solution 104 9

3
MATH 104- 06: INTRODUCTION TO ANAL YSIS SOLUTION 9 (1) P279, 32.2 Proof.  (a) For partition  P  =  {0 =  t 0  < t 1  < t 2  <  ···  < t n  =  b}  of [0, b], we compute the upper and lower Darboux sum of  P . Since  M (f, [t k1 , t k ]) =  t k  and m(f, [t k1 , t k ]) = 0, we have U (f, P ) = n k=1 M (f, [t k1 , t k ]) · (t k  − t k1 ) = n k=1 t k  · (t k  − t k1 ) and L(f, P ) = n k=1 m(f, [t k1 ,t k ]) · (t k  − t k1 ) = n k=1 0 · (t k  − t k1 ) = 0. Since  U (f, P )  > n k=1 t k +t k1 2  · (t k  − t k1 ) =   n k=1 t 2 k t 2 k1 2  =  t 2 n t 2 0 2  =  b 2 2  for any partition  P , so we have that the upper Darboux integral  U (f )  ≥  b 2 2  . Actua lly, for the decomposition given by  t k  =  kb n  , we have  U (f, P ) =   n k=1 t k  ·  ( t k  − t k1 ) = n k=1 kb n  ·  b n  =  b 2 n 2 n k=1 k  =  b 2 (n+1) 2n  , wh ich goes t o  b 2 2  when  n  goes to innity, so the Darboux integral  U (f ) equals  b 2 2  . For the lower Darboux integral, since each partition has lower Darboux integral equals 0, we have the lower Darboux integral  L(f ) equals 0. (b) Since  U (f ) =  b 2 2  and  L(f ) = 0 which are not equal to each other, so  f  is not integrable on [0, b].   (2) P280, 32.7 Proof.  We can rst suppose that  f  and  g  only dier by one point  x 0   [ a, b], then the proof for the general case follows by induction. Since  f  is integrable on [ a, b],  f  is bounded on [ a, b], so there exists M > 0 such that  | f (x)|  < M  for any  x ∈  [ a, b]. Since  g  only diers from  f  at one point, we can also enlarge  M  such that  | g(x)|  < M  also holds for any  x ∈  [ a, b]. For any  ǫ >  0, since  f  is integrable on [a, b], we can nd a partition  P  of [a, b] such that  U (f, P ) L(f, P )  < ǫ. By addi ng  x 0  to the partition  P , we get a ner partition  P  P . Let  P = {a =  t 0  < ···  < t k1  < t k  = x 0  < t k+1  < ···  < t n  =  b }, and let  δ  =  ǫ 4M . If  t k+1  − x 0  (or  x 0  − t k1 ) is greater than  δ , then we add a new point in (x 0 δ, x 0 ) (or a point in (x 0 , x 0 + δ )) to  P to get a new partition  P ′′  P , with  U (f, P ′′ ) L(f, P ′′ ) ≤  U (f, Q) L(f, Q) < ǫ. Now we estimate the upper and lower Darboux sums for  g  about  P ′′ . W e sti ll denote the partition  P ′′ by  {a =  t 0  < · ··  < t k1  < t k  = x 0  < t k+1  < ···  < t n  =  b} 1

Upload: hanzducnguyen

Post on 13-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

7/23/2019 Solution 104 9

http://slidepdf.com/reader/full/solution-104-9 1/3

MATH 104-06: INTRODUCTION TO ANALYSIS

SOLUTION 9

(1) P279, 32.2

Proof.   (a) For partition   P   =   {0 =   t0   < t1   < t2   <   · · ·   < tn   =   b}   of [0, b], wecompute the upper and lower Darboux sum of   P . Since  M (f, [tk−1, tk]) =   tk   andm(f, [tk−1, tk]) = 0, we have

U (f, P ) =n

k=1

M (f, [tk−1, tk]) · (tk − tk−1) =n

k=1

tk · (tk − tk−1)

and

L(f, P ) =n

k=1

m(f, [tk−1, tk]) · (tk − tk−1) =n

k=1

0 · (tk − tk−1) = 0.

Since  U (f, P )  >

n

k=1tk+tk−1

2   · (tk − tk−1) = 

n

k=1

t2k−t

2

k−1

2   =  t2n−t

2

0

2   =   b2

2   for any

partition  P , so we have that the upper Darboux integral   U (f ) ≥   b2

2  . Actually, for

the decomposition given by   tk   =   kb

n  , we have   U (f, P ) =

 n

k=1 tk   · (tk  − tk−1) =n

k=1kb

n  ·   b

n  =   b2

n2

n

k=1 k =   b2(n+1)2n   , which goes to   b2

2   when  n  goes to infinity, so the

Darboux integral  U (f ) equals   b2

2 .

For the lower Darboux integral, since each partition has lower Darboux integralequals 0, we have the lower Darboux integral  L(f ) equals 0.

(b) Since  U (f ) =   b2

2   and  L(f ) = 0 which are not equal to each other, so  f   is notintegrable on [0, b].  

(2) P280, 32.7

Proof.  We can first suppose that  f   and  g   only differ by one point  x0  ∈  [a, b], thenthe proof for the general case follows by induction.

Since  f   is integrable on [a, b],  f   is bounded on [a, b], so there exists  M > 0 suchthat  |f (x)| < M   for any  x ∈  [a, b]. Since  g  only differs from  f  at one point, we canalso enlarge  M   such that  |g(x)| < M  also holds for any  x ∈  [a, b].

For any   ǫ >   0, since  f   is integrable on [a, b], we can find a partition   P   of [a, b]such that   U (f, P ) − L(f, P )  < ǫ. By adding   x0   to the partition   P , we get a finerpartition  P ′ ⊇ P . Let  P ′ = {a =  t0  < · · ·  < tk−1  < tk  = x0  < tk+1  < · · ·  < tn =  b},and let  δ  =   ǫ

4M . If   tk+1 − x0   (or   x0 − tk−1) is greater than  δ , then we add a new

point in (x0 − δ, x0) (or a point in (x0, x0 + δ )) to P ′ to get a new partition  P ′′ ⊇ P ,with  U (f, P ′′) − L(f, P ′′) ≤  U (f, Q) − L(f, Q) < ǫ.

Now we estimate the upper and lower Darboux sums for   g   about   P ′′. We stilldenote the partition  P ′′ by {a =  t0  < · · ·  < tk−1  < tk  = x0  < tk+1  < · · ·  < tn  =  b}

1

7/23/2019 Solution 104 9

http://slidepdf.com/reader/full/solution-104-9 2/3

with  tk+1 − x0, x0 − tk−1  < δ . Then

|U (g, P ′′) − U (f, P ′′)| =

nm=1

M (g, [tm−1, tm]) − M (f, [tm−1, tm])

· (tm − tm−1)

≤M (g, [tk−1, tk]) − M (f, [tk−1, tk])

· (tk − tk−1) +

M (g, [tk, tk+1]) − M (f, [tk, tk+1])

· (tk+1 − tk)

<2M  · δ  + 2M  · δ  =  ǫ.

So we have that  |U (g, P ′′) − U (f, P ′′)| < ǫ  and the same estimation implies that|L(g, P ′′) −  L(f, P ′′)|   < ǫ. So we have that   U (g, P ′′) −  L(g, P ′′)   < U (f, P ′′) −L(f, P ′′) + 2ǫ <   3ǫ, which implies that   g   is integrable on [a, b]. Moreover, we

have that b

a f  −

 b

a g   ≤   U (f, P ′′) −  L(g, P ′′)  < U (f, P ′′) − L(f, P ′′) +  ǫ <  2ǫ   and 

b

a f −

 b

a g ≥  L(f, P ′′)−U (g, P ′′) ≥  L(f, P ′′)−U (f, P ′′)−ǫ > −2ǫ. So |

 b

a f −

 b

a g| <

2ǫ  holds for any  ǫ > 0, so b

a f  =

 b

a g  holds.

(3) P280, 32.8

Proof.  We need only to show that for any  ǫ > 0, there is a partition  P   of [c, d] suchthat  U (f, P ) − L(f, P ) < ǫ.

Since  f   is integrable on [a, b], there is a partition  Q  of [a, b] such that  U (f, Q) −L(f, Q) < ǫ. By adding  c  and  d to the partition  Q, we get a finer partition  Q′ suchthat  Q ⊆  Q′, and  U (f, Q′) − L(f, Q′) ≤  U (f, Q) − L(f, Q) < ǫ.

Let   Q′ =   {a   =   t0   <   · · ·   < tm   =   c <   · · ·   < tn   =   d <   · · ·   < tk   =   b}, thenP   = {tm =  c < · · · < tn =  d}  is a partition of [c, d]. Then we have

ǫ > U (f, Q′) − L(f, Q′) =kl=1

M (f, [tl−1, tl]) − m(f, [tl−1, tl])

· (tl − tl−1)

≥n

l=m+1

M (f, [tl−1, tl]) − m(f, [tl−1, tl])

· (tl − tl−1) = U (f, P ) − L(f, P ).

Then  U (f, P ) − L(f, P ) < ǫ  implies that  f   is integrable on [c, d].

(4) P289, 33.4

Proof.   Let  f   : [0, 1] → R be defined by

f (x)

  1   x ∈  [0, 1] ∩Q−1   x ∈  [0, 1] \Q

Then   |f |(x) = 1 for any   x   ∈   [0, 1], which is a continuous function. So   |f |   isintegrable on [0, 1].

However, for any partition P   = {0 = t0  < · · ·  < tn = 1}, we have M (f, [tk−1, tk]) =1 and m(f, [tk−1, tk]) =  −1. So we can compute the upper and lower Darboux sums:U (f, P ) =

 n

k=1 M (f, [tk−1, tk]) · (tk − tk−1) = 

n

k=1(tk − tk−1) =  tn − t0  = 1 andL(f, P ) =

 n

k=1 m(f, [tk−1, tk]) · (tk − tk−1) = 

n

k=1(−1) · (tk − tk−1) =  −(tn − t0) =−1. Then the upper and lower Darboux integrals are   U (f ) = 1 and   L(f ) =  −1,which are not equal. So  f   is not integrable on [0, 1].  

(5) P289, 33.7

7/23/2019 Solution 104 9

http://slidepdf.com/reader/full/solution-104-9 3/3

Proof.   (a) We first show that for any interval [c, d] ⊆  [a, b], M (f 2, [c, d])−m(f 2, [c, d]) ≤

2B

M (f, [c, d]) − m(f, [c, d])

 holds.

For any   ǫ >  0, there exists   x, y  ∈   [c, d], such that  f 2(x)  > M (f 2, [c, d]) − ǫ  andf 2(y)  < m(f 2, [c, d]) +  ǫ. So we have  M (f 2, [c, d])  < f 2(x) + ǫ  and  −m(f 2, [c, d])  <

−f 2

(y) + ǫ, which impliesM (f 2, [c, d]) − m(f 2, [c, d]) < f 2(x) − f 2(y) + 2ǫ

≤|f (x) + f (y)| · |f (x) − f (y)| + 2ǫ ≤  2B

M (f, [c, d]) − m(f, [c, d])

 + 2ǫ.

Since the inequality holds for any   ǫ >   0, we have   M (f 2, [c, d]) − m(f 2, [c, d])  ≤

2B

M (f, [c, d]) − m(f, [c, d])

.

So for  P   = {a =  t0  < t1  < · · · < tn =  b}, we have

U (f 2, P ) − L(f 2, P ) =

nk=1

M (f 2, [tk−1, tk]) − m(f 2, [tk−1, tk])

· (tk − tk−1)

nk=1

2B

M (f, [tk−1, tk]) − m(f, [tk−1, tk])

· (tk − tk−1) = 2B

U (f, P ) − L(f, P )

.

(b) For any   ǫ >   0, since   f   is integrable on [a, b], there exists a partition   P   of [a, b] such that   U (f, P ) −  L(f, P )   < ǫ. Then the previous inequality implies thatU (f 2, P ) − L(f 2, P ) <  2Bǫ, so  f 2 is also integrable on [a, b].

(6) P290, 33.9

Proof.   For any   ǫ >  0, since (f n) uniformly converges to  f   on [a, b], there exists  N 

such that for any  n > N , we have   |f n(x) − f (x)|  < ǫ   for any  x  ∈   [a, b]. We fix ann > N , since  f n  is integrable on [a, b], there is a partition  P   = {t0  =  a < t1  < · · · <

tk  =  b}  such that  U (f n, P ) − L(f n, P ) < ǫ.Now we estimate   |U (f n, P ) − U (f, P )|  and   |L(f n, P ) − L(f, P )|. Since   |f n(x) −

f (x)|  < ǫ   for any   x  ∈   [a, b], we have thatM (f n, [tk−1, tk]) − M (f, [tk−1, tk])

  < ǫ

andm(f n, [tk−1, tk]) − m(f, [tk−1, tk])

 < ǫ  for any  k ∈ {1, · · ·   , n}. So

|U (f n, P ) − U (f, P )| ≤n

k=1

M (f n, [tk−1, tk]) − M (f, [tk−1, tk]) · (tk − tk−1)

≤n

k=1

ǫ(tk − tk−1) = ǫ(b − a).

The same estimation gives that  |L(f n, P ) − L(f, P )| ≤ ǫ(b − a).So we have that  U (f, P ) − L(f, P ) < U (f n, P ) − L(f n, P ) + ǫ(b − a) + ǫ(b − a) =

ǫ · (1 + 2(b − a)), so  f   is integrable on [a, b].Since f  and  f n are both integrable on [a, b], |f n−f | is also integrable on [a, b]. Since

|f n(x)−f (x)|  < ǫ for any x  ∈  [a, b], we have that  b

a(f n−f )

≤ b

a |f n−f | ≤  ǫ(b−a).

So limn→∞

 b

a f n =

 b

a f   holds.