spie 2009 - "efficient parameter estimation techniques for hysteresis models" by j....

12
Efficient Parameter Estimation Techniques for Hysteresis Models Jon M. Ernstberger 1 , Ralph C. Smith 2 March 9, 2009 This research was supported in part by the Air Force Office of Scientific Research through the grants AFOSR-FA9550-04-1-0203 and AFOSR FA9550-08-1-0348 1 LaGrange College, [email protected] 2 NC State, CRSC, [email protected]

Upload: jon-ernstberger

Post on 22-May-2015

104 views

Category:

Engineering


1 download

DESCRIPTION

This presentation was given at the 2009 SPIE conference in San Diego, CA. Actuators employing ferroelectric or ferromagnetic compounds are solid-state, efficient, and compact making them well-suited for aerospace, aeronautic, industrial and military applications. However, they also exhibit frequency, stress and thermally-dependent hysteresis and constitutive nonlinearities which must be incorpo-rated in models for accurate device characterization and control design. A critical step in the use of these models is the estimation or re-estimation of parameters in a manner that is both efficient and robust. In this presentation, we discuss techniques to estimate densities in the homogenized energy model based on Galerkin expansions using physically motivated basis functions. The yields highly tractable optimization algorithms in which initial parameter estimates can be obtained from measured properties of the data. The efficiency and accuracy of the models and estimation algorithms are validated with experimental data.

TRANSCRIPT

Page 1: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

Efficient Parameter Estimation Techniques forHysteresis Models

Jon M. Ernstberger1, Ralph C. Smith2

March 9, 2009

This research was supported in part by theAir Force Office of Scientific Research

through the grantsAFOSR-FA9550-04-1-0203 and AFOSR FA9550-08-1-0348

1LaGrange College, [email protected] State, CRSC, [email protected]

Page 2: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

Outline

I Motivation/Application

I Polarization Models

I Density Representations

I Gradient-based Numerical Optimization Results

Page 3: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

Motivation/Applications: PZT-Actuated Devices

I Micro-/nano-positioningI Atomic Force Microscope

(AFM)I Optical Storage

I THUNDER Actuator

I MEMS Switches

Figure: AFM Schematic

Figure: faceinternational.com

Figure: AFM image from sciencegl.com.

Page 4: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

Modeling: Internal EnergiesI Helmholtz Energy

ψ(P) =η

2

(P + PR)2 P ≤ −PI

(P − PR)2 P ≥ PI

(P − PI )

(P2

PI− PR

)|P| < PI

I Gibbs Energy G (E ,P) = ψ(P)− EP

I Local Polarization P (E + EI ; Ec) =E + EI

η+ δ (E + EI ; Ec) PR

G(E,P)

PR

PR

P I

P I

(a) (b)

P

E

Page 5: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

Modeling: Incorporating Thermal Relaxation

Boltzmann Energy µ(G ) = Ce−G(E ,P)V/kT

Switching Likelihood p+− =1

T (t)

∫ PI

PI−ε e−G(E ,P)V/kTdP∫∞PI−ε e−G(E ,P)V/kTdP

Dipole Fraction Evolution x+ = −p+−x+ + p−+x−

Expected Polarization 〈P+〉 =

∫∞PI

PeG(E ,P)V/kTdP∫∞PI

eG(E ,P)V/kTdP

Local Average Polarization P = x+〈P+〉+ x−〈P−〉

Page 6: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

Homogenized Energy Model: Macroscopic Polarization

[P(E )] (t) =

∫ ∞0

∫ ∞−∞

ν1(Ec)ν2(EI )[P(E + EI ; Ec)

](t)dEIdEc

1.) ν1(x) is only defined for x > 0;

2.) ν2(−x) = ν2(x) for density symmetry;

3.) |ν1(x)| ≤ c1e−a1x and |ν2(x)| ≤ c2e

−a2|x|.

We may discretize [P(E )](t) via

[P(E )] (t) ≈Ni∑i=1

Nj∑j=1

ν1

(E i

c

)ν2

(E j

I

) [P(E + E j

I ; E ic

)](t)viwj .

Page 7: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

Galerkin Expansions w. Families of Normal/LognormalBasis Elements

ν1(Ec) =

Ni∑i=1

αi φi

(Ec ;µi

c , σic

)and ν2(EI ) =

Nj∑j=1

βj φj

(EI ;σ

jI

)I Lognormally distributed elements for the coercive field density

φi

(Ec ;µi

c , σic

)=

1√2πEcσi

c

e−[ln(Ec )−µic ]

2/2(σi

c)2

σic = σc − vσc +

(2σcv

Ni

)i for i = 0 . . .Nσ

I Normally distributed elements for the interaction field density.

φj

(EI ;σ

jI

)=

1√

2πσjI

e−E 2I /2(σj

I )2

I Vary mean and standard deviation of bases for ν1(Ec) and standarddeviation of bases of ν2(EI ).

Page 8: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

Parameter Identification w. Negligible Relaxation

Est. PR , η, α1 . . . α12, and β1 . . . β7 (21 params total).

−1 −0.5 0 0.5 1−0.25

−0.2−0.15

−0.1−0.05

0

0.05

0.10.15

0.20.25

Electric Field (MV/m)

Pol

ariz

atio

n (C

/m )2

DataModel

−1 −0.5 0 0.5 1−0.25

−0.2−0.15

−0.1

−0.050

0.05

0.10.150.2

0.250.25

Electric Field (MV/m)

Pol

ariz

atio

n (C

/m )2

DataModel

−1 −0.5 0 0.5 1−0.25

−0.2

−0.15−0.1

−0.05

00.05

0.10.15

0.20.250.25

Electric Field (MV/m)

Pol

ariz

atio

n (C

/m )2

DataModel

0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 x 10−5

Coercive Field (MV/m)0 2000 4000

0

0.5

1

1.5

2

2.5 x 10−3

Interaction Field (V/m)

Page 9: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

Parameter Identification w. Thermal Relaxation

Est. PR , η, τ(T ), γ, α1 . . . α12, and β1 . . . β7 (23 params total).

−1 −0.5 0 0.5 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Electric Field (MV/m)

Pol

ariz

atio

n (C

/m )2

DataModel

−1.5 −1 −0.5 0 0.5 1 1.5

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Electric Field (MV/m)

Pol

ariz

atio

n (C

/m )2

DataModel

−1 −0.5 0 0.5 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Electric Field (MV/m)

Pol

ariz

atio

n (C

/m )2

DataModel

5 10 15x 100

2

4

6

8

x 10−6

Coercive Field (V/m)−4 −2 0 2 4x 104

2

4

6

8

10

12

x 10−5

Interaction Field (V/m)

5

Page 10: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

Concluding Remarks

I We adapted the homogenized energy model to incorporate densitiesconstructed using Galerkin expansions with normal and lognormalbasis elements.

I These bases are used to construct decaying densities for modelcharacterizations that are less computationally intense and improveaccuracy in comparison to previous quantifications.

I Using this new model representation, we successfully characterizePZT behavior utilizing measured field inputs in comparison topolarization data from a PZT-driven stack actuator [9].

Page 11: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

References

1 K. Mossi, Z. Ounaies, and S. Oakley, Optimizing energy harvestingof a composite unimorph pre-stressed bender, Sixteenth TechnicalConference of the American Society for Composites, vol. 2001, 2001.

2 R. Smith, A. Hatch, T. De, M. Salapaka, R. del Rosario, and J.Raye, Model development for atomic force microscope stagemechanisms, SIAM Journal on Applied Mathematics, vol. 66, no. 6,pp. 1998 2026, 2006.

3 K. Mossi, Z. Ounaies, R. Smith, and B. Ball, Prestressed curvedactuators: characterization and modeling of their piezoelectricbehavior, Smart Structures and Materials 2003: Active Materials:Behavior and Mechanics. Edited by Lagoudas, Dimitris C.Proceedings of the SPIE,, vol. 5053, pp. 423435, 2003.

4 B. Ball, R. Smith, and Z. Ounaies, A dynamic hysteresis model forTHUNDER transducers, Smart Structures and Materials 2003:Modeling, Signal Processing, and Control. Proceedings of the SPIE,vol. 5049, pp. 100111, 2003.

Page 12: SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models" by J. Ernstberger and R. C. Smith

References, cont.

5 R. Smith, Smart Material Systems: Model Development.Philadelphia: Society for Industrial and Applied Mathematics, 2005.

6 R. Smith, S. Seelecke, Z. Ounaies, and J. Smith, A free energymodel for hysteresis in ferroelectric materials, Journal of IntelligentMaterial Systems and Structures, vol. 14, 2003.

7 J. Ernstberger and R. Smith, High-speed parameter estimationalgorithms for nonlinear smart materials, in Proceedings ofSPIEVolume 6523: Modeling, Signal Processing, and Control forSmart Structures 2007, April 2007. 6523OS.

8 R. Smith, A. Hatch, B.Mukherjee, and S. Liu, A homogenizedenergy model for hysteresis in ferroelectric materials: general densityformulation, Journal of Intelligent Material Systems and Structures,vol. 16, no. 9, p. 713, 2005.

9 S. Seelecke and A. York, Experimental investigation ofrate-dependent inner hysteresis loops in pzt, Materials ResearchSociety Symposium Proceedings, vol. 881, p. 48, 2005.