -T T -T

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦=

MATERIALCOMB. SENSITIVITY (AT 0°C) [μV/K]

RANGE [°C)]

iron/constantan 45 0..760 copper/constantan 35 -100..370 chromel/alumel 40 0..1260 platinum/Pt+ Rd 5 0..1500

Temperature sensors

No offset, however very small DC voltages (typ.< 1mV) are generated.

Page 20: Slides electrical instrumentation lecture 2

20

ET8.017El. Instr.Delft University of Technology

Thermopile for increased output signal

Problem: readout circuit has offset

Temperature sensors

Problems:- increased electrical resistance(noise)

- increased thermal conductionbetween cold and hot parts ⇒1. Increased source loading or2. More heat flux required to build

up a temperature difference.

N-times the thermocouple voltage

ET8.017El. Instr.Delft University of Technology

A Smart Wind Sensor!

Convective cooling ⇒ temperature gradient⇒ wind speed and direction

Page 21: Slides electrical instrumentation lecture 2

21

ET8.017El. Instr.Delft University of Technology

Thermal Wind Sensor

On-chip thermopiles measure temperature gradientK. Makinwa et al., ISSCC ‘02

ET8.017El. Instr.Delft University of Technology

Smart Temperature Sensors

Transistors are natural temperature sensorsBut manufacturing tolerances causeerrors of up to 3°C

?

Page 22: Slides electrical instrumentation lecture 2

22

ET8.017El. Instr.Delft University of Technology

BJT Characteristics: VBE

VBE is a near-linear function of temperatureWith a negative temperature coefficient: ~ –2mV/°CBut it is process dependent (via IS and IC)

collector

emitter

base

+VBE–

IC

• For IC >> IS

exp

ln

BEC S

CBE

S

qVI IkT

IkTVq I

⎛ ⎞≈ ⎜ ⎟⎝ ⎠

⇒ =

ET8.017El. Instr.Delft University of Technology

BJT Characteristics: ΔVBE

By biasing two transistors at a fixed collector current ratio p, we can eliminate the process dependence:

ΔVBE is a linear function of temperature

With a positive tempco: ~ 180µV/°C (for p·r =10)

collector

emitterr·AE

base

+VBE1–

I collector

emitterAE

base

+VBE2–

p·I

)ln(12 rpq

kTVVV BEBEBE ⋅=−=Δ

Page 23: Slides electrical instrumentation lecture 2

23

ET8.017El. Instr.Delft University of Technology

Operating Principles (1)

Two bipolar transistors can generate:ΔVBE proportional to absolute temperature (PTAT)VBE complementary to absolute temperature (CTAT)

ET8.017El. Instr.Delft University of Technology

Operating Principles (2)

These voltages can be combined to give:VREF temperature independent (band-gap) voltageα·ΔVBE temperature dependent voltage

Their ratio is a measure of temp:BEBE

BE

VVVΔ⋅α+

Δ⋅α=μ

Page 24: Slides electrical instrumentation lecture 2

24

ET8.017El. Instr.Delft University of Technology

Current mirror ratio p, emitter arearatio r and amplifier gain α generate

Current source Ibias generates VBE

ADC then computes the ratio:

( )rpq

kTVPTAT ⋅α= ln

REF

PTAT

BEBE

BE

VV

VVV

=Δ⋅α+

Δ⋅α=μ

A practical Bandgap temperature sensor

ET8.017El. Instr.Delft University of Technology

• CMOS ⇒ substrate PNPs

• IS spread? ⇒ one room temperature trim• Inaccuracy < ±0.1°C (3σ) from –55 to125°C

Pertijs et al., JSSC, Dec. ‘05

State-of-the-Art

Page 25: Slides electrical instrumentation lecture 2

25

ET8.017El. Instr.Delft University of Technology

Assignment 2a

The accuracy of a bandgap temp sensor will be limited by the offset and gain error of the “α” amplifierAssuming p=1, r=16 and α = 8, what offset corresponds to 0.1°C error? Similarly what gain error corresponds to an error of less than 0.1°C over the military range -55°C to 125°C?Assume that the tempco of VBE = -2mV/°C and that ideally, VREF = 1.2V Please submit this before the class on Wed. 19 Sept.

BEBE

BE

VVVΔ⋅α+

Δ⋅α=μ

ET8.017El. Instr.Delft University of Technology

Assignment 2b

Derive an expression for the transfer function IL/Ii of the circuit shown above.Assuming the opamp suffers from offset and bias current, calculate the corresponding detection limit Please submit this before the class on Wed. 19 Sept.

Page 26: Slides electrical instrumentation lecture 2

26

ET8.017El. Instr.Delft University of Technology