smarc design guide - sget

126
Smart Mobility Architecture Design Guide Version 1.0 July 9, 2013

Upload: others

Post on 01-Dec-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SMARC Design Guide - SGET

Smart Mobility Architecture

Design Guide

Version 1.0 July 9, 2013

Page 2: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 2 of 126 July 9, 2013 © SGeT e.V.

© Copyright 2013, SGeT Standardization Group for Embedded Technology e.V.

Note that some content of this SGeT document may be legally protected by patent rights not held by

SGeT. SGeT is not obligated to identify the parts of this specification that require licensing or other

legitimization. The contents of this SGeT document are advisory only. Users of SGeT documents are

responsible for protecting themselves against liability for infringement of patents. All content and

information within this document are subject to change without prior notice.

SGeT provides no warranty with regard to this SGeT document or any other information contained herein

and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular

purpose with regard to any of the foregoing. SGeT assumes no liability for any damages incurred directly

or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies

between the product and this SGeT document. In no event shall SGeT be liable for any incidental,

consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out

of or in connection with this SGeT document or any other information contained herein or the use thereof.

Page 3: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 3 of 126 July 9, 2013 © SGeT e.V.

REVISION HISTORY

Revision Comments Originator Date

1.0 Initial Release S. Milnor / Kontron July 9, 2013

Page 4: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 4 of 126 July 9, 2013 © SGeT e.V.

CONTENTS

1 Introduction .......................................................................................................................................... 10 1.1 General Introduction .................................................................................................................... 10 1.2 Purpose of This Document .......................................................................................................... 10 1.3 Design Help ................................................................................................................................. 10 1.4 Abbreviations and Acronyms Used ............................................................................................. 11 1.5 Document References ................................................................................................................ 13

1.5.1 SGET Documents ............................................................................................................... 13 1.5.2 Industry Standards Documents ........................................................................................... 13

1.6 Schematic Example Correctness ................................................................................................ 14 1.7 Software Support ........................................................................................................................ 14 1.8 Schematic Example Conventions ............................................................................................... 15

2 Infrastructure: Connector, Power Delivery, System Management ..................................................... 17 2.1 Module Connector ....................................................................................................................... 17 2.2 Module Power ............................................................................................................................. 20

2.2.1 Input Voltage Range ........................................................................................................... 20 2.2.2 Input Voltage Rise Time ...................................................................................................... 20 2.2.3 Module Maximum Input Power ............................................................................................ 20 2.2.4 Power Path .......................................................................................................................... 20

2.3 Module I/O Voltage ..................................................................................................................... 22 2.3.1 I/O at 1.8V (Default) ............................................................................................................ 22 2.3.2 I/O at 3.3V ........................................................................................................................... 22 2.3.3 I/O at 1.8V or 3.3V............................................................................................................... 22

2.4 VIN_PWR_BAD# ........................................................................................................................ 23 2.5 CARRIER_PWR_ON .................................................................................................................. 23 2.6 Reset In to Module ...................................................................................................................... 24 2.7 Power Button ............................................................................................................................... 24 2.8 Force Recovery ........................................................................................................................... 25 2.9 Power Up Sequence ................................................................................................................... 26 2.10 Boot Selection ............................................................................................................................. 28

2.10.1 Boot Definitions ................................................................................................................... 28 2.10.2 SMARC BOOT_SEL Pins ................................................................................................... 29

2.11 RTC Backup Power ..................................................................................................................... 30 2.12 Reserved / Test Interfaces .......................................................................................................... 31

3 Display Interfaces ................................................................................................................................ 32 3.1 Module LVDS .............................................................................................................................. 32

3.1.1 NEC 1280 x 768 Single Channel LVDS Example ............................................................... 32 3.1.2 Display Parameters and EDID ............................................................................................ 34

3.2 HDMI ........................................................................................................................................... 35 3.3 Carrier LVDS – Dual Channel 24 Bit VESA Standard ................................................................ 36 3.4 Parallel LCD ................................................................................................................................ 38

4 Low / Medium Speed Serial I/O Interfaces ......................................................................................... 39 4.1 Asynchronous Serial Ports .......................................................................................................... 39

4.1.1 RS232 Ports ........................................................................................................................ 39 4.1.2 RS485 Half-Duplex.............................................................................................................. 40

4.2 I2C Interfaces .............................................................................................................................. 42 4.2.1 General ................................................................................................................................ 42 4.2.2 I2C Level Translation, Isolation and Buffering .................................................................... 42 4.2.3 I2C_PM Bus EEPROMs ...................................................................................................... 44 4.2.4 General I2C Bus EEPROMs ............................................................................................... 46 4.2.5 I2C Based IO Expanders .................................................................................................... 47 4.2.6 Other I2C Devices ............................................................................................................... 48

4.3 Touch Screen Controller Interfaces ............................................................................................ 50 4.3.1 General ................................................................................................................................ 50 4.3.2 Interface Types / Driver Considerations .............................................................................. 50 4.3.3 Touch Controller Modules / ICs / Screens .......................................................................... 51

Page 5: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 5 of 126 July 9, 2013 © SGeT e.V.

4.3.4 I2C Interface to Touch Controller ........................................................................................ 52 4.4 I2S Interfaces .............................................................................................................................. 53

4.4.1 General Information ............................................................................................................ 53 4.4.2 Wolfson Micro I2S Audio Example ...................................................................................... 53 4.4.3 Texas Instruments TLV320AIC3105 I2S Audio Example ................................................. 55 4.4.4 lntel High Definition Audio over I2S2................................................................................... 57

4.5 SPI Interfaces .............................................................................................................................. 58 4.5.1 General ................................................................................................................................ 58 4.5.2 SMARC Implementation ...................................................................................................... 58 4.5.3 SPI Device Examples – 1.8V I/O ........................................................................................ 59

4.6 CAN Bus ...................................................................................................................................... 60 4.6.1 General ................................................................................................................................ 60 4.6.2 SMARC Implementation ...................................................................................................... 61 4.6.3 Isolation ............................................................................................................................... 61

4.7 S/PDIF Interface .......................................................................................................................... 62 5 High Speed Serial I/O Interfaces......................................................................................................... 63

5.1 USB ............................................................................................................................................. 63 5.1.1 General ................................................................................................................................ 63 5.1.2 USB0 Client / Host Direct From Module ............................................................................. 63 5.1.3 USB1 and USB2 Host Ports Direct from Module ................................................................ 65 5.1.4 USB Hub On Carrier ........................................................................................................... 66

5.2 GBE ............................................................................................................................................. 69 5.2.1 GBE Carrier Connector Implementation Example ............................................................. 69 5.2.2 GBE Mag-Jack Connector Recommendations ................................................................... 70 5.2.3 GBE LEDs ........................................................................................................................... 71

5.3 PCIe ............................................................................................................................................ 73 5.3.1 General ................................................................................................................................ 73 5.3.2 PCIe x1 Device Down on Carrier ........................................................................................ 74 5.3.3 Mini-PCIe ............................................................................................................................. 75

5.4 SATA ........................................................................................................................................... 76 5.4.1 General ................................................................................................................................ 76 5.4.2 mSATA / MO-300 ................................................................................................................ 77

6 Memory Card Interfaces ...................................................................................................................... 78 6.1 SD Card ....................................................................................................................................... 78 6.2 eMMC .......................................................................................................................................... 79

7 Camera Interfaces ............................................................................................................................... 80 7.1 General ........................................................................................................................................ 80 7.2 Camera Data Interface Formats.................................................................................................. 80 7.3 Camera and Camera Module Vendors ....................................................................................... 80 7.4 Serial Camera Interface Example ............................................................................................... 81 7.5 Parallel Camera Interface Example ............................................................................................ 82 7.6 Other Camera Options ................................................................................................................ 82

8 GPIO ................................................................................................................................................... 83 8.1 SMARC Module Native GPIO ..................................................................................................... 83 8.2 GPIO Expansion ......................................................................................................................... 83

9 Alternate Function Block ..................................................................................................................... 84 10 Carrier Power Circuits ..................................................................................................................... 85

10.1 Power Budgeting ......................................................................................................................... 85 10.2 Input Power Sources ................................................................................................................... 86 10.3 Power Budgeting, Continued – Fixed 5V Power Source ............................................................ 87 10.4 Fixed 5V DC Power Input Circuit Example ................................................................................. 88 10.5 Power Hot Swap Controller ......................................................................................................... 91 10.6 High Voltage LED Supply ............................................................................................................ 92 10.7 3.0V to 5.25V Power Input Example ........................................................................................... 93 10.8 12V Input ..................................................................................................................................... 94 10.9 Wide Range Power Input ............................................................................................................ 95 10.10 Power Monitoring .................................................................................................................... 96 10.11 Power Over Ethernet ............................................................................................................... 97

Page 6: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 6 of 126 July 9, 2013 © SGeT e.V.

10.12 Li-ION Battery Charger ........................................................................................................... 99 10.12.1 General ............................................................................................................................ 99 10.12.2 Battery Charger Circuit Example ................................................................................... 100

10.13 V_IO Voltage Switching ........................................................................................................ 104 11 Thermal Management ................................................................................................................... 105

11.1 General ...................................................................................................................................... 105 11.2 Heat Spreaders ......................................................................................................................... 105 11.3 Heat Sinks ................................................................................................................................. 107 11.4 Thermal Resistance Calculations.............................................................................................. 108

12 Carrier PCB Design Rule Summary .............................................................................................. 109 12.1 General – PCB Construction Terms ......................................................................................... 109 12.2 Differential Pair Cautions .......................................................................................................... 110 12.3 General Routing Rules and Cautions ....................................................................................... 111 12.4 Trace Parameters for High-Speed Differential Interfaces ......................................................... 112 12.5 Trace Parameters for Single Ended Interfaces ......................................................................... 114 12.6 PCB Construction Suggestions ................................................................................................. 115

13 BOM For Schematic Examples ..................................................................................................... 117

Page 7: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 7 of 126 July 9, 2013 © SGeT e.V.

FIGURES

Figure 1 Schematic Symbol Conventions .................................................................................................. 15 Figure 2 Module Connector Pins P1-74 and S1-75 ................................................................................... 18 Figure 3 Module Connector Pins P75-156 and S76-158 ........................................................................... 19 Figure 4 Basic Module and Carrier Power Path ........................................................................................ 21 Figure 5 Reset Switch ................................................................................................................................ 24 Figure 6 Power Button Switch .................................................................................................................... 25 Figure 7 Force Recovery Switch ................................................................................................................ 25 Figure 8 SMARC Carrier Power Up Sequence - No Power Button Case ................................................. 26 Figure 9 SMARC Carrier Power Up Sequence - With Power Button Case .............................................. 27 Figure 10 Boot Selection Jumpers ............................................................................................................. 29 Figure 11 RTC Backup: Coin Battery / Super Cap .................................................................................... 30 Figure 12 Module LVDS: NEC Single Channel Display ............................................................................. 32 Figure 13 Carrier EDID EEPROM .............................................................................................................. 34 Figure 14 HDMI Implementation ................................................................................................................ 35 Figure 15 Dual Channel 24 Bit LVDS: VESA Standard ............................................................................. 37 Figure 16 Parallel LCD Implementation ..................................................................................................... 38 Figure 17 Asynchronous Serial Port Transceiver – RS232 – TRS3253 .................................................... 39 Figure 18 Asynchronous Serial Port Transceiver – RS232 – MAX13235 ................................................. 40 Figure 19 Asynchronous Serial Port Transceiver - RS485 – Half Duplex ................................................. 41 Figure 20 I2C Power Domain Isolation – using FETs ................................................................................ 42 Figure 21 I2C Power Domain Isolation and Buffer – Fairchild FXMA2102 ................................................ 43 Figure 22 I2C_PM EEPROM: Carrier Power Domain ............................................................................... 44 Figure 23 I2C_PM EEPROM: Module Power Domain ............................................................................... 45 Figure 24 I2C_GP EEPROM...................................................................................................................... 46 Figure 25 I2C Device: IO Expander .......................................................................................................... 47 Figure 26 I2C Device: Accelerometer ........................................................................................................ 48 Figure 27 I2C Device: Accelerometer and Magnetometer ......................................................................... 48 Figure 28 I2C Device: Gyroscope .............................................................................................................. 49 Figure 29 Touch Screen Connector – I2C Interface .................................................................................. 52 Figure 30 I2S Audio CODEC: Wolfson Micro ............................................................................................ 54 Figure 31 Audio Amplifier: Wolfson Micro .................................................................................................. 55 Figure 32 I2S Audio CODEC: Texas Instruments ..................................................................................... 56 Figure 33 Audio Amplifier: Texas Instruments .......................................................................................... 56 Figure 34 SPI Flash Socket ....................................................................................................................... 58 Figure 35 CAN Bus Implementation .......................................................................................................... 61 Figure 36 SPDIF Implementation: Optical ................................................................................................. 62 Figure 37 SPDIF Implementation: Coaxial ................................................................................................. 62 Figure 38 USB0 Client / Host Direct From Module .................................................................................... 64 Figure 39 USB1 and USB2 Host Ports Direct From Module ..................................................................... 65 Figure 40 USB Hub (1 of 2)........................................................................................................................ 67 Figure 41 USB Hub (2 of 2)........................................................................................................................ 68 Figure 42 GBE without POE ...................................................................................................................... 69 Figure 43 GBE LED Current Sink .............................................................................................................. 71 Figure 44 GBE LED Current Sink / Source ................................................................................................ 72 Figure 45 Interfacing a PCIe x1 Carrier Board Device .............................................................................. 74 Figure 46 Mini-PCIe Slot ............................................................................................................................ 75 Figure 47 mSATA / MO-300....................................................................................................................... 77 Figure 48 Micro SD Card Implementation .................................................................................................. 78 Figure 49 eMMC Flash ............................................................................................................................... 79 Figure 50 Serial Camera Implementation .................................................................................................. 81 Figure 51 Parallel Camera Implementation ............................................................................................... 82 Figure 52 AFB Connector .......................................................................................................................... 84 Figure 53 5V Input Connector .................................................................................................................... 88 Figure 54 5V Carrier Power Switch ............................................................................................................ 88

Page 8: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 8 of 126 July 9, 2013 © SGeT e.V.

Figure 55 3.3V 2A Buck Converter ............................................................................................................ 89 Figure 56 1.8V Buck Converter .................................................................................................................. 89 Figure 57 1.5V Buck Converter .................................................................................................................. 90 Figure 58 12V Boost Converter for Backlight Power ................................................................................. 90 Figure 59 Hot Swap Controller ................................................................................................................... 91 Figure 60 LP8545 LED Backlight Power .................................................................................................... 92 Figure 61 5V, 2A Buck-Boost Converter .................................................................................................... 93 Figure 62 3.3V 2A Buck-Boost Converter .................................................................................................. 93 Figure 63 12V Step Down Switcher ........................................................................................................... 94 Figure 64 Wide Range Power Input Switcher ........................................................................................... 95 Figure 65 Power Monitor - Incoming Power............................................................................................... 96 Figure 66 GbE with PoE ............................................................................................................................. 98 Figure 67 Li-ION Battery Charger - Block Diagram ................................................................................ 101 Figure 68 Li-ION Battery Charger - Schematic ....................................................................................... 102 Figure 69 Battery Fuel Gauge ................................................................................................................. 103 Figure 70 Charger Present Detection ..................................................................................................... 103 Figure 71 V_IO Voltage Switching .......................................................................................................... 104 Figure 72 Heat Spreader Example – 82mm x 50mm Module .................................................................. 106 Figure 73 Heat Sink Add-On to Heat Spreader ....................................................................................... 107 Figure 74 Stand-Alone Heat Sink ............................................................................................................ 107 Figure 75 PCB Cross Section – Striplines and Asymmetric Microstrips .................................................. 110

Page 9: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 9 of 126 July 9, 2013 © SGeT e.V.

TABLES

Table 1 Schematic Power Net Naming ..................................................................................................... 16 Table 2 Boot Select Pins ........................................................................................................................... 29 Table 3 I2C Device Examples - 1.8V I/O .................................................................................................. 49 Table 4 Popular Touch Technologies ....................................................................................................... 50 Table 5 Touch Controller Module / IC / Screen Vendors .......................................................................... 51 Table 6 SPI Device Examples - 1.8V I/O .................................................................................................. 59 Table 7 Recommended Gigabit Ethernet Connectors with Magnetics ..................................................... 70 Table 8 PCIe Data Transfer Rates ............................................................................................................ 73 Table 9 SMARC PCIe Signal Summary .................................................................................................... 73 Table 10 SATA SSD Form Factors ........................................................................................................... 76 Table 11 SATA SSD Vendors ................................................................................................................... 76 Table 12 16 GB eMMC Flash options ....................................................................................................... 79 Table 13 Camera and Camera Module Vendors ...................................................................................... 80 Table 14 Hypothetical Power Budget Example – Part 1 ........................................................................... 85 Table 15 Input Power Source Possibilities ................................................................................................ 86 Table 16 Hypothetical Power Budget Example – Part 2 ........................................................................... 87 Table 17 Lithium- Ion Battery Cell Voltages.............................................................................................. 99 Table 18 Heat Spreader Hole Types ...................................................................................................... 106 Table 19 Hypothetical Thermal Parameters ........................................................................................... 108 Table 20 PCB Terms and Symbols ......................................................................................................... 109 Table 21 High-Speed Differential Trace Parameters .............................................................................. 113 Table 22 Single Ended Trace Parameters .............................................................................................. 114 Table 23 PCB Construction Example - 4 Layers .................................................................................... 115 Table 24 PCB Construction Example - 6 Layers .................................................................................... 115 Table 25 PCB Construction Example – 8 Layers ................................................................................... 116 Table 26 BOM For Schematic Examples ................................................................................................ 117

Page 10: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 10 of 126 July 9, 2013 © SGeT e.V.

1 INTRODUCTION

1.1 General Introduction

SMARC (“Smart Mobility Architecture”) is an open – source computer Module standard maintained by the SGeT (“Standardization Group for Embedded Technologies”). SMARC Modules are small form factor (82mm x 50mm and 82mm x 80mm), low power (typically <6W) computer modules that are used on a Carrier board that utilizes a 314 pin 0.5mm pitch right-angle memory socket style connector to host the Module. SMARC Modules may utilize ARM, low power RISC or low power x86 CPUs / SOCs. The SMARC Modules are specified in the SGeT Smart Mobility Architecture Hardware Specification. The specification document is available free of charge from the SGET web site (www.sget.org), subject to their terms of use. Similarly, this SMARC Design Guide is available free of charge from the SGET web site, subject to the SGET terms of use.

1.2 Purpose of This Document

The primary purpose of this document is to serve as a Design Guide for developers of SMARC Carrier Boards and for SMARC Module customers who wish to have a SMARC based system developed. A secondary purpose of this document is to serve as a reference to SMARC Module developers, to help them understand the application of the Modules they are developing. Finally, this document should be valuable to FAEs and Product managers to help them understand the SMARC infrastructure.

1.3 Design Help

There are a number of ways to have a SMARC Carrier board developed:

Design internally, but have your SMARC Module vendor review your design. Make sure to also have the appropriate semiconductor companies review the portions of the design that utilize their components.

Use a 3rd

party firm that specializes in SMARC Carrier development. Such resources may be listed on the SGET web page (www.sget.org).

Contact your SMARC Module vendor. The Module vendor will have an FAE available for advice. Many vendors will also undertake custom Carrier design projects, for significant opportunities.

Page 11: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 11 of 126 July 9, 2013 © SGeT e.V.

1.4 Abbreviations and Acronyms Used

ADC Analog to Digital Converter

AFB Alternate Function Block (from SMARC spec)

ARM Advanced RISC Machines www.arm.com

BCT Boot Configuration Table

BSP (software) Board Support Package

CAD Computer Aided Design

CAN Controller Area Network

CPLD Complex Programmable Logic Device

CODEC Coder – Decoder

CSI Camera Serial Interface www.mipi.org

DAC Digital to Analog Converter

DB-9 Connector, D shaped, B shell size, 9 pins

DE Differential Ended (signal pair)

DNI Do Not Install (component is not loaded)

DSP Digital Signal Processor

EDID Extended Display Identification Data www.vesa.org

EEPROM Electrically Erasable Programmable Read Only Memory

eMMC Embedded Multi Media Card www.jedec.org

ESD Electro Static Discharge

FET Field Effect Transistor

FIFO First In First Out (buffer memory)

FS Full Speed (USB 2.0 12 Mbps)

GBE Gigabit Ethernet www.ieee.org

Gbps Giga bits per second

GPIO General Purpose Input / Output

HDA High Definition Audio – Intel defined format www.intel.com

HDMI High Definition Multimedia Interface www.hdmi.org

HID Human Interface Device: USB device class

HS High Speed (USB 2.0 480 Mbps)

IC Integrated Circuit

I2C Inter-Integrated Circuit www.nxp.com

I2S Inter-Integrated Circuit – Sound www.nxp.com

IEEE Institute of Electrical and Electronics Engineers www.ieee.org

iMX6 Popular ARM SOC from Freescale Semiconductor www.freescale.com

IO Input Output

ISO International Organization for Standardization (French) www.iso.org

JEDEC Joint Electron Device Engineering Council www.jedec.org

JPEG Joint Photographic Experts Group www.jpeg.org

LED Light Emitting Diode

Li-Ion Lithium Ion (rechargeable battery technology)

LVDS Low Voltage Differential Signaling

M2.5 Metric 2.5mm

M3 Metric 3.0mm

MAC Media Access Controller (e.g. logic circuits in GBE)

Mbps Mega bits per second

MIPI Mobile Industry Processor Interface www.mipi.org

MLC Multi Level Cell (flash memory reference)

MOD Module (the SMARC Module) (schematic notation)

MO-297 Module Outline 297 (“Slim SATA” format) www.jedec.org

MO-300 Module Outline 300 (mini-PCIe Express card format) www.jedec.org

MPEG Motion Picture Experts Group www.mpeg.org

MXM Mobile pci eXpress Module www.mxm-sig.org

Page 12: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 12 of 126 July 9, 2013 © SGeT e.V.

MXM3 MXM Revision 3

NAND A high density flash memory technology

nS Nano second (10 E -9)

NC Not Connected

NXP A semiconductor company www.nxp.com

OS Operating System

OTG On the Go (USB term – device can be host or client)

PCB Printed Circuit Board

PHY Physical (transceiver) – drives cable

PICMG PCI Industrial Computer Manufacturing Group www.picmg.org

PCI Peripheral Component Interface www.pcisig.org

PCIe PCI Express www.pcisig.org

PCI-SIG PCI Special Interest Group www.pcisig.org

PCM Pulse-Code Modulation

PLL Phase Locked Loop

POE Power Over Ethernet

pS Pico second (10 E -12)

PWM Pulse Width Modulation

RGB Video data in Red Green Blue pixel format

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RS232 Recommend Standard 232 (asynch serial ports)

RS485 Asynchronous serial data, differential, multidrop

RTC Real Time Clock (battery backed clock and memory)

SAR Successive Approximation Register

SATA Serial ATA (serial mass storage interface) www.sata-io.org

SD Secure Digital (memory card)

SE Single Ended (signal, as opposed to differential)

SGeT Standardization Group for Embedded Technologies www.sget.org

SLC Single Level Cell (flash memory reference)

SMARC Smart Mobility Architecture www.sget.org

SMSC A semiconductor company www.smsc.com

SOC System On Chip

S/PDIF Sony/Philips Digital Interconnect Format

SPI Serial Peripheral Interface

SSD Solid State Disk

TI Texas Instruments – semiconductor company www.ti.com

TIM Thermal Interface Material

UART Universal Asynchronous Receiver Transmitter

UL Underwriters Laboratories www.ul.com

USB Universal Serial Bus www.usb.org

VESA Video Electronics Standards Association www.vesa.org

WEC7 Windows Embedded Compact 7 (an OS)

YUV Video data format, more common in television

X5R Ceramic capacitor dielectric – good quality

X7R Ceramic capacitor dielectric – best quality

X86 Intel architecture (80x86) CPUs

Page 13: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 13 of 126 July 9, 2013 © SGeT e.V.

1.5 Document References

1.5.1 SGET Documents

Smart Mobility Architecture Hardware Specification, V 1.0, December 20, 2012 © SGET (Standardization Group For Embedded Technologies) www.sget.org

1.5.2 Industry Standards Documents

CAN (“Controller Area Network”) Bus Standards – ISO 11898, ISO 11992, SAE J2411.

CSI-2 (Camera Serial Interface version 2) The CSI-2 standard is owned and maintained by the MIPI Alliance (“Mobile Industry Processor Interface Alliance”) (www.mipi.org).

eMMC (“Embedded Multi-Media Card”) the eMMC electrical standard is defined by JEDEC JESD84-B45 and the mechanical standard by JESD84-C44 (www.jedec.org).

GBE MDI (“Gigabit Ethernet Medium Dependent Interface”) defined by IEEE 802.3. The 1000Base-T operation over copper twisted pair cabling defined by IEEE 802.3ab (www.ieee.org).

HDMI Specification, Version 1.3a, November 10, 2006 © Hitachi and other companies (www.hdmi.org).

The I2C Specification, Version 2.1, January 2000, Philips Semiconductor (now NXP) (www.nxp.com).

I2S Bus Specification, Feb. 1986 and Revised June 5, 1996, Philips Semiconductor (now NXP) (www.nxp.com).

JEDEC MO-300 (mSATA) defines the physical form factor of the mSATA format (www.jedec.org). The electrical connections are defined in the Serial ATA document.

MXM3 Graphics Module Mobile PCI Express Module Electromechanical Specification, Version 3.0, Revision 1.1, © 2009 NVidia Corporation (www.mxm-sig.org ).

PICMG® EEEP Embedded EEPROM Specification, Rev. 1.0, August 2010 (www.picmg.org).

PCI Express Specifications (www.pci-sig.org).

PCI Express Mini Card Electromechanical Specification Revision 2.0, April 21, 2012, © PCI-SIG (www.pci-

sig.org).

RS-232 (EIA “Recommended Standard 232”) this standard for asynchronous serial port data exchange dates from 1962. The original standard is hard to find. Many good descriptions of the standard can be found on-line, e.g. at Wikipedia, and in text books.

Serial ATA Revision 3.1, July 18, 2011, Gold Revision, © Serial ATA International Organization (www.sata-

io.org).

SD Specifications Part 1 Physical Layer Simplified Specification, Version 3.01, May 18, 2010, © 2010 SD Group and SD Card Association (“Secure Digital”) (www.sdcard.org).

SPDIF (aka S/PDIF) (“Sony Philips Digital Interconnect Format) - IEC 60958-3.

SPI Bus – “Serial Peripheral Interface” – de-facto serial interface standard defined by Motorola. A good description may be found on Wikipedia (http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus).

UL 1642 Lithium Batteries – safety standard governing the use of lithium batteries (www.ul.com)

USB Specifications (www.usb.org).

VESA Enhanced Extended Display Identification Data Standard, Rev. 1, Feb 9, 2000, VESA (www.vesa.org) See also the “EDID” page in Wikipedia.

Page 14: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 14 of 126 July 9, 2013 © SGeT e.V.

1.6 Schematic Example Correctness

The schematic examples shown in this Design Guide are believed to be correct but correctness can not be guaranteed. Most of the examples have been pulled from designs that have been built, tested, and are known to work. Most of them have been re-formatted to fit better in this design guide.

1.7 Software Support

Many hardware examples and suggestions are given in the following pages. SMARC Carrier hardware design is generally straightforward. However, before committing to a particular hardware selection, it is wise to check out the software driver support. A particular device may be supported in, say, for example, Linux but not in Windows Embedded Compact 7. Your overall project may go smoother if you pick out hardware that already has software support in your target OS. There are various possible sources for software drivers for a particular IC: the IC vendor, the OS vendor, the OS community, your Module vendor, your Carrier design partner, other independent sources and of course writing your own.. Most SMARC Module vendors offer a BSP (Board Support Package) for their Module. Your target Carrier device may be supported in the BSP – check this angle out as well.

Page 15: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 15 of 126 July 9, 2013 © SGeT e.V.

1.8 Schematic Example Conventions

Some of the conventions used in the schematic examples are described below. Note off-page connections that tie directly to the SMARC Module have the notation “MOD” in the off-page connect symbol.

Figure 1 Schematic Symbol Conventions

V_3V0_RTCV_MOD_IN_LED

MOD

MOD

MOD

V_12V0 V_3V3V_5V0 V_IOV_1V8 V_1V5

V_MOD_IN V_CARRIER_IN

Off-Sheet Inter-connect: Regular

Off-Sheet Inter-connect: To/From SMARC Module

On-Sheet Inter-connect

Input

Output

Bidirectional

Bidirectional

Output

Input

Global Power Symbols

DNI

Abbreviations

Do Not Install

Page 16: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 16 of 126 July 9, 2013 © SGeT e.V.

Table 1 Schematic Power Net Naming

V_IN_RAW

Power in to the overall system, before any filtering, fusing, polarity or rise time protection

V_IN

Power in to the overall system, after (optional) filtering, fusing, polarity or rise time protection

V_MOD_IN

Power into the SMARC Module. It must be within the 3.0V to 5.25V range defined by the SMARC specification

V_CARRIER_IN

Power in to the Carrier Board. It may be the same as V_MOD_IN, depending on the design at hand. On SMARC Evaluation Carrier boards, V_CARRIER_IN is sometimes kept separate from V_MOD_IN to allow easier measurements and tracking of where the power goes.

V_5V0

5V supply on the Carrier Board

V_3V3

3.3V supply on the Carrier Board

V_1V8

1.8V supply on the Carrier Board

V_1V5

1.5V supply on the Carrier Board

V_IO

Supply voltage on the Carrier Board for Module I/O interfaces. For most SMARC systems, V_IO is 1.8V and the V_IO and V_1V8 may be the same supply. For V_IO of 1.8V, the Carrier Board should tie Module VDD_IO_SEL# pin (pin S158) to GND

V_3V0_RTC

Supply voltage from the Carrier Board to the SMARC VDD_RTC pin (pin S147) This is a low voltage, low current supply separate from V_MOD_IN, used to supply the Module RTC (Real Time Clock) in the absence of V_MOD_IN.

V_MOD_IN_LED

Same as V_MOD_IN except isolated by a series jumper – used for power status LEDs – jumper can be removed to prevent status LEDs from consuming power

Page 17: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 17 of 126 July 9, 2013 © SGeT e.V.

2 INFRASTRUCTURE: CONNECTOR, POWER DELIVERY, SYSTEM MANAGEMENT

2.1 Module Connector

The SMARC Module connector is well described in the Smart Mobility Architecture Hardware Specification and the complete description is not repeated here. Briefly, the SMARC Module connector is a low profile, right angle 314 pin memory – socket style connector. The same connector is commonly used for MXM3 graphics cards. However, it is important to understand that the SMARC usage and pin-out of this connector is totally different from the MXM3 case. The SMARC Module connector is available from multiple sources, including at least one vendor that has qualified their offering for automotive use. Various height profiles are available for the SMARC Module connector. The lowest profile available has a Carrier Board PCB top-side to Module PCB bottom-side separation of 1.5mm, and a connector body height of 4.6mm.

Page 18: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 18 of 126 July 9, 2013 © SGeT e.V.

Figure 2 Module Connector Pins P1-74 and S1-75

MOD

MOD

MOD

MOD

Lotes_AAA-MXM-008-P03J1

SMT314/1/2x157/0.5

S75

S74

S73

S72

S71

S70

S69

S68

S67

S66

S65

S64

S63

S62

S61

S60

S59

S58

S57

S56

S55

S54

S53

S52

S51

S50

S49

S48

S47

S46

S45

S44

S43

S42

S41

S40

S39

S38

S37

S36

S35

S34

S33

S32

S31

S30

S29

S28

S27

S26

S25

S24

S23

S22

S21

S20

S19

S18

S17

S16

S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

P74

P73

P72

P71

P70

P69

P68

P67

P66

P65

P64

P63

P62

P61

P60

P59

P58

P57

P56

P55

P54

P53

P52

P51

P50

P49

P48

P47

P46

P45

P44

P43

P42

P41

P40

P39

P38

P37

P36

P35

P34

P33

P32

P31

P29

P30

P28

P26

P27

P25

P23

P24

P22

P21

P19

P20

P18

P17

P16

P15

P14

P13

P12

P11

P10

P9

P8

P7

P6

P5

P4

P3

P2

P1PCAM_PXL_CK1

GND1

CSI1_CK_P/PCAM_D0

CSI1_CK_N/PCAM_D1

PCAM_DE

PCAM_MCK

CSI1_D0_P/PCAM_D2

CSI1_D0_N/PCAM_D3

GND2

CSI1_D1_P/PCAM_D4

CSI1_D1_N/PCAM_D5

GND3

CSI1_D2_P/PCAM_D6

CSI1_D2_N/PCAM_D7

GND4

CSI1_D3_P/PCAM_D8

CSI1_D3_N/PCAM_D9

GND5

GBE_MDI3_P

GBE_MDI3_N

GBE_LINK100#

GBE_LINK1000#

GBE_MDI2_P

GBE_MDI2_N

GBE_LINK_ACT#

GBE_MDI1_P

GBE_MDI1_N

GBE_CTREF

GBE_MDI0_P

GBE_MDI0_N

SPI0_CS1#

GND6

SDIO_WP

SDIO_CMD

SDIO_CD#

SDIO_CK

SDIO_PWR_EN

GND7

SDIO_D0

SDIO_D1

SDIO_D2

SDIO_D3

SPI0_CS0#

SPI0_CK

SPI0_DIN

SPI0_DO

GND8

SATA_TX_P

SATA_TX_N

GND9

SATA_RX_P

SATA_RX_N

GND10

SPI1_CS0#

SPI1_CS1#

SPI1_CK

SPI1_DIN

SPI1_DO

GND11

USB0_P

USB0_N

USB0_EN/USB0_OC#

USB0_VBUS_DET

USB0_OTG_ID

USB1_P

USB1_N

USB1_EN/USB1_OC#

GND12

USB2_P

USB2_N

USB2_EN/USB2_OC#

PCIE_C_PRSNT#

PCIE_B_PRSNT#

PCIE_A_PRSNT#

PCAM_VSYNC

PCAM_HSYNC

GND13

PCAM_PXL_CK0

I2C_CAM_CK

CAM_MCK

I2C_CAM_DAT

CSI0_CK_P/PCAM_D10

CSI0_CK_N/PCAM_D11

GND14

CSI0_D0_P/PCAM_D12

CSI0_D0_N/PCAM_D13

GND15

CSI0_D1_P/PCAM_D14

CSI0_D1_N/PCAM_D15

GND16

AFB0_OUT

AFB1_OUT

AFB2_OUT

AFB3_IN

AFB4_IN

AFB5_IN

AFB6_PTIO

AFB7_PTIO

GND17

SDMMC_D0

SDMMC_D1

SDMMC_D2

SDMMC_D3

SDMMC_D4

SDMMC_D5

SDMMC_D6

SDMMC_D7

GND18

SDMMC_CK

SDMMC_CMD

SDMMC_RST#

AUDIO_MCK

I2S0_LRCK

I2S0_SDOUT

I2S0_SDIN

I2S0_CK

I2S1_LRCK

I2S1_SDOUT

I2S1_SDIN

I2S1_CK

GND19

I2C_GP_CK

I2C_GP_DAT

I2S2_LRCK

I2S2_SDOUT

I2S2_SDIN

I2S2_CK

SATA_ACT#

AFB8_PTIO

AFB9_PTIO

PCAM_ON_CSI0#

PCAM_ON_CSI1#

SPDIF_OUT

SPDIF_IN

GND20

AFB_DIFF0_P

AFB_DIFF0_N

GND21

AFB_DIFF1_P

AFB_DIFF1_N

GND22

AFB_DIFF2_P

AFB_DIFF2_N

GND23

AFB_DIFF3_P

AFB_DIFF3_N

GND24

AFB_DIFF4_P

AFB_DIFF4_N

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

SDMMC_D7

SDMMC_D6

SDMMC_D5

SDMMC_D4

SDMMC_D3

SDMMC_D2

SDMMC_D1

SDMMC_D0

USB1_EN_OC#

PCIE_A_PRSNT#

PCIE_B_PRSNT#

PCAM_ON_CSI1#

PCAM_ON_CSI0#

AFB9_PTIO

AFB8_PTIO

AFB5_IN

AFB2_OUT

SPI1_CK

PCAM_DE

PCAM_D2/CSI1_D0_P

PCAM_D3/CSI1_D0_N

PCAM_D4/CSI1_D1_P

PCAM_D5/CSI1_D1_N

PCAM_D8/CSI1_D3_P

PCAM_D9/CSI1_D3_N

PCAM_D6/CSI1_D2_P

PCAM_D7/CSI1_D2_N

PCAM_PXL_CK1

GBE_MDI3_P

I2S2_CK

I2S2_SDIN

I2S2_SDOUT

I2S2_LRCK

PCAM_MCK

PCIE_C_PRSNT#

SPI0_CS1#

AFB_DIFF4_N

AFB_DIFF4_P

AFB_DIFF3_N

AFB_DIFF3_P

AFB_DIFF2_N

AFB_DIFF2_P

AFB_DIFF1_N

AFB_DIFF1_P

AFB_DIFF0_N

AFB_DIFF0_P

SPDIF_OUT

SPDIF_IN

SDMMC_CLK

SDMMC_CMD

CAM_MEM_CK

PCAM_PXL_CK0

PCAM_HSYNC

PCAM_VSYNC

CSI0_CK_P/PCAM_D10

CSI0_CK_N/PCAM_D11

CSI0_D1_N/PCAM_D15

CSI0_D0_P/PCAM_D12

CSI0_D0_N/PCAM_D13

CSI0_D1_P/PCAM_D14

USB0_VBUS_DET

AFB0_OUT

AFB1_OUT

AFB3_IN

AFB4_IN

AFB6_PTIO

AFB7_PTIO

PCAM_D1/CSI1_CK_N

PCAM_D0/CSI1_CK_P

USB0_DN

USB0_DP

USB2_DN

USB2_DP

SPI1_CS0#

SPI1_DO

SPI1_DIN

SPI0_DO

SPI0_DIN

SPI0_CK

SPI1_CS1#

I2S1_CK

I2S0_CK

I2S0_LRCK

I2S0_SDOUT

I2S1_SDIN

I2S0_SDIN

I2S1_SDOUT

I2S1_LRCK

SATA_TX_P

SATA_RX_P

SATA_RX_N

SATA_TX_N

AUDIO_MCLK

USB1_DN

USB1_DP

GBE_MDI0_P

GBE_MDI0_N

GBE_MDI1_N

GBE_MDI1_P

GBE_MDI2_N

GBE_MDI2_P

GBE_MDI3_N

USB0_EN_OC#

USB0_OTG_ID

SATA_ACT#

SDIO_CD#

SDIO_WP

SDIO_D[1]

SDIO_D[0]

SDIO_D[3]

SDIO_D[2]

SDIO_CMD

SDIO_CLK

GBE_CTREF

SDIO_PWR_EN SDMMC_RST#

SPI0_CS0#

GBE_LINK_ACT#

USB2_EN_OC

GBE_LINK100#

GBE_LINK1000#

SDIO_D[0:3]

SDMMC_D[7:0]

314 Pin, 0.5mm Pitch, R/A, SMT

SMARC Module Connector

Page 19: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 19 of 126 July 9, 2013 © SGeT e.V.

Figure 3 Module Connector Pins P75-156 and S76-158

TP3

MOD

MOD

MOD

MOD

MOD

TP2

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

Lotes_AAA-MXM-008-P03J1

SMT314/1/2x157/0.5

S158

S157

S156

S155

S154

S153

S152

S151

S150

S149

S148

S147

S146

S145

S144

S143

S142

S141

S140

S139

S138

S137

S136

S135

S134

S133

S132

S131

S130

S129

S128

S127

S126

S125

S124

S123

S122

S121

S120

S119

S118

S117

S116

S115

S114

S113

S112

S111

S110

S109

S108

S107

S106

S105

S104

S103

S102

S101

S100

S99

S98

S97

S96

S95

S94

S93

S92

S91

S90

S89

S88

S87

S86

S85

S84

S83

S82

S81

S80

S79

S78

S77

S76

P156

P155

P154

P153

P152

P151

P150

P149

P148

P147

P146

P145

P144

P143

P142

P141

P140

P139

P138

P137

P136

P135

P134

P133

P132

P131

P130

P129

P128

P127

P126

P125

P124

P123

P122

P121

P120

P119

P118

P117

P116

P115

P114

P113

P112

P111

P110

P109

P108

P107

P106

P105

P104

P103

P102

P101

P100

P99

P98

P97

P96

P95

P94

P93

P92

P91

P90

P89

P88

P87

P86

P85

P84

P83

P82

P81

P80

P79

P78

P77

P76

P75PCIE_A_RST#

PCIE_C_CKREQ#

PCIE_B_CKREQ#

PCIE_A_CKREQ#

GND25

PCIE_C_REFCK_P

PCIE_C_REFCK_N

GND26

PCIE_A_REFCK_P

PCIE_A_REFCK_N

GND27

PCIE_A_RX_P

PCIE_A_RX_N

GND28

PCIE_A_TX_P

PCIE_A_TX_N

GND29

HDMI_D2_P

HDMI_D2_N

GND30

HDMI_D1_P

HDMI_D1_N

GND31

HDMI_D0_P

HDMI_D0_N

GND32

HDMI_CK_P

HDMI_CK_N

GND33

HDMI_HPD

HDMI_CTRL_CK

HDMI_CTRL_DAT

HDMI_CEC

GPIO0/CAM0_PWR#

GPIO1/CAM1_PWR#

GPIO2/CAM0_RST#

GPIO3/CAM1_RST#

GPIO4/HDA_RST#

GPIO5/PWM_OUT

GPIO6/TACHIN

GPIO7/PCAM_FLD

GPIO8/CAN0_ERR#

GPIO9/CAN1_ERR#

GPIO10

GPIO11

GND34

I2C_PM_CK

I2C_PM_DAT

BOOT_SEL0#

BOOT_SEL1#

BOOT_SEL2#

RESET_OUT#

RESET_IN#

POWER_BTN#

SER0_TX

SER0_RX

SER0_RTS#

SER0_CTS#

GND35

SER1_TX

SER1_RX

SER2_TX

SER2_RX

SER2_RTS#

SER2_CTS#

SER3_TX

SER3_RX

GND36

CAN0_TX

CAN0_RX

CAN1_TX

CAN1_RX

VDD_IN1

VDD_IN2

VDD_IN3

VDD_IN4

VDD_IN5

VDD_IN6

VDD_IN7

VDD_IN8

VDD_IN9

VDD_IN10

PCIE_B_RST#

PCIE_C_RST#

PCIE_C_RX_P

PCIE_C_RX_N

GND37

PCIE_C_TX_P

PCIE_C_TX_N

GND38

PCIE_B_REFCK_P

PCIE_B_REFCK_N

GND39

PCIE_B_RX_P

PCIE_B_RX_N

GND40

PCIE_B_TX_P

PCIE_B_TX_N

GND41

LCD_D0

LCD_D1

LCD_D2

LCD_D3

LCD_D4

LCD_D5

LCD_D6

LCD_D7

GND42

LCD_D8

LCD_D9

LCD_D10

LCD_D11

LCD_D12

LCD_D13

LCD_D14

LCD_D15

GND43

LCD_D16

LCD_D17

LCD_D18

LCD_D19

LCD_D20

LCD_D21

LCD_D22

LCD_D23

GND44

LCD_DE

LCD_VS

LCD_HS

LCD_PCK

GND45

LVDS0_P

LVDS0_N

LCD_BKLT_EN

LVDS1_P

LVDS1_N

GND46

LVDS2_P

LVDS2_N

LCD_VDD_EN

LVDS_CK_P

LVDS_CK_N

GND47

LVDS3_P

LVDS3_N

I2C_LCD_CK

I2C_LCD_DAT

LCD_BKLT_PWM

LCD_DUAL_PCK

GND48

RSVD\EDP_HPD

WDT_TIME_OUT#

PCIE_WAKE#

VDD_RTC

LID#

SLEEP#

VIN_PWR_BAD#

CHARGING#

CHARGER_PRSNT#

CARRIER_STBY#

CARRIER_PWR_ON

FORCE_RECOV#

BATLOW#

TEST#

VDD_IO_SEL#

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

V_MOD_IN

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

V_3V0_RTC

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

R121

0402

0O

hm

21

I2C_LCD_DAT

I2C_LCD_CK

GPIO5/PWM_OUT

LCD_D[21]

LCD_D[20]

LCD_D[19]

LCD_D[18]

LCD_D[17]

LCD_D[16]

LCD_D[13]

LCD_D[12]

LCD_D[11]

LCD_D[10]

LCD_D[9]

LCD_D[8]

LCD_D[5]

LCD_D[4]

LCD_D[3]

LCD_D[2]

LCD_D[1]

LCD_D[0]

LCD_D[23]

LCD_D[22]

LCD_D[15]

LCD_D[14]

LCD_D[7]

LCD_D[6]

PCIE_C_CKREQ#

TEST#

LID#

RSVD/EDP_HPD#

GPIO11

GPIO10

GPIO7/PCAM_FLD

CARRIER_PWR_ON

CAN1_RX

CAN0_RX

CAN0_TX

CAN1_TX

CHARGER_PRSNT#

CHARGING#

I2C_PM_DAT

VIN_PWR_BAD#

SER3_RX

SER3_TX

SER2_RX

SER2_TX

SER1_RX

SER0_TX

SER0_RX

HDMI_CTRL_DAT

HDMI_CTRL_CK

I2C_PM_CK

SLEEP#

PCIE_C_RST#

PCIE_B_CKREQ#

CARRIER_STBY#

BATLOW#

LVDS_CK_P

PCIE_C_REFCK_N

PCIE_C_REFCK_P

LVDS3_N

LVDS3_P

LVDS_CK_N

LVDS2_N

LVDS2_P

LVDS1_N

LVDS1_P

LCD_BKLT_EN

LVDS0_N

LVDS0_P

LCD_DUAL_PCK

HDMI_CEC

WDT_TIME_OUT#

PCIE_C_RX_N

PCIE_C_RX_P

PCIE_C_TX_N

PCIE_C_TX_P

PCIE_A_RX_P

PCIE_A_RX_N

PCIE_A_TX_P

PCIE_A_TX_N

PCIE_A_REFCK_N

PCIE_A_REFCK_P

SER1_TX

LCD_DE

LCD_PCK

LCD_VS

LCD_HS

LCD_VDD_EN

LCD_BKLT_PWM

RESET_OUT#

PCIE_A_RST#

PCIE_A_CKREQ#

HDMI_HPD

HDMI_D2_P

HDMI_D2_N

HDMI_D1_P

HDMI_D1_N

HDMI_D0_N

HDMI_D0_P

HDMI_CK_N

HDMI_CK_P

RESET_IN#

FORCE_RECOV#

POWER_BTN#

BOOT_SEL0#

BOOT_SEL2#

BOOT_SEL1#

VDD_IO_SEL#

GPIO6/TACHIN

PCIE_B_TX_P

PCIE_B_TX_N

PCIE_B_RX_P

PCIE_B_RX_N

PCIE_B_REFCK_P

PCIE_B_REFCK_N

SER2_RTS#

SER2_CTS#

SER0_RTS#

SER0_CTS#

PCIE_B_RST#

PCIE_WAKE#

GPIO1/CAM1_PWR#

GPIO0/CAM0_PWR#

GPIO3/CAM1_RST#

GPIO2/CAM0_RST#

GPIO4/HDA_RST#

GPIO8/CAN0_ERR#

GPIO9/CAN1_ERR#

LCD_D[0:23]

SMARC Module Connector

314 Pin, 0.5mm Pitch, R/A, SMT

Page 20: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 20 of 126 July 9, 2013 © SGeT e.V.

2.2 Module Power

2.2.1 Input Voltage Range

Per the SMARC Module HW specification, the SMARC Modules may accept input power over the voltage range 3.0V to 5.25V. This range coincides with the range of a single-level lithium – ion cells and allows the use of common 5V or 3.3V fixed DC supplies.

2.2.2 Input Voltage Rise Time

There are currently no limits in the SMARC Module HW Specification on the Module power supply rise times. In general, it is not wise to expose the Module and Carrier electronics to extremely fast power supply rise times (as may be the case if a low impedance power source such as a battery pack or power brick is “hot-plugged”). Input power supply rise times faster than 50V / millisecond to the Module should be avoided. If a unit is to be “hot-plugged” to a low impedance power source, then the Carrier should implement measures to slow the power rise time as seen by the Module and Carrier circuits. The Carrier can do this by implementing a FET and hot-swap controller in the input power path. This is discussed in Section 10.5 Power Hot Swap Controller.

2.2.3 Module Maximum Input Power

The SMARC V1.0 specification document states that the allowable input voltage range is 3.0V to 5.25V. The rationale for this is that this range coincides with the voltage range of single level lithium-ion cells, and that it also allows the use of common 5V or 3.3V bench supplies. However, it is not clear in the V1.0 specification that Modules are required to work at the lower end (3.0V) of this range. The SMARC Module physical connector is a MXM3 connector (although the pinout is completely different). The MXM3 specification document requires that the MXM3 connector pins be able to carry 0.5A current minimum. SMARC Modules allocate 10 pins for input power (and 48 GND pins for signal and power return). Thus, per the MXM3 connector requirement, the 10 pins should be capable of handling 5A. This allows a maximum power input range of 15W (for 3.0V power in) to 26.5W (for 5.25V power in). For conservative design, let us operate the MXM3 connector pins at no more than 70% of their capacity. Then the following maximum power inputs are achieved:

10 pins * 0.5A * 70% * 3.0V = 10.5W (low end of Li-Ion battery) 10 pins * 0.5A * 70% * 4.75V = 16.6W (low end of 5V bench supply)

These numbers apply to the Module only, and not to the Carrier circuits. The 10.5W is adequate for low power Modules that are to be served by single level Lithium-Ion cells. The 16.6W should be adequate for higher power Modules (Including Intel Bay Trail designs) operating from a 5V supply.

2.2.4 Power Path

The power path for a basic, fixed input voltage arrangement SMARC Module and Carrier board system is shown in Figure 4 Basic Module and Carrier Power Path below. A number of features in the figure are optional and may be omitted (and bypassed) in a minimal implementation. The figure also shows Carrier Board power supply sections assuming a typical system powered by a power source in the 3.0V to 5.25V range.

Page 21: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 21 of 126 July 9, 2013 © SGeT e.V.

Figure 4 Basic Module and Carrier Power Path

SMARC

Module

Optional

Power

SupervisorVIN_PWR_BAD#

RESET_IN#

PWR_BTN#

VDD_IN

Open Drain - pulled

low if input power

is out of spec

CARRIER_PWR_ON

EN

IN OUT

IN OUT

EN

LCD_BKLT_EN

IN

EN

OUT

IN

IN

EN

EN

OUT

OUT

V_5V0

V_BKLT

V_3V3

V_1V8

V_1V5

USB Power

Switches

LCD Backlight

Voltage depends on

backlight type

Mini-PCIe

SATA MO-300

USB Hub

General Purpose 3.3V

Module I/O (for 3.3V I/O)

Module I/O (for 1.8V I/O)

Low voltage I2C and

I2S peripherals

Mini PCIe

SATA MO-300

Optional

Hot Swap

Controller + FET

Carrier Board Power Supplies – Enabled by Module CARRIER_PWR_ON signal

FET Switch (if 5V input)

Buck-Boost Converter (if 3.0 to 5.25V input)

Boost converter (if 3.3V input)

RESET_OUT#Active low reset

to Carrier Board

Boost Converter

Buck Converter (if 5V input)

Buck-Boost (if 3.0 to 5.25V)

FET Switch (if 3.3V input)

Optional

Common – Mode

Choke / Filter

Buck Converter

Buck Converter

Optional

LDO V_1V8_ALWAYS

For optional I2C_PM

Periphals that need to be

powered when

CARRIER_PWR_ON

Is inactive

V_IN

V_IN_RAW

I2C_PM

Optional I2C_PM

devices active when

CARRIER_PWR_ON

is low

Power

domain

Isolation

I2C_PM

devices active when

CARRIER_PWR_ON

is high

Optional

Power

Switch

V_1V8

V_3V3

V_1V8_ALWAYS

Power Rail

V_1V8

Power Rail

V_IO

VDD_IO_SEL

SEL

Low: 1.8V IO

High: 3.3V IO

Module IO Module – Carrier IO

If Carrier supports 1.8V I/O only, then

Carrier should tie this line low and

omit the power switch

Page 22: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 22 of 126 July 9, 2013 © SGeT e.V.

2.3 Module I/O Voltage

The SMARC Module HW Specification encourages the use of 1.8V Module I/O, although it allows for 1.8V or 3.3V options. A Module pin, VDD_IO_SEL# (S158), signals both the Module and the Carrier I/O voltage expectation. I/O at 1.8V is preferred in general for low power interfaces. Recall that the power expended to charge and discharge a capacitor (i.e. the I/O pin and trace capacitance) is proportional to the square of the I/O voltage: ½ C V

2f where C is the node capacitance, V the I/O voltage, and f the frequency of the I/O

charging / discharging. Many contemporary peripherals of interest are available with I/O interfaces that support 1.8V and 3.3V; some are available at 1.8V only, and others at 3.3V only. Specific examples are given in various document sections below.

2.3.1 I/O at 1.8V (Default)

The Carrier should tie VDD_IO_SEL# to GND if the Module – Carrier I/O interfaces are to run at 1.8V, as most SMARC modules do. A Module that supports 1.8V I/O only has the VDD_IO_SEL# pin tied hard to GND on the Module. A Module that supports 1.8V and 3.3V I/O has a 100K pull-up on VDD_IO_SEL# on the Module to VDD_IN. The Module senses the VDD_IO_SEL# pin to determine whether the Carrier expects 1.8V or 3.3V I/O. If a low value is sensed, the Module uses 1.8V I/O.

2.3.2 I/O at 3.3V

A Module that supports 3.3V I/O has a 100K pull-up on the Module on VDD_IO_SEL# to VDD_IN. The Module senses the VDD_IO_SEL# pin to determine whether the Carrier expects 1.8V or 3.3V I/O. If a low value is sensed by the Module on VDD_IO_SEL# (because the Carrier has strapped it to GND), the Module does not power up it’s 3.3V I/O interface and does not assert CARRIER_PWR_ON. If a high value is sensed by the Module on VDD_IO_SEL#, the Module powers up and uses 3.3V I/O. A Carrier that uses 3.3V I/O should float the Module VDD_IO_SEL# pin.

2.3.3 I/O at 1.8V or 3.3V

Carrier boards that operate at either 1.8V or 3.3V I/O are possible. There is a bit of overhead (i.e. extra parts on the Carrier are needed) to support this.

Page 23: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 23 of 126 July 9, 2013 © SGeT e.V.

2.4 VIN_PWR_BAD#

This optional signal may be used to tell the Module that the input power to the Module is not ready. An open-drain driver should be used.

2.5 CARRIER_PWR_ON

The CARRIER_PWR_ON signal is driven by the Module at the VDD_IO level. It is a signal to Carrier that the Carrier board specific power supplies may be enabled. This is illustrated in Figure 4 Basic Module and Carrier Power Path above.

Page 24: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 24 of 126 July 9, 2013 © SGeT e.V.

2.6 Reset In to Module

The SMARC RESET_IN# signal may be used to force a SMARC system reset. It is an input to the Module. The signal is pulled up on the Module. If used, by the Carrier board, then an open drain device or switch to GND should be used. A switch example is shown in the following figure. The signal is ESD protected in this example, as the switch (and the switch interaction with humans) introduces an ESD hazard.

Figure 5 Reset Switch

2.7 Power Button

SMARC defines a pin to allow the implementation of a Carrier based power button. However - caution - the SMARC HW specification does not define the power up behavior of a Module. The following possibilities exist after a cold power on:

a) Module boots

b) Module waits for a Power Button press to boot

c) The Module is configurable – either behavior a) or behavior b) may be configured

Users are advised to check with your Module vendor on this topic. A Power Button switch example is shown in the figure below. If your Module waits for a Power Button press on power up and you want it to always boot on power up, you have to arrange for a “power button press” on power up, using an open drain device to interface to the SMARC Module.

MOD

TH

Panasonic EVQ-PBC04MSW1

G

A1

A2

B1

GND

B2

D212

3

1

50V100nF

21C285

V_MOD_IN

RESET_IN#

Page 25: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 25 of 126 July 9, 2013 © SGeT e.V.

Figure 6 Power Button Switch

2.8 Force Recovery

Some Modules support a “force recovery” function in which the primary boot media can be re-initialized over a designated I/O interface, such as a USB client interface, asynchronous serial port, or Ethernet port. This is Module specific; refer to your Module documentation for further details.

Figure 7 Force Recovery Switch

MOD

TH

G

SW2Panasonic EVQ-PBC04M

A1

A2

B1

GND

B2

D202

3

1

C284

50V100nF

21

V_MOD_IN

POWER_BTN#

MOD

D222

3

1

C283100nF50V

21

SW3Panasonic EVQ-PBC04M

TH

G

A1

A2

B1

GND

B2

V_MOD_IN

FORCE_RECOV#

Page 26: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 26 of 126 July 9, 2013 © SGeT e.V.

2.9 Power Up Sequence

The basic power up sequence for SMARC Modules and Carriers is shown in the following two figures. There is a Module design and / or configuration dependence with regard to the power button behavior. Depending on design and / or configuration, the Module may always boot without waiting for a power button press, or it may wait for a power button press. These cases are shown in the figures. It is recommended to arrange that the main Carrier power supplies not come up until the Module asserts the CARRIER_PWR_ON signal. When this is high, you know that the Module power supplies are all up. If the Carrier power is up before the Module supplies are up, there is a risk that the Carrier circuits will back-feed power to the Module I/O pins, which might interfere with a Module boot.

Figure 8 SMARC Carrier Power Up Sequence - No Power Button Case

POWER IN (3-5.25V)

V_MOD_IN (3-5.25V)

POWER_BTN#

CARRIER_PWR_ON

RESET_OUT#

Carrier Power Rails

V_5V0

V_3V3

V_1V8

V_1V5

Page 27: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 27 of 126 July 9, 2013 © SGeT e.V.

The case of a Module that is designed or configured to wait for a power button press before it comes up is diagramed below. When power is applied to the Module, in this case, only a small portion of the Module is using that power – typically, the Module Power Management section – and that circuitry waits for a power button press. When it sees one, the Module proceeds with the boot. When the main Module power rails are up, the Module asserts CARRIER_PWR_ON. The Carrier should use this signal to enable the various Carrier power rails. However, Carrier circuits that are involved in power management (battery charge level, reset monitors, etc.) may be powered ahead of CARRIER_PWR_ON, coincident with the Module power.

Figure 9 SMARC Carrier Power Up Sequence - With Power Button Case

POWER IN (3-5.25V)

V_MOD_IN (3-5.25V)

POWER_BTN#

CARRIER_PWR_ON

RESET_OUT#

Carrier Power Rails

V_5V0

V_3V3

V_1V8

V_1V5

Page 28: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 28 of 126 July 9, 2013 © SGeT e.V.

2.10 Boot Selection

2.10.1 Boot Definitions

Most SOCs used on SMARC Modules have the following attributes:

1) An internal ROM exists. The internal ROM code is executed after the SOC comes out of reset. This ROM code is provided by the silicon vendor and is generally not available or visible to users.

2) A set of SOC strap pins is used to select what SOC physical device interface (SD Card, SPI, eMMC, etc.) will be used for the 2

nd – stage boot process (also known as BCT or Boot

Configuration Table boot). There is no commonality between various SOCs as to how the strap pins are defined.

3) The SOC pin configuration is very flexible – most SOC pins can be used for several functions, and the SMARC Module designer must choose a pin configuration that works for the design at hand. The SOC pin configuration is set by a Boot Configuration Table that is read out from the external boot media (SD Card, SPI, eMMC, etc).

There are several stages in the boot process:

1) Internal SOC ROM execution

2) 2nd

stage boot, from non volatile memory external to the SOC: BCT is loaded and various other system parameters are set

3) Operating System load

The Operating System load may occur from the same memory as the 2nd

stage BCT boot, or the 2nd

stage code may pass the Operating System load off to another device, such as a USB drive or SATA drive.

Page 29: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 29 of 126 July 9, 2013 © SGeT e.V.

2.10.2 SMARC BOOT_SEL Pins

The SMARC HW Specification defines 3 SMARC pins, designated BOOT_SEL0# through BOOT_SEL2#, that may be used to tell the Module what physical device to do a BCT boot from. The SMARC BOOT_SELx# pins serve to abstract the SOC – dependent strap definitions into a common SMARC definition. The table below is reproduced from the SMARC HW Specification document.

Table 2 Boot Select Pins

Carrier Connection BOOT_SEL2# BOOT_SEL1# BOOT_SEL0#

Boot Source

0 GND GND GND Carrier SATA

1 GND GND Float Carrier SD Card

2 GND Float GND Carrier eMMC Flash

3 GND Float Float Carrier SPI

4 Float GND GND Module device (NAND, NOR) – vendor specific

5 Float GND Float Remote boot (GBE, serial) – vendor specific

6 Float Float GND Module eMMC Flash

7 Float Float Float Module SPI

The Module BOOT_SELx# pins may be set by jumpers on the Carrier Board, as shown in the figure below. The diodes and capacitors are for ESD protection, as the jumpers may experience ESD events. Alternatively, the BOOT_SELx# pins can be set by low value option resistors to GND on the Carrier. The resistors are either installed (for a GND connection) or not installed, per the table above.

Figure 10 Boot Selection Jumpers

THT2/1x2/2.54

FCI 77311-118-02LFJ45

2

11

2

THT2/1x2/2.54

FCI 77311-118-02LFJ46

2

11

2

D232

3

1 D24

2

3

1

C286100nF

50V

21

C287

50V100nF

21C288

50V100nF

21

D25

2

3

1

R288

0402

1KOhm

21

1KOhmR289

0402

21

R290

0402

1KOhm

21

V_MOD_INV_MOD_IN

V_MOD_IN

MOD MODMOD

THT2/1x2/2.54

FCI 77311-118-02LFJ44

2

11

2

BOOT_SEL0#BOOT_SEL2# BOOT_SEL1#

Page 30: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 30 of 126 July 9, 2013 © SGeT e.V.

2.11 RTC Backup Power

The Module RTC (Real Time Clock) circuit requires a backup power source if the Module RTC circuit is expected to keep time in the absence of the primary power source (i.e. the power to Module VDD_IN pins, P147 through P156). The RTC backup power, if used, is applied to the Module VDD_RTC pin, pin S147. The RTC backup power may be provided by a battery or by a large value capacitor, known as a “Supercap”. If a battery is used, the battery is typically a small lithium coin cell with a capacity of a few hundred mAH. Lithium coin cells offer a high energy density, low self-discharge rate, and are not rechargeable. For safety reasons, they must be protected against charging on the Carrier board by a redundant set of circuit elements – typically either two diodes in series or a diode and a resistor. The resistor, if used, must be large enough to limit the battery charging current to be equal to or lower than the amount specified as allowable by the battery vendor. The safety aspects of lithium battery use is governed by a UL document (UL 1642 Lithium Batteries, www.ul.com). The Supercap solution differs from the lithium battery solution in that it needs to be charged by the Module (when the Module has its primary power source); hence a blocking diode should not be used with the Supercap. The time period over which the RTC backup power is effective depends on the Module RTC backup current draw, the exact voltage range over which the Module RTC circuit is functional, on the capacity characteristics of the battery or Supercap, on the drops incurred across the Carrier board circuit protection elements, and on the operating temperature. In general terms, a suitable lithium battery solution can provide RTC backup current on a scale of years; the Supercap solution on a scale of days to weeks.

Figure 11 RTC Backup: Coin Battery / Super Cap

0402

1KOhm

R269

21

0402 R270

1KOhm

21

Renata SMTU2032-LFBT1

2PSMT

21

+

-

V_3V0_RTC

3.3V200mF

Elna DSK-3R3H204T614-H2L

C2401

2

V_3V0_RTC

Vishay BAT54W-V

D12

CA

Coin Battery Holder, R/A, SMT

Super Cap

Page 31: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 31 of 126 July 9, 2013 © SGeT e.V.

2.12 Reserved / Test Interfaces

The Module TEST# pin (pin S157) should normally be left NC (not connected). If pulled low, then Module specific test function(s) may be enabled.

Page 32: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 32 of 126 July 9, 2013 © SGeT e.V.

3 DISPLAY INTERFACES

3.1 Module LVDS

3.1.1 NEC 1280 x 768 Single Channel LVDS Example

The Module LVDS interface may be used with single channel LVDS displays. SMARC Modules typically support LVDS 18 bit single channel operation (3 data pairs plus one clock pair). They may also support LVDS 24 bit single channel operation (4 data pairs plus one clock pair). Recall that there are two 24 bit color mappings in common use: most significant color bits on 4

th data pair (sometimes referred to as the

standard 24 bit mapping), and least significant color bits on the 4th LVDS data pair (referred to as 24 bit /

18 bit compatible or as 24 bit / 6 bit pack or similar). The standard 24 bit color mapping is more common but is incompatible with the 18 bit packing. The example below shows an implementation used with an NEC 1280 x 768 single channel LVDS panel (NL 12876AC18-03). This panel uses a discrete wire 30 pin Hirose DF19 series connector. The panel backlight electronics accepts a 12V supply, and panel brightness is controlled by a 3.3V PWM signal. There is no EDID EEPROM on this particular NEC display. This display happens to support 18 bit, 24 bit / 18 bit compatible and standard 24 bit LVDS packings. The panel also allows the image to be reversed. This can be useful if you find the panel connector orientations to be inconvenient – you can rotate the display 180 degrees, alter the scan direction strap, and have the image appear in the correct orientation. These options are set by pull-up and pull-down choices on connector pins 11,26 and 27 in the image below. Refer to the display data sheet for further information. The display LVDS data and clock differential pairs may be connected directly to the SMARC Module. The backlight PWM and panel enable need level translation and / or buffering as shown in the figure.

Figure 12 Module LVDS: NEC Single Channel Display

Power for the display’s logic is gated by the Module LCD_VDD_EN signal, as shown above.

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

V_3V3

21

R52

DNI0402

1KOhm

10V

C1381uF

2

1 C14122uF10V

2

1

C173

16V1uF

2

1

SMT

J2

Hirose DF19G-30P-1H

30/1x30/1.0

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

M1

M2

4.7KOhmR19

0402

21

V_3V3

1KOhmDNI0

402 R53

21

TI TPS22924C

U3

BGA6

B1

A1

C1

C2

B2

A2VIN_A2

VIN_B2

ON

GND

VOUT_A1

VOUT_B1

V_3V3

V_12V0

R511KOhm

0402

21

DNI0402 R18

4.7KOhm

21

0402 R20

4.7KOhm

21

MOD

0402

R1690Ohm

21

25V100nFC116 2

1

C117100nF25V

2

1

MOD

V_IO

U9TI SN74AVC2T244DQ

MicroQFN8

1

2 7

6

54

8

3 A2

VCCB

OE# GND

B2

B1A1

VCCA

V_3V3

10KOhm

DNI

R240

0402

21

V_IO

MOD

V_3V3

C183470nF6.3V2

1

1uF16V

C174

2

1

0402

100KOhmR257

21

MOD

LVDS_CK_P

LVDS3_N

LVDS3_P

LVDS_CK_N

LVDS2_N

LVDS2_P

LVDS1_N

LVDS1_P

LCD_BKLT_EN

LVDS0_N

LVDS0_P

LCD_VDD_EN

SIX_BIT_PACK#

SC

MODE

LVDS_BKLT_PWM_3V3LVDS_BKLT_PWM_3V3

BUFFER_OE#

LVDS_BKLT_EN_3V3

LVDS_BKLT_EN_3V3

LCD_BKLT_PWM

V_3V3_SWITCHED_A

V_3V3_SWITCHED_A

Vil = 0.6V

Vih = 1.2 V

NEC Panel Connector

30 Pin, 1mm Pitch, R/A, SMT

Page 33: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 33 of 126 July 9, 2013 © SGeT e.V.

The NEC LVDS display in the example above accepts a 12V feed to power the display’s LED backlight. The SMARC Module provides two backlight control signals, LCD_BKLT_EN and LCD_BKLT_PWM (enable and brightness). Some displays require a higher voltage feed to their LED backlight electronics. An example of this is given in Section 10.6 High Voltage LED Supply.

Page 34: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 34 of 126 July 9, 2013 © SGeT e.V.

3.1.2 Display Parameters and EDID

Flat panel display parameters (horizontal resolution, vertical resolution, pixel clock rate, blanking periods, etc.) may be hardcoded into a boot-loader or they may be read by boot-loader code from an industry standard data structure known as EDID (Extended Display Identification Data). EDID data is stored in an EEPROM accessed via I2C. The EDID EEPROM may reside on the display assembly or elsewhere in the path between the SOC and the display – on the Carrier or on a display adapter assembly. If the EDID EEPROM resides on the display, then the cabled interface to the display must include the SMARC Module I2C_LCD interface. The interface should be level translated and possibly buffered. The I2C voltage levels on the display are most likely to be at 3.3V levels. A set of back-to-back FETs may be used for I2C level translation, as shown in the figure immediately below. Alternatively, a device such as the Fairchild FXMA2102 I2C buffer / level translator may be used. There is a circuit example using the FXMA2102 later in this document. In the display interface example above, with the 30 pin Hirose DF19 series connector, pins 9 and 10 could be used for the buffered I2C_LCD clock and data, respectively. The figure below shows an EDID EEPROM implementation that may be used on a Carrier. It might be advantageous to use a socket for the EEPROM to allow display parameters to be swapped out. Alternatively, system software could update the EEPROM if the EEPROM WP (Write Protect) pin is set to enable writes. Or, the system designer could implement an EEPROM programming header for update purposes. Caution: if there is an EDID EEPROM on the Carrier and on the display, there will be an I2C address conflict unless one of the two is disabled or set to an alternate address. VESA EDID EEPROMs are expected at 7 bit I2C address 0x50. There are many EDID editors available, some for free. It can be very useful to have access to one if you are trying to adapt a new panel, and if your SMARC Module software knows what to do with EDID data. Alternatively, your SMARC Module and / or Carrier board vendor may well be able to help with display adaptations.

Figure 13 Carrier EDID EEPROM

V_3V3

V_IO

MOD

MOD

V_IO

R241

0402

10K

Ohm

21

R242

0402

10K

Ohm

21

DiodesInc BSS138DW-7-F

Q4

35

4

DN

I10K

Ohm

R243

0402

21

0402

DN

I10K

Ohm

R244

21

R2

45

DN

I10K

Ohm

0402

21

0402

R2

59

2.4

9K

Ohm

21

2.4

9K

Ohm

0402

R2

60

21

0402

2.4

9K

Ohm

R2

61

21

V_3V3

C118

100nF25V2

1

V_3V3

R246

DN

I10K

Ohm

0402

21

V_3V3

R247

0402

10K

Ohm

21

Atmel AT24HC02

SOIC8

U13

8

7

6

5

43

2

1A0

A1

A2 GND

SDA

SCL

WP

VCC

DiodesInc BSS138DW-7-F

Q3

62

1

Q3

35

4

Q4

62

1I2C_LCD_DAT

I2C_LCD_DAT

I2C_LCD_CK

I2C_EDID_CK

I2C_ADDR_A0

I2C_ADDR_A1

I2C_ADDR_A2

I2C_WP

I2C Addr :0x50

(7 bit Address)

Page 35: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 35 of 126 July 9, 2013 © SGeT e.V.

3.2 HDMI

Note: a license may be needed to market HDMI capable products. Check with the HDMI organization (www.hdmi.org) and with your SMARC Module vendor. The SMARC HDMI data pairs may be routed directly from the SMARC Module pins to a suitable Carrier HDMI connector. Since HDMI is a hot-plug capable interface, it is important for the Carrier to implement ESD protection on all of the HDMI lines. The ESD protection on the data lines must be low capacitance so as not to degrade high speed signaling. The data lines must route through the ESD protection device pins in a no-stub fashion. The ESD protection should be located close to the HDMI connector. The SMARC pins HDMI_CTRL_CK, HDMI_CTRL_DAT and HDMI_CEC require level translation from V_IO to the 5V levels that HDMI uses on those pins. These lines also require pull-up resistors to V_IO (the pull-ups are not included on the SMARC Module, because integrated HDMI protection devices such as the Texas Instruments TPD12S016 and others from companies such as NXP include the pull-ups in their parts). And, finally, 5V power switching / current limiting to the HDMI connector is required on the Carrier. The ESD protection, level translation and power switching / limiting are all dealt with in integrated devices such as the TI TPD12S016. A circuit diagram is shown in the following figure. The TPD12S016 must be placed close to the HDMI connector, and the HDMI data traces routed in daisy chain fashion (and as differential pairs) from the SMARC Module pins, to and through the TPD12S016 pins, and on to the HDMI connector pins. The TPD12S016 pin-out is specifically designed to facilitate this.

Figure 14 HDMI Implementation

MOD

MOD

MOD

MOD

0402R96

0Ohm

2 1

MOD

MOD

MOD

MOD

TSSOP24

U22

TI TPD12S016

19

14

6

3

2

1

4

5

12

11

24

13

9

8

7

16

15

17

18

20

21

22

23

10HPD_B-

D2+

D2-

D1+

D1-

D0+

D0-

CLK-

CLK+

CEC_B

SCL_B

SDA_B

5V_OUT

VCCA

VCC5V

CT_HPD

LS_OE

HPD_A-

CEC_A

SCL_A

SDA_A

GND_6

GND_14

GND_19

MOD

4.7KOhmR3

DNI 0402

2

1

MOD

C31

25V100nF

2

1

V_5V0 V_IO

C1551uF16V

2

1

MOD

R4

0402

4.7KOhm

2

1

19/1/0.5

SMT

FCI 10029449-001TLF

J25

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1TMDS_DATA2_P

TMDS_DATA2_SHLD

TMDS_DATA2_M

TMDS_DATA1_P

TMDS_DATA1_SHLD

TMDS_DATA1_M

TMDS_DATA0_P

TMDS_DATA0_SHLD

TMDS_DATA0_M

TMDS_CLK_P

TMDS_CLK_SHLD

TMDS_CLK_M

CEC

RSVD

SCL

SDA

DDC/CEC_GND

5V

HPD

MH

1

MH

2

MH

3

MH

4

25V100nFC32

2

1

10uF16V

C216

2

1

MOD

HDMI_CTRL_DAT

HDMI_CTRL_CK

HDMI_CEC

HDMI_HPD_CONN

HDMI_DDC_SDA_5V0

HDMI_CEC_5V0

HDMI_DDC_SCL_5V0

HDMI_HPD

CT_HPD

LS_OE

V_5V0_HDMI

HDMI_D2_P

HDMI_D2_N

HDMI_D1_P

HDMI_D1_N

HDMI_D0_N

HDMI_D0_P

HDMI_CK_N

HDMI_CK_P

HDMI_D2_P

HDMI_D2_N

HDMI_D1_P

HDMI_D1_N

HDMI_D0_P

Layout Note :

without any stubs

The HDMI trace pairs are to be routed

from the SMARC connector, through the

TPD12S016 pads and to the HDMI connector,

HDMI_D0_N

HDMI_CK_P

HDMI_CK_N

HDMI, R/A, SMT

Page 36: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 36 of 126 July 9, 2013 © SGeT e.V.

3.3 Carrier LVDS – Dual Channel 24 Bit VESA Standard

The Module parallel LCD bus may be used to feed a Carrier Board LVDS transmitter. Single and dual channel implementations are possible. Since the SMARC Module already provides a single channel LVDS output, it seems that the most common SMARC Carrier board LVDS transmitter application would be for dual channel displays. Displays are often implemented as dual channel displays for resolutions at and above 1280 x 1024. A dual channel implementation allows the cable interface to run at half the speed of a single channel implementation, at a given resolution. The figure below shows a very cost effective dual channel LVDS transmitter circuit, based on the Texas Instruments DS90C187 part. Note that the DS90C187 is a 1.8V I/O part; it does not accept 3.3V I/O. Recall that there are two different color packings used for 24 bit LVDS implementations. The implementation shown is for the “standard”, or more common packing, in which the most significant color bits are packed into the 4

th LVDS data stream. It is not compatible with 18 bit color packs. It is possible to

use the 18 bit compatible 24 bit color packing (least significant color bits packed into the 4th LVDS data

stream) by re-arranging the order of the parallel LCD data bits as they come into the DS90C187. Refer to the TI DS90C187 data sheet for details. If a dual channel capable LVDS transmitter with 3.3V (and 1.8V) I/O is required, the Thine Semiconductor THC63LVD827 may be used. It costs quite a bit more than the TI part though. The discussion in Section 3.1.2 Display Parameters and EDID above about display parameters and EDID data structures applies here as well.

Page 37: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 37 of 126 July 9, 2013 © SGeT e.V.

Figure 15 Dual Channel 24 Bit LVDS: VESA Standard

The DS90C187 part above allows numerous configuration choices, set by the strap pins shown at the lower left of the IC. These choices include single channel LVDS, dual channel LVDS, 18 bit color packing, 24 bit standard color packing, and 24 bit / 18 bit compatible color packing. There are also input clock options – see the TI data sheet for details. The straps in this example are set for dual channel LVDS, 24 bit standard color pack, 1x input clock.

TI DS90C187LF

U15

A1

QFN92

DAP

A32

A31

A33

B26

B25

B24

B23

A28

A34

A35

A36

A37

A38

A30

B27

B28

B29

B30

B31

B21

A51

B39

B38

B37

B36

A50

A49

A48

A10

A47

A46

A45

A44

A43

A42

A41

A40

A39

A27

A26

A25

B33

B9

B8

B7

B6

B5

B4

B3

B2

B1

A24

B35

B34

B40

B32

A22

A21

B22

B20

A19

A16

A15

A14 A13

A12

A11

A9

A8

A23

B19

B18

A20

B17

A18

A17

B16

B15

B14

B13

B12

B11

A29

B10

A52

A6

A7

A5

A4

A3

A2INB_09

INB_10

INB_11

INB_12

INB_13

INB_14

IN_CLK

GND3

HS

18B

VS

DE

INA_21

INA_22

INA_23

INA_24

INB_21

INB_22

INA_25

INB_24

INA_26

INA_27

INB_27

INB_15

INB_16

RSVD1

RSVD2

VDDPVDD1

GND1

RSVD3

INB_23

MODE0

VDDTX

INB_25

INB_26

INA_00

INA_08

INA_02

INA_03

RFB

INA_09

INA_10

INA_11

INA_12

INA_13

INA_14

INA_15

INA_16

INA_17

INA_01

MODE1

VDD2

GND2

NC

PDB

VODSEL

INB_00

INB_01

INB_02

INB_03

INB_04

INB_05

INB_17

INB_06

INB_07

INB_08

INA_04

INA_05

INA_06

INA_07

VDD3

OB_3+

OA_0+

OA_1+

OA_2+

OA_C+

OA_3+

OB_C-

OA_0-

OA_1-

OA_2-

OA_C-

OA_3-

OB_3-

OB_C+

OB_2+

OB_1+

OB_0+

OB_0-

OB_2-

OB_1-

DAP

CM

OS

LV

DS

MOD

MOD

MOD

MOD

100nFC121

25V2

1

1

25V

C122100nF

2

100nFC119

25V2

1 1C120100nF

25V2

V_1V8

1

FB6

90mOhm2

V_1V8

1uF040210V

C139

2

1 C186

040216V

100nF

2

122uFC142

080510V2

1

10V

C140

04021uF

2

1

40/1/1x40/0.80

J3

RA

S4

S3

S2

S1

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

11

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

S1

S2

S3

S4

JAE_FI-NXB40SL-HF10

100nFC123

25V 2

1

R21

DNI0402

4.7KOhm

21

1KOhmR54

0402

21

V_1V8 V_1V8

V_3V3

16V

100nF0402

C185

2

1

R22

0402

4.7KOhm

21

DNI

R551KOhm

0402

21

0402 R56

1KOhmDNI

21

1KOhm

0402 R57

21

V_1V8

0402 R23

DNI4.7KOhm

21

4.7KOhm

0402 R24

21

V_1V8

R581KOhmDNI0

402

21

R59

DNI0402

1KOhm

21

V_1V8

0402 R25

4.7KOhm

21

0402

4.7KOhmR26

21

V_1V8

MOD

MOD

V_3V3

470nF6.3V

C184

2

1

C175

16V1uF

2

1

100KOhm

0402R258

21

BGA6

U4

TI TPS22924C

B1

A1

C1

C2

B2

A2VIN_A2

VIN_B2

ON

GND

VOUT_A1

VOUT_B1

V_IO

V_IO DiodesInc BSS138DW-7-F

Q6

62

1

10K

Ohm

R248

0402

21

0402

R249

10K

Ohm

21

DiodesInc BSS138DW-7-F

Q5

62

1

Q6

35

4

Q5

35

4MOD

MOD

V_3V3

I2C_LCD_DAT

I2C_LCD_CK

LCD_D[21]

LCD_D[20]

LCD_D[19]

LCD_D[18]

LCD_D[17]

LCD_D[16]

LCD_D[13]

LCD_D[12]

LCD_D[11]

LCD_D[10]

LCD_D[9]

LCD_D[8]

LCD_D[5]

LCD_D[4]

LCD_D[3]

LCD_D[2]

LCD_D[1]

LCD_D[0]

LCD_D[23]

LCD_D[22]

LCD_D[15]

LCD_D[14]

LCD_D[7]

LCD_D[6]

LCD_DE

LCD_PCK

LCD_VS

LCD_HS

LCD_VDD_EN

LVDS_ODD_3+

LVDS_EVEN_CK+

LVDS_EVEN_2+

LVDS_EVEN_1+

LVDS_EVEN_0+

LVDS_EVEN_3+

LVDS_ODD_CK+

LVDS_ODD_2+

LVDS_ODD_1+

LVDS_ODD_0+

LVDS_ODD_0-

LVDS_ODD_1-

LVDS_ODD_2-

LVDS_ODD_CK-

LVDS_ODD_3-

LVDS_EVEN_0-

LVDS_EVEN_1-

LVDS_EVEN_CK-

LVDS_EVEN_3-

LVDS_I2C_DAT

LVDS_I2C_DAT

LVDS_I2C_CK

LVDS_I2C_CK

V_3V3_SWITCHED_B

V_3V3_SWITCHED_B

LVDS_EVEN_2-

LCD_D[0:23]

Vil = 0.6V

Vih = 1.2 V

24 bit Standard LVDS Color Mapping(MSB on LVDS CH3)

40 Pin, 0.8mm Pitch, R/A, SMTVESA Standard for Dual Channel LVDS

Page 38: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 38 of 126 July 9, 2013 © SGeT e.V.

3.4 Parallel LCD

The SMARC Module parallel LCD pins may be used to drive a traditional parallel LCD interface (or they may be used to drive LVDS transmitters or other transmitters that accept parallel LCD data at the Module V_IO level). The Module V_IO is typically 1.8V. Parallel displays with 1.8V I/O are available in very small form factors (think cell phone and digital camera size). In this case, the SMARC Parallel LCD data signals may be passed directly to the display, for short cable runs. For larger displays, the display will likely require a 3.3V data I/O level. The circuit shown in the figure below achieves signal buffering and voltage translation from V_IO to a 3.3V display. If there is a requirement for a display cable longer than a few inches, it may be a good idea to include the buffer even if the display accepts 1.8V I/O. The buffer shown in the figure below can be used for this case as well – the power pins at the upper right side of the IC symbol would be connected to 1.8V rather than 3.3V for this case. The discussion in Section 3.1.2 Display Parameters and EDID above about display parameters and EDID data structures applies here as well.

Figure 16 Parallel LCD Implementation

V_IO

4.7KOhm

21

R14

0402

0402

21

4.7KOhmR15

0402

4.7KOhmR16

21

0402 R17

4.7KOhm

21

0402 R50

1KOhm

21

100nF25V

C104

2

1

100nF25V2

1C105

100nFC106

25V2

1

V_IO

100nF25V

C107

2

1

25V100nFC108

2

1

25V

C109100nF

2

1

100nFC110

25V2

1

V_3V3

25V

C111100nF

2

1

JST BM40B-SRDS-G-TF

40/1/2x20/1.0SMT

J49

40

42

41

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

11

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

SH1

SH2

40

MOD

MOD

MOD

MOD

V_3V3

100nF25V

C112

2

1

100nFC113

25V2

1

100nFC114

25V2

1

25V

C115100nF

2

1

V_1V8

TI SN74AVC32T245-ZKE

BGA96

U1

B4

R3

N3

M3

R4

N4

M4

K4

G4

E4

D4

K3

G3

E3

D3

B3

T2

T1

R1

R2

P1

P2

N1

N2

M1

M2

L1

L2

K1

K2

J1

J2

H2

H1

G1

G2

F1

F2

E1

E2

D1

D2

C1

C2

B1

B2

A1

A2

P3

L3

F3

C3

T4

T3

J4

J3

H4

H3

A4

A3

T5

T6

R6

R5

P6

P5

N6

N5

M6

M5

L6

L5

K6

K5

J6

J5

H5

H6

G6

G5

F6

F5

E6

E5

D6

D5

C6

C5

B6

B5

A6

A5

P4

L4

F4

C4VCCA1

VCCA2

VCCA3

VCCA4

1A1

1A2

1A3

1A4

1A5

1A6

1A7

1A8

2A1

2A2

2A3

2A4

2A5

2A6

2A7

2A8

3A1

3A2

3A3

3A4

3A5

3A6

3A7

3A8

4A1

4A2

4A3

4A4

4A5

4A6

4A7

4A8

1DIR

1OE#

2DIR

2OE#

3DIR

3OE#

4DIR

4OE#

VCCB1

VCCB2

VCCB3

VCCB4

1B1

1B2

1B3

1B4

1B5

1B6

1B7

1B8

2B1

2B2

2B3

2B4

2B5

2B6

2B7

2B8

3B1

3B2

3B3

3B4

3B5

3B6

3B7

3B8

4B1

4B2

4B3

4B4

4B5

4B6

4B7

4B8

GND01

GND02

GND03

GND04

GND05

GND10

GND11

GND12

GND13

GND14

GND15

GND16

GND06

GND07

GND08

GND09

MOD

MOD

LCD_D[21]

LCD_D[20]

LCD_D[19]

LCD_D[18]

LCD_D[17]

LCD_D[16]

LCD_D[13]

LCD_D[12]

LCD_D[11]

LCD_D[10]

LCD_D[9]

LCD_D[8]

LCD_D[5]

LCD_D[4]

LCD_D[3]

LCD_D[2]

LCD_D[1]

LCD_D[0]

LCD_D[23]

LCD_D[22]

LCD_D[15]

LCD_D[14]

LCD_D[7]

LCD_D[6]

BUF_LCD_VS

BUF_LCD_D10

BUF_LCD_D0

BUF_LCD_D2

BUF_LCD_D1

BUF_LCD_HS

BUF_LCD_DE

BUF_LCD_PCK

BUF_LCD_D23

BUF_LCD_D22

BUF_LCD_D21

BUF_LCD_D20

BUF_LCD_D19

BUF_LCD_D18

BUF_LCD_D17

BUF_LCD_D16

BUF_LCD_D15

BUF_LCD_D14

BUF_LCD_D13

BUF_LCD_D11

BUF_LCD_D12

BUF_LCD_D9

BUF_LCD_D8

BUF_LCD_D7

BUF_LCD_D6

BUF_LCD_D5

BUF_LCD_D4

BUF_LCD_D3

LCD_DE

LCD_PCK

LCD_VS

LCD_HS

LCD_VDD_EN

BUF_LCD_VDD_EN

LCD_D[0:23]

40 Pin, 1mm Pitch, SMT

Page 39: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 39 of 126 July 9, 2013 © SGeT e.V.

4 LOW / MEDIUM SPEED SERIAL I/O INTERFACES

4.1 Asynchronous Serial Ports

4.1.1 RS232 Ports

The SMARC Module asynchronous serial ports run at V_IO (usually 1.8V) logic levels. The transmit and receive data lines from and to the Module are active high, and the handshake lines are active low, per industry convention. If the asynchronous ports are to interface with RS232 level devices, then a Carrier RS-232 transceiver is required. The logic side of the transceiver must be able to run at V_IO levels. The selection of 1.8V compatible transceivers is a bit limited, although more are appearing with time. Two such devices are the Texas Instruments TRS3253, and the Maxim MAX13235, illustrated in the figures below. The TI part is more cost effective, but has a top speed of 1 Mbps. The MAX 13235 can operate at maximum speeds over 3 Mbps (but your SMARC Module may or may not - check with your Module vendor). The transceivers invert the polarity of the incoming and outgoing data and handshake lines.

Figure 17 Asynchronous Serial Port Transceiver – RS232 – TRS3253

4.7KOhm

0402 R12

21

V_IO

QFN32

TI TRS3253EIRSMU35

33

26

6

17

18

19

20

21

22

23

25

3

30

15

27

8

32

24

16

28

9

10

11

12

13

14

7

5

4

2

1

31

29C1+

C1-

C2+

C2-

DIN1

DIN2

DIN3

ROUT1

ROUT2

ROUT3

ROUT4

ROUT5

FORCEON

FORCEOFF#

NC_16

NC_24

NC_32

NC_8

VCC

VL

V+

V-

DOUT1

DOUT2

DOUT3

RIN1

RIN2

RIN3

RIN4

RIN5

INVALID#

GND

TPAD

MOD

C92

25V100nF

2

1

R167

0OhmDNI

040221

100nFC93

25V2

1

V_5V0

C254330nF

1 2

1KOhmR48

0402

21

V_IO

330nF C252

1 2C253330nF

1

2

MOD

47nF16V

C25921

V_IO

DNI4.7KOhmR10

0402

21

5/1/1x5/1.0

JST SM05B-SRSS-TBJ39

SMT

7 6

5

4

3

2

11

2

3

4

5

M1

M2

SMT

J40

5/1/1x5/1.0

JST SM05B-SRSS-TB

7 6

5

4

3

2

11

2

3

4

5

M1

M2

MOD

MOD

MOD

MOD

MOD

GPIO5/PWM_OUT

SER1_RX

SER0_TX

SER0_RX

SER1_TX

SER0_1_INVALID#

SER0_SER1_XCVR_OFF#

TRS3253E_V-_1

TRS3253E_V+_1

FORCEON_1

TRS3253E_C2-_1

TRS3253E_C2+_1

TRS3253E_C1-_1

TRS3253E_C1+_1

SER1_TXD_RS232

SER1_RXD_RS232

SER0_TXD_RS232

SER0_RXD_RS232

SER0_RTS_RS232#

SER0_CTS_RS232#

SER0_RTS#

SER0_CTS#

5 Pin, 1mm Pitch, R/A, SMT

5 Pin, 1mm Pitch, R/A, SMT

Page 40: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 40 of 126 July 9, 2013 © SGeT e.V.

Figure 18 Asynchronous Serial Port Transceiver – RS232 – MAX13235

4.1.2 RS485 Half-Duplex

A half-duplex RS485 asynchronous serial port implementation is shown below. This hardware implementation is suitable for multi-drop RS485 networks. The Maxim MAX13451 transceiver accepts 1.8V logic I/O and has other, flexible features of interest such as internal termination options. Multi-drop RS485 nodes should be strung together in daisy chain fashion using shielded twisted pair cable with a defined differential impedance (usually 120 ohms; sometimes 100 ohm cables are used). The two end-points of the system should be resistively terminated across the pair. The termination value should equal the differential impedance of the twisted pair cable used. The Maxim transceiver allows the termination to be enabled or disabled on the TERM# pin, and can be selected to be 100 ohms or 120 ohms via the TERM100 pin state. These pins can be controlled by Carrier GPIOs if desired. The RS485 driver is enabled when the SMARC SER2_RTS# signal is asserted low (if the resistor options in front of the XOR gate are loaded as shown, such that the XOR gate inverts the SER2_RTS2# signal for the RS485_DE2 function). A suitable, likely application specific, software driver is required to make the multi-drop RS485 network sing.

U70

TSSOP20

18

9

16

8

17

7

3

11

19

1

20

14

10

15

12

13

6

5

4

2C1+

C1-

C2+

C2-

T1IN

T2IN

R1OUT

R2OUT

FORCEON

FORCEOFF

READY

VCC

VL

V+

V-

T1OUT

T2OUT

R1IN

R2IN

GND

MAX13235E

J60

7 6

5

4

3

2

11

2

3

4

5

M1

M2

SM05B-SRSS-TB

TP5

R460

DNI

0402

4.7KOhm

21

V_IO

1KOhm

0402 R461

21

V_IO

C4631uF16V

2

1

C461330nF

060316V

2

1

C462

47nF

16V2

1

V_5V0

MOD

MOD

MOD

16V0603

330nFC465

2

1C464330nF

060316V

2

1

C460

47nF

16V2

1

MOD

MOD

SER2_RX

SER2_TX

SER2_FORCEOFF

READY_SER2

SER2_RX_RS232

SER2_RX_RS232SER2_TX_RS232SER2_TX_RS232

FORCEON_SER2

SER2_CTS_RS232

SER2_CTS_RS232

SER2_RTS_RS232SER2_RTS_RS232

SER2_CTS

SER2_RTS

Page 41: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 41 of 126 July 9, 2013 © SGeT e.V.

Figure 19 Asynchronous Serial Port Transceiver - RS485 – Half Duplex

MOD

MOD

JST SM06B-SRSS-TB

1x6-1.0RA

J61

8

7

6

5

4

3

2

11

2

3

4

5

6

M1

M2

25V100nF

C467

2

1

R467

0402

10K

Ohm

21

0402

R468

10K

Ohm

21

0402

R463

DN

I10K

Ohm

21

10K

Ohm

0402

DN

I

R462

21

V_IO

10K

Ohm

0402

R464

21

0402

10K

Ohm

R465

21

V_5V0 V_IO

TP6

25V100nF

C466

2

1

2

1

7

3

Maxim MAX13451EAUD+

TSSOP14

U71

15

11

12

10

6

4

9

8

14

13

5

DI

RO

DE

RE

TERM

TERM100

SRL

INV

FAULT

VCC

VL

A

B

GND

T_PAD

MOD

V_IO

U72

SC70-5

1015-2777

Fairchild NC7SZ86P5X

3

5

42

1

V_IO

C468

25V100nF

2

1

10K

Ohm

0402

R466

21

3M 961204-6300

4/2x2/2.54ST

J62

4

2

3

11

3

2

4

R471

0402

100Ohm

21

10KOhm0402 R472

21

R469

0402

10K

Ohm

DN

I

21

SER2_RX

SER2_TX

SER2_RTS

TERM_2

RS485_SER2_N

RS485_SER2_P

FAULT_2

TERM100_2

INV_2

SRL_2

RS485_RE2

RS485_RE2

RS485_DE2

RS485_DE2

Jumper

Open

01-02 03-04Jumper

RS485 reciever disabled

Closed

OpenOpen Closed

OpenInvalidClosedClosedRS485 reciever enbled when transmitter disabledRS485 reciever always enabled

State

Page 42: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 42 of 126 July 9, 2013 © SGeT e.V.

4.2 I2C Interfaces

4.2.1 General

The I2C bus is a versatile low bandwidth multi-drop bus originally defined by Philips (now NXP). It is a two wire bus (clock and data) that relies on the use of open-drain drivers and passive pull-ups. The bus can be single Master or Multi-Master. SMARC Modules are always I2C Masters. Whether or not they allow other Masters is Module implementation dependent. Most SMARC systems use the I2C bus as a way for the SMARC I2C Masters to interface to a variety of I2C Slave peripherals. The standard I2C interface operation speeds are 100 KHz and 400 kHz. Some implementations allow faster speeds.

4.2.2 I2C Level Translation, Isolation and Buffering

FETs may be used to perform I2C level translation, as shown in this figure. This arrangement provides no buffering. It can provide isolation to prevent one side of the bus dragging down the other if one of the rails is collapsed. The rail that is to collapse should be the rail driving the FET gates.

Figure 20 I2C Power Domain Isolation – using FETs

Q31

35

4

DiodesInc BSS138DW-7-F

Q31

62

1

Q32

35

4

DiodesInc BSS138DW-7-F

Q32

62

1

V_3V3

10K

Ohm

0402

R473

21

R474

0402

10K

Ohm

21

MOD

V_IO

V_IO

MOD

I2C_GP_DAT I2C_GP_DAT_3V3

I2C_GP_SCL_3V3I2C_GP_SCL

Page 43: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 43 of 126 July 9, 2013 © SGeT e.V.

The circuit shown just below can provide power domain isolation, voltage level shifting and I2C bus buffering. The Fairchild FXMA2102 power rails VCCA and VCCB can be at the same voltage level or at different levels, over a range of 1.65V to 5.5V. Either rail can come up before the other. If you have many I2C devices, it is a good idea to split them up into segments with up to about 6 devices on each segment, and isolate the segments with a bi-directional I2C buffer such as the FXMA2102. I2C bus performance degrades with too much capacitive loading.

Figure 21 I2C Power Domain Isolation and Buffer – Fairchild FXMA2102

MOD

MOD

Fairchild FXMA2102U29

MicroPak-8

8

7

6

45

3

2

1VCCA

A0

A1

OE GND

B1

B0

VCCB

100nFC68

25V2

1 C69

25V100nF

2

1

V_IO

04020OhmR122 21

V_3V3

10K

Ohm

0402

R186

21

R187

0402

10K

Ohm

21

V_3V3

MOD

10K

Ohm

R1

88

0402

DN

I

2

1

DN

I10K

Ohm

R1

89

0402

2

1

V_IODNI0OhmR123 0402

21

0Ohm0402R124 DNI21

R125 0Ohm0402

21

R126 04020Ohm21

MOD

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

I2C_IO_DAT

I2C_IO_CK

I2C_IO_3V3_CK

I2C_IO_3V3_DAT

Level shifted I2C

Page 44: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 44 of 126 July 9, 2013 © SGeT e.V.

4.2.3 I2C_PM Bus EEPROMs

The SMARC I2C_PM bus is special in that it is used on the Module for power management functions, and it always runs from a 1.8V rail on the Module (even if the SMARC V_IO is set to 3.3V). The 1.8V voltage rail requirement on the I2C_PM bus allows it to be powered from a simple, low quiescent current linear or buck switching regulator from V_MOD_IN. On the Module, since it is used for power management, it is “on” even when the Carrier power may be off (i.e. the CARRIER_PW_ON signal may be low, and Carrier circuits that are not involved in power management are powered off). If the I2C_PM bus is used on the Carrier for functions that are not power management functions, then it needs to be isolated from the Module by a set of back to back FETs, as shown in the following figure. The V_1V8 in the figure is a Carrier board power rail that may be collapsed; the Module side of the I2C_PM must not be dragged down.

Figure 22 I2C_PM EEPROM: Carrier Power Domain

V_1V8

V_1V8

V_1V8

R309

0402

10K

Ohm

21

R310

0402

10K

Ohm

DN

I

21

R311

10K

Ohm

0402

DN

I

21

10K

Ohm

0402

R312

21

R313

0402

10K

Ohm

21

C267100nF25V 2

1

R314

0402

10KOhm

21

DN

I

R315

10K

Ohm

0402

21

U42

TSSOP8

Atmel AT24C32D

8

7

6

5

43

2

1A0

A1

A2 GND

SDA

SCL

WP

VCC

MOD

MOD

Q17

35

4

Q18

35

4

10K

Ohm

0402

R316

21

10K

Ohm

0402

R317

21

Q18

DiodesInc BSS138DW-7-F

62

1

Q17

DiodesInc BSS138DW-7-F

62

1

V_IO

V_IO

I2C_PM_DAT

I2C_PM_CK

PWR_BOARD_ID_A2

PWR_BOARD_ID_A1

PWR_BOARD_ID_A0

WP_PWR

I2C_PM_CAR_SDA

I2C_PM_CAR_SCL

I2C_PM EEPROM

(7-bit format)

I2C Address : 0x57

Page 45: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 45 of 126 July 9, 2013 © SGeT e.V.

The SMARC I2C_PM bus may be used on the Carrier for power management functions, such as interfacing to a battery charger or battery fuel gauge. In this case, the power circuits and the I2C_PM interface to the SMARC Module need to be powered whenever power is on.

A local low quiescent current low drop out linear regulator is needed to provide 1.8V for the Carrier board “Module domain” devices.

Figure 23 I2C_PM EEPROM: Module Power Domain

The SMARC Module specification recommends - but does not require - that Carriers have a parameter EEPROM on the I2C_PM bus, preferably configured as shown here, in the “Module Power Domain”. This, in principle, allows the Module to query the Carrier I2C_PM EEPROM before asserting the CARRIER_PWR_ON signal that enables the main Carrier board power feed.

V_MOD_IN Maxim MAX1818

SOT23

U39

4

1

2

5

6

3SHDN#

OUT

SET

POK

IN

GND

1uF25V

2

1

C274

04020Ohm

R295

2 1 22.6KOhm0402 R319

21

R3180402

100KOhm

2 14.7uF10V

C272

2

1

51.1KOhm0402

R320

21

MOD

MOD

Atmel AT24C32D

U41

TSSOP8

8

7

6

5

43

2

1A0

A1

A2 GND

SDA

SCL

WP

VCC

DN

I

R302

10K

Ohm

0402

21

R303

0402

10KOhm

21

C266100nF25V 2

1

R304

0402

10K

Ohm

21

10K

Ohm

0402

R305

21

R306

10K

Ohm

0402

DN

I

21

R307

0402

10K

Ohm

DN

I

21

R308

0402

10K

Ohm

21

I2C_PM_DAT

I2C_PM_CK

1V8_LDO_SET

PWR_BOARD_ID_A2

PWR_BOARD_ID_A1

PWR_BOARD_ID_A0

WP_PWR

V_1V8_LDO

(7-bit format)

I2C Address : 0x57

I2C_PM EEPROM

Page 46: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 46 of 126 July 9, 2013 © SGeT e.V.

4.2.4 General I2C Bus EEPROMs

The “other” SMARC I2C buses (I2C_LCD, I2C_GP, I2C_CAM) operate at V_IO (typically 1.8V). The power domain isolations described in the previous section do not apply. A simple sample EEPROM circuit is shown for reference.

Figure 24 I2C_GP EEPROM

R22

0

10K

Ohm

DN

I

0402

21

0402

R22

1

10K

Ohm

DN

I

21

10K

Ohm

R22

204

022

1

10K

Ohm

0402

R22

32

1

V_IO

0402

10K

Ohm

R22

42

1

C101

25V100nF

2

1

0402

10KOhmR225

21

V_IO

R22

6

10K

Ohm

0402

DN

I

21

MOD

MOD

Atmel AT24HC02U10

SOIC8

8

7

6

5

43

2

1A0

A1

A2 GND

SDA

SCL

WP

VCCI2C_GP_DAT

I2C_GP_CK

GEN_BOARD_ID_A2

GEN_BOARD_ID_A1

GEN_BOARD_ID_A0

WP_GENERIC

(7-bit format)

I2C Address : 0x56

Page 47: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 47 of 126 July 9, 2013 © SGeT e.V.

4.2.5 I2C Based IO Expanders

I2C based “I/O Expanders” are available from Texas Instruments, NXP and others. Multiple expanders may be put onto the same I2C bus by configuring the I/O expander I2C address straps. These devices are an easy and cost effective way to realize additional IO on SMARC systems. On the device shown in the figure, the I/O ports on the right are all in a high impedance “tri-state” mode when the device powers up. This allows the designer to tie the I/O lines through resistor pull-ups or pull-downs to define a power up state for these lines, before the I2C interface and before software are active. Wider (x16) devices are also available.

Figure 25 I2C Device: IO Expander

V_IO

0402

21

R205

10K

Ohm

10K

Ohm

0402

R206

21

10K

Ohm

R207

0402

21

10K

Ohm

DN

I

R208

0402

21

R209

DN

I

0402

10K

Ohm

21

10K

Ohm

0402

R210

DN

I

21

V_IO

C75100nF25V 2

1

MOD

TI TCA9554

U34

TSSOP16

13

12

11

10

8

14

15

3

2

1

16VCC

A0

A1

A2

SDA

SCL

GND

P0

P1

P2

P3

P4

P5

P6

P7

INT#

MODI2C_GP_DAT

I2C_GP_CK

IO_EXP_6

GP_EXP1_ID_A2

GP_EXP1_ID_A1

GP_EXP1_ID_A0

IO_EXP_0

IO_EXP_1

IO_EXP_2

IO_EXP_3

IO_EXP_4

IO_EXP_5

IO_EXP_7

(7-bit format)I2C Address : 0x20

4

9

7

6

5

Page 48: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 48 of 126 July 9, 2013 © SGeT e.V.

4.2.6 Other I2C Devices

There is a very wide variety of I2C peripherals available on the market. Since SMARC Modules offer up to four I2C buses (not counting the HDMI private I2C bus), it is easy to incorporate I2C devices into a SMARC system. A few schematic examples are given here, and further suggestions are listed in the table at the end of this section.

Figure 26 I2C Device: Accelerometer

Figure 27 I2C Device: Accelerometer and Magnetometer

DN

I

0402

10K

Ohm

R194

21

V_IO

MOD

MOD

DN

I

0402

10K

Ohm

R195

21

V_IO

R196

10K

Ohm

0402

21

V_IOV_IO

0402

10K

Ohm

R197

21

MOD

MOD

DN

I

R198

10K

Ohm

0402

21

16V10uF

C221

2

1

R140 04020Ohm21

0Ohm0402R141 DNI21

R142 04020Ohm DNI21

MOD

MOD

0Ohm0402R143 21

V_3V3

25V100nF

C72

2

1

V_IO

25V100nFC73

2

1

V_3V3

DNIR144

0Ohm21

R145

0Ohm21

DNI

STMicro LIS302DL

U32

LGA14

15

11

3

10

12

7

14

13

9

8

5

4

2

6

1 VDD_IO

VDD

GND_2

GND_4

GND_5

INT1

INT2

SDA/SDI/SDO

SCL/SPC

CS

SDO

GND_10

RSRVD_3

RSRVD_11

THRM_PAD

I2C_GP_DAT

I2C_GP_CK

I2C_LCD_DAT

I2C_LCD_CK

GPIO11

GPIO10LIS302DL_INT1

LIS302DL_INT2

ACCL_I2C_SEL

ACCL_I2C_ADD

ACCL_I2C_SDA

ACCL_I2C_SCL

(7-bit format)

I2C Address : 0x1C

MOD

MOD

MOD

MOD

STMicro LSM303DLHC

U30

LGA14

13

12

9

5

4

3

2

7

11

10

8

6

1

14VDD

VDD_IO

C1

RSVD_8

RSVD_10

RSVD_11

GND

SCL

SDA

INT2

INT1

DRDY

SETP

SETC

R131 04020Ohm21

R132 04020Ohm21

04020OhmR133 DNI21

DNIR134 0Ohm0402

21

220nF16V

C251

2

1

10V

C2004.7uF

2

1C70

25V100nF

2

1

V_3V3

10uFC220

16V2

1

100nFC71

25V2

1V_IO

DNI R1370Ohm0402

2 1

R1380OhmDNI0402

2 1

DNI R13904020Ohm 2 1

GND

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

GPIO11

GPIO10

INT2

INT1

DRDY

I2C_ACC_CK

I2C_ACC_DAT

(7-bit format)

I2C Address : 0X19 (Accel)

I2C Address : 0X1E (Magnet)

Page 49: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 49 of 126 July 9, 2013 © SGeT e.V.

Figure 28 I2C Device: Gyroscope

The table below gives a small sampling of other 1.8V I/O I2C devices that are available. The list is meant to just give the reader an idea of what types of devices are available.

Table 3 I2C Device Examples - 1.8V I/O

Function Device Description Vendor Vendor P/N

ADC 8-channel, 12-bit SAR ADC with temperature sensor

Analog Devices AD7291

Ambient Light Sensor

Digital ALS, Range: 0.025 Lux to 104,448 Lux

Maxim Integrated MAX44007EDT

Battery fuel gauge Li-ion battery Fuel gauge with direct battery connection

Texas Instruments BQ27510-G2

DAC Quad, 16-bit DAC Analog Decices AD5696R

LED driver 7-bit LED driver with intensity control

Texas Instruments TCA6507

Proximity / Button sensor

Four Channels, Capacitive Proximity/Button Solution

Semtech SX9500

Temperature Sensor

Temperature Monitor, ±1° Cel On Semiconductor NCT72

UART 128 Word FIFOs Maxim Integrated MAX3108

MOD

MOD

MOD

MODSTMicro L3G4200D

U31

LGA16

14

7

6

5

4

3

2

13

12

11

10

9

8

15

16

1VDD_IO

VDD

RSVD_15

RSVD_8

RSVD_9

RSVD_10

RSVD_11

RSVD_12

GND

SCL/SPC

SDA/SDI/SDO

SDO/SA0

CS

DRDY/INT2

INT1

PLLFILT

C21910uF16V

2

1

04020OhmR127 DNI21

DNIR128 0Ohm0402

21

0Ohm0402

R129 21

0Ohm0402R130 21

V_3V3V_IO

R190 0402

10K

Ohm

2

1

10K

Ohm

0402R191

DN

I

2

1

16V10nFC212

2

1

C250

25V470nF

2

1

0402R192

10K

Ohm

2

1

0402

R193

10K

Ohm

2

1

0Ohm

0402R135

DNI

21

0Ohm

0402R136

DNI

21

100nF16V

C209

2

1 C210100nF16V

2

1

V_IO

MOD

MOD

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

GPIO11

GPIO10

I2C_GYRO_CK

I2C_GYRO_DAT

SDO/SAO

DATA_READY

INT1_GYRO

I2C Address : 0X69

(7-bit format)

Page 50: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 50 of 126 July 9, 2013 © SGeT e.V.

4.3 Touch Screen Controller Interfaces

4.3.1 General

The two most popular touch technologies used with SMARC systems are summarized in the following table.

Table 4 Popular Touch Technologies

Technology Notes

Resistive

Low cost; rugged. Display clarity and contrast may be compromised by the resistive touch overlay. Usually used with a stylus but may be used with bare fingers. Multi-touch is possible but not common. More straightforward to implement than capacitive touch.

Projected Capacitive

Higher cost, higher barrier to entry and better quality and user experience than resistive touch. Multi-touch capable. Excellent optics.

There are many other touch technologies, some better suited to certain situations such as user’s wearing gloves and so on. An overview may be found on the EloTouch website: www.elotouch.com under “Touchscreens”.

4.3.2 Interface Types / Driver Considerations

Various host interface types are used by touch screen controllers. A given controller may implement one or more of the following interfaces: USB client, I2C, asynchronous serial port, I2S, SPI, or other interface. USB interfaces for touch screen controllers are attractive as there is the potential that the software effort is minimal: the touch screen controller may act as a USB HID (Human Interface Device) class device, and the operating system at hand may be able to understand the generic touch HID implementation directly. However, for more advanced touch implementations, such as multi-touch (the ability to track and decipher multiple, simultaneous touch hits on a screen), a more specialized driver is usually necessary. The driver is often touch – controller vendor specific. Additionally, a touch controller vendor may offer multiple hardware interfaces, but the driver may be optimized for one particular hardware interface. The conclusion is: check out the software driver situation before going down a particular hardware path.

Page 51: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 51 of 126 July 9, 2013 © SGeT e.V.

4.3.3 Touch Controller Modules / ICs / Screens

Table 5 Touch Controller Module / IC / Screen Vendors

Vendor Notes Web Link

Atmel Key vendor of touch screen controller ICs for projected capacitive screens. Atmel is a silicon vendor, and generally will not help directly with touch screen integration issues, unless your company is a Tier 1 company. Atmel has a network of partners that they will steer you to for help with integration issues. Some of the partners from Atmel’s list are included in this list.

www.atmel.com

Data Modul Selection of touch screen panels, overlays and controller modules for projective capacitive technology and for resistive touch screens. Company is based in Germany and has a presence in the USA. Products are marketed under the “Easy Touch” trade mark.

www.data-modul.com

EloTouch Elo offers a variety of finished touch panels. They also offer a popular controller chip for resistive touch panels, under the marketing name “AccuTouch COACh V Controller Chip”.

www.elotouch.com

Ocular LCD Selection of touch screen panels, overlays and controller modules for projective capacitive technology. The company also offers custom design services for optically bonding touch overlays to display panels. Company is based in the USA and has a presence in China. Products are marketed under the “Crystal Touch” trade mark.

www.ocularlcd.com

Pixcir Vendor of controller ICs for projected capacitive screens. Based in China and in Switzerland.

www.pixcir.com

Precision Design Associates

Touch modules and touch overlay screens. Based in Marietta, Georgia, USA.

www.pdaatl.com

Touch International

Touch overlays, modules and integration services. One of the larger and better known companies in this field. Based in the state Texas, USA. The Touch International website has an overview of various touch technologies.

www.touchinternational.com

Also check with your SMARC Module vendor or your SMARC Carrier design partner – some of them have in-house solutions for particular display panels. Also remember to consider the availability of software drivers for the choices that you are making.

Page 52: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 52 of 126 July 9, 2013 © SGeT e.V.

4.3.4 I2C Interface to Touch Controller

Atmel is a popular choice for projected capacitance touch controllers. Atmel supplies USB and I2C drivers for the mXT1664S touch screen controller. Multi-touch is supported in the I2C driver but not, as of this writing apparently, in the USB driver. The circuit shown below provides buffering and level translation for a SMARC interface to an I2C interfaced touch controller board . The Atmel mXT1664S can be configured for 1.8V I2C operation, and hence this voltage translation may not be necessary in a custom design. However, off-the-shelf touch controller modules may not be configured for 1.8V I/O (and the particular touch module behind this example was not). In any case, some buffering when cabling to an external board is not a bad thing to have, for robustness.

Figure 29 Touch Screen Connector – I2C Interface

MOD

DNI0Ohm0402

21 R475

R47604020Ohm 21

V_3V3

10K

Ohm

0402

R486

21

V_IO

C470100nF25V

2

1

100nF25V

C473

2

1

MOD

MOD

C472100nF25V

2

1 C475100nF

25V2

1

100nF25V

C476

2

1

2

1 C477100nF25V

C471100nF25V

2

1

100nF25V

C474

2

1

V_IO

MOD

MOD

10K

Ohm

0402

R488

21

R489

0402

10K

Ohm

21

V_3V3

0Ohm0402R485 21

R47904020Ohm

21

R48004020Ohm

21

R48204020OhmDNI

21

R48104020OhmDNI

21

TI SN74AVC1T45U73

SOT553

2

4

6

5

3

1VCCA

A

DIR

VCCB

B

GND

0402

R483

10K

Ohm

21

Fairchild FXMA2102U75

MicroPak-8

8

7

6

45

3

2

1VCCA

A0

A1

OE GND

B1

B0

VCCB

V_IO

R484

0402

10K

Ohm

21

R487

0402

10K

Ohm

21

V_3V3

TI SN74AVC1T45U74

SOT553

2

4

6

5

3

1VCCA

A

DIR

VCCB

B

GND0402 R4780Ohm 21

R477DNI0Ohm0402

21

MOD

V_5V0V_3V3

Molex 53261-1071

J63

SMT10/1/1x10/1.25

12

11

10

9

8

7

6

5

4

3

2

11

2

3

4

5

6

7

8

9

10

SH1

SH2

MOD

MODI2C_CAM_DAT

I2C_CAM_CK

I2C_LCD_DAT

I2C_LCD_CK

GPIO10

RESET_OUT#

GPIO1/CAM1_PWR#

GPIO6/TACHIN RESET_1V8

TS_GPIO_1V8

TS_RST

I2C_TS_DAT

I2C_TS_CK

TS_GPIO

Page 53: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 53 of 126 July 9, 2013 © SGeT e.V.

4.4 I2S Interfaces

4.4.1 General Information

The I2S (Inter IC Sound) bus specification was initially released in 1986 by Philips (NXP) and later revised in 1996. I2S is a synchronous serial bus used for interfacing digital audio devices such as Audio CODECs and DSP chips. Generally PCM audio data is transmitted over the I2S interface. The I2S bus may have a single bidirectional data line or two separate data lines. The signals constituting the I2S bus are a serial clock/ bit clock (output from the master), a left right clock (output from the master) that indicates the channel being transmitted and a single bidirectional data line or two data lines - one input and one output. A SMARC module can generally be configured as I2S master or slave. SMARC modules may support up to three independent I2S interfaces each having separate input and output data lines.

4.4.2 Wolfson Micro I2S Audio Example

An example of an I2S based audio circuit using the Wolfson Micro WM8903 CODEC and a pair of Wolfson class D amplifiers is given below. The circuit uses a SMARC I2S interface for the audio PCM data, and a SMARC I2C interface to allow a path for software setup of registers within the CODEC.

Page 54: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 54 of 126 July 9, 2013 © SGeT e.V.

Figure 30 I2S Audio CODEC: Wolfson Micro

MOD

MOD

MOD

MOD

MOD

MOD

MOD

4/1/1x/1.0

6

5

4

3

2

1

J30

JST SM04B-SRSS-TB

SMT

1

2

3

4

M1

M2

MOD

MOD

MOD

MOD

MOD

MOD

JST SM03B-SRSS-TB

SMT

J12

3/1/1x3/1.0 5 4

3

2

11

2

3

M1

M2

SMT3/1/1x3/1.0

J13

JST SM03B-SRSS-TB

5 4

3

2

11

2

3

M1

M2

3/1/1x3/1.0

JST SM03B-SRSS-TB

J14

SMT

5 4

3

2

11

2

3

M1

M2

CUI SJ-43514

THT

4/1PORT

J32

5

4

2

3

1 1

3

2

4

5

MOD

DNI

10nF16V

C211

2

1

V_IO

0402

DNI

R98

0Ohm

2 1

R990Ohm0402

2 1

Abracon ASEMB-12.000MHZ

DNIQFN4

Y3

34

21STBY GND

VDD OUT

2.21KOhmDNI

R279

040221

0O

hm

R1

00

21

GND_AUDIO

DNI0OhmR101

21

0OhmDNI

R10221

GND_AUDIO

GND_AUDIO

MOD

MOD

R280

0402

2.21KOhm

21

4/1PORT

CUI SJ-43514

J31

THT

5

4

2

3

1 1

3

2

4

5

R103

0402

0OhmDNI

21

25V

C47100nF

2

1

V_IO

JST SM03B-SRSS-TB

J11

SMT3/1/1x3/1.0 5 4

3

2

11

2

3

M1

M2

GND_AUDIO GND_AUDIO

50V

C2424.7uF

2

1

50V4.7uFC243

2

1

GND_AUDIOGND_AUDIO

C48100nF

25V 2

1

D8

Semtech RCLAMP0504P

6

4

3

1

7

2

5 V

NC

TAB

D1

D2

D3

D4

C159

16V1uF

2

1

FB4

1.2A90mOhm120Ohm

21

Wolfson WM8903

U24

QFN40

41

1 26

12

25

29

27

28

23

22

17

16

18

20

19

21

13

11

15

14

9

40

8

7

6

4

2

3 38

5

37

36

33

30

35

34

32

31

10

24

39DCVDD

AVDD

CPVDD

IN2R

IN1R

IN2L

IN1L

IN3R

IN3L

SDIN

SCLK

INTERRUPT

GPIO3/ADDRGPIO2/DMIC_DAT

MCLK

GPIO1/DMIC_LR

BCLK

DACDAT

LRC

DBVDD

ADCDAT

VPOS

VNEG

CFB1

CFB2

LINEOUTL

LINEOUTR

LINEGND

HPOUTL

HPOUTR

HPGND

LOP

LON

ROP

RON

MICBIAS

VMID

CPGND

AGNDDGND

TH_PAD

R104

0Ohm21

DNI0Ohm

R105

21

DNIR106

0Ohm21

DNI0Ohm

R10721

21 DNIR108

0Ohm

DNI0Ohm

R10921

GND_AUDIO

DNIR110

0Ohm21

C1601uF16V 2

1

V_IO

V_1V8

GND_AUDIO

R111

0O

hm

21

GND_AUDIO

0Ohm

0402R112

21

C2442.2uF

6.3V21

100nFC49

25V2

1

100nF25V

C50

2

1

20Ohm0402 R282

21

GND_AUDIO

0402

20Ohm

R283

21

4.7uF10V

C192

2

1

GND_AUDIO

GND_AUDIO

4.7uF10V

C193

2

1

GND_AUDIO

100nF25V

C51

2

1

C52100nF25V

2

1

V_1V8

GND_AUDIO

10V4.7uFC194

2

1

V_IOGND_AUDIO

GND_AUDIO

10V4.7uFC195

2

1

20Ohm0402R284

21

0OhmR113

21

GND_AUDIO

C53

25V100nF

2

1

GND_AUDIO

R281

0402

2.21KOhm

21

GND_AUDIO

1uFC161

21

GND_AUDIOGND_AUDIO

0402

20Ohm

R285

21

1uFC162

21

C54

2

1

25V100nF

120Ohm90mOhm1.2A

FB521

25V100nFC55

2

1

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

I2C_LCD_DAT

I2C_LCD_CK

SPDIF_OUT

SPDIF_IN

I2S0_CK

I2S0_LRCK

I2S0_SDOUT

I2S0_SDIN

AUDIO_MCLK

I2C_PM_DAT

I2C_PM_CK

HP_RIGHT

HP_RIGHT

I2C_CODEC_CK

I2C_CODEC_DAT

HP_MIC

HP_MIC

HP_MIC

HP_MIC

HP_LEFT

HP_LEFT

AUDIO_MCLK_ROSC_OUT

MIC1_R

MIC4_R

EN_SPKR

D_MIC_CLK

D_MIC_CLK

D_MIC_DAT

D_MIC_DAT

VMID

LINE_OUT_LEFT

LINE_OUT_LEFT

LINE_OUT_RIGHT

LINE_OUT_RIGHTSNN_MIC_RIGHT

SNN_MIC_RIGHT

SNN_MIC_RIGHT#

SNN_MIC_RIGHT#

SNN_MIC_RIGHT#

CDC_LEFT

CDC_RIGHT

CFB1

CFB2

VNEG

VPOS

MIC_BIAS

V_1V8_AUDIO

AVDD

MIC_LEFT

MIC_LEFT#

MIC_LEFT#

LINE_IN_RIGHT

LINE_IN_RIGHT

LINE_IN_LEFT

LINE_IN_LEFT

LINE_OUT_LEFT_R

LINE_OUT_RIGHT_R

CDC_LEFT#

CDC_RIGHT#

GPIO4/HDA_RST#

(7-bit format)

I2C Address : 0x1B

Differential MIC option

To

Cla

ss

DA

mp

lifie

rs

Page 55: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 55 of 126 July 9, 2013 © SGeT e.V.

Figure 31 Audio Amplifier: Wolfson Micro

4.4.3 Texas Instruments TLV320AIC3105 I2S Audio Example

An alternative I2S audio CODEC example from TI is shown below. As in the Wolfson example, the I2S carries the PCM audio from and to the SMARC Module, and the I2C is used for chip setup parameters. This example shows an option resistor that allows the SMARC audio MCLK (net AUDIO_MCLK) to be driven from the Carrier into the Module, rather than the other way around. This may be necessary with some Modules – check with your Module vendor.

0402

10KOhmR178

21

MicroQFN8

U5

TI SN74AVC2T244DQ

1

2 7

6

54

8

3 A2

VCCB

OE# GND

B2

B1A1

VCCA

V_IO V_3V3

100nFC56

25V

2

1

MOD

25V100nFC57 2

1

R1140Ohm 0

402

21

R1150402

0Ohm

21

GND_AMP

GND_AMP

GND_AMP

4.7uFC196

10V 2

1

L5

1.7A50mOhm

21

C58100nF25V

2

1

C59100nF25V

2

1

SMT1x2-1.0

J17

JST SM02B-SRSS-TB

4 3

2

11

2

M1

M2

0402

0Ohm

R11621

U25

Wolfson WM9001

QFN16

17

6

3

9

4

1

13

15

14

5

12

11

10

7

16

8

2SPKVDD

AVDD

INP_SEL

CDMODE

BSEL0

BSEL1

BSEL2

SYNC

EN

LIP

LIN

VOUTP

VOUTN

VMID

SPKGND

AGND

PADDLE

GND_AMPGND_AMP

4.7uF25V

C245

2

1

16V1uF

C16321

C164

1uF 16V

21

10V4.7uFC197

2

1

1.7A50mOhm

L621

50mOhm

L7

1.7A

21

0402 R7

4.7KOhm

2

1

V_3V3

GND_AMP

1.7A

L8

50mOhm

21

GND_AMP

C1984.7uF10V

2

1

16V1uF

C16521

C166

16V1uF

21

GND_AMP

V_5V0

10V4.7uFC199

2

1

C246

25V4.7uF

2

1

GND_AMP GND_AMP

GND_AMP

1.7A50mOhm

L921

QFN16

U26

Wolfson_WM9001

17

6

3

9

4

1

13

15

14

5

12

11

10

7

16

8

2SPKVDD

AVDD

INP_SEL

CDMODE

BSEL0

BSEL1

BSEL2

SYNC

EN

LIP

LIN

VOUTP

VOUTN

VMID

SPKGND

AGND

PADDLE

V_3V3

0402

4.7

KO

hm

R8

21

0402

0OhmDNI

R11721

CDC_RIGHT#

GND_AMP

GND_AMP

V_5V0

L10

1.7A50mOhm

21

CDC_LEFT#

JST SM02B-SRSS-TB

1x2-1.0SMT

J18

4 3

2

11

2

M1

M2

GPIO5/PWM_OUT

EN_SPKR

CDC_LEFT

CDC_RIGHT

GPIO_EN_SPKR

BUFFER1_OE#

CDC_LEFT_R

VMID_0

CDC_RIGHT_R

CDC_LEFT_R#

VMID_1

VOUTN_1

VOUTP_1 VOUTP_H_1

VOUTN_H_1

V_3V3_WM9001_2

V_3V3_WM9001_1

VOUTN_H

VOUTP_HVOUTP

VOUTN

CDC_RIGHT_R#

EN_SPKR_R

CDC_LEFT#

CDC_RIGHT#

From Audio CODEC

From Audio CODECFrom Audio CODEC

Page 56: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 56 of 126 July 9, 2013 © SGeT e.V.

Figure 32 I2S Audio CODEC: Texas Instruments

Figure 33 Audio Amplifier: Texas Instruments

MOD

MOD

04020Ohm R6521

J7

CUI SJ-43516

RASMT6/1/3.5mm

6

5

4

3

2

1 1

2

3

4

5

6

QFN4

Abracon ASEMB-12.000MHZ

Y2

34

21STBY GND

VDD OUT

QFN32

TI TLV320AIC3105

J8

33

26

17

21

6

30

29

28

27

23

22

19

20

32

7

24

18

25

15

16

14

13

12

11

10

31

8

9

1

3

2

4

5DOUT

DIN

BCLK

WCLK

MCLK

SDA

SCL

RESET#

MIC1L/LINE1L

MIC1R/LINE1R

MIC2L/LINE2L

MIC2R/LINE2R

MIC3L/LINE3L/MICDET

MIC3R/LINE3R

MICBIAS

AVDD

DRVDD_18

DRVDD_24

IOVDD

DVDD

HPLCOM

HPLOUT

HPRCOM

HPROUT

LEFT_LOP

LEFT_LOM

RIGHT_LOP

RIGHT_LOM

DVSS

DRVSS

AVSS1

AVSS2

T_PAD

C208 100nF21

0402 R660Ohm 2 1

0Ohm0402

DNI

R672 1

V_IO

DNI

10nF16V

C213

2

1

V_3V3_AUD

GND_AUDIO_1

470nFC17821

470nFC17921

2KOhmR265

0402

21

V_IO

GND_AUDIO_1

Semtech RCLAMP0504P

D5

6

4

3

1

7

2

5 V

NC

TAB

D1

D2

D3

D4

R68 04020Ohm DNI21

0OhmR69 040221

470nFC18021

C181 470nF21

C4100nF

25V2

1

1uF16V

C143

2

1

V_1V8

V_IO

16V

C1441uF

2

1

GND_AUDIO_1

0Ohm R70040221

C5100nF

25V2

1

100nFC6

25V2

1

16V1uF

C145

2

1 C1461uF16V

2

1C7

25V100nF

2

1

V_3V3

1uF16V

C147

2

1

100nFC8

25V2

1

0OhmR71 040221

FB2

1.2A

120Ohm90mOhm

2 1

GND_AUDIO_1

10uFC218

16V2

1

GND_AUDIO_1

DNI0402

0OhmR7221

JST SM03B-SRSS-TB

J9

SMT3/1/1x3/1.0

5 4

3

2

11

2

3

M1

M2

GND_AUDIO_1

R7304020Ohm 21

0Ohm R74040221

04020Ohm R75DNI 21

DNI0402 R760Ohm 21

MOD

MOD

MOD

JST SM03B-SRSS-TB

SMT3/1/1x3/1.0

J10

5 4

3

2

11

2

3

M1

M2

GND_AUDIO_1

MOD

MOD

MOD

DNI R7704020Ohm 2 1

0402 R780OhmDNI 2 1

0402DNI 0Ohm R792 1

0Ohm R80DNI0402

2 1

0402 R810Ohm 2 1

R8204020Ohm 2 1

0402 R830Ohm 2 1

04020Ohm R842 1

DNI R8504020Ohm 2 1

0Ohm R86DNI0402

2 1

0402 R87DNI 0Ohm 2 1

0402 R88DNI 0Ohm 2 1

MOD

MOD

MOD

MOD

MOD

MOD0Ohm

0402DNI R8921

GND_AUDIO_1

C214

16V10uF

2

1

MOD

MOD

MOD

MOD

MOD

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

I2S2_CK

I2S2_SDIN

I2S2_SDOUT

I2S2_LRCK

I2S1_CK

I2S0_CK

I2S0_LRCK

I2S0_SDOUT

I2S1_SDIN

I2S0_SDIN

I2S1_SDOUT

I2S1_LRCK

AUDIO_MCLK

HP_RIGHT

HP_RIGHT

I2C_CODEC_CK

I2C_CODEC_CK

I2C_CODEC_DAT

I2C_CODEC_DAT

HP_MIC

HP_MIC

HP_LEFT

HP_LEFT

LEFT_LOP

RIGHT_LOP

HP_COM

HP_COM

CAR_RESET_OUT#

CODEC_RESET#

HP_MIC_C

JACK1_R

AUDIO_MCLK_R

AUDIO_MCLK_ROSC_OUT

MICBIAS_CODEC

MIC1L

MIC1R

MIC2L

MIC2R

LINE_2_IN_RIGHT

LINE_2_IN_RIGHT

LINE_2_IN_LEFT

LINE_2_IN_LEFT

LINE_1_IN_RIGHT

LINE_1_IN_RIGHT

LINE_1_IN_LEFT

LINE_1_IN_LEFT

LEFT_LOM

RIGHT_LOM

JACK4_R

I2S_SDOUT

I2S_SDOUT

I2S_LRCK

I2S_LRCK

I2S_CK

I2S_CK

I2S_SDIN

I2S_SDIN

AUDIO_RESET#

I2C Addr :0x58

(7 bit Address)

MOD

MOD

C2281nF

2

1

1nFC229

2

1

GND_AUDIO_1

16V

C215

10uF

2

1

GND_AUDIO_1

21

1.2A90mOhm

FB3

GND_AUDIO_1

R90 04020Ohm21

V_5V0

C148

1uF

16V2

1 C9

100nF25V

2

1

100nF

C10

25V2

1

GND_AUDIO_1

C149

1uF

16V2

1C11

25V100nF

2

1

GND_AUDIO_1

1uF

C150

16V2

1

1uFC151 21

GND_AUDIO_1

1KOhm

0402

DNI

R46

21

1uFC152 21

GND_AUDIO_1

50mOhm1.7A

L121

50mOhm1.7A

L221

1.7A

L3

50mOhm

21

1.7A

L4

50mOhm

21

0OhmR91 DNI0402

21

DNI0Ohm0402R92 21

0Ohm0402R93 21

JST SM02B-SRSS-TB

1x2-1.0SMT

J15

4 3

2

11

2

M1

M2

SMT1x2-1.0

JST SM02B-SRSS-TB

J16

4 3

2

11

2

M1

M2

GND_AUDIO_1

GND_AUDIO_1

0Ohm0402R94 21

1nFC230

2

1C2311nF

2

1

R471KOhm

DNI 0402

21

1uFC153 21

C154 1uF21

TI TPA2016D2

QFN20

U21

21

8

3

20

16

7

6

9

10

12

11

19

17

18

14

15

2

1

5

4

13AVDD

PVDDL_4

PVDDL_5

INL+

INL-

INR+

INR-

SDZ

SCL

SDA

PVDDR_11

PVDDR_12

OUTR+

OUTR-

OUTL+

OUTL-

NC_16

NC_20

AGND

PGND

TH_GND

MOD

MOD

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

LEFT_LOP

RIGHT_LOP

LEFT_LOM

RIGHT_LOM

I2C_AMP_CK

INR+

INL+

INR-

INL-

I2C_AMP_DAT

OUTR_P

OUTR_N

OUTL_P

OUTL_N

OUTR_N_F

OUTR_P_F

OUTL_P_F

OUTL_N_F

Page 57: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 57 of 126 July 9, 2013 © SGeT e.V.

4.4.4 lntel High Definition Audio over I2S2

The SMARC specification does allow for an optional High Definition Audio implementation over the I2S2 pins (as alternate pin functions for those I2S pins). Refer to the SMARC specification for details on the pin mapping. The interface occurs at V_IO levels (typically 1.8V). The Intel HD Audio specification allows for 3.3V or 1.5V signaling, so SMARC systems using 1.8V I/O will require Carrier board level translation if interfacing to HD Audio CODECs. Generally speaking, ARM devices implement audio using I2S and X86 devices using HD Audio. This distinction is blurring with the latest Intel X86 SOCs, some of which implement both multiple I2S and HD Audio interfaces (with the I2S interfaces running at 1.8V and the HD Audio at 1.5V ….). High Definition Audio CODEC vendors include Cirrus, IDT, Realtek and others.

Page 58: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 58 of 126 July 9, 2013 © SGeT e.V.

4.5 SPI Interfaces

4.5.1 General

The SPI (Serial Peripheral Interface) is a full duplex synchronous bus supporting a single master and multiple slave devices. The SPI bus consists of a serial clock line (generated by the master); data output line from the master; a data input line to the master and one or more active low chip select signals (output from the master). Clock frequencies from 1-100MHz may be generated by the master depending on the maximum frequency supported by the components in the system. SMARC Modules running a 1.8V I/O interface are generally limited to about a 50 MHz clock rate on this interface. The SMARC Module will always be the SPI master. SMARC Modules may support a Carrier SPI Boot option.

4.5.2 SMARC Implementation

Each SPI device requires a chip select, a clock, a data in line and a data out line. The device I/O level must of course be compatible with the SMARC Module I/O level. The Winbond W25Q64W is an example of a 1.8V I/O compatible SPI Flash device. The figure below illustrates a socket implementation for a SPI Flash memory.

Figure 34 SPI Flash Socket

8-1.27

Lotes_ACA-SPI-004-T01

SMT

J33

8

7

6

5

4

3

2

11

2

3

4

5

6

7

8

100nF25V

C64

2

1

MOD

MOD

0402

10KOhm

R179

DNI

21

R180

0402

10KOhm

21

V_IO

0402

10KOhm

R181

21

MOD

MOD

DNI

R182

0402

10KOhm

21

SPI0_DO

SPI0_DIN SPI0_CK

SPI0_WP# SPI0_HOLD

SPI0_CS0#

Page 59: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 59 of 126 July 9, 2013 © SGeT e.V.

4.5.3 SPI Device Examples – 1.8V I/O

The table below shows a small sample of the devices available on the market with a 1.8V SPI interface. It is only a sample and is meant to give an idea of the type of devices available. Remember to check the software driver situation before settling on a particular device.

Table 6 SPI Device Examples - 1.8V I/O

Function Device Description Vendor Vendor P/N

ADC 8-channel, 12-bit SAR ADC with temperature sensor

Analog Devices AD7298

DAC Quad, 16-bit nano DAC Analog Devices AD5686R

Flash Memory 64 Mbit SPI Flash memory Winbond W25Q64W

IO Expander 8-bit GPIO expander with integrated level shifters

Exar XRA1404

Motion sensor 3-axis accelerometer ST Micro LIS33DE

Temperature Sensor

Digital thermometer ±2 °C resolution Range - 55°C to +120 °C

Dallas DS1722

Touch Screen Controller

4 wire resistive touch screen controller

Texas Instruments TSC2008-Q1

UART bridge UART with 128 Word FIFOs and support for 9-bit multi-drop mode data filtering

Maxim MAX3108

Page 60: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 60 of 126 July 9, 2013 © SGeT e.V.

4.6 CAN Bus

4.6.1 General

The CAN (“Controller Area Network”) Bus is a differential half duplex data bus used in automotive and industrial settings. A CAN bus uses shielded or unshielded twisted differential pair wiring, terminated in the pair differential impedance of 120 ohms at the endpoints of the bus. Nodes on the bus are arranged in daisy-chain fashion, although stubs of up to 0.3 meters are allowed at each node. The standard allows data rates of up to 1 Mbps, with a maximum bus length of 40 meters at that rate. Various slower rates are defined, along with longer and longer bus lengths allowed as the data rates go down. A bus rate of 250 Kbps is in common use in automotive situations. The two lines in a CAN twisted pair are referred to as CAN_H and CAN_L (for CAN High and CAN Low). There are two bus states on the CAN physical layer: the Dominant state and the Recessive state. In the Dominant state, CAN_L is pulled to GND through an open drain driver and CAN_H is pulled to the CAN Vcc through an open drain driver. In the Recessive state, CAN_L and CAN_H are not actively driven and they are pulled to a voltage of (Vcc / 2) by passive components. Hence the CAN bus is essentially a differential open-drain bus. On the system logic side of a CAN transceiver, the CAN Dominant state is a logic low and the Recessive state a logic high. The CAN protocol has features important to a real time environment:

Nodes are prioritized: CAN nodes are assigned an 11 bit identifier o The lower the ID number, the higher priority

Latency time is guaranteed

Data packets are limited to 8 bytes maximum o Higher level protocols take care of handling large data sets

The bus has Multi-master capability

There are error detection and signaling features

The CAN bus base standard is defined by ISO 11898-1:2003, available for a fee from the ISO (www.iso.org). There are some very helpful CAN application notes from Texas Instruments (a vendor of CAN MAC and transceiver devices) available for free. These include “Introduction to the Controller Area Network (CAN)”, TI document number SLOA101A, and “Controller Area Network Physical Layer Requirements”, document number SLLA270. The original CAN bus protocol definition by Bosch is also freely available on the web (CAN Specification, Version 2.0 © 1991 Robert Bosch GmbH). Various connectors are used in CAN bus implementations. The use of DB-9 connectors is fairly common. The TI application note (SLLA270) referenced above has pin-out information for a couple of common CAN connector implementations.

Page 61: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 61 of 126 July 9, 2013 © SGeT e.V.

4.6.2 SMARC Implementation

The SMARC specification allows for up to two logic level CAN ports. The ports run at the Module I/O voltage (typically 1.8V) and consist of an asynchronous CAN TX line and an RX line from and to the SMARC Module CAN protocol controller. A Carrier based CAN transceiver is required to realize a SMARC system CAN implementation. CAN PHYs are available from Texas Instruments, On Semiconductor, NXP, Freescale, Microchip and numerous other vendors. The logic interface for CAN PHYs is typically suited for 3.3V logic I/O, so level translation is required if the SMARC Module is running 1.8V I/O. Some (but not all) CAN transceivers include an error detect flag output pin. The SMARC specification suggests that SMARC GPIO8 be used for CAN0 error signaling, and GPIO9 for CAN1. Software modifications may be necessary to take advantage of the error signaling. A SMARC Carrier board CAN transceiver implementation is shown below. The connector shown is a small form factor device, suitable for a demonstration board but maybe not suitable for a harsh – environment CAN application. This example shows two 60 ohm terminations (or 120 ohms across the CAN pair). This is appropriate only if the node is an end-point, and intermediate nodes should not be terminated.

Figure 35 CAN Bus Implementation

4.6.3 Isolation

Some Can transceiver application notes show optical isolation between the CAN protocol controller and the CAN transceiver. See, for example, NXP (Philips) application note AN96116 for the PCA82C250 CAN transceiver. They suggest using the 6N137 optical transceivers. Be careful to take into account the I/O levels and current sink / source requirements of the various devices in the chain.

R297

10K

Ohm

0402

21

A&

OA

OZ

8231

D16

CA

V_IO

MOD

V_IO

MOD

R296

10K

Ohm

0402

21

TI SN74AVC2T244DQU6

MicroQFN8

1

2

5 4

8

3A2

VCCB

OE#GND

B2

B1 A1

VCCA

V_IO V_3V3

C81100nF

25V

2

125V

100nFC822

1

V_3V3

TI SN74AVC2T244DQU7

MicroQFN8

1

2 7

6

54

8

3 A2

VCCB

OE# GND

B2

B1A1

VCCA

V_IO

R162

0402

0Ohm

21

V_3V3

25V100nFC832

1

OnSemi NCV7341

SOIC14

U27

14

13

12

11

9

7

6

10

8

5

4

3

2

1TXD

GND

VCC

RXD

VIO

ERR#

VBAT

EN

INH

WAKE

VSPLIT

CANL

CANH

STB#

25V100nFC84 2

1

V_5V0

60.4

R28621

R287

60.4

21

V_5V0

C85

25V100nF

2

1C20347uF16V 2

1

10K

Ohm

R214

0402

21

R215

0402

10K

Ohm

21

R165

0Ohm21

4.7nF50V

C249

2

1

25V100nFC87

2

1

A&

OA

OZ

8231

D17

CA

V_3V3

0Ohm 0402

R163

21

J37Molex 53261-0471

4/1/1x4/1.25SMT

6

5

4

3

2

11

2

3

4

SH1

SH2

MOD

V_5V0

CAN0_RX

CAN0_TX

CAN0_STB#

BUFFER3_OE#

V_5V0_CAN0GPIO8/CAN0_ERR_3V3#

CAN0_1V8_EN

CAN0_WAKE

CAN0_VSPLIT

CAN0_TX_3V3

CAN0_H

CAN0_L

CAN0_RX_3V3

CAN0_EN

CAN0_EN

GPIO8/CAN0_ERR#

Page 62: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 62 of 126 July 9, 2013 © SGeT e.V.

4.7 S/PDIF Interface

S/PDIF, or the “Sony/Philips Digital Interconnect Format”, is a digital audio interface standard supporting consumer and professional applications. A single wire or channel is used in each direction (audio out and in). Digital audio data and clock data are biphase encoded (also known as differential Manchester encoding) such that there are one to two level transitions per bit. This allows the signals to be AC coupled, or used with optical media. Clock recovery is achieved at the receiving end using PLL based clock recovery techniques. S/PDIF is defined in the IEC 60958-3:2006 standard. S/PDIF signals can be transmitted over a 75ohm coaxial cable through RCA connector or to a fiber optic cable by TOSLINK (“Toshiba Link”) optical connector. The S/PDIF supports various data formats and rates. The most common format uses a 48 KHz sampling frequency and uses up to 24bits per sample. Multiple channels (left and right, or quad) are supported on the single link, in successive fields. Alternatively, sampling rates of 32 KHz or 44.1 KHz are sometimes used. In most of the consumer applications stereo audio is carried with a resolution of 20 bits/sample. S/PDIF support on SMARC Modules is an optional feature of the SMARC standard. If supported, the S/PDIF signals are logic level signals at the Module V_IO (usually 1.8V) level. Either a passive component network or an optical transceiver are required on the Carrier, as illustrated below, to make use of S/PDIF.

Figure 36 SPDIF Implementation: Optical

S/PDIF_IN

S/PDIF_OUT

SM

AR

C M

OD

UL

E

3.3V

3.3V

Optical

Receiving

Module

TORX147 (F,T)

Optical

Transmitting

Module

TOTX147(F,T)

Fiber Optic Cable

Fiber Optic Cable

1.8V to 3.3V

Level Translator

3.3V to 1.8V

Level Translator

Figure 37 SPDIF Implementation: Coaxial

S/PDIF_IN

S/PDIF_OUT

RCA

ConnectorCoaxial cable

SM

AR

C M

OD

UL

E

RCA

ConnectorCoaxial Cable

100E

220E100nF

COAX to 1.8V

Logic

Page 63: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 63 of 126 July 9, 2013 © SGeT e.V.

5 HIGH SPEED SERIAL I/O INTERFACES

5.1 USB

5.1.1 General

The USB (Universal Serial Bus) is a hot-pluggable general purpose high speed I/O standard for computer peripherals. The standard defines connector types, cabling, and communication protocols for interconnecting a wide variety of electronic devices. The USB 2.0 Specification defines data transfer rates as high as 480 Mbps (also known as High Speed USB). A USB host bus connector uses 4 pins: a power supply pin (5V), a differential pair (D+ and D- pins) and a ground pin. Additionally a fifth pin, USB ID (mostly used in devices supporting USB-OTG), may also be used which indicates whether the device operates in Host mode or a Client/Device mode. SMARC Modules support up to three independent USB 2.0 busses, designated USB0 to USB 2. Of these, SMARC USB0 can be configured as a host, client or OTG port. OTG operation is optional. SMARC USB1 and USB2 are always hosts. A USB host is usually the “smarter” device – a host computer for example. A USB “client” is usually a peripheral device, such as a camera, printer or mass storage device. USB clients are often based on micro-controllers that include USB client interface hardware. At the time of this writing, USB 3.0 Super Speed (5 Gbps signaling) operation is not supported on standard SMARC Modules. Two USB 3.0 Super Speed channels are mentioned in the SMARC specification as a possible design specific use of the SMARC Alternate Function Block.

5.1.2 USB0 Client / Host Direct From Module

The figure below shows a USB-OTG implementation on the USB0 port terminated on a micro USB Type A/B connector The ESD diodes should be placed close to the connector, and the USB traces routed as differential pairs in “no stub” fashion – the traces should go through the pads of the ESD protection devices, without introducing a stub. If the client device is bus powered, the Carrier can supply 5V, 500mA power to the client device. The Module USB0_EN_OC# signal controls the power switch and current limiter, the Texas Instruments TPS2052, which in turn supplies power to a bus-powered client device. Per the USB specification, bus powered USB 2.0 devices are limited to a maximum of 500 mA. The TPS2052 limits the current and can stand an indefinite short circuit to GND. The current limiting is somewhat imprecise, and kicks in between 500 mA and 1A.

Page 64: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 64 of 126 July 9, 2013 © SGeT e.V.

Figure 38 USB0 Client / Host Direct From Module

040221

0Ohm

R291

MOD

MOD

UMT3 ROHM RJU003N03T106

Q7

3

1

2

Q8

UMT3 ROHM RJU003N03T106

3

1

2

USB_VBUS_OTG

V_3V3

0402

4.7KOhmR1

DNI

21

SO8

TI TPS2052B

U18

5

6

7

8

4

3

2

1GND

IN

EN1

EN2

OC1#

OUT1

OUT2

OC2#

Vishay SI2305CDS-T1-GE3

Q15

SOT233

2

1

10KOhm0402

R174

2 1

Vishay SI2305CDS-T1-GE3

Q16

SOT23

3 2

1

1MEGOhm

R262

0402

21

C1

25V100nF

2

1

4.7uFC191

10V2

1

MOD

FB1

1.2A90mOhm120Ohm

21

MOD

5/1/1x5/0.65RA

J6Molex 0475900001

S4

S3

S2

S1

5

4

3

2

15V

D-

D+

ID

GND

S1

S3

S2

S4

100nFC2

25V2

1

C3100nF25V2

1

V_5V0

VBUS_OTG_PWR

TI TPD2E009

SOT23

D1

3

12

190mOhm

TDK ACM2012-900-2P-T002FB7

2x1.2x1.2

1 4

32

MOD

MOD

USB0_VBUS_DET

USB0_DN

USB0_DP

CARRIER_PWR_ON

USB0_EN_OC#

VBUS_OTG_EN#

VUSB_OTG

OTG_PORT_N

OTG_PORT_P

USB0_OTG_ID

USB0_OC#

Type AB Micro USB, R/A, SMT

Page 65: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 65 of 126 July 9, 2013 © SGeT e.V.

5.1.3 USB1 and USB2 Host Ports Direct from Module

Carrier board implementation of USB host ports from SMARC USB1 and 2 is straightforward. An implementation of a dual USB Type A Host port header is shown in the figure below. The ESD diodes should be placed close to the connector, and the USB traces routed as differential pairs in “no stub” fashion – the traces should go through the pads of the ESD protection devices, without introducing a stub. If the target USB devices are “down” on the Carrier, then much or all of this circuit may be omitted. The SMARC USB pairs are routed directly to the target device. The ferrite choke in the USB lines, the ESD diodes, and the TPS2052 power switch and associated passives may be eliminated. However, in some cases, it is desirable to have the capability to “power cycle” a USB peripheral under software control. If this is the case, it might be desirable to retain the TPS2052 power switch, or a similar device for 3.3V power switching, with the power control function performed by the USB1_EN_OC or USB2_EN_OC, as appropriate.

Figure 39 USB1 and USB2 Host Ports Direct From Module

MOD

21 0402R326

0Ohm

U44

SO8

TI TPS2052B

5

6

7

8

4

3

2

1GND

IN

EN1

EN2

OC1#

OUT1

OUT2

OC2#25V

C289100nF

2

1

50mOhm

1050-8120

L14

1.7A

21

V_5V0

16V47uFC292

2

1

C290

25V100nF

2

1

R323

0402

4.7KOhmDNI

21

V_3V3

0402R325

0Ohm

21

MOD

V_3V3

R324

0402

4.7KOhmDNI

21

C29347uF16V

2

11050-8120

50mOhm

21

1.7A

L15

100nFC291

25V 2

1

THT

TE 5787617-1J48

2PORT

S4

S3

S2

S1

B4

B3

B2

B1

A4

A3

A2

A1VCCA

USBA_N

USBA_P

GNDA

VCCB

USBB_N

USBB_P

GNDB

S1

S2

S3

S4

FB11TDK ACM2012-900-2P-T002

190mOhm

1 4

32

190mOhm

TDK ACM2012-900-2P-T002FB12

1 4

32MOD

MOD

SOT23

D26

TI TPD2E009

3

12

TI TPD2E009

D27

SOT23 3

12

MOD

MOD

USB2_DN

USB2_DP

USB1_DN

USB1_DP

USB_VBUS_A2

USB_VBUS_A2

USB_VBUS_A2_FB

USB2_DP_CONN

USB2_DN_CONN

USB1_DN_CONN

USB1_DP_CONN

USB1_EN_OC

USB_VBUS_A1

USB_VBUS_A1

USB_VBUS_A1_FB

USB1_OC

USB2_OC

USB2_EN_OC

Dual Stacked, Type A USB, R/A, TH

Page 66: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 66 of 126 July 9, 2013 © SGeT e.V.

5.1.4 USB Hub On Carrier

Additional USB ports may be implemented on a SMARC Carrier board using a USB hub to interface with one of the SMARC USB ports (usually USB1 or USB2, saving the SMARC USB0 for possible client or OTG use). The USB 2.0 compliant (and 480 Mbps capable) family of hubs from Microchip / SMSC (www.microchip.com or www.smsc.com) is recommended. Parts with 2,3,4 or 7 downstream ports are available. A Carrier hub implementation example using the 7 port SMSC USB2517i is shown in the two figures below. There are 3 configuration straps on this particular SMSC hub, designated CFG_SEL[2] through CFG_SEL[0]. The options need to be considered carefully. The example schematic has the 2:0 configuration straps set to binary 110, which, per the SMSC data sheet, sets the hub to the following:

SMSC hub defaults in effect

Other strap options disabled

Hub LED pins configured to indicate USB speed

Individual port power switching

Individual port over-current sensing

External EEPROM not used

External I2C interface not used Although the sample schematic shows the external EEPROM and I2C interfaces, they are not used. Note that the “DNI” designation on the schematic stands for “Do Not Install” – i.e. the part is not loaded, in this example. If implementing such a hub (or any piece of configurable silicon), it is wise to keep your options open and have all strap options accessible for re-configuration by option resistors or other means. It may keep you out of trouble and save a board spin. Since the hub operates at 3.3V, the signals from the SMARC Modules that are at 1.8V (RESET_OUT# and the I2C_GP_ signals, if used) levels need to be level shifted to 3.3V to interface to the hub. In this example, there are 7 down-stream ports. Two of them are used for off-Carrier cabled connections. These nets are designated with USB_HUB2_ and USB_HUB3_ prefixes. Since they are used for cabled connections, these are protected by a USB power switch (U19, in the 2

nd figure below). Four of the other

hub ports are assumed to go to on-Carrier destinations (such as mini-PCIe cards, or a touch controller, or other on-Carrier USB peripheral). One of the 7 down-stream ports is not used. The behavior of a USB port, at least initially, may differ slightly depending on whether that port is direct from the SMARC Module or whether the port is through a hub. With software adjustments, or “tweaking”, the direct and through – the –hub ports may appear virtually identical to a client device.

Page 67: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 67 of 126 July 9, 2013 © SGeT e.V.

Figure 40 USB Hub (1 of 2)

C176

2

1

1uF16V

C177

16V1uF

2

1

V_3V3

0402

1MEGOhmR263

21

C189

50V18pF

2

1

V_3V3

0402R27

4.7KOhm

21

0402

1KOhmR60

21

R28

0402

DNI4.7KOhm

21

V_3V3

R264

0402

12KOhm

2 1

V_3V3

0402

4.7KOhm

R292 1

R300402

4.7KOhm

2 1

V_3V3

V_3V3

MOD

0402

0Ohm

R170

2 1

25V

C127100nF

2

1

V_3V3

4.7KOhm

R310402

2 1

V_3V3

R32

0402

4.7KOhm

2 1

V_3V3

V_3V3

R33

4.7KOhm

04022 1

0402

4.7KOhm

R342 1

0402R61DNI

1KOhm

21

R35

0402

4.7KOhm

21

V_3V3

4.7KOhm

0402

R362 1

V_3V3

Y1

24M

EG

Hz

18pFC190

50V2

1

SMSC USB2517I-JZXU16

QFN64

65

19

64

57

52

56

55

54

53

37

14

15

36

38

35

16

17

39

18

31

32

33

34

47

48

49

50

51

30

12

11

20

23

22

26

21

27

28

9

8

7

6

4

3

2

1

46

24

13

10

5

63

62

61

60

59

58

45

44

43

42

41

40

25

29PRTPWR_1

CRFILT

SDA/SMBDATA/NON_REM1

SCL/SMBCLK/CFG_SEL0

HS_IND/CFG_SEL1

RESET_N#

VBUS_DET

SUSP_IND/LOCAL_PWR/NON_REM0

USBDM_UP

USBDP_UP

XTALOUT

XTALIN/CLKIN

PLLFLT

RBIAS

VDD33_5

VDD33_10

CFG_SEL2

VDD33_24

VDD33_46

USBDM_DN1/PRT_DIS_M1

USBDP_DN1/PRT_DIS_P1

USBDM_DN2/PRT_DIS_M2

USBDP_DN2/PRT_DIS_P2

USBDM_DN3/PRT_DIS_M3

USBDP_DN3/PRT_DIS_P3

USBDM_DN4/PRT_DIS_M4

USBDP_DN4/PRT_DIS_P4

OCS_N1#

OCS_N2#

OCS_N4#

PRTPWR_2

OCS_N3#

PRTPWR_3

PRTPWR_4

USBDM_DN5/PRT_DIS_M5

USBDP_DN5/PRT_DIS_P5

PRTPWR_5

LED_A_N1#/PRTSWP1

LED_B_N1#/BOOST0

LED_A_N2#/PRTSWP2

LED_B_N2#/BOOST1

LED_A_N3#/PRTSWP3

LED_B_N3#/GANG_EN

LED_A_N4#/PRTSWP4

LED_B_N4#

LED_A_N5#/PRTSWP5

LED_B_N5#

PRTPWR_6

LED_A_N6#/PRTSWP6

LED_B_N6#

OCS_N5#

OCS_N6#

PRTPWR_7

LED_A_N7#/PRTSWP7

LED_B_N7#

OCS_N7#

USBDM_DN6/PRT_DIS_M6

USBDP_DN6/PRT_DIS_P6

USBDM_DN7/PRT_DIS_M7

USBDP_DN7/PRT_DIS_P7

VDD33_52

VDD33_57

VDD33_64

TEST

GND_PAD

Power

Upstream

Downstream1

Downstream2

Downstream3

Downstream4

EEPROM/Config

Downstream5

Downstream6

Downstream7

Misc

V_IO

0402

DNI

R374.7KOhm

21

TI SN74LVC1T45

SC70-6

U17

2

4

6

5

3

1VCCA

A

DIR

VCCB

B

GND

100nFC187

16V 2

1

V_3V3

4.7KOhm

R380402

2 1

R1710Ohm

0402

DNI

21

DNI

0402R172

0Ohm

21

4.7KOhm

0402R392 1

V_3V3

10KOhm

0402

DNI

R250

21

0402

10KOhmR251

DNI

21

0402

10KOhmR252

DNI

21

0402R253

10KOhmDNI

21

0402R254

10KOhmDNI

21

10KOhmR255

0402

DNI

21

100nFC124

25V 2

1

16V

C188100nF

2

1

V_3V3

100nFC125

25V 2

1

10V4.7uFC201

2

1C128

25V100nF

2

1C129

100nF25V 2

1

100nF25V

C130

2

1C131

25V100nF

2

1

100nF25V

C132

2

1

10V

4.7uFC202

2

1

MOD

MOD

4.7KOhmDNI0

402 R40

21

R62

0402

1KOhm

21

V_3V3 V_3V3

R41

0402

4.7KOhm

21

R63

DNI0402

1KOhm

21

V_3V3

0402

1KOhmR64

21

R424.7KOhm

DNI

0402

21

V_3V3

Atmel AT24HC02

SOIC8

U14

DNI

8

7

6

5

43

2

1A0

A1

A2 GND

SDA

SCL

WP

VCC

C126

25V100nF

DNI2

1

DNI10KOhm0

402 R256

21

V_3V3

USBHUB5_DN_MPCIe1_P

USBHUB5_DN_MPCIe1_N

HUB_RESET#

HUB_RESET#

USB1_DP_HUB

USB1_DN_HUB

OCS_1

USBHUB6_DN_IO2_P

USBHUB1_DN_IO1_N

USBHUB1_DN_IO1_P

USBHUB6_PRTPWR_IO2

USBHUB1_PRTPWR_IO1

USBHUB6_DN_IO2_N

USBHUB5_PRTPWR_MPCIe1

USBHUB4_DN_MPCIe0_N

USB_RBIAS

USBHUB4_PRTPWR_MPCIe0

OCS_5

OCS_7

OCS_6

CFG_SEL2

OCS_4

XTALIN

RESET_OUT#

NON_REM0

USBHUB_ID_A2

USBHUB_ID_A1

USBHUB_ID_A0

VBUS_DET_HUB

USBHUB4_DN_MPCIe0_P

XTALIN2

PLLFILT

CRFILT

SCL_CFG_SEL0

SDA_NON_REM

EEP_WP

I2C_GP_CK_3V3

I2C_GP_DAT_3V3

OCS_2

OCS_3

USBHUB3_DN_TYPEA1_N

USBHUB3_DN_TYPEA1_P

USBHUB2_DN_TYPEA0_P

USBHUB2_DN_TYPEA0_N

USBHUB2_PRTPWR_TYPEA0

USBHUB3_PRTPWR_TYPEA1

CFG_SEL1

Page 68: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 68 of 126 July 9, 2013 © SGeT e.V.

Figure 41 USB Hub (2 of 2)

THT

TE 5787617-1J4

2PORT

S4

S3

S2

S1

B4

B3

B2

B1

A4

A3

A2

A1VCCA

USBA_N

USBA_P

GNDA

VCCB

USBB_N

USBB_P

GNDB

S1

S2

S3

S4

FB8TDK ACM2012-900-2P-T002

190mOhm

1 4

32

190mOhm

TDK ACM2012-900-2P-T002FB9

1 4

32

SOT23

D3

TI TPD2E009

3

12

TI TPD2E009

D2

SOT23 3

12

V_3V3

R44

0402

4.7KOhm

21

R43

0402

4.7KOhm

21

100nF25V

C135

2

1

100nFC134

25V 2

1

25V100nF

C133

2

1

47uF16V

C206

2

1

16V47uFC205

2

1

SO8

U19TI TPS2052B

5

6

7

8

4

3

2

1GND

IN

EN1

EN2

OC1#

OUT1

OUT2

OC2#

V_5V0

1.7A

1050-8120

50mOhm

L12

21

50mOhm1.7A

1050-8120

L1121

USBHUB2_DN_TYPEA0_CONN_N

USBHUB2_DN_TYPEA0_CONN_P

USBHUB3_DN_TYPEA1_CONN_P

USBHUB3_DN_TYPEA1_CONN_N

USBHUB3_VBUS_A1

USBHUB3_VBUS_A1

USBHUB2_VBUS_A0

USBHUB2_VBUS_A0

OCS_2

USBHUB2_VBUS_A0_FB

OCS_3

USBHUB3_VBUS_A1_FB

USBHUB3_DN_TYPEA1_N

USBHUB3_DN_TYPEA1_P

USBHUB2_DN_TYPEA0_P

USBHUB2_DN_TYPEA0_N

USBHUB2_PRTPWR_TYPEA0

USBHUB3_PRTPWR_TYPEA1

Dual Stacked, Type A USB, R/A, TH

Page 69: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 69 of 126 July 9, 2013 © SGeT e.V.

5.2 GBE

5.2.1 GBE Carrier Connector Implementation Example

SMARC Modules include GBE MAC / PHYs but do not include the isolation magnetics. If the SMARC GBE is used, then the Carrier must include GBE compatible magnetics with 1:1 turn ratios. Usually RJ45 jacks with integrated magnetics are used. An example is given in the following figure.

Figure 42 GBE without POE

16V

C1581uF

2

1

100nFC41

25V 2

1

100nFC42

25V 2

1C43

25V100nF

2

1

25V

C44100nF

2

1

100nFC45

25V2

1100nF25V

C46

2

1

1Port

THT

BEL L829-1J1T-43

J29

19

18

14

13

9

8

2

3

5

4

10

11

7

1

6

12

15

17

16COMMON_A

GREEN_K

ORANGE_K

TRCT1

TRCT2

TRCT3

TRCT4

TRD1+

TRD1-

TRD2+

TRD2-

TRD3+

TRD3-

TRD4+

TRD4-

YELLOW_K

YELLOW_A

SH_18

SH_19

R2760402

68Ohm

21

V_3V3

R277

68Ohm0402

21

68OhmR278

040221

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

GBE_MDI3_P

GBE_MDI0_P

GBE_MDI0_N

GBE_MDI1_N

GBE_MDI1_P

GBE_MDI2_N

GBE_MDI2_P

GBE_MDI3_N

GBE_CTREF

GBE_LINK1000_R#

GBE_LINK100_R#

GBE_LINK_ACT# GBE_LINK_ACT_R#

GBE_LINK100#

GBE_LINK1000#

RJ45 with Magnetics, R/A, TH

Page 70: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 70 of 126 July 9, 2013 © SGeT e.V.

5.2.2 GBE Mag-Jack Connector Recommendations

SMARC GBE MAG-Jack (magnetics integrated into an RJ45 jack housing) should meet the following general characteristics:

The turn ratios should be 1:1

An integrated common mode choke should be included

Termination resistors on the primary side (i.e. the Ethernet cable side) should be included

The secondary side transformer center-taps may be tied together or may be brought out separately. If they are brought out separately, they are tied together on the Carrier PCB.

The secondary side center-taps need to be tied to the SMARC GBE_CTREF voltage, with bypass capacitors connected to GND.

Mag-Jacks (and RJ45 jacks in general) are available in tab-up and tab-down configurations. The pin order on the Mag-Jack reverses between the tab-up and tab-down configurations. One of them may work better for your layout than the other (although since only 4 pairs are involved, this may not be a major concern). Tab up is generally more common; tab down parts do exist; most tab down parts target low-profile needs in which part of the Mag-Jack connector height is hidden by a Carrier PCB cutout.

Table 7 Recommended Gigabit Ethernet Connectors with Magnetics

Mfg Mfg P/N Description

Bel Fuse L829-1J1T-43 Tab Up, 1:1 turns ratio, 3 LEDs, 0.950” depth

Pulse JK0-0136NL Tab Up, 1:1 turns ratio, 3 LEDs, 1.30” depth

Tyco 1840437-1 Tab Down, 1:1 turns ratio, 3 LEDs, special low profile feature

Wurth 7499111447 Tab Up, 1:1 turns ratio, 4 LED

Note that POE (Power Over Ethernet) capable jacks are slightly different – they have extra pins to bring the POE power into the system. A GBE POE jack may be used in a non-POE system, but not the other way around. A GBE POE example is given later in this Design Guide.

Page 71: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 71 of 126 July 9, 2013 © SGeT e.V.

5.2.3 GBE LEDs

Mag-Jack LED implementations vary widely. There does not seem to be any common standard, so be aware. The SMARC GBE status LED outputs are open drain outputs that are capable of sinking a minimum of 24 mA. They may be connected directly to the cathode of GBE status LEDs as shown in the following figure. Make sure the resistors can handle the expected power dissipation.

Figure 43 GBE LED Current Sink

68 OHM

68 OHM

V_3V3

MAG JACK

Bel Fuse L829-1J1T-43 or similar

GBE_LINK_100#

GBE_LINK_1000#

Direct from

SMARC Module

GRNORG

68 OHM

V_3V3

GBE_ACT#Direct from

SMARC Module

YEL

Page 72: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 72 of 126 July 9, 2013 © SGeT e.V.

Some integrated GBE Mag Jacks have a pair of opposing (cathode to anode) diodes, as shown in the figure below. In this case, Carrier board buffers are required, as the SMARC Module status LED lines can sink current but can not source it.

Figure 44 GBE LED Current Sink / Source

MAG JACK

Bel Fuse 0826-1X1T-GH-F or similar

GBE_LINK_100#

GBE_LINK_1000#

Direct from

SMARC Module

ORGGRN

68 OHM

V_3V3

GBE_ACT#

YEL

V_3V3

V_3V3

V_3V3

Fairchild

NC7SZ125

Fairchild

NC7SZ125

68 OHM

10

K

10

K

Page 73: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 73 of 126 July 9, 2013 © SGeT e.V.

5.3 PCIe

5.3.1 General

PCI Express (or PCIe) is a scalable, point-to-point serial bus interface commonly used for high speed data exchange between a PCIe host, or root, and a target device. It is scalable in the sense that there may be link widths, per the PCIe specification, that are x1, x2, x4, x8, x16 or x32. SMARC currently calls out only x1 operation. Up to 3 PCIe x1 links may be implemented on a SMARC Module. There are 3 generations of PCIe defined, with each successive generation offering a speed increase, per the table below. The PCIe generation that may be supported on a particular SMARC Module is design and SOC dependent.

Table 8 PCIe Data Transfer Rates

PCIe Generation

Link Speed (x1 link)

Encoding / Overhead

Net Data Transfer Rate

1 2.5 GT/s 8b/10b 20% 250 MB/s

2 5.0 GT/s 8b/10b 20% 500 MB/s

3 8.0 GT/s 128b / 130b 1.54% 985 MB/s

PCI Express is defined in a series of documents maintained by the PCI Special Interest Group (www.pci-sig.org). The three most important documents to obtain are the Base Specification, the Card Electromechanical (CEM) Specification (which describes slot cards) and the Mini Card Electromechanical Specification (which describes the small format cards commonly referred to as Mini-PCIe cards). The three possible PCIe links on a SMARC Module are designated with net name prefixes PCIE_A_, PCIE_B_ and PCIE_C_. Each of the three has the following signal set (x in the table below designates A, B or C).

Table 9 SMARC PCIe Signal Summary

Signal Description Signal Type Notes

PCIE_x_TX+ PCIE_x_TX-

Data out of Module Differential pair Capacitively coupled – on Module

PCIE_x_RX+ PCIE_x_RX-

Data into Module Differential pair Capacitively coupled – off Module

PCIE_x_REFCK+ PCIE_x_REFCK-

Reference clock out of module

Differential pair No caps needed

PCIE_x_CKREQ# Enables PCIE clock if pulled low on Carrier.

Single ended Tie to GND through resistor on Carrier if not used by Carrier PCIe target device.

PCIE_x_RST# Active low output to reset the PCIE_x device

Single ended

PCIE_PRSNT# Input to Module to signal the presence of a Carrier PCIe device

Tie to GND through resistor on Carrier if not used by Carrier PCIe target device.

Page 74: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 74 of 126 July 9, 2013 © SGeT e.V.

5.3.2 PCIe x1 Device Down on Carrier

An example of a PCIe x1 “device down” on the Carrier is shown below. Coupling caps on the SMARC PCIe TX and PCIe reference clock pairs are not needed on the Carrier. Coupling caps on the SMARC PCIe RX pair (TX pair from the Carrier PCIe device) are needed. They should be placed close to the Carrier device PCIe TX pins. Use 0402 package 0.1 uF X7R or X5R dielectric discrete ceramic capacitors. Do not use a capacitor array. Place the parts in a way to preserve the symmetry of the differential pair. Usually they are placed close to the Carrier device TX pins to avoid a via transition.

Figure 45 Interfacing a PCIe x1 Carrier Board Device

SM

AR

C M

OD

UL

E

PCIE_RX+

PCIE_RX-

PCIE_REFCK+

PCIE_REFCK-

PCIE_CKREQ#

PCIE_RST#

PCIE_PRSNT#

PC

Ie d

ev

ice

PCIE_RX+

PCIE_RX-

PCIE_TX+

PCIE_TX-

PCIE_REFCK+

PCIE_REFCK-

PCIE_CKREQ#

PCIE_RST#

PCIE_PRSNT#

PCIE_TX+

PCIE_TX-

10K

Page 75: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 75 of 126 July 9, 2013 © SGeT e.V.

5.3.3 Mini-PCIe

A SMARC Mini-PCIe implementation example is shown below. Mini-PCIe cards are defined to have pins for PCIe x1 and also a USB interface. A given card generally uses only one or the other. If you know exactly what Mini-PCIe card you plan to use, it is possible to omit either USB or PCIe. Generally, Mini-PCIe 802.11 WiFi cards use the PCIe interface and cellular modem cards use the USB interface.

Figure 46 Mini-PCIe Slot

4

3

2

1

J19

ST

Molex 47023-0001

6/2x3/2.54

6

5VCC

RESET

CLK

GND

VPP

IO

100nFC12

25V2

1

25V

C13100nF

2

1

MOD

C14

25V100nF

2

1

C15100nF25V

2

1

25V100nFC16

2

1

25V

C17100nF

2

1

V_3V3

DNI4.7KOhm

0402R2

2 1

25V100nFC18

2

1 C19100nF25V

2

1

V_3V3

DNIR95

0402

0Ohm2 1

MOD

MOD

MOD

MOD

Molex 67910-0002

52/1/2x26/0.80

J20

RA

S2S1

52

50

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

51

49

47

45

43

41

39

37

35

33

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1WAKE#

COEX1

COEX2

CLKREQ#

GND9

REFCLK-

REFCLK+

GND15

RSVD17

RSVD19

GND21

PERN0

PERP0

GND27

GND29

PETN0

PETP0

GND35

GND37

3.3V_AUX_39

3.3V_AUX_41

GND43

RSVD45

RSVD47

RSVD49

RSVD51

3.3V_AUX_2

GND4

1.5V_6

UIM_PWR

UIM_DATA

UIM_CLK

UIM_RST

UIM_VPP

GND18

W_DISABLE#

PERST#

3.3V_AUX_24

GND26

1.5V_28

SMB_CLK

SMB_DATA

GND34

USB_D-

USB_D+

GND40

LED_WWAN#

LED_WLAN#

LED_WPAN#

1.5V_48

GND50

3.3V_AUX_52

S1 S2

6.3V22uFC232

2

1

6.3V

C23322uF

2

1

6.3V

C23422uF

2

1

6.3V

C23522uF

2

1

V_1V5

MOD

MOD

MOD

J22

ST

S4S3

S2S1

S1 S2

S3 S4

Mini_PCIE_latchJ23

ST

DNI

S4S3

S2S1

S1 S2

S3 S4

Mini_PCIE_latch

22uFC236

6.3V2

1

V_3V3

MOD

10uF

2

1

25V

C237C20100nF

25V 2

125V100nFC21

2

1

25V

C23810uF

2

1

R11904020Ohm

2 1MOD

PCIE_A_PRSNT#

PCIE_A_RX_P

PCIE_A_RX_N

PCIE_A_TX_P

PCIE_A_TX_N

PCIE_A_REFCK_N

PCIE_A_REFCK_P

USBHUB5_DN_MPCIe1_P

USBHUB5_DN_MPCIe1_N

PCIE_A_RST#

PCIE_A_CKREQ#

I2C_LCD_CK_3V3

I2C_LCD_DAT_3V3

V_SIM_PWR

V_SIM_PWR

PCIE_WAKE#

V_SIM_VPP

V_SIM_VPPSIM_RST

SIM_RST

SIM_DATA

SIM_DATA

SIM_CLK

SIM_CLK

Full Mini card Latch Half Mini card Latch

From USB Hub

Level translated I2C_LCD bus

Mini-PCIe, R/A, SMT

SIM Card Holder, ST, SMT

Page 76: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 76 of 126 July 9, 2013 © SGeT e.V.

5.4 SATA

5.4.1 General

Serial ATA (or SATA) is a high speed point to point serial interface that connects a host system to a mass storage device such as rotating hard drive, solid state drive or an optical drive. Data and clock are serialized onto a single outbound differential pair and a single inbound pair. Data link rates of 1.5, 3.0 and 6.0 Gbps are defined by the SATA specification. A SATA link is AC coupled, but the coupling capacitors are defined in the SMARC specification to be on the Module, for both SATA transmit and receive pairs.

Table 10 SATA SSD Form Factors

Format Notes

IC (chip level) Smallest form factor. Densities to 64GB.

mSATA MO-300

Small form factor SATA module, defined in the SATA specification (search for “mSATA” in the specification). SLC and MLC versions are generally available. The mSATA form factor is roughly 30mm x 51mm x 3.5mm (see the specification for exact dimensions).

Slim SATA MO-297

Small form factor solid-state SATA modules that use a standard SATA connector (7 pin data / GND section and 15 pin power section). The connector is compatible with the connector used on larger format (2.5”) hard drives used in PC systems. Available in SLC and MLC versions. Form factor is defined by JEDEC MO-297.

CFast Removable card format with SSD interface; similar to popular Compact Flash (parallel interface) cards. Form factor is roughly 36mmx 43mm x 3.6mm.

SSD 1.8” Solid State Disk in traditional 1.8” format that was originally used for rotating drives

SSD 2.5” Solid State Disk in traditional 2.5” format that was originally used for rotating drives

Table 11 SATA SSD Vendors

Vendor Link SATA Products

Greenliant www.greenliant.com Chip-level SLC and MLC NAND flash with SATA interface.

Innodisk www.innodisk.com mSATA / MO-300 Slim SATA / MO-297 CFast SSD 2.5”

Intel www.intel.com mSATA / MO-300 SSD 1.8” SSD 2.5”

SMART Modular www.smartm.com mSATA / MO-300 Slim SATA / MO-297 SSD 1.8” SSD 2.5”

Swissbit www.swissbit.com mSATA / MO-300 Slim SATA / MO-297 CFast SSD 1.8” SSD 2.5”

Transcend www.transcend-info.com mSATA / MO-300 Slim SATA / MO-297 SSD 1.8” SSD 2.5”

Virtium www.virtium.com mSATA / MO-300 Slim SATA / MO-297 SSD 1.8” SSD 2.5”

Page 77: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 77 of 126 July 9, 2013 © SGeT e.V.

5.4.2 mSATA / MO-300

A popular SATA form factor for SMARC systems is the mSATA / JEDEC MO-300. This is physically the same as a mini-PCIe card, and uses the same Carrier socket, but the mini-PCIe pinout is re-purposed for SATA use. A schematic example is shown below. The pin names within the J21 connector box outline below are the mini-PCIe pin names. The net connections outside the box show the appropriate connections for mSATA / MO-300 SATA use. Coupling capacitors are not needed on the Carrier SATA TX and RX pairs. mSATA / MO-300 SATA is described in the Serial ATA Revision 3.1 specification document – search for “mSATA”.

Figure 47 mSATA / MO-300

MOD

R266

0402

100O

hm

21

D9

LTST-C190KGKT

12

MOD

V_3V3

100nFC22

25V2

1

25V100nFC23

2

1C24

25V100nF

2

1

100nFC25

25V2

1

100nF25V

C26

2

1

TP_SMD_35

TP1

52/1/2x26/0.80

Molex 67910-0002

J21

RA

S2S1

52

50

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

51

49

47

45

43

41

39

37

35

33

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1WAKE#

COEX1

COEX2

CLKREQ#

GND9

REFCLK-

REFCLK+

GND15

RSVD17

RSVD19

GND21

PERN0

PERP0

GND27

GND29

PETN0

PETP0

GND35

GND37

3.3V_AUX_39

3.3V_AUX_41

GND43

RSVD45

RSVD47

RSVD49

RSVD51

3.3V_AUX_2

GND4

1.5V_6

UIM_PWR

UIM_DATA

UIM_CLK

UIM_RST

UIM_VPP

GND18

W_DISABLE#

PERST#

3.3V_AUX_24

GND26

1.5V_28

SMB_CLK

SMB_DATA

GND34

USB_D-

USB_D+

GND40

LED_WWAN#

LED_WLAN#

LED_WPAN#

1.5V_48

GND50

3.3V_AUX_52

S1 S2

V_1V5

V_3V3

25V

C27100nF

2

1

25V

C28100nF

2

1

100nFC29

25V2

1

MOD

MOD

ST2/2x1/24.2

J24

S4S3

S2S1

S1 S2

S3 S4

Mini_PCIE_latch

MOD

SATA_TX_P

SATA_RX_P

SATA_RX_N

SATA_TX_N

SATA_ACT#

SATA_PRSNT_DET

Mini-PCIe, R/A, SMT

Page 78: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 78 of 126 July 9, 2013 © SGeT e.V.

6 MEMORY CARD INTERFACES

6.1 SD Card

The SD (Secure Digital) Card is a non volatile memory card format used as mass storage memory in portable devices. The SD standard is maintained by the SD Card Association. SMARC Modules support SD cards over the SMARC SDIO interface. The interface may be used in a 4 bit or 1 bit mode. If used in 1 bit mode, the least significant bit (SDIO0) should be used. Most SMARC Modules offer a SDIO BCT boot and an SDIO OS boot. Since SD cards can (usually) be inserted and removed by the user, it is important to implement ESD protection on all the SD lines.

Figure 48 Micro SD Card Implementation

DNI4.7KOhmR5

0402

21

R64.7KOhm

0402

DNI

21

V_3V3

V_3V3

J26FCI 77311-118-02LF

2/1x2/2.54THT

2

11

2

D6

Semtech RCLAMP0504P

6

4

3

1

7

2

5 V

NC

TAB

D1

D2

D3

D4

0402

10KOhmR176

21

D7

Semtech RCLAMP0504P

6

4

3

1

7

2

5V

NC

TAB

D1

D2

D3

D4

MOD

16V10uFC217

2

1

MOD

MOD

MOD

C33

25V100nF

2

1

V_3V3

BGA6

TI TPS22924C

U2

B1

A1

C1

C2

B2

A2VIN_A2

VIN_B2

ON

GND

VOUT_A1

VOUT_B1

6.3V

C182

470nF

2

116V

C1561uF

2

1

V_3V3

J27

8/1.1mmRA

Molex 503398-0891

14

13

12

11

10

9

8

7

6

5

4

3

2

1DAT2

CD/DAT3

CMD

VDD

CLK

VSS

DAT0

DAT1

C_DETECT

CD_GND

SH_11

SH_12

SH_13

SH_14

MOD

MOD

SDIO_CD#

SDIO_WP

SDIO_D[1]

SDIO_D[0]

SDIO_D[3]

SDIO_D[2]

SDIO_CMD

SDIO_CLK

V_3V3_SDCARD

V_3V3_SDCARD

SDIO_PWR_EN

SDIO_DATA

Vih(min) = 1.2 V

Vil = 0.6V

Micro SD, R/A, SMT

Page 79: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 79 of 126 July 9, 2013 © SGeT e.V.

6.2 eMMC

The eMMC (embedded Multi Media Card) interface is used to connect non-volatile multimedia memory devices to host processor. The eMMC standard is maintained by JEDEC, with the latest revision being JESD84-B451: Embedded MultiMediaCard (eMMC), Electrical Standard (Version 4.51). An eMMC includes a raw MLC NAND flash memory and microcontroller. The eMMC microcontroller performs several functions such as bad block management, wear leveling and error correction code (ECC) internally which significantly reduces the software overhead. SMARC modules support 1 bit, 4 bit and 8 bit modes. The eMMC interface includes a clock line (maximum clock frequency of 26 MHz or 52 MHz for devices supporting High Speed mode), a command line and 8 data lines and an active low reset signal. SMARC Modules may support an eMMC Boot option.

Figure 49 eMMC Flash

eMMC flash devices are typically available in 4GB, 8GB, 16GB and 32GB densities. A selection of vendors and vendor part numbers for a 16GB eMMC flash are given in the following table. All the part numbers shown in this table are pin compatible. The package extents vary slightly between vendors. The package for the part numbers shown are approximately 14mm x 18mm x 1mm.

Table 12 16 GB eMMC Flash options

Mfg Mfg P/N Description Notes

Sandisk SDIN5C2-16G-L 16GB eMMC TFBGA169

Transcend TS16GEMA2-M 16GB eMMC TFBGA169

Micron MTFC16GJVEC-4M IT 16GB eMMC WFBGA169 Industrial Temp: -40 oC to +85

oC

Samsung KLMAG4FE3B-A001 16GB eMMC FBGA169

MOD MOD

MOD

MOD

V_3V3

V_1V8

100nF10V

C276

2

1

10V

C277100nF

2

11uFC268

10V2

1

10V

C2691uF

2

1C278100nF10V

2

1

100nFC279

10V

1

2

100nFC280

10V

1

210V100nFC2811

210V100nFC2821

210V1uFC2701

2

1uFC271

10V

1

2

Sandisk SDIN5D2-16G-L

U43

TFBGA169

K6

W4

Y4

AA3

AA5

T10

U9

M6

N5

K2

R10

U8

M7

P5

AA6

Y5

K4

AA4

Y2

W5

W6

U5

J6

J5

J4

J3

J2

H5

H4

H3DATA[0]

DATA[1]

DATA[2]

DATA[3]

DATA[4]

DATA[5]

DATA[6]

DATA[7]

RST

CLK

CMD

VSSQ5

VSSQ4

VSSQ3

VSSQ2

VSSQ1

VSS4

VSS3

VSS2

VSS1

VDDI

VCC4

VCC3

VCC2

VCC1

VCCQ5

VCCQ4

VCCQ3

VCCQ2

VCCQ1

SDMMC_D7

SDMMC_D6

SDMMC_D5

SDMMC_D4

SDMMC_D3

SDMMC_D2

SDMMC_D1

SDMMC_D0

SDMMC_CLK

SDMMC_CMD

SDMMC_RST#SDMMC_D[7:0]

Page 80: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 80 of 126 July 9, 2013 © SGeT e.V.

7 CAMERA INTERFACES

7.1 General

The SMARC specification allows for serial (MIPI CSI) and parallel cameras to be interfaced to the SMARC Module. The Module camera interface is at V_IO (typically 1.8V) or CSI voltage levels. The same SMARC pin set is used for the serial and parallel interfaces, so some cautions are necessary, as outlined in the SMARC specification document and in this design guide. There are two SMARC pins (PCAM_ON CSI0#, pin S57 and PCAM_ON_CSI1#, pin S58), detailed in the SMARC specification document and referenced below, that distinguish between the serial and parallel formats. A given Module design will generally support either a serial or a parallel camera interface (or maybe no camera interface), but not both. In the long term, it is expected that virtually all interfaces – including camera interfaces – will be serialized. However, as of this writing, in mid 2013, both serial and parallel camera interfaces are in use. In the short term, parallel interfaces may be more popular. There are a number of camera modules available that implement both serial and parallel interface formats on the same device, set by a strap pin.

7.2 Camera Data Interface Formats

There are a wide variety of data formats that are used to convey camera data to a host system. A complete description of these formats is very much beyond the scope of this design guide. Briefly stated, camera data formats may be divided into two groups: “raw” and “processed”. The raw camera data formats need to be adjusted for camera and sensor specific characteristics (non-linearities, sensor pixel quirks, color corrections and so on). Using the raw format requires an additional level of software complexity that is beyond many users. Unless you have a specific need for a particular camera that outputs “raw” sensor data, it is best to stick with cameras that include a processor on the camera module that convert the camera sensor data to a standard format such as RGB or YUV, JPEG or others. The “Bayer” format is one of the numerous raw formats that you may wish to avoid. A variation on the above is that some cameras offer “raw” RGB, meaning that the pixel data is sorted into RGB elements but sensor nonlinearities are not processed in the camera IC.

7.3 Camera and Camera Module Vendors

Table 13 Camera and Camera Module Vendors

Vendor Link Notes

Aptina www.aptina.com

Aptina is a renowned leader in camera sensors but obtaining smaller volumes from them is challenging.

Leopard Imaging www.leopardimaging.com Leopard offers camera modules (on small PCBs) using sensors from Aptina and others

Omni-Vision

www.ovt.com Omni-vision offers camera sensors with output data available in RGB and YUV formats, and over CSI and parallel data paths. Many Omnivision products including the OV3640 (or OV03640) (used in the examples below) are easily available from distributors such as Digikey.

Page 81: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 81 of 126 July 9, 2013 © SGeT e.V.

7.4 Serial Camera Interface Example

The figure below illustrates a CSI implementation on a SMARC Carrier. The OV3640 is a 3.1 Mega-pixel CMOS sensor from Omni-Vision which supports both serial and parallel camera interfaces. Here, the output of the sensor is connected to CSI0 interface of the SMARC Module. I2C_CAM is the control interface used for configuring the sensor. CAM_MCK is the master clock output from the SMARC Module. PCAM_ON_CSI# signal should be left open in SMARC Modules supporting CSI.

Figure 50 Serial Camera Implementation

CSI0_D0_P/PCAM_D12

CSI0_D0_N/PCAM_D13

CSI0_D1_P/PCAM_D14

CSI0_D1_N/PCAM_D15

CSI0_CK_P/PCAM_D10

CSI0_CK_N/PCAM_D11

MIPI CSI

XVCLK

SDA

SCLI2C_CAM_CK

PCAM_ON_CSI0#

CAM_MCK

I2C_CAM_DAT

GPIO0/CAM0_PWR PWDN

MIPI (2 Lanes)

SM

AR

C M

OD

UL

E

OV

36

40

GPIO2/CAM0_RST RESET_B

1.5V

2.8V

1.8V

Page 82: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 82 of 126 July 9, 2013 © SGeT e.V.

7.5 Parallel Camera Interface Example

The following Figure illustrates a SMARC parallel camera implementation. The parallel data bus width is 10 bit in this example (widths up to 16 bits may be possible). The SMARC I2C_CAM port is used for camera control. SMARC Modules that implement a parallel camera interface have the PCAM_ON_CSI# signal on the Module tied to GND. The Carrier should implement a power enable circuit, with a NOR gate and pull-up resistor, per the figure below. This is to prevent the camera from powering up if the SMARC Module has a CSI (serial) interface rather than a parallel interface.

Figure 51 Parallel Camera Implementation

PCAM_D[9:0]

PCAM_PXL_CK0

PCAM_VSYNC

PCAM_HSYNC

PCAM_DE

PCAM_MCK

PCAM_FLD

XVCLK

STROBE

VSYNC

HREF

PCLK

SDA

SCL

I2C_CAM_DAT

I2C_CAM_CK

DATA[9:0]

PCAM_ON_CSI1#PWDN

FREX

GPIO1/CAM1_PWR#

SM

AR

C M

OD

UL

E

RESET_BGPIO3/CAM1_RST#

OV

36

40

PCAM_D[15:10]

100K

1.8V

1.5V

2.8V

1.8V

VDD-D

VDD-A

VDD-IO

1.8V

10K

10K

7.6 Other Camera Options

SMARC systems have the option of using the dedicated SMARC camera interface pin set. For a dedicated system produced in high volume, this is likely to be the most cost effective option. However, other options exist. USB cameras are becoming very popular. They enjoy good software support and are becoming more and more cost effective as time passes. However, the bandwith of a HS USB interface (480 Mbps) is less than what is possible with the SMARC parallel or CSI camera interfaces.

Page 83: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 83 of 126 July 9, 2013 © SGeT e.V.

8 GPIO

8.1 SMARC Module Native GPIO

SMARC Modules support twelve general purpose IO pins: GPIO0 to GPIO11. Each of these can be configured as an input or output pin. The SMARC specification recommends the use of GPIO0 to GPIO5 as outputs and the use of GPIO6 to GPIO11, as inputs. SMARC Modules support only two dedicated GPIOs (GPIO10 and GPIO11). The other ten GPIOs are multiplexed pins supporting functions like Camera Power Enable, Camera Reset, CAN Error input, Tachometer input, PWM output etc. SMARC Modules generally allow the GPIO to be configured to generate an interrupt. GPIO voltage levels depend on the V_IO level supported by the SMARC Modules. It will be either 1.8V (more common) or 3.3V.

8.2 GPIO Expansion

For a low cost, easy way to implement additional GPIO ports, see Section 4.2.5 I2C Based IO Expanders.

Page 84: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 84 of 126 July 9, 2013 © SGeT e.V.

9 ALTERNATE FUNCTION BLOCK

The Alternate Function Block (AFB) is a group of SMARC signals that are set aside for application-specific uses and for future, to-be-determined, SMARC standard use. The SMARC specification details some suggested uses and guidelines for the AFB. The example below shows the AFB signals brought to a mezzanine connector that is suited for high speed single ended and differential pair signals. This connector is the same as the connector used on the Freescale iMX6 “Sabre” reference platform. The pin-out shown here is compatible as well. This may be of some value to iMX6 users.

Figure 52 AFB Connector

100nFC76

25V2

1

100nFC77

25V2

1

25V100nF

C78

2

1

C247

25V1uF

2

1

25V

C23910uF

2

1

16V1uF

C167

2

1 C222

16V10uF

2

1

1uFC168

16V2

1

16V10uFC223

2

1

C224

16V10uF

2

1

16V

C1691uF

2

1

MOD

MOD

0Ohm R14604022 1

0Ohm0402 R1472 1

0Ohm0402 R1482 1

0402 R1490Ohm 2 1

R15004020Ohm 2 1

R15104020Ohm 2 1

0Ohm0402 R1522 1

R15304022 10Ohm

MOD

MOD

0Ohm R15404022 1

R1550Ohm0402

2 1

R1560Ohm0402

2 1

0Ohm R15704022 1

0Ohm0402

R158DNI

2 1

V_3V3

R159

0402

0Ohm2 1

V_IO

0Ohm

0402R160

2 1

0402

R211

10K

Ohm

21

R212

0402

10K

Ohm

21

DiodesInc BSS138DW-7-F

Q1

62

1

Q2

DiodesInc BSS138DW-7-F

62

1

Q1

35

4

V_IO

Q2

35

4

DNI0Ohm

0402

R161

2 1

V_12V0

V_3V3

4.7KOhm0402 R9

21

MOD

V_3V3

V_IO

MOD

25V

C79100nF

2

1

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

40/1/2x20/0.5

Samtec QSH-020-01-L-D-DP-AJ35

SMT

4443

4241

4039

3837

3635

3433

3231

3029

2827

2625

2423

2221

2019

1817

1615

1413

1211

109

87

65

43

211 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

41 42

43 44

10KOhm0402 R2132 1

MOD

I2C_GP_DAT

I2C_GP_CK GPIO5/PWM_OUT

AFB9_PTIO

AFB8_PTIO

AFB5_IN

AFB2_OUT

AFB_DIFF4_N

AFB_DIFF4_P

AFB_DIFF3_N

AFB_DIFF3_P

AFB_DIFF2_N

AFB_DIFF2_P

AFB_DIFF1_N

AFB_DIFF1_P

AFB_DIFF0_N

AFB_DIFF0_P

AFB0_OUT

AFB1_OUT

AFB3_IN

AFB4_IN

AFB6_PTIO

AFB7_PTIO

MLB_12V

MLB_3V3

AFB7_PTIO_R

AFB6_PTIO_R

AFB5_IN_R

AFB4_IN_R

AFB3_IN_R

AFB2_OUT_R

AFB1_OUT_R

AFB0_OUT_R

AFB_DIFF1_N_R

AFB_DIFF1_P_R

AFB_DIFF0_N_R

AFB_DIFF0_P_R

MLB_V_IO

MLB_3V3_2

I2C_GP_CK_3V3

I2C_GP_DAT_3V3

MLB_RST#

Page 85: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 85 of 126 July 9, 2013 © SGeT e.V.

10 CARRIER POWER CIRCUITS

10.1 Power Budgeting

One of the early steps in a SMARC Carrier design is to develop a power budget and a strategy for meeting that budget. All the power rails need to be identified and worst-case current consumptions listed. A spread-sheet is usually developed. The power circuits should be designed to meet the worst case numbers, but the actual system power consumption will usually turn out to be quite a bit less than the total indicated by the total worst case numbers for each individual rail. Once there is an understanding of the amount of power required, a plan can be developed for meeting the requirements. A sample power budget sheet is shown in the table below. This example is hypothetical and serves to illustrate the process. This example assumes that the SMARC Module is to be supplied by a fixed 5V DC source. A variable battery power source would result in a different sheet.

Table 14 Hypothetical Power Budget Example – Part 1

12V Current

5V Current

3.3V Current

1.8V Current

1.5V Current

Power Notes

Display Backlight 0.6A 6.0W

USB 1.5A 7.5W 3 devices

SMARC Module 1.2A 6.0W

Mini PCIe Module 1.0A 1.0A 4.8W

Audio Circuits 0.5A 0.1A 2.7W

Misc. Carrier Circuits 0.5A 0.2A 2.0W

Current Subtotals 0.6A 3.2A 1.5A 0.3A 1.0A

Power Totals 7.2W 16W 5.0W 0.5W 1.5W 29W

The total shown is a worst case value, and power circuits should be designed to handle the worst case. However, experience shows that typical average system power consumptions are significantly less, on the order of 50% of worst case. The total above does not account for power conversion losses. These are added in a later section, when this hypothetical example is continued. Many SMARC Module vendors offer evaluation platforms, and it is worth the time and effort to roughly prototype the target system with available hardware and software. This can validate power estimates and have other benefits, such as allowing performance benchmarks to be carried out before committing to the full system design.

Page 86: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 86 of 126 July 9, 2013 © SGeT e.V.

10.2 Input Power Sources

Table 15 Input Power Source Possibilities

Power Source Voltage Notes

3.3V Fixed 3.3V +/- 5% Possible, but not a common choice, as often there are significant power requirements for USB (5V at up to 500 mA for each external USB 2.0 port) and the display backlight supply (12V at up to 600 mA is common), requiring up (boost) conversion. Some SMARC Modules may not support 3.3V power input.

5V Fixed 5.0V +/- 5% Common choice – allows some of the higher power consuming devices (USB, SMARC Module) to be fed directly without conversion. Other, lower current devices require power conversion.

12V Fixed 12V +/- 5% Allows display backlight to be powered directly, without conversion (if the display backlight accepts 12V). Requires buck conversion of 12V to 5V for Module and for Carrier USB and other functions.

Power “Brick” Various ranges available 6V, 9V, 12V, 14V

Various output levels are available. The voltage regulation from a power brick is often not good, and it is best not to rely on the brick output to feed any circuit that needs to be supplied with a voltage regulated over a relatively tight range. Usually the brick output voltage is down converted and regulated on a Carrier board design.

Battery - Single Level Lithium Ion Cell

3.6V nominal 4.2V fully charged; 3.0V discharged. Most SMARC Modules operate directly from this range (check with your vendor).

Battery – Two Level Lithium Ion Cells

7.2V nominal 8.4V fully charged; 6.0V discharged

Battery – Three Level Lithium Ion Cells

10.8V nominal 12.6V fully charged; 9.0V discharged

Wide Range DC 10V – 30V (Typical)

Wide range input power supply is possible. Note that to handle higher voltages, parts rated for use at the higher voltages must be used.

Power Over Ethernet

48V IEEE802.3af POE standard allows 12.5W load power IEEE802.3at POE standard allows 25.5W load power The POE supply output is transformer isolated from the GBE lines, with 1500V DC isolation. POE supply output voltages are design specific – 24V, 12V and 5V outputs are common.

Automotive 12V nominal (see notes)

When the engine is off, the supply battery voltage is 12V nominal. During engine cranking, the supply can dip to 6V. When the engine is running, the DC level can be up to about 16V, with a 14.4V level being typical. Transients in excess of +/- 100V are common. A user may disconnect the battery and reconnect it with the polarity reversed. All in all, it’s a harsh environment that needs careful attention. A basic strategy is to have an input network with good transient and reverse polarity protection, and then use a rugged switching supply that can handle an input range from 6V to 24V, and deliver a 5V output to the SMARC Carrier.

Page 87: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 87 of 126 July 9, 2013 © SGeT e.V.

10.3 Power Budgeting, Continued – Fixed 5V Power Source

Once a power budget is in hand, a power architecture can be developed. Let’s assume that the input power source is to be 5V fixed, and the power budget per voltage rail is as per the hypothetical example given in Table 14 Hypothetical Power Budget Example above. Next, one has to decide how to realize the various power rails. Here we assume that switch mode power converters are used to create all rails from the 5V source. The efficiency (or inefficiency) of the power converters must be accounted for, as shown in the following table.

Table 16 Hypothetical Power Budget Example – Part 2

Voltage Rail

Current

Power Derived From

Efficiency Assumption

Power From 5V Input

Current From 5V input rail

12V 0.6A 7.2W 5V (Boost) 90% 8W

5V 3.2A 16W 100% 16W

3.3V 1.5A 5.0W 5V (Buck) 90% 5.6W

1.8V 0.3A 0.5W 5V (Buck) 90% 0.6W

1.5V 1A 1.5W 5V (Buck) 90% 1.7W

Total 32W 6.4A

Other factors can make the process a bit more complex than this example. If some power rails are to be created with linear supplies from a higher voltage rail, for example, then the entire current used by the lower rail needs to be added to the current budget of the higher voltage source rail. If the primary source rail varies (such as from a battery) the extremes of the source rail must be taken into account.

Page 88: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 88 of 126 July 9, 2013 © SGeT e.V.

10.4 Fixed 5V DC Power Input Circuit Example

The power entry connector for this fixed 5V power source example is shown in the figure immediately below. There are two paths, given net names V_MOD_IN and V_CARRIER_IN. Both carry 5V in from a single bench supply. The nets are separated to allow separate current (and power) measurements of the SMARC Module and the Carrier board. If this separate measurement capability is not needed, then the separate entries could be combined into a single net.

Figure 53 5V Input Connector

The following figure illustrates a power switch used to hold off most Carrier board circuits from being powered until the Module asserts the “CARRIER_PWR_ON” signal. Some Carrier circuits, such as those involved in power management and those that are in the “Module Power Domain” as defined by the SMARC specification, may be powered whenever the Module has power, before (and after) the assertions of CARRIER_PWR_ON.

Figure 54 5V Carrier Power Switch

25V

C301100nF

2

1C34722uF25V

2

1

4/1/1x4/4.2THT

J52Molex 39303045

4

3

2

11

2

3

4

V_CARRIER_IN

10V

C357

100uF

2

1

25V

C34822uF

2

1

25V

C302100nF

2

1

V_MOD_IN

100uFC358

10V2

1

4 Pin, 0.4mm Pitch, TH

16V1uF

C363

2

1 C3641uF16V

2

1

V_5V0

100nF25V

C361

2

1C362

25V100nF

2

1

50V220pF

C365

21

TI TPS22965

U54

SON8

9

5

8

7

6

3

2

1

4VBIAS

VIN_1

VIN_2

ON

CT

VOUT_7

VOUT_8

GND

T_PAD

V_CARRIER_IN

MODCARRIER_PWR_ON

Note:Rise Time = 475 us

Page 89: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 89 of 126 July 9, 2013 © SGeT e.V.

The following three figures illustrate buck (or step-down) switching converters that create 3.3V, 1.8V and 1.5V from the V_CARRIER_IN 5V power source. Since the power needs on these rails are modest, integrated switchers with internal power FETs are well suited to the job. They are physically small and robust. The parts shown are from Texas Instruments, although similar parts exist from other vendors. The figures show three separate enables for the three supplies, with net name designations V_3V3_EN, V_1V8_EN and V_1V5_EN. Sources for these nets are not shown. These enable pins should be driven to the “enabled” state when signal CARRIER_PWR_ON is high. They could be driven by CARRIER_PWR_ON, or by V_5V0, or by other Carrier circuitry. If the situation demands aggressive power management, it may be desirable to have Carrier I/O circuits that allow the various enables to be brought low if the power rail is not needed. If this is done, the designer should arrange that the enables do not go high before CARRIER_PWR_ON is high. The LEDs and signal FETs on the right side of the three figures are optional. The LED lights up as a status indicator when the power rail (V_3V3, V_1V8 or V_1V5) is up. The FET prevents leakage from the main power rails (V_MOD_IN and V_CARRIER_IN) when the switchers are powered down. Rail V_MOD_IN_LED ties to V_MOD_IN through a removable jumper. Removing the jumper prevents the LEDs from burning power in standby states (and in all states).

Figure 55 3.3V 2A Buck Converter

Figure 56 1.8V Buck Converter

V_MOD_IN_LED

ROHM RJU003N03T106

UMT3

Q22

3

1

2

V_CARRIER_IN

16V10uFC320

2

1

16V10uFC321

2

1

16V10uFC322

2

1

100Ohm 0402R352

21

LT

ST-C

190K

GK

T

D30

12

16V10uFC323

2

1

16V10uFC324

2

1

TI TPS63020U48

15

14

3

5

4

7

6

2

13

1

11

10

9

8

12EN

L1_8

L1_9

VIN_10

VIN_11

VINA

PS/SYNC

GND

L2_6

L2_7

VOUT_4

VOUT_5

FB

PG

PGND

1.5uH4.4A

L18 21

25V100nF

C299

2

1

562KOhm

0603 R362

21

100KOhm0402 R349

21

NXP 1N4148

D35

C A

25V100nFC300

2

1

V_3V30402

10KOhmR344

21

LED_3V3

PG_3V3

BUCKBOOST_3V3_SYS_L1 BUCKBOOST_3V3_SYS_L2

VINA_3V3SYS_BUCK

DIO_3V3_SYS

DIO_3V3_SYS_RC

V_3V3_EN

Vih >= 1.2VVil <= 0.4V

V_MOD_IN_LED

C32510uF16V 2

1

C32622uF6.3V

2

1

50V

C35233pF

2

1

50V100pFC337

2

1

21

0402 R363

604KOhm

232KOhm0402 R364

21

L19

3A10uH

21

V_1V8

SON10

U49

TI TPS62020

11

9

10

5

7

8

4

6

1

3

2VIN_2

VIN_3

EN

MODE

GND

SW_8

SW_7

FB

PGND_10

PGND_9

TH_PAD

LT

ST-C

190K

GK

T

D31

12

100Ohm 0402R353

21

ROHM RJU003N03T106UMT3

Q28

3

1

2

V_CARRIER_IN

GND

LED_1V8

V_1V8_EN

V_1V8_SW

FB_TPS62020

Page 90: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 90 of 126 July 9, 2013 © SGeT e.V.

Figure 57 1.5V Buck Converter

Many LCD backlights require a 12V power source. If the system power source is a fixed 5V supply, or a battery supply well under 12V, then a boost converter circuit is needed. An example is shown here:

Figure 58 12V Boost Converter for Backlight Power

V_MOD_IN_LED

100Ohm 0402R350

21

LT

ST-C

190K

GK

T

D28

12

L16

9.6A1uH

21

25V100nFC295

2

1

R356

0402

2.67KOhm

21

V_1V5

100pF

C336

2

1

20Ohm0402R355

2 1

50V2.2nF

C34021

R357

0402

4.02KOhm

21

R359

0402

57.6KOhm

21

0402

4.02KOhm

R358

21

100nF25V

C296

2

1

50V2.2nF

C341

21

16V1uFC312

2

1

22uF25V

C342

2

1

25V22uFC343

2

1

25V22uFC344

2

1

25V22uFC345

2

1

22uF25V

C346

2

1

V_3V3

TI TPS53310

U46

QFN16

9

10

3

4

7

6

5

17

16

15

11

12

8

2

1

14

13VIN_13

VIN_14

EN

SYNC

PS

VDD

AGND

PGND_15

PGND_16

TH_PAD

SW_5

SW_6

SW_7

VBST

PGD

FB

COMP

V_CARRIER_IN

ROHM RJU003N03T106UMT3

Q20

3

1

2

LED_1V5

TPS53310_FB

V_1V5_EN

PS_R

PG_1V5

TPS53310_COMP

V_1V5_SW

V_CARRIER_IN

0402

0Ohm

R335

21

DNI0Ohm

R336

0402

21

C3562.7nF50V2

1

TI TPS61087DRC

U51

VSON10

11

10

1

2

7

6

5

4

9

8

3 EN

IN

FREQ

AGND

PGND

SW_6

SW_7

FB

COMP

SS

THERM_PAD

0402

154KOhmR368

21

L21

6.8uH

21

DNI 0402R337

0Ohm

21

R338

0Ohm0402

21

R369

040233.2KOhm

21

25V

C3321uF

2

1C349

25V22uF

2

1

0402 R370

17.8KOhm

21

V_CARRIER_IN

100nF25V

C306

2

1

C327

25V10uF

2

1C32810uF25V

2

1

10uFC329

25V2

1C33010uF25V

2

1

V_12V0

Vishay SS23-E3/52T

D38

12

V_12V_FREQ

V_12V_EN

V_12V_FB

TPS61087_COMP

TPS61087_SS

V_12V_SW

Page 91: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 91 of 126 July 9, 2013 © SGeT e.V.

10.5 Power Hot Swap Controller

Hot swap controller circuits can be used to control the system power supply rise time. This may be desirable when plugging circuits in live to low impedance sources, such as a battery. The figure below illustrates a high-side protection controller circuit using TI LM5060. The N-Channel MOSFET isolates the input supply (V_BRD_IN) from rest of the board (V_HTSWP_OUT). The circuit limits the in-rush current and provides a power good signal once the output voltage reaches the input voltage. An option is provided to enable LM5060 (HTSWAP_EN) from a CPLD as well as using a switch / jumper.

Figure 59 Hot Swap Controller

V_BRD_IN

E-Switch 400MSP1R1BLKM7QESW4

2

3

1

SC70

TI SN74AHC1G00U52

3

5

4

2

1

TI LM5060

U53

MSOP10

6

7

8

9

10

5

3

4

2

1SENSE

VIN

UVLO

OVP

EN

GATE

OUT

nPGD

TIMER

GND

R371

0402

3.6KOhm

21

Q27

D S

G

10Ohm 0402R372

21

6.8KOhm

0402 R373

21

10nF50VDNI

C359

2

1

C36068nF16V 2

1

V_HTSWP_OUT

R3

39

0O

hm

0402

21

R374

0402

7.5KOhm

21

50V

C335100nF

2

1

V_BRD_IN

R375

0402

49.9KOhm

21

10K

Ohm

0402

21

R348

V_3V3_PWRUP

V_3V3_PWRUP

R354

04021KOhm

2 1

0402R340 0Ohm

21

FCI 77311-118-02LF

J50

2/1x2/2.54ST

2

11

2

0402

DNI0OhmR341

21D40

12

C307100nF25V

2

1

C308100nF

25V 2

1

R37647KOhm 0

603

21

R37747KOhm 0

603

21

100nF25V

C309

2

1

V_3V3_PWRUP

100nFC310

25V2

1

100nF50V

C479

2

1

V_3V3_PWRUP

C478

25V22uF

2

1

TI LM9036

U76

SOIC8

7

6

5

1

3

2

4

8VIN

NC_4

GND_2

GND_3

VOUT

NC_5

GND_6

GND_7

D39

12

HTSWP_PGD#

HTSWP_EN

PWR_SWITCH_STATE

HTSWP_EN_HOLD#

3V3 Power Up Supply

UVLO : @ 9.3VOVP : @ 33.5 V

SUM40N10-30-E3Vishay/Siliconix

Note :

Page 92: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 92 of 126 July 9, 2013 © SGeT e.V.

10.6 High Voltage LED Supply

Some LCD panels have multiple sets of series LED strings that are to be driven by a high voltage LED supply. Vendors such as TI and Analog Devices provide the ICs for these supplies. A schematic example using a TI / National high voltage LED supply is given below. The LED brightness can be controlled either using PWM control (if the IC VDDIO pin is set LOW) or by I2C (if VDDIO is HIGH). If V_IO is 1.8V, a level translator needs to be used for signals VSYNC and PWM.

Figure 60 LP8545 LED Backlight Power

ROHM RJU003N03T106

Q23

3

1

2

0Ohm0402

R329

2 10Ohm

0402R330

2 1

21L20

15uH

31.6KOhm

0402R365

21

0402

10KOhmR345

21

C303100nF25V

2

1

0402 R346

10KOhm

21

V_IO

V_CARRIER_IN

25V

C304100nF

2

1

0402

10KOhmR347

DNI

21

MOD

V_3V3

0402

R3310Ohm

21

V_IO

V_31V9_BKLT

MOD10uFC353

50V2

1

U45

TI SN74AVC2T244DQ

1

2 7

6

54

8

3 A2

VCCB

OE# GND

B2

B1A1

VCCA

V_IO

Vishay SI2305CDS-T1-GE3

Q26

3

2

1

DNIR3320Ohm 210OhmR333DNI

21

C354

10uF50V

21

1uF25V

C331

2

1

10uF50V

C355

2

1

0402

0Ohm

R33421

V_IO

DiodesInc DFLS230L

D37

CA

50V

C338100pF

2

1

50V

C339100pF

2

1

0603R366

120KOhm

21

25V100nF

C30521

16V1uF

C31321

1KOhm 0402R327

21

R367

0402

470KOhm

21

V_5V0U50National LP8545

25

1

9

15

7

6

22

18

17

16

14

13

12

4

2

11

10

5

3

20

19

8

23

24

21FB

SW

VIN

VDDIO

VSYNC

FILTER

ISET

FSET

SCLK

SDA

PWM

EN

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

VLDO

GD

FAULT

GND_L

GND_S

GND_SW

TH_PAD

I2C_GP_DAT

I2C_GP_CK

LCD_BKLT_EN

LCD_VS

LCD_BKLT_PWM

LCD_VS_3V3

LCD_BKLT_PWM_3V3

BKLT_I2C_SDA_R

BKLT_REF_SEL

BKLT_REF

BUFFER5_OE#

LCD_CA6

LCD_CA5

LCD_CA4

LCD_CA3

BKLT_SW

FSET

LCD_CA2

LCD_CA1

VSYNC

FILTER

BKLT_I2C_SCL_R

ISET

(7-bit format)I2C Address : 0x2C

1 I2C

0 PWM

Logic State Function

Optional

1.25MHz,100mA@33V

Page 93: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 93 of 126 July 9, 2013 © SGeT e.V.

10.7 3.0V to 5.25V Power Input Example

The circuits shown below illustrate buck-boost switching converters that generate 5V and 3.3V from the V_CARRIER_IN power source (3.0V to 5.25V). Since the power needs on these rails are modest, integrated switchers with internal power FETs are well suited to the job. They are physically small and robust. The parts shown are from Texas Instruments, although similar parts exist from other vendors. The figures show separate enables for the 5V and the 3.3V supplies, with net name designations V_5V0_EN and V_3V3_EN. Sources for these nets are not shown. These enable pins should be driven to the “enabled” state when signal CARRIER_PWR_ON is high. They could be driven by CARRIER_PWR_ON, or by V_CARRIER_IN, or by other Carrier circuitry. If the situation demands aggressive power management, it may be desirable to have Carrier I/O circuits that allow the various enables to be brought low if the power rail is not needed. If this is done, the designer should ensure that the enables do not go high before CARRIER_PWR_ON is high.

Figure 61 5V, 2A Buck-Boost Converter

Figure 62 3.3V 2A Buck-Boost Converter

V_MOD_IN_LED

3

1

2

ROHM RJU003N03T106UMT3

Q21

V_CARRIER_IN

C297

25V100nF

2

1C31410uF16V2

1C31510uF16V2

1C31610uF16V2

1C31710uF16V2

1

L17

8.4A3.3uH

21

R360

0402

1.82MEGOhm

21

R343

0402

10KOhm

21

V_5V0

TI TPS63020U47

15

14

3

5

4

7

6

2

13

1

11

10

9

8

12EN

L1_8

L1_9

VIN_10

VIN_11

VINA

PS/SYNC

GND

L2_6

L2_7

VOUT_4

VOUT_5

FB

PG

PGND

D36

NXP 1N4148

C A

R361

0402

200KOhm

21

C298

25V100nF

2

1

C31810uF16V2

1

R328

0402

0OhmDNI

21

C31910uF16V2

1

100Ohm 0402R351

21

LT

ST-C

190K

GK

T

D29

12

LED_5V0V_5V0_EN

DIO_5V0_SYS

DIO_5V0_SYS_RC

BUCKBOOST_5V0_SYS_L2

PG_5V0

BUCKBOOST_5V0_SYS_L1

VINA_5V0_SYS_BUCK

V_MOD_IN_LED

ROHM RJU003N03T106

UMT3

Q22

3

1

2

V_CARRIER_IN

16V10uFC320

2

1

16V10uFC321

2

1

16V10uFC322

2

1

100Ohm 0402R352

21

LT

ST-C

190K

GK

T

D30

12

16V10uFC323

2

1

16V10uFC324

2

1

TI TPS63020U48

15

14

3

5

4

7

6

2

13

1

11

10

9

8

12EN

L1_8

L1_9

VIN_10

VIN_11

VINA

PS/SYNC

GND

L2_6

L2_7

VOUT_4

VOUT_5

FB

PG

PGND

1.5uH4.4A

L18 21

25V100nF

C299

2

1

562KOhm

0603 R362

21

100KOhm0402 R349

21

NXP 1N4148

D35

C A

25V100nFC300

2

1

V_3V3

0402

10KOhmR344

21

LED_3V3

PG_3V3

BUCKBOOST_3V3_SYS_L1 BUCKBOOST_3V3_SYS_L2

VINA_3V3SYS_BUCK

DIO_3V3_SYS

DIO_3V3_SYS_RC

V_3V3_EN

Vih >= 1.2VVil <= 0.4V

Page 94: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 94 of 126 July 9, 2013 © SGeT e.V.

10.8 12V Input

There are many choices for switching power supply circuits to step a 12V input down to lower voltages for SMARC use. An integrated switcher possibility from TI is shown in the following figure.

Figure 63 12V Step Down Switcher

100KOhm0402 R570

21

25V

C579100nF

21

50V

C5841nF

2

1

1.5KOhm

R583

040221

6.8uH13.5A

L2421

R582

3.01Ohm

0402

DNI

21

25V100uFC583

2

1

100uF

2

1

25V

C582

25V100uFC581

2

1

25V

C580100uF

2

1

71.5KOhm0402

R581

21

71KOhm0402

R580

21

10KOhm0402 R579

21

R57810KOhm0

402

21

V_12V0

TI TPS53318U81

QFN22

23

11

10

9

8

7

6

3

18

17

16

15

14

13

12

5

1

4

2

22

21

20

19VDD

MODE

TRIP

RF

EN

VBST

VFB

ROVP

VIN_12

VIN_13

VIN_14

VIN_15

VIN_16

VIN_17

VREG

PGOOD

LL_6

LL_7

LL_8

LL_9

LL_10

LL_11

GND

0402

0Ohm

R573

2 1

R577 619KOhm0402

21

0402200KOhmR575 21

R574 DNI0402

200KOhm

21

21 0402DNIR572

0Ohm

C576

16V1uF

2

1

4.7uF25V

C570

2

1

C578

25V100nF

21

470pF

DNI

C577

50V

2

1

0402

1uFC575

16V

2

1

V_12V0

0402 R571

100KOhm

21

C574

25V

22uF

2

1 C573

25V

22uF

2

1

22uF

25V

C572

2

1

22uF

C571

25V2

1

V_12V0

V_5V0

R5760402

210KOhm21

LL_5V_REG

FB_5V_REG

ROVP_5V_REG

PG_SWITCHER

LL_5V_REG_R2

LL_5V_REG_R1

RF_5V_REG

TRIP_5V_REG

MODE_5V_REG

VREG_5V_REG

VBST_5V_REG VBST_5V_REG_C

Page 95: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 95 of 126 July 9, 2013 © SGeT e.V.

10.9 Wide Range Power Input

In some applications it is desirable to allow for a wide range power input. This is the case in certain industrial and automotive settings. Since SMARC systems operate at low voltages (5V and under, apart from LCD backlight considerations), it is straightforward to implement a wide range buck converter. The figure below shows an example implemented with the Linear Technologies LTC3879. Similar parts are available from other vendors. The Texas Instruments TPS40170 is another part to consider for this application. The TPS40170 allowable input range spans 4.5V to 60V. If you are targeting the higher input ranges, be sure that components exposed to the input voltage are adequately rated for that high voltage.

Figure 64 Wide Range Power Input Switcher

If the load on the Carrier 3.3V is high, it may be worth having a second wide input range switcher per the above figure, configured for the 3.3V output.

V_IN_10-30V

V_IN_10-30V

V_IN_10-30V

C538

4.7uF50V

2

1

10KOhm

R524

0402

2

1

0402 R552

40.2KOhm

2

1

D553

1

C539

50V4.7uF

2

1

50V

C540

4.7uF

2

1

0402

210KOhmR553

2

1

C541

50V4.7uF

2

1

4.7uH

L22

17A

21

LFPAK

Renesas RJK0451DPBQ48

123

5

4

R556

DNI

0402

20KOhm

2

1

20KOhm

R558

04022 1

50V820pFC547

2

1

22uFC549

50V2

1

Renesas RJK0451DPB

Q51

LFPAK

123

5

4

1210

1OhmR560

21

D57

CA

0Ohm0402

R530

21

47pF50V

C556

2

1

10V47uFC557

2

1 C55847uF10V

2

1

47uFC559

10V2

1

1.5KOhm

R562

0402

2

1

25V

C562220nF

2

1

R549

0402

1.82MEGOhm

21

0402R519

100KOhm2 1

C504100nF50V

2

1

V_INTVCC_5V0

V_INTVCC_5V0

10V

C5644.7uF

2

1

C505100nF

50V 2

1

R564

0402

2.2Ohm

21

V_5V0

47uFC560

10V2

1

C522

100nF

21

LT LTC3879

QFN161053-6883

U80

17 13

2

8

16

15

14

12

11

9

6

3

5

4

1

7

10VIN

ION

TRACK/SS

MODE

ITH

VRNG

SGND

RUN

INTVCC

BG

SW

TG

BOOST

VFB

PGOOD

PGNDTH_PAD

47uF

DNI

C561

10V2

1

COG50V

22pFC566

2

1

11KOhm 0402R567

2

1

Note :Route the VFB line away from noise sources,such as the inductor or the SW line.

Note:Place CIN, COUT,MOSFETs,DBand inductor all in one compact area.

Page 96: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 96 of 126 July 9, 2013 © SGeT e.V.

10.10 Power Monitoring

The SMARC specification document defines a VIN_PWR_BAD# input. Its use is optional. If VIN_PWR_BAD# is held low by a Carrier or power supply circuit, the Module assumes that the source power is not ready and does not boot. VIN_PWR_BAD# is typically generated by a power monitor / reset generator IC, such as those shown in the figure below. This figure shows two of them, although this is not really necessary if the Module and the Carrier circuits are powered by a single source and you don’t want to keep them separate.

Figure 65 Power Monitor - Incoming Power

60.4KOhm 0603

R456

21

47KOhm 0603

R455

21

U68

SC70-5

2

1

3

5

4VDD

SENSE

RESET

NC

GND

TPS3803-01

SC70-5

U69

2

1

3

5

4VDD

SENSE

RESET

NC

GND

TPS3803-01

DNI4.7KOhm

0402 R453

21

R4514.7KOhmDNI0

402

21

0603

R45060.4KOhm

21

04020Ohm

R454

2 1

0Ohm

R4520402

2 1

C451100nF25V2

1

25V100nFC450

2

1

V_CARRIER_IN

V_MOD_IN

V_MOD_IN

V_MOD_IN

R457

0603

47KOhm

21

VIN_PWR_BAD

V_CARRIER_SNS

V_MOD_SNS

V_3V0-5V25_PG

V_5V0_DCIN_PG

Page 97: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 97 of 126 July 9, 2013 © SGeT e.V.

10.11 Power Over Ethernet

Power may be delivered to a SMARC system over the Gigabit Ethernet cabling, cohabiting with the GBE data traffic. The 48V DC power is extracted from the isolated GBE cabling by a diode bridge and a specialized transformer isolated switching power supply. POE is defined by the IEEE 802.3af and IEEE 802.3at. standards. The 802.3af payload power is limited to 12.5W and the 802.3at to 25.5W. Many semiconductor vendors offer POE solutions. Designing a POE power supply is a little trickier than designing your average switching supply, as the POE supply is transformer coupled, there are isolation requirements to meet, and some sort of DC isolated feedback mechanism must be incorporated. If your product volume is high, it may be worth the trouble of implementing your own Carrier-down circuit. See Texas Instruments and Micro-Semi for POE IC solutions. Even if you don’t go for the do-it-yourself approach, there are some very instructive Application Notes available from these vendors In many cases it is more straightforward to make use of a POE module, available from various vendors. One attractive POE module line comes from Silver Telecom (www.silvertel.com). IEEE 802.at compliant modules with output voltage options of 24V, 12V or 5V are available. The sample circuit below uses a Silver Tel module with a 12V output. The 12V output can not be fed directly to a SMARC Module – a step down converter would be needed. However, many SMARC systems incorporate LCD displays that utilize 12V backlights – hence the POE output option of 12V may make sense. If not, then the 5V POE output option could be considered (and the 5V POE module output can be fed directly to the SMARC Module). Note that for POE use, a particular type of GBE jack is required, to get access to the DC power coming in over the isolated GBE lines. The example shown here uses a Pulse JXK0-0190NL GBE POE Mag-Jack. Similar parts are available from Bel-Fuse, Tyco and others – but beware of differing PCB footprints.

Page 98: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 98 of 126 July 9, 2013 © SGeT e.V.

Figure 66 GbE with PoE

U58

FAIRCHILD NC7SZ125

SOIC8

GND

IN

OE#

VCC

OUT

V_3V3

D13

Comchip CDBHD2100-G

4

3

2

1

+

-

AC

AC

C2411mFAL12.5x13.52

1

Littelfuse SMAJ58CAD15

Comchip CDBHD2100-G

D14

4

3

2

1

+

-

AC

AC

V_12V0

R273

150O

hm

0402

21

MODR97

0402

0Ohm

21

Silvertel AG9330

PS1

8

5

14

13

10

12

11

9

7

6

4

3

2

1AUX1-

AUX1+

VIN+

NC

VIN-

AUX_DC_7-

-VDC_9

ADJ

+VDC_12

-VDC_10

+VDC_13

AUX_DC+

AT-DET

AUX_DC_8-

Sharp PC817X1NIP0F

U23

PDIP4

3

4

2

1

MOD

0402

R271

1KOhm

21

25V

C34

100nF

2

1

C35

100nF

25V2

1

V_3V3

R272

0402

1KOhm

21

MOD 0402R27468Ohm 21

25V

C36

100nF

2

1

V_3V3

25V

C37

100nF

2

1

25V

C38

100nF

2

1

25V

C39

100nF

2

1

25V

100nFC40

2

1

1uFC157

16V 2

1

MOD

68Ohm

R275

040221

V_3V3

MOD

MOD

MOD

MOD

MOD

MOD

MOD

Pulse JXK0-0190NL

J28

RA20/1PORT

22

2115

16

20

19

18

17

9

7

8

2

1

3

5

6

4

10

12

11

14

13GREEN_A

GREEN_K

MD1+

MDCT1

MD1-

MD2+

MDCT2

MD2-

MD3+

MDCT3

MD3-

MD4+

MDCT4

MD4-

VDC1+

VDC1-

VDC2+

VDC2-

DLED_16

DLED_15 SHIELD_21

SHIELD_22

MOD

MOD

SOIC8

U57

FAIRCHILD NC7SZ125

GND

IN

OE#

VCC

OUT

GBE_MDI3_P

GBE_MDI0_P

GBE_MDI0_N

GBE_MDI1_N

GBE_MDI1_P

GBE_MDI2_N

GBE_MDI2_P

GBE_MDI3_N

GPIO11

V_POE2_N

V_POE2_N

V_POE2_P

V_POE2_P

V_POE1_N

V_POE1_N

V_POE1_P

V_POE1_P

T2P_CLASSIFICATION#

V_POE_IN_P

V_POE_IN_N

GBE_CTREF

GBE_LINK1000_BUF_R#

GBE_LINK_ACT#

GBE_LINK100_BUF#

GBE_LINK1000_BUF#

GBE_LINK_ACT_R#

GBE_LINK100#

GBE_LINK1000#

RJ45 with Magnetics/POE, R/A, TH

Page 99: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 99 of 126 July 9, 2013 © SGeT e.V.

10.12 Li-ION Battery Charger

10.12.1 General

Caution: improper battery charging can be a serious safety hazard. This section serves as a brief introduction to what is involved in designing a battery management system, but it is not enough to go on. Other source materials, from IC companies, battery vendors and the technical literature will be necessary for you to implement a safe and effective system. Lithium Ion batteries have a fully charged cell voltage of 4.2V, nominal cell voltage level of 3.7V, and a depleted voltage of 3.0V. They are used in series combinations and parallel combinations. The voltages for various series combinations are shown in the following table.

Table 17 Lithium- Ion Battery Cell Voltages

Series Cells Nominal Voltage Fully Charged Fully Depleted

1 3.7V 4.2V 3.0V

2 7.4V 8.4V 6.0V

3 11.4V 12.6V 9.0V

4 15.1V 16.8V 12.0V

Battery capacities are measured in Ampere-Hours (AH). A fully charged battery with a 2AH capacity can deliver 2A for 1 hour, or 1A for 2 hours and so on. The capacity is sometimes designated ‘C’ in battery data sheets. Lithium-ion batteries are typically charged in two phases: a constant current portion (for the deeply depleted battery) and a constant voltage portion (when the charging process nears completion). The constant current charging is typically done at a maximum constant current equal to the battery capacity – for example, a 2AH battery is charged at a maximum charging current of 2A. The constant voltage portion is done at the cell fully charged voltage – 4.2V for a single series cell, 8.4V for two series cells, and so on. The battery data sheet and vendor’s application notes should of course be consulted for more specific recommendations that apply to the situation at hand. The battery temperature should be monitored during charging and use. The charging is disabled if the battery temperature exceeds a threshold set by the battery charger implementation.

Page 100: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 100 of 126 July 9, 2013 © SGeT e.V.

10.12.2 Battery Charger Circuit Example

A battery charger implementation is shown in the following four figures. This example uses Texas Instruments / Benchmarq parts. Similar devices are available from Linear Technology, Maxim, Analog Devices and others. The first of the four figures shows the overall charging system in block diagram format. The actual circuit schematics are shown in the three subsequent figures. Caution: many of the component values shown here need to be adjusted to suit the details of the situation at hand – the number of series cells, the battery capacity, the battery thermistor particulars. With reference to the following four figures:

FETs Q40 and Q46 form an analog switch that the charger IC can use to gate power from the external DC adapter into the system. Charger current is sensed through RS1. The FETs are turned off if the charger voltage is too high, too low or if the current draw is excessive.

FET Q47 is turned on by the charger IC to allow battery power to be delivered to the target system.

FET Q47 is off when Q40 and Q46 are on.

The charger IC includes charge pumps to drive the N channel FET gates to a sufficiently high voltage to turn them on.

The charger IC in this example has an internal switch-mode power supply, with internal high side FET, that are used when charging the battery. The external components of this supply are L1 and D53 in the diagrams.

Battery charging current is measured through RS2.

It is important to monitor the battery temperature. Usually an NTC (negative temperature coefficient) thermistor attached to or internal to the battery is used for this. The charger IC has support for the thermistor.

A fuel gauge IC is used to collect information about battery charge levels. The gauge tracks current into and out of the battery, via sense resistor RS3. This sense resistor is in series with the battery GND terminal. The gauge has an I2C interface to the SMARC Module.

There are three status signals from the charger system to the SMARC Module: CHARGING#, BATLOW# and CHARGER_PRSNT#.

Page 101: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 101 of 126 July 9, 2013 © SGeT e.V.

Figure 67 Li-ION Battery Charger - Block Diagram

Battery Charger

DC Adapter

Fuel Gauge

Power Supply

I2C_PM To

SMARC Connector

1/2/3 Cell Li-Ion

or Li-Polymer

Charging

Supply

Adaptor Current

Sense path

Charging Current

Sense path

Bat-Pack

Negative

System

GND

Main Supply Path

Battery Charging

Path

Supply to the IC

Current Sense

Paths

Q40 Q46

Q47

RS1

RS2

L1

D52A

D52B

D53

RS3

Temp Sense path

Battery Temperature

Sense

Page 102: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 102 of 126 July 9, 2013 © SGeT e.V.

Figure 68 Li-ION Battery Charger - Schematic

QFN24

U77TI BQ24171

2

22

1

3

24

25

23

21

20

19

18

1716

15

14

13

12

11

10

9

8

7

6

5

4AVCC

ACN

ACP

CMSRC

ACDRV

STAT

TS

TTC

VREF

ISET

FB

SRN

SRPACSET

OVPSET

BATDRV#

REGN

BTST

PGND_23

AGND

SW_24

PVCC_3

SW_1

PGND_22

PVCC_2

D50

CA

10mOhm

2512

RS2

E2E1

I2I1

0805

3.9Ohm

R544

21

R543

3.9Ohm

0805

21

TI CSD16406Q3Q40

QFN-8

3

5 21

4

R5424.02KOhm0402

21

04024.02KOhm R541 21

R516

0402

100KOhm

21

22.1KOhmR540

0402

21

0402

100KOhmR515

21

0402

32.4KOhmR539

21

R538

0402

243KOhm

21

R514

0402

100KOhm

21 R513

100KOhm0402

21

2.2uFC535

50V2

1

2.2uF50V

C534

DNI2

1

100nF

C515

25V

21

1uF16V

C531

2

1

25V

C5331uF

2

1

C514100nF25V

2

1

C52710uF25V

2

1

25V

C52610uF

2

1

D53

C A

100nF

C513

25V

21

R537

10Ohm

210402

R536

1KOhm

040221

C532

47nF16V

21

1uF

C530

1 2

R512100KOhm0

402

21

D522

3

1

0402 R500

0Ohm

21

R5352.21KOhm0

402

21

25V470nF

C529

2

1

0Ohm

R526

040221

0402R534

6.81KOhm

21

10mOhmRS1

2512 E2E1

I2I1

GND_CHR

GND_CHR

R533

232KOhm0402

21

50V

C5284.7nF

2

1

R532

0402

499K

Ohm

21

0402R525

0Ohm2 1

UMT3

ROHM RJU003N03T106

Q43

3

1

2

25V10uFC525

2

1

10uF25V

C524

2

1

C512

25V100nF

2

1

25V100nFC511

2

1

25V22uFC502

2

1

ROHM RJU003N03T106UMT3

Q42

3

1

2

10KOhm

R5220402 21

C510

100nF25V

21

100nFC509

25V2

1

V_BAT

L1

3.3uH8.4A

21

V_BAT

MOD

V_BAT

0402 R511

100KOhm

21

100KOhmR510

0402

21

100KOhm

0402 R509

21

25V100nFC5082

1

GND_CHR

GND_CHR

GND_CHR

GND_CHR

GND_CHR

SON8

Q47TI CSD25401Q3

3

5

21

4

GND_CHR

GND_CHRGND_CHR

R502

1MEGOhm

040221

GND_CHR

V_BAT_CHARGE_A

R506

0402

100Ohm

21

25V22uFC501

2

1

GND_CHR

LTST-C190KGKT

D51

12

V_CARRIER_IN

V_CARRIER_IN

GND_CHR

Q46TI CSD16406Q3

QFN-8

3

521

4

R501

1MEGOhm

040221

GND_CHR

F1

21POLYFUSE

C503100nF50V2

1

RA3/1Port

J64

KYCON KLDHCX-0202-B

2

3

1 1

3

2

22uFC500

25V 2

1

Q41

ROHM RJU003N03T106

UMT3

3

1

2

BAT1_TS+

V_CHARGER_IN

CHARGING

VDD_AON

VDD_AON

VDD_AON

BQ24171_STAT

CHRG_LED

SRP

OVPSET

BQ_FB

ACN

ACP

ACDRV

CMSRC

ISET

BQ_TTC

AVCC

BATDRV

BTST

REGN

BQ_TS

CHARGER_LED

BQ24171_ACDRV_R

VDD_ACIN_RC

V_SYS_B2B

VSYS_CHGIN

BQ24171_SW

ACSET

VREF_3V3

VREF_3V3

EN_VDD_BAT

SRN

CHG_BAT

BAT_CHG_IN

5A, DC Adaptor

Route Differentially (Kelvin Routing)

LOW: CHARGINGFLOAT: CHARGE_COMPLETE/SLEEP

CHARGER STAT to CPU

Ichg = 0.4V/(20x10mOhm) = 2A

( Charging Current )

HIGH: CHARGE_COMPLETE/SLEEPLOW: CHARGING

No: of Cells Value of ResB

1 (4.2V)

2 (8.4V)

3 (12.6V) 499K

299K

100K

Charging Voltage

5V

12

16 1M

727K

243K

Value of ResA

Feedback Resistor Divider Config.Over Volt. Protection Configuration

Route Differentially(Kelvin Routing)

ResA ResB

Page 103: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 103 of 126 July 9, 2013 © SGeT e.V.

Figure 69 Battery Fuel Gauge

A comparator circuit such as the one shown below may be used to provide an indication to the SMARC Module that the battery charger power source is present. This circuit may be incorporated into some battery charger ICs.

Figure 70 Charger Present Detection

R5270Ohm

210OhmR528

21

V_1V8_LDO

UMT3

Q45

ROHM RJU003N03T106

3

1

2

10K

Ohm

0402

R523

21

C536

25V33nF

2

1

R545100Ohm

1206

21

R546

DNI100Ohm

1206

21

D54

OnS

em

iB

ZX

84C

5V

1LT

1G

31

V_BAT_3V_BAT_2

R547

1206

100OhmDNI

21

GND_BAT

MOD

V_BAT

MOD

R5481.82MEGOhm0

402

21

U79

TI BQ27510-G2

SON12

13

9

12

11

10

5

8

7

6

1

4

32

BI/TOUT

REG25 REGIN

BATVCC

VSS

SRP

SRN

TS

SDA

SCL

BAT_LOW/BAT_GD

TH_PAD

1

47Ohm

0402

R5502

10402

100Ohm

R5072

1

100Ohm0402

R5082

1

6.3V470nFC537

2

1

100nFC517

25V2

25V

C518100nF

2

1

C519

25V100nF

2

1

C520

25V100nF

2

1C521100nF25V

2

1

R551

0402

18.7KOhm

21

2512

RS

310m

Ohm

E2

E1

I2I1

MOD

I2C_PM_DAT

I2C_PM_CK

BAT1_TS+

I2C_PM_CK_FG1

I2C_PM_DAT_FG1

BATLOW

BQ27510_REGIN

BQ27510_VCC

BQ27510_SRN_RS

BQ27510_SRP_RSBQ27510_SRP

BQ27510_TSBQ27510_BI

BQ27510_SRN

BATLOW

(7-bit format)

I2C Address : 0x55

BAT_PACK Negative

100KOhm0402

R518

21

R517100KOhm0

402

21

Q44

3

1

2

OnSemi NCS2200SQ2T2

SC70-5

U78

2

1

5

4

3IN+

IN-

VCC

OUT

VEE

MOD

100KOhm

0402R521

2 1

25V100nF

C516

21R504

0402

1MEGOhm

21

R503

0402

1MEGOhm

21

V_BAT V_CHARGER_IN

V_1V8_LDO

BATTERY_IN

CHARGER_IN

CHARGER_PRSNT

CHARGER_PRSNT

Page 104: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 104 of 126 July 9, 2013 © SGeT e.V.

10.13 V_IO Voltage Switching

The SMARC specification defines V_IO to be either 1.8V or 3.3V. If you want to have a Carrier that can work with either 1.8V or 3.3V I/O, then the circuit below may be used. A Module that is expecting 1.8V I/O will force the VDD_IO_SEL# line low.

Figure 71 V_IO Voltage Switching

21

0402

10KOhm

R342

V_IO

V_CARRIER_IN V_3V3

V_1V8

Vishay SI2305CDS-T1-GE3Q25

SOT23

3

2

1

MOD

C3111uF16V

2

1 C294100nF25V

2

1

ROHM RJU003N03T106UMT3

Q19

3

1

2

SOT23

Q24Vishay SI2305CDS-T1-GE3

3

2

1

VDD_IO_SEL#

VDD_IO_SEL

Page 105: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 105 of 126 July 9, 2013 © SGeT e.V.

11 THERMAL MANAGEMENT

11.1 General

SMARC Modules generally have modest power dissipations, ranging from 2W to 6W for ARM based designs. Often they can be run in a room-temperature environment for debug and demonstration work without any heat-sinking at all – although this is not generally recommended. In a production environment, heat-sinking is usually necessary to keep the Module electronics die temperatures within limits, at the higher operating temperatures.

11.2 Heat Spreaders

Heat spreaders are available from SMARC Module vendors. Their purpose is to present a uniform thermal interface that is the same across various Module designs. A heat spreader is not a full heat sink – the heat spreader top surface is meant to be in contact with a system specific heat sink, such as the wall of an enclosure or other heat sink. The figure below diagrams a typical heat spreader suitable for an 82mm x 50mm SMARC Module. The diagram plan view shows the heat spreader surface that the Module interfaces to. “TIM” is an abbreviation for “Thermal Interface Material” - a thermally conductive, compliant material to bridge the small gap between the heat-spreader surface and the surface of the system SOC. The Module is 82mm x 50mm, but the heat spreader is sized at 82mm x 42mm to allow the Module edge fingers to mate to the Carrier board MXM3-style socket. The heat spreader top, or “far side” surface, is 6mm above the Module PCB surface.

Page 106: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 106 of 126 July 9, 2013 © SGeT e.V.

Figure 72 Heat Spreader Example – 82mm x 50mm Module

Table 18 Heat Spreader Hole Types

Figure Notation Hole / Standoff Type Notes

Holes marked ‘A’ Clearance holes for M2.5 screws; 3mm tall clearance standoffs

These holes coincide with the SMARC mounting holes for 82mm x 50mm Modules

Holes marked ‘B’ Module design specific holes and standoffs X-Y locations of these holes are also Module design specific. The TIM location is design specific.

Holes marked ‘C’ M3 thread in heat spreader These holes allow either a heat sink to be attached to the heat spreader, or they can allow the heat spreader (and the SMARC Module / Carrier assembly) to be secured to an enclosure wall or other heat-sinking structure.

Page 107: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 107 of 126 July 9, 2013 © SGeT e.V.

11.3 Heat Sinks

The figure below shows a heat sink that can be added to the heat spreader described in the figure above. This add-on heat sink attaches to the heat spreader through the ‘C’ holes marked on the heat spreader drawing above. A thermal interface material – thermally conductive paste, grease, or a gap pad – is needed between the heat spreader and the add-on heat sink, on the heat spreader “far” side.

Figure 73 Heat Sink Add-On to Heat Spreader

The best thermal transfer characteristics are usually obtained by a stand-alone heat sink. An example is shown in the following figure. The heat sink is secured to the SMARC Module through two design – specific interior holes (and design specific standoffs) that are straddling the TIM (the TIM in the figure is the square piece of foam that contacts the SMARC SOC). The four corner holes and standoffs coincide with the four SMARC Module holes (for 82mm x 50mm Modules). M2.5 screws pass through the heat-sink corner holes and standoffs, and pass through the SMARC Module, and catch the threads in the corresponding Carrier board hardware. Check with your SMARC Module vendor for the heat sinks that they offer.

Figure 74 Stand-Alone Heat Sink

Page 108: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 108 of 126 July 9, 2013 © SGeT e.V.

11.4 Thermal Resistance Calculations

It is easy to estimate the thermal performance of a SMARC system if you have thermal resistance data from the vendors. The vendor sources can include silicon vendors, SMARC Module and Carrier board vendors and heat sink vendors. Thermal resistance is a simple concept, analogous to Ohm’s law and electrical resistance. Thermal resistance is expressed in degrees Celsius per Watt (

0C/W). If a particular thermal interface has a

thermal resistance of 8 0C/W and the source device dissipates 4W, then there will be a temperature rise

of 8 * 4 = 32 0C across that interface.

Some hypothetical thermal parameters are given in the table below, followed by some sample calculations for various situations. The calculations are just estimates, which can be useful for design guidance. The estimates should be followed up by measurements on physical samples. It may be useful to use thermal CAD simulations as well – after the “back of the envelope” calculations and before building hardware.

Table 19 Hypothetical Thermal Parameters

Parameter Symbol Value (Hypothetical)

Max SOC junction Temperature(Tj) TJ-MAX 90 0C

Thermal Resistance, CPU Junction to ambient (θJA) θJA 12 0C/W

Thermal Resistance, CPU Junction to case (θJC) θJC 0.4 0C/W

TIM interface (CPU to heat spreader or sink) θTM1 0.5 0C/W

Heat Spreader θHS 0.1 0C/W

TIM interface (heat spreader to add-on heat sink) θTM2 0.4 0C/W

Add-on Heat Sink - still air (natural convection) θHS1 4 0C/W

Stand-alone Heat Sink – still air (natural convection) θHS2 3 0C/W

SOC maximum power dissipation WSOC-MAX 5W

Maximum Environmental Temperature TOP-MAX To be calculated

Sample Calculations Using Hypothetical Thermal Parameters

No heat sink at all

TOP-MAX = TJ-MAX – θJA * WSOC-MAX

= 90 – 12 * 5 = 30

0C

Heat Spreader + Add-On Heat Sink

TOP-MAX = TJ-MAX – (θJC + θTM1+ θHS + θTM2+ θHS1) * WSOC-MAX

= 90 – (0.4 + 0.5 + 0.1 + 0.4 + 4 ) * 5 = 63

0C

Heat Spreader + Stand-alone Heat Sink

TOP-MAX = TJ-MAX – (θJC + θTM1+ θHS2) * WSOC-MAX

= 90 – (0.4 + 0.5 + 3 ) * 5 = 70.5

0C

Page 109: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 109 of 126 July 9, 2013 © SGeT e.V.

12 CARRIER PCB DESIGN RULE SUMMARY

12.1 General – PCB Construction Terms

The Table and Figure below serve to define and illustrate some terms used in describing PCB construction and in trace impedances

Table 20 PCB Terms and Symbols

Term / Symbol Definition

Stripline

Outer layer traces routed a fixed distance above an internal plane layer

Asymmetric Microstrip

Inner layer signal traces, mounted a fixed distance to a Primary Reference Plane (H1 or H3 in the figure below) and mounted a larger distance to a Secondary Reference Plane (H2 or H4 in the figure)

H Distance (or “height”) of a trace to the reference plane(s) – H0, H1, H2 etc. in the figure

W The width of the trace. Outer layer traces generally need to be a bit wider than inner layer traces to meet the same impedance. It is best to arrange that all inner layer traces for a given impedance class have the same width.

T The thickness of the trace. Inner layer traces are generally thinner than outer layer traces.

G The gap (or space) between two traces that are part of an edge-coupled differential pair.

P The pitch (or center-to-center distance) between two traces that are part of an edge-coupled differential pair. P = G + W for a given differential pair. A fairly common mistake in PCB design and fabrication is to get the pitch and the gap confused.

Clearance (Not shown in the figure) The distance to “other” traces and features (vias, holes, pours) on the same layer

The dielectric constants of the materials used in the PCB construction

Zo Trace impedance

SE Single Ended – trace that is single ended, not part of a differential pair

DE Differential Ended – trace pair that are used for differential signaling

Page 110: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 110 of 126 July 9, 2013 © SGeT e.V.

Figure 75 PCB Cross Section – Striplines and Asymmetric Microstrips

PLANE

PLANE

Trace Trace

Trace

H1

H2

G

P

W

T

H3

H4

Trace Trace

Trace Trace

H0

Stripline Traces

Asymmetric Microstrip Traces

Trace

L1 - copper

L2 - copper

L3 - copper

L4 - copper

L5 - copper

L6 - copper

Prepreg - Dielectric

Prepreg - Dielectric

Prepreg - Dielectric

Core - Dielectric

Core - Dielectric

12.2 Differential Pair Cautions

Modern high speed interfaces (CSI, GBE, HDMI, LCD LVDS, PCIe, SATA, USB) must be routed as differential pairs over a ground plane. They should be routed as a pair on the same layer (edge-coupled pairs) and not as pairs on different layers (known as broad-side coupled pairs) that follow the same X-Y path. There should be a minimum of layer transitions – ideally, just two (SMARC connector to internal layer, and internal layer to the destination connector or IC). For edge coupled differential pairs, there are several parameters of interest:

Differential impedance: the impedance of the trace pair as seen by a differential driving source.

Single impedance: the impedance of one of the traces in the pair, if it were removed from the pair and driven by a single ended source.

Gap: the inside edge to inside edge spacing between the traces in a differential pair. Labeled ‘G’ in the figure above.

Pitch: the center-to-center distance between the pairs in a differential pair. Labeled ‘P’ in the figure above.

It is fairly common for people to mix up the Gap and the Pitch. Make sure you don’t make this mistake.

Page 111: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 111 of 126 July 9, 2013 © SGeT e.V.

12.3 General Routing Rules and Cautions

High speed differential signals must be routed as differential pairs.

o Keep the pairs symmetrical o Stubs are not allowed o Avoid tight (right angle) bends o Match the pair lengths, on each layer used

Routing with reference to a GND plane is preferred:

o If GND plane referencing is not possible, then routing against a well bypassed power plane will have to suffice.

Do not route over plane splits.

Layer transitions should be minimized. Ideally, there are a maximum of two vias per net: a transition at the SMARC connector to get to an inner layer, and a transition at the destination device, to get to the device pins.

If a layer change is made and the layer change results in a reference plane change, then the two reference planes should be tied together in the same vicinity as the trace layer via. If the two reference planes are at different potentials, then they should be tied together through a “stitching capacitor”. The stitching cap isolates the DC potential between the planes but allows the high speed return currents associated with the trace. If the two reference planes are at the same potential, then they should be tied together with a “stitching via” – a seemingly useless via, except that it allows the high frequency trace return currents to flow between the reference planes. Following this advice results in lower EMI (as “loop area” is reduced) and better signal integrity.

Controlled impedance design must be used:

o All traces have a single ended (SE) impedance. o Differential pair traces have a SE impedance, and the pair has a differential (DE)

impedance. o Recommended SE and DE impedances are given in the following sections of this Design

Guide.

Differential pairs have pair matching requirements (the two traces that make up a pair need to be matched to a certain tolerance). There are also group matching requirements: if more than one pair is needed for the function, then there are group matching requirements as well (for example LVDS[0]+/- needs to match LVDS[1]+/1 and LVDS[2]+/- and so on).

The propagation speed of inner layer traces and outer layer traces is different.

Differential pairs that are part of a common group (for example, the 4 LVDS data pairs in a 24 bit LVDS implementation) should be routed such that each pair in the group has the same per-layer routing length as the others.

Routing on inner layers may reduce EMI. It is said that good EMI characteristics may be obtained by careful outer layer routing as well.

Routing high speed traces across plane splits should be avoided. If it can not be avoided, then stitching caps to bridge the split should be used.

Page 112: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 112 of 126 July 9, 2013 © SGeT e.V.

Cross-talk effects result from traces running in parallel, too close and for too long, either side by side on the same layer, or directly above / beneath each other on adjacent inner layers. For the same layer case, the mitigation is to increase the spacing to other traces. For the adjacent layer case, the traces on the adjacent layers should not run in parallel. Ideally, they are routed orthogonal to each other. If orthogonal routing is not possible, they should be at least 30 degrees off from each other.

IC power pins need to be properly bypassed, as close as possible to the power pin.

12.4 Trace Parameters for High-Speed Differential Interfaces

Routing rules for high speed differential traces are summarized in the table below. Some notes on the table:

The “Max Symbol Rate” in the chart below is not the data transfer rate. It is the maximum transition rate on a single differential pair of the link, including the link encoding overhead.

o For example: 24 bit LCD LVDS is packed into 4 lanes. Including the control bits, there are actually 28 bits packed into the 4 LVDS lanes. There is no encoding overhead in LCD LVDS – it is just raw data – because there is a separate LVDS clock. So the “symbol rate” on an LVDS differential data pair, for a 40 MHz LVD clock, is (28 bits x 40 MHz / 4 lanes) = 280 Mbps.

The “Sym Width” is the width of the pair Symbol, in pS. It is the inverse of the Max Symbol Rate.

o Recall that the propagation speed of a msicro-strip (outer layer) trace signal is about 150 pS / inch, and for a stripline (inner layer) trace signal, about 180 pS / inch.

o The differential pair length mis-match, when expressed in units of time, needs to be small compared to the Symbol Width.

Lengths are shown in mils (thousandths of an inch, or 0.0254 mm). The American convention for the decimal point and comma meaning is used. The 5,000 mil max length is 5.0 inches or 127 mm.

“Pair Match” refers to the length matching of the two parts of the differential pair.

Group Match refers to the length matching of the different pairs in a group.

N/A means “Not Applicable”.

“TX/RX Match” means the length matching between the TX and RX pairs.

Page 113: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 113 of 126 July 9, 2013 © SGeT e.V.

Table 21 High-Speed Differential Trace Parameters

Interface Max Symbol Rate

(approximate) Sym Width (pS)

Zo Diff (ohms)

Zo SE (ohms)

Max Length (mils)

Pair Match (mils)

Group Match (mils)

TX / RX Match (mils)

PCIe 8 Gbps (Gen 3) 5 Gbps (Gen 2) 2.5 Gbps (Gen 1)

125 200 500

92.5 47 5,000 10,000 12,000

< 10 N/A < 2000

SATA 6 Gbps (Gen 3) 3 Gbps (Gen 2) 1.5 Gbps (Gen 1)

167 333 667

92.5 47 4,000 6,000 8,000

< 10 N/A < 2000

HDMI 3.4 Gbps (HDMI 1.3) 1.6 Gbps (HDMI 1.2) 1.6 Gbps (HDMI 1.1) 1.6 Gbps (HDMI 1.0)

294 625 625 625

90 45 5,000 < 10 < 830 N/A

CSI

1 Gbps (CSI-2) 208 Mbps (CSI)

1000 4808

90 45 9,000 < 100 < 100 N/A

LVDS 770 Mbps (24b 110 MHz) 280 Mbps (24b 40 MHz)

1299 3571

100 50 10,000 < 100 < 100 N/A

USB 2.0 480 Mbps (HS) 12 Mbps (FS)

2083 23333

90 45 10,000 < 100 N/A N/A

GBE 25 Mbps N/A 100 50 4,000 < 50 < 1,000 N/A

Reference Plane: GND is preferred Clearance to other traces: 20 mil or more Max Vias: Three maximum; two or less preferred

Page 114: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 114 of 126 July 9, 2013 © SGeT e.V.

12.5 Trace Parameters for Single Ended Interfaces

Table 22 Single Ended Trace Parameters

Interface Zo SE (ohms)

Max Length (mils)

General 50 12,000

SD Card 50 4,000

Page 115: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 115 of 126 July 9, 2013 © SGeT e.V.

12.6 PCB Construction Suggestions

PCB construction suggestions with trace width and gap parameters are given in the following three tables for 4,6 and 8 layer PCBs. These are meant as a starting point. It is wise to plan ahead with your PCB fabricator and get their input. Four layer construction is difficult since the high speed signals should be referenced against a GND plane, and the 4 layer construction offers only a single trace layer that is GND referenced.

Table 23 PCB Construction Example - 4 Layers

Layer Use Layer

Thickness (mils)

Copper (ounces)

Plane Ref

SE 50 Ohm W (mils)

Diff 90 Ohm W / G (mils)

Diff 92.5 Ohm W / G (mils)

Diff 100 Ohm W / G (mils)

SM 0.8

L1 Sig Cu 1.6 0.5 + plating L2 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

Prepreg 2.9

L2 PWR Cu 1.2 1.0

Core

50.0

L3 GND Cu 1.2 1.0

Prepreg 2.9

L4 Sig Cu 1.6 0.5 + plating L3 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

SM 0.8

Finished Thickness: 63.0 mil Impedance tolerance: +/- 10%

Table 24 PCB Construction Example - 6 Layers

Layer Use Layer

Thickness (mils)

Copper (ounces)

Plane Ref

SE 50 Ohm W (mils)

Diff 90 Ohm W / G (mils)

Diff 92.5 Ohm W / G (mils)

Diff 100 Ohm W / G (mils)

SM 0.8

L1 Sig Cu 1.6 0.5 + plating L2 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

Prepreg 2.9

L2 PWR Cu 1.2 1.0

Core 3.0

L3 Sig Cu 0.6 0.5 L2/L5 4.0 4.0 / 6.5 4.0 / 6.5 3.5 / 8.0

Prepreg

42.0

L4 Sig L6 0.6 0.5 L5/L2 4.0 4.0 / 6.5 4.0 / 6.5 3.5 / 8.0

Core 3.0

L5 GND Cu 1.2 1.0

Prepreg 2.9

L6 Sig Cu 1.6 0.5 + plating L5 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

SM 0.8

Finished Thickness: 62.2 mil Impedance tolerance: +/- 10%

Page 116: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 116 of 126 July 9, 2013 © SGeT e.V.

The 8 layer example below shows an 80 mil (2mm) PCB thickness. This is often desirable for Carrier boards, and can be arranged for the 4, 6 or 8 layer versions. The thicker PCB makes for a more rugged system: the stiffness of a sheet of material (PCB or other sheet material) is proportional to the cube of the material thickness. The eight layer construction below offers the advantage of 4 signal layers (L1, L2, L6, L8) that are GND referenced. This is best for high speed signals. This construction also makes power distribution very easy. The Pri/Sec notation in the Plane Ref column below means the following: the plane layer to which the signal is closest is the Primary reference plane. The further plane is the Secondary. If a high speed signal or signal pair changes reference layers (for example, L6 is referenced to L7 and L3 is referenced to L2 - so if you transition from L6 to L3, you are changing reference planes) it is recommended to put in a stitching via or via pair. The stitching vias are single net vias (GND) that tie the two reference planes together (L2 to L6) for the high frequency return signals that are trying to follow the path of the signal traces. You will have better signal integrity and fewer EMI issues if you do this. It is not necessary if reference planes are not being changed (for example, a transition from L1 to L3 keeps both referenced to L2, hence there is no reference plane transition).

Table 25 PCB Construction Example – 8 Layers

Layer Use Layer

Thickness (mils)

Copper (ounces)

Plane Ref Pri/Sec

SE 50 Ohm W (mils)

Diff 90 Ohm W / G (mils)

Diff 92.5 Ohm W / G (mils)

Diff 100 Ohm W / G (mils)

SM 0.8

L1 Sig Cu 1.6 0.5 + plating L2 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

Prepreg 2.9

L2 GND Cu 1.2 1.0

Core 3.0

L3 Sig Cu 0.6 0.5 L2/L4 4.0 4.0 / 6.5 4.0 / 6.5 3.5 / 8.0

Prepreg 10.0

L4 PWR Cu 1.2 1.0

Core

38.0

L5 PWR Cu 1.2 1.0

Prepreg 10.0

L6 Sig Cu 0.6 0.5 L7/L5 4.0 4.0 / 6.5 4.0 / 6.5 3.5 / 8.0

Core 3.0

L7 GND Cu 1.2 1.0

Prepreg 2.9

L8 Sig Cu 1.6 0.5 + plating L7 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

SM 0.8

Finished Thickness: 80.6 mil Impedance tolerance: +/- 10%

Page 117: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 117 of 126 July 9, 2013 © SGeT e.V.

13 BOM FOR SCHEMATIC EXAMPLES

Table 26 BOM For Schematic Examples

QTY Description MFG MPN Ref Designator

SMARC Module Connector

1 Conn REC SMT RA MXM 314 Pin 0.5mm Pitch

LOTES AAA-MXM-008-P03 J1

4 Standoff SMT Reflow Compatible 1.5mm height

PENN Engineering YSMTSO-27142-ET

24 Bit Parallel LCD

1 Conn PLG SMT ST 2x20 1mm Pitch

JST BM40B-SRDS-A-G-TF(LF)(SN)

J49

1 IC SMT Bus Transceiver BGA-96 TEXAS INSTRUMENTS

SN74AVC32T245ZKER U1

Module LVDS

1 Conn REC SMT RA WTB 1x30 1mm pitch

HIROSE DF19G-30P-1H J2

1 IC SMT EEPROM 2K SOIC-8 ATMEL AT24HC02BN-SH-B U13

1 IC SMT Load Switch 2A BGA-6 TEXAS INSTRUMENTS

TPS22924CYZPR U3

1 IC SMT 2 Bit Voltage Translator Unidirectional DRV-8

TEXAS INSTRUMENTS

SN74AVC2T244DQER U9

2 MOSFET Dual N Channel 50V 200mA SOT363-6

DIODES, INC. BSS138DW-7-F Q3, Q4

Dual Channel LVDS

1 FB SMT 120 Ohm 1.2A 90mOhm 0402

TDK MPZ1005S121CT FB6

1 Conn REC SMT RA Bottom 1x40 0.8mm Pitch

JAE FI-NXB40SL-HF10-R3000

J3

1 IC SMT Dual Pixel LVDS Serializer QFN-92

TEXAS INSTRUMENTS

DS90C187LF/NOPB U15

1 IC SMT Load Switch 2A BGA-6 TEXAS INSTRUMENTS

TPS22924CYZPR U4

2 MOSFET Dual N Channel 50V 200mA SOT363-6

DIODES, INC. BSS138DW-7-F Q5, Q6

USB

1 IC SMT EEPROM 2K SOIC-8 ATMEL AT24HC02BN-SH-B U14

1 IC SMT USB2.0 Hub Controller QFN-64

SMSC (now Microchip)

USB2517I-JZX U16

1 IC SMT 1 Bit Bus Transceiver SC70-6

TEXAS INSTRUMENTS

SN74LVC1T45DCKR U17

1 Crystal SMT 24MHz 30/30 ppm 18pF

CALIBER LF10D18F1-24.000MHZ

Y1

1 Conn REC TH RA Dual USB TypeA

FCI 72309-7024BLF J4

Page 118: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 118 of 126 July 9, 2013 © SGeT e.V.

QTY Description MFG MPN Ref Designator

1 IC SMT Power Distribution Switch Dual 500mA SO-8

TEXAS INSTRUMENTS

TPS2052BD U19

2 Diode SMT ESD Dual 8kV 5A 45W SOT-3

TEXAS INSTRUMENTS

TPD2E009DRTR D2, D3

2 FB SMT 90 Ohm 0.4A 190mOhm 2012

TDK ACM2012-900-2P-T002 FB8, FB9

2 FB SMT 30 Ohm 1.7A 50mOhm 0402

TDK MPZ1005S300CT L11, L12

1 IC SMT Power Distribution Switch Dual 500mA SO-8

TEXAS INSTRUMENTS

TPD2E009DRTR D4

1 FB SMT 90 Ohm 0.4A 190mOhm 2012

TDK ACM2012-900-2P-T002 FB10

1 Conn REC TH RA USB Type A TE CONNECTIVITY

292303-4 J5

1 FB SMT 30 Ohm 1.7A 50mOhm 0402

TDK MPZ1005S300CT L13

1 IC SMT Power Distribution Switch Dual 500mA SO-8

TEXAS INSTRUMENTS

TPS2052BD U20

1 Conn REC TH RA Dual USB TypeA

FCI 72309-7024BLF J48

1 IC SMT Power Distribution Switch Dual 500mA SO-8

TEXAS INSTRUMENTS

TPS2052BD U44

2 Diode SMT ESD Dual 8kV 5A 45W SOT-3

TEXAS INSTRUMENTS

TPD2E009DRTR D26, D27

2 FB SMT 90 Ohm 0.4A 190mOhm 2012

TDK ACM2012-900-2P-T002 FB11, FB12

2 FB SMT 30 Ohm 1.7A 50mOhm 0402

TDK MPZ1005S300CT L14, L15

1 Diode SMT ESD Dual 8kV 5A 45W SOT-3

TEXAS INSTRUMENTS

TPD2E009DRTR D1

1 FB SMT 120 Ohm 1.2A 90mOhm 0402

TDK MPZ1005S121CT FB1

1 FB SMT 90 Ohm 0.4A 190mOhm 2012

TDK ACM2012-900-2P-T002 FB7

1 Conn REC SMT RA Micro USB TypeA-B

MOLEX 475900001 J6

1 IC SMT Power Distribution Switch Dual 500mA SO-8

TEXAS INSTRUMENTS

TPS2052BD U18

2 MOSFET SMT P Channel 8V 5.8A SOT23-3

VISHAY SI2305CDS-T1-GE3 Q15, Q16

2 MOSFET SMT N Channel 30V 0.3A UMT3

ROHM RJU003N03T106 Q7, Q8

SATA MO-300

1 LED SMT GREEN CLEAR 2V 30mA

LITE ON LTST-C190KGKT D9

1 Conn SMT REC Mini PCI Exp 2x26 0.8mm Pitch

MOLEX 67910-0002 J21

1 Conn SMT Latch Mini PCI Exp 2x1

MOLEX 48099-4000 J24

Page 119: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 119 of 126 July 9, 2013 © SGeT e.V.

QTY Description MFG MPN Ref Designator

MINI-PCIe

1 Conn SMT ST HINGED SIM 2x3 2.54mm pitch

MOLEX 470230001 J19

1 Conn SMT REC Mini PCI Exp 2x26 0.8mm Pitch

MOLEX 67910-0002 J20

1 Conn SMT Latch Mini PCI Exp 2x1

MOLEX 48099-4000 J22

1 Conn SMT Latch Mini PCI Exp 2x1

MOLEX 48099-4000 J23

HDMI

1 Conn SMT REC RA HDMI Type A 19 Pin 0.5mm Pitch

FCI 10029449-001TLF J25

1 IC SMT HDMI Buffer TSSOP-24 TEXAS INSTRUMENTS

TPD12S016PWR U22

Micro SD

1 Conn TH PLG ST 1x2 2.54mm pitch

FCI 77311-118-02LF J26

1 Conn SMT RA Micro SD Card 8 Pin 1.1 mm Pitch

MOLEX 503398-0891 J27

1 IC SMT Load Switch 2A BGA-6 TEXAS INSTRUMENTS

TPS22924CYZPR U2

2 Diode SMT 4 Channel TVS Array 1.6mm x 1.6mm

SEMTECH RCLAMP0504PATCT D6, D7

RTC Battery

1 Conn SMT CR2032 Battery Holder

RENATA BATTERIES

SMTU2032-LF BT1

1 Diode SMT Schottky 30V 200mA SOD123

VISHAY BAT54W-V-GS08 D12

Intel GBE Controller

1 IC SMT GBE Controller 0.85mm QFN-64

INTEL WGI210AT U55

1 IC SMT 4Mbit SPI Flash 150 mil SOIC-8

SST SST25VF040B-80-4I-SAE

U56

1 Crystal SMT 25MHz 20/50 ppm 18pF

PLETRONICS SM12T2-18-25.000M-20H1LK

Y4

2 MOSFET Dual N Channel 50V 200mA SOT363-6

DIODES, INC. BSS138DW-7-F Q29, Q30

GBE

1 Conn REC TH RA RJ45 with Magnetics and LED

BEL FUSE L829-1J1T-43 J29

GBE with POE

1 Transient Suppressor SMT 58V 400W DO-215AB

ST MICRO SMAJ58CA D15

1 Conn REC TH RA RJ45 1000Base-T with Magnetics LED

PULSE JXK0-0190NL J28

Page 120: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 120 of 126 July 9, 2013 © SGeT e.V.

QTY Description MFG MPN Ref Designator

1 Module TH POE 30W 14 Pin 2.54mm Pitch

SILVERTEL AG9330 PS1

1 IC SMT Optocoupler PDIP-4 SHARP PC817X1NIP0F U23

2 Diode SMT Bridge Rectifier 100V 2A PDIP-4

COMCHIP CDBHD2100-G D13, D14

2 IC SMT Single Buffer Three State SOT23-5

FAIRCHILD NC7SZ125M5X U57, U58

Audio Codec

1 Diode SMT 4 Channel TVS Array 1.6mm x 1.6mm

SEMTECH RCLAMP0504PATCT D8

1 Conn PLG SMT RA Shrouded 1x4 1mm Pitch

JST SM04B-SRSS-TB(LF)(SN)

J30

1 IC SMT Audio Codec QFN-40 WOLFSON MICRO WM8903LGEFK/RV U24

1 OSC SMT 12MHz 50ppm 3.3V QFN-4

ABRACON ASEMB-12.000MHZ-LC-T

Y3

2 FB SMT 120 Ohm 1.2A 90mOhm 0402

TDK MPZ1005S121CT FB4, FB5

2 Conn REC TH RA 3.5mm Audio Single port

CUI SJ-43514 J31, J32

4 Conn PLG SMT RA Shrouded 1x3 1mm Pitch

JST SM03B-SRSS-TB(LF)(SN)

J11, J12, J13, J14

Audio Amplifier

1 IC SMT 2 Bit Voltage Translator Unidirectional DRV-8

TEXAS INSTRUMENTS

SN74AVC2T244DQER U5

2 Conn SMT PLG RA 1A 50V 1x2 1mm Pitch

JST SM02B-SRSS-TB(LF)(SN)

J17, J18

2 IC SMT Speaker Driver 1W Dual mode Class AB/D QFN-16

WOLFSON MICRO WM9001GEFL/R U25, U26

6 FB SMT 30 Ohm 1.7A 50mOhm 0402

TDK MPZ1005S300CT L5, L6, L7, L8, L9, L10

TI Audio Codec and Amplifie

1 Diode SMT 4 Channel TVS Array 1.6mm x 1.6mm

SEMTECH RCLAMP0504PATCT D5

1 Conn REC SMT RA 3.5mm Audio Black 6 Conductor

CUI SJ-43516-SMT J7

1 IC SMT Audio Codec Stereo VQFN-32

TEXAS INSTRUMENTS

TLV320AIC3105IRHBR J8

1 IC SMT 2.8-W/Ch Stereo Class-D Audio Amp QFN-20

TEXAS INSTRUMENTS

TPA2016D2RTJR U21

1 OSC SMT 12MHz 50ppm 3.3V QFN-4

ABRACON ASEMB-12.000MHZ-LC-T

Y2

2 FB SMT 120 Ohm 1.2A 90mOhm 0402

TDK MPZ1005S121CT FB2, FB3

2 Conn SMT PLG RA 1A 50V 1x2 1mm Pitch

JST SM02B-SRSS-TB(LF)(SN)

J15, J16

Page 121: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 121 of 126 July 9, 2013 © SGeT e.V.

QTY Description MFG MPN Ref Designator

2 Conn PLG SMT RA Shrouded 1x3 1mm Pitch

JST SM03B-SRSS-TB(LF)(SN)

J9, J10

4 FB SMT 30 Ohm 1.7A 50mOhm 0402

TDK MPZ1005S300CT L1, L2, L3, L4

eMMC Flash and SPI Flash socket

1 Conn SMT ST SPI Flash socket SOIC-8

LOTES ACA-SPI-004-T02 J33

IC 64 Mbit 1.8V SPI Flash Memory

Winbond W25Q64W

1 IC SMT NAND Flash 16GB TFBGA-169

SANDISK SDIN5D2-16G-L U43

AFB Mezzanine

1 Conn REC SMT ST 2x20 0.5mm Pitch

SAMTEC QSH-020-01-L-D-DP-A J35

2 MOSFET Dual N Channel 50V 200mA SOT363-6

DIODES, INC. BSS138DW-7-F Q1, Q2

CAN Transceivers

1 Conn PLG SMT RA 1x4 1.25mm Pitch

MOLEX 53261-0471 J37

1 IC SMT CAN Transceiver SOIC-14

ON SEMI NCV7341D20G U27

2 Transient Suppressor SMT 6V SOD923

ALPHA & OMEGA SEMI

AOZ8231NI-05L D16, D17

2 IC SMT 2 Bit Voltage Translator Unidirectional DRV-8

TEXAS INSTRUMENTS

SN74AVC2T244DQER U6, U7

1 Conn PLG SMT RA 1x4 1.25mm Pitch

MOLEX 53261-0471 J47

1 IC SMT CAN Transceiver SOIC-14

ON SEMI NCV7341D20G U40

2 Transient Suppressor SMT 6V SOD923

ALPHA & OMEGA SEMICONDUCTOR, INC

AOZ8231NI-05L D18, D19

Serial Ports

2 IC SMT 2 Bit Voltage Translator Unidirectional DRV-8

TEXAS INSTRUMENTS

SN74AVC2T244DQER U37, U38

2 IC SMT RS232 Transceiver QFN-32

TEXAS INSTRUMENTS

TRS3253EIRSMR U35, U36

4 Conn PLG SMT RA Shrouded 1x5 1mm Pitch

JST SM05B-SRSS-TB(LF)(SN)

J39, J40, J41, J42

Camera Mezzanine

1 Conn REC SMT ST 2x30 0.4mm Pitch

HIROSE FX12B-60P-0.4SV J43

I2C Devices

1 IC SMT 2 Bit Voltage Translator MicroPak-8

FAIRCHILD FXMA2102L8X U29

Page 122: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 122 of 126 July 9, 2013 © SGeT e.V.

QTY Description MFG MPN Ref Designator

1 IC SMT Accelerometer/Magnetometer LGA-14

ST MICRO LSM303DLHC U30

1 IC SMT Gyroscope MEMS 3 Axis LGA-16

ST MICRO L3G4200D U31

1 IC SMT Accelerometer 3Axis LGA-14

ST MICRO LIS302DL U32

EEPROMS

3 IC SMT EEPROM 2K SOIC-8 ATMEL AT24HC02BN-SH-B U10, U11, U12

I2C_PM EEPROM

1 IC SMT LDO 500mA SOT23-6 MAXIM MAX1818EUT18+T U39

2 MOSFET Dual N Channel 50V 200mA SOT363-6

DIODES, INC. BSS138DW-7-F Q17, Q18

2 IC SMT EEPROM 32K TSSOP-8 ATMEL AT24C32D-XHM-T U41, U42

IO Expanders

1 IC SMT I2C Expander 8-bit TSSOP-16

TEXAS INSTRUMENTS

TCA9554PWR U34

Miscellaneous

3 Conn TH PLG ST 1x2 2.54mm pitch

FCI 77311-118-02LF J44, J45, J46

3 Switch TH ST Tactile SPST 0.02A 15V

PANASONIC EVQPBC04M SW1, SW2, SW3

6 Diode SMT Schottky 30V 200mA SOT23

NXP BAT54S,215 D20, D21, D22, D23, D24, D25

Power Supply 1

1 Conn PLG TH RA Shrouded 1x4 4.2mm Pitch

MOLEX 39303045 J52

1 Inductor SMT 3.3uH 8.4A 20.81 mOhm 2525

COILCRAFT XAL6030-332MEC L17

1 Inductor SMT 1.5uH 4.4A 15.8 mOhm 1616

COILCRAFT XFL4020-152MEC L18

1 IC SMT Load Switch 6A SON-8 TEXAS INSTRUMENTS

TPS22965DSGR U54

2 LED SMT GREEN CLEAR 2V 30mA

LITE ON LTST-C190KGKT D29, D30

2 Diode SMT Switching 75V 300mA SOD523

FAIRCHILD 1N4148WT D35, D36

2 MOSFET SMT N Channel 30V 0.3A UMT-3

ROHM RJU003N03T106 Q21, Q22

2 IC SMT Buck Boost Adjustable 3A QFN-14

TEXAS INSTRUMENTS

TPS63020DSJR U47, U48

Page 123: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 123 of 126 July 9, 2013 © SGeT e.V.

QTY Description MFG MPN Ref Designator

Power Supply 2

1 LED SMT GREEN CLEAR 2V 30mA

LITE ON LTST-C190KGKT D31

1 Diode SMT Schottky 30V 2A PowerDI 123

DIODES, INC. DFLS230L-7 D37

1 Diode SMT Schottky 30V 2A DO-214AA

VISHAY SS23-E3/52T D38

1 Inductor SMT 10uH 3A 105 mOhm 2525

VISHAY IHLP2525CZER100M01 L19

1 Inductor SMT 15uH 6A 40.9 mOhm 4040

VISHAY IHLP4040DZER150M11 L20

1 Inductor SMT 6.8uH 13A 8.98 mOhm 12.1x11.4mm

WUERTH ELEKTRONIK

7443320680 L21

1 MOSFET SMT P Channel 8V 5.8A SOT23-3

VISHAY SI2305CDS-T1-GE3 Q26

1 IC SMT 2 Bit Voltage Translator Unidirectional DRV-8

TEXAS INSTRUMENTS

SN74AVC2T244DQER U45

1 IC SMT Buck Regulator Adjustable 600mA SON-10

TEXAS INSTRUMENTS

TPS62020DRCR U49

1 IC SMT LED Backlight Driver WQFN-24

NATIONAL SEMICONDUCTOR

LP8545SQX/NOPB U50

1 IC SMT Boost Regulator Adjustable 3.2A VSON-10

TEXAS INSTRUMENTS

TPS61087DRC U51

2 MOSFET SMT N Channel 30V 0.3A UMT-3

ROHM RJU003N03T106 Q23, Q28

Power Supply 3

1 LED SMT GREEN CLEAR 2V 30mA

LITE ON LTST-C190KGKT D28

1 Inductor SMT 1uH 9.6A 14.6 mOhm 1616

COILCRAFT XAL4020-102MEC L16

1 IC SMT Buck Regulator Adjustable 3A QFN-16

TEXAS INSTRUMENTS

TPS53310RGTR U46

2 MOSFET SMT N Channel 30V 0.3AUMT-3

ROHM RJU003N03T106 Q19, Q20

2 MOSFET SMT P Channel 8V 5.8A SOT23-3

VISHAY SI2305CDS-T1-GE3 Q24, Q25

Optional Power connector with filtering and Optional Hot swap Controller

1 Transient suppressor SMT 40.2V 600W DO-214AA

VISHAY P6SMB47CA-E3/52 D32

1 FB SMT 96 Ohm 10A 4mOhm 3312

WUERTH ELEKTRONIK

74279225101 FB13

1 Choke SMT Common Mode170 Ohm 20A 10x8.5mm

LAIRD CM3440Z171R-10 I1

1 Conn TH PLG ST 1x2 2.54mm pitch

FCI 77311-118-02LF J50

1 Conn PLG TH RA 1x3 3.81mm TE CONNECTIVITY

284541-3 J51

Page 124: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 124 of 126 July 9, 2013 © SGeT e.V.

QTY Description MFG MPN Ref Designator

1 MOSFET SMT N Channel 100V 40A TO-263

VISHAY SUM40N10-30-E3 Q27

1 Switch TH RA Rocker SPDT 3A 28V

E-SWITCH 400MSP1R1BLKM7QE SW4

1 IC SMT 2 input positive NAND Gate SC70-5

TEXAS INSTRUMENTS

SN74AHC1G00DCKR U52

1 IC SMT Hot Swap Controller MSOP-10

TEXAS INSTRUMENTS

LM5060MM/NOPB U53

2 Diode SMT Schottky 40V 5A SMC ON SEMI MBRS540T3G D33, D34

2 Diode SMT Zener 3.3V 250mA 225mW SOT23-3

ON SEMI BZX84C3V3LT1G D39, D40

1 IC LDO 3.3V 50mA SOIC8 TEXAS INSTRUMENTS

LM9036MX-3.3 U76

High Speed Serial Port

1 IC Logic CMOS XOR-GATE SOT353-5

FAIRCHILD NC7SZ86P5X U72

1 Conn Plug1X6 SMT RA 1mm Pitch

JST SM06B-SRSS-TB(LF)(SN)

J61

1 Conn Plug1X5 SMT RA 1mm Pitch

JST SM05B-SRSS-TB(LF)(SN)

J60

1 IC RS232 SMT TSSOP-20 MAXIM MAX13235EEUP+ U70

1 IC RS485 SMT TSSOP-24 MAXIM MAX13451EAUD+ U71

1 Conn Plug 2x2 SMT RA 2.54mm Pitch

3M 961204-6300-AR-TP J62

Touch Controller and I2S Isolation Logic

2 IC Level Shifter SMT SOT553 TEXAS INSTRUMENTS

SN74AVC1T45DRLR U73 U74

2 MOSFET NMOS 50V 200mA SOT363

DIODES INC. BSS138DW-7-F Q31 Q32

Page 125: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 125 of 126 July 9, 2013 © SGeT e.V.

QTY Description MFG MPN Ref Designator

1 Conn Socket 1x10 SMT RA 1.25mm Pitch

MOLEX 53261-1071 J63

1 IC Level Shifter SMT SOT553 MicroPak8

FAIRCHILD FXMA2102L8X U75

Touch Controller and I2S Isolation Logic

2 IC Level Shifter SMT SOT553 TEXAS INSTRUMENTS

SN74AVC1T45DRLR U73 U74

2 MOSFET NMOS 50V 200mA SOT363

DIODES INC. BSS138DW-7-F Q31 Q32

1 Conn Socket 1x10 SMT RA 1.25mm Pitch

MOLEX 53261-1071 J63

1 IC Level Shifter SMT SOT553 MicroPak8

FAIRCHILD FXMA2102L8X U75

Battery Charger and Fuel Gauge

2 Sense Resistor 10mOhm 1% 1W SMT 2512

VISHAY WSL2512R0100FEA RS1 RS2

2 MOSFET NMOS 25V 60A QFN8 TEXAS INSTRUMENTS

CSD16406Q3 Q40 Q46

1 Diode Schottky 70V 70mA SMT SOT23

ST MICRO BAS70-05FILM D52

1 IC Battery Charger SMT QFN24 TEXAS INSTRUMENTS

BQ24171RGYR U77

4 MOSFET NMOS 30V 0.3A UMT3 ROHM RJU003N03T106 Q41 Q42 Q43 Q44

1 MOSFET PMOS 20V 14A SON8 TEXAS INSTRUMENTS

CSD25401Q3 Q47

1 IC Comparator SMT SC70-5 ON SEMI NCS2200SQ2T2G U78

1 Polyfuse 2.6A 16V SMT 1812 BEL FUSE 0ZCC0260BF2B F1

Page 126: SMARC Design Guide - SGET

SMARC Design Guide V1.0 Page 126 of 126 July 9, 2013 © SGeT e.V.

QTY Description MFG MPN Ref Designator

1 Conn DC Jack 2.5mm 3 Pin THT KYCON KLDHCX-0202-B J64

1 Sense Resistor 10mOhm 1% 1W SMT 2512

VISHAY WSL2512R0100FEA RS3

1 IC Fuel Gauge SMT SON12 TEXAS INSTRUMENTS

BQ27510DRZR-G2 U79

1 MOSFET NMOS 30V 0.3A UMT3 ROHM RJU003N03T106 Q45

High Voltage Power Spplies

2 Diode Schottky 40V 350mA SMT SOD323

DIODES INC. SD103AWS-7-F D56 D57

1 Diode Zener 5.1V 50mA SMT SOT23-5

ON SEMI BZX84C5V1LT1G D55

1 IC Switching Regulator 1.5-22V 8A SMT QFN22

TEXAS INSTRUMENTS

TPS53318DQPT U81

2 IC Regulator Adjustable 25A SMT QFN16

LINEAR TECHNOLOGY

LTC3879IUD#PBF U80 U81

4 MOSFET NMOS 40V 35A SON8 LFPAK5

RENESAS RJK0451DPB-00-J5 Q48 Q49 Q50 Q51