statics course notes

274
Engineering Mechanics: Statics Engineering Mechanics: Statics Mechanics is the branch of the physical sciences d ith th tt f t ti f b di concerned with the state of rest or motion of bodies subjected to forces.

Upload: subin-idikula

Post on 23-Oct-2015

472 views

Category:

Documents


7 download

DESCRIPTION

1st semester statics problems and lecture

TRANSCRIPT

Page 1: Statics Course Notes

Engineering Mechanics: StaticsEngineering Mechanics: Statics

• Mechanics is the branch of the physical sciences d ith th t t f t ti f b diconcerned with the state of rest or motion of bodies

subjected to forces.

Page 2: Statics Course Notes

Engineering MechanicsEngineering Mechanics

• MechanicsMechanics– Rigid-body mechanics

• Dynamics – the study of objects in motion• Dynamics – the study of objects in motion– F = ma

• Statics - the study of objects in equilibrium– Also F = ma, but a = 0

– Deformable-body mechanics– Fluid mechanics

Page 3: Statics Course Notes

Newton’s LawsNewton s Laws• 1st Law – If an object is in motion, it will remain in j

motion. If an object is at rest, it will remain at rest, unless a force acts upon it.– When the sum of forces acting on an object is zero, the object g j , j

will remain at rest if initially at rest.• 2nd Law – When the sum of forces acting on an object is

not zero, the sum of the forces is equal to the product of , q pthe mass and its acceleration.– F = ma

• 3rd Law – The forces exerted by two objects on each• 3 Law – The forces exerted by two objects on each other are equal in magnitude and opposite in direction.– For every action, there is an equal and opposite reaction

Page 4: Statics Course Notes

S l V tScalar vs. Vector

Physical quantity described by a real number

Magnitude and directionby a real number

(magnitude , but no direction)

Ex. mass, speed Ex. weight, velocity

rF

Fr

FF

(magnitude of a vector )Fr (textbook may use bold F)

Page 5: Statics Course Notes

Vector AdditionVector Addition

Head to tail or Triangle RuleHead-to-tail or Triangle Rule

U + V = V + U

Page 6: Statics Course Notes

Vector AdditionVector Addition

Parallelogram Rule

Page 7: Statics Course Notes

Product of Scalar and VectorProduct of Scalar and Vector

Page 8: Statics Course Notes

VectorVector Subtraction

Page 9: Statics Course Notes

Unit VectorsUnit Vectors

Page 10: Statics Course Notes

Vector ComponentsVector Components

Sum of two vectors can be found by simply summing the components.

Page 11: Statics Course Notes

A man exerts a 60-lb force F to push a crate onto a truck.

(a) Express F in terms of components using the coordinate system shown.

(b) The weight of the crate is 100-lb. Determine the magnitude of the sum of the forces exerted by the man and the crate’s weight.

Page 12: Statics Course Notes

Th t l l i t d b t bl hi h t d f th t fThe steel column is supported by two cables which extend from the top of the column to the ground and lie in the same plane. The tensions in cables A and B are 13 kips and 10 kips, respectively. What is the magnitude and direction of the resultant force exerted on the top of the column by the p ycables?

50o60o

A BA B

Page 13: Statics Course Notes

PositionPosition Vector

A position vector can be formed between two physical locations in space. The magnitude of themagnitude of the position vector is the distance between the two points (length).

Page 14: Statics Course Notes

A surveyor finds that the length of the line OA is 1500 m and the length of the line OB is 2000 m.

(a) Determine the components of the position vector from point A to point B.(b) Determine the components of a unit vector that points from point A toward(b) Determine the components of a unit vector that points from point A toward

point B.

Page 15: Statics Course Notes

Vectors in 3-DVectors in 3 D

When dealing in three dimensions, a vector can be written in terms of 3 components.

How can we describe a vector in 3‐D (magnitude and direction)?

1) Direction cosines / direction angles2) Double projection3) Find a parallel line

Page 16: Statics Course Notes

Direction Angles and CosinesDirection Angles and Cosines

xθ or α

yθ or β

Page 17: Statics Course Notes

Direction Angles and CosinesDirection Angles and Cosines

zθ or γ

There is a relationship between the direction cosines…

1coscoscos 222 =++ γβα

Page 18: Statics Course Notes

Double ProjectionDouble Projection

y

Ux

z

Page 19: Statics Course Notes

Double ProjectionDouble Projection

y

U jU

xUy j

z

Page 20: Statics Course Notes

Double ProjectionDouble Projection

y

Ux

Uz k

zUx i

Page 21: Statics Course Notes

Position VectorsPosition Vectors

Page 22: Statics Course Notes

Components of a vector Parallel to a LineComponents of a vector Parallel to a Line

• Ex. When want to express a force in vector form p(components), but we only know the magnitude of the force. We can get the orientation of the force from the parallel lineparallel line.

Page 23: Statics Course Notes

y

Express the force acting on the wall at A in terms of its components.

A3’

T =1.2 kips

xB4’

9’1’

16’

z

Page 24: Statics Course Notes

y

Find the resultant force (magnitude and direction) given the three-dimensional system below.

60o

60o

1000N

500N

x30o

25o

45o45o

20o

650N150N

700N

z

Page 25: Statics Course Notes

Dot Product / Scalar ProductDot Product / Scalar Product

• Can be thought of as a measure of the “right-angularity” of two vectors

θcosVUVUvvvv

=⋅Definition,

In terms of components,ˆˆˆ ++= kUjUiUU

v

)ˆˆ()ˆˆ()ˆ̂()ˆˆ(

ˆˆˆ

++++=⋅

++=

++=

ijVUkiVUjiVUiiVUVU

kVjViVV

kUjUiUU

zyx

zyx

vv

v

1 0 0

vv

...)()()()( ++++=⋅ ijVUkiVUjiVUiiVUVU xyzxyxxx

zzyyxx VUVUVUVU ++=⋅vv

So,

Page 26: Statics Course Notes

Parallel ComponentParallel Component

θcosUU p

vv=

Page 27: Statics Course Notes

Parallel ComponentParallel Component

θcosˆˆ UeUevv

=⋅

Since the mag. of a unit vector = 1,

θˆ UUvv

And we previously determined,

θcosUUe =⋅

vv

Therefore,

θcosUU p

vv=

( )eUeU

UeU

p

p

ˆˆ

ˆvv

vv

⋅=

⋅=

( )eUeU p

Page 28: Statics Course Notes

Normal ComponentNormal Component

UUUvvv

+=Knowing the Triangle Rule,

np UUU +

Therefore,

pn UUUvvv

−=

Page 29: Statics Course Notes

Cross ProductCross Product

• Very useful for determining moments

Notice that result is a vector!!!

Definition,

( )eVUVU ˆsinθvvvv

Notice that result is a vector!!!

What if 0o (Parallel Lines)?

( )eVUVU sinθ=×

Page 30: Statics Course Notes

Cross ProductCross Product

NOT Commutative,UVVUvvvv

×≠×

( ) ( ) ( )VUVUVU

UVVU

vvvvvv

vvvv×−=×

When multiplying by a scalar,

Distributive:

( ) ( ) ( )

( ) ( ) ( )WUVUWVU

VaUVUaVUa

vvvvvvv×+×=+×

×=×=×

Page 31: Statics Course Notes

Cross Product: In terms of components

kji)))

Cross Product: In terms of components

zyx

zyx

VVVUUUVU

vv=×

jikji)))))

-yx

yx

zyx

zyx

VVUU

VVVUUUVU

vv=×

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]kVUiVUjVUkVUjVUiVU xyyzzxyxxzzyˆˆˆˆˆˆ ++−++=

Page 32: Statics Course Notes

Triple ProductTriple Product

kji)))

( ) ( ) zyxzyx

WWWVVVkji

kUjUiUWVUvvv

⋅++=×⋅ ˆˆˆ

UUU

zyx WWW

zyx

zyx

WWWVVVUUU

= Scalar!!!

zyx WWW

Page 33: Statics Course Notes

Triple ProductTriple Product

( ) VOLUMEWVU =×⋅vvv

Page 34: Statics Course Notes

Triple ProductTriple Product

( ) VOLUMEWVU =×⋅vvv

W

V

W

U

V

U

V x W (magnitude is area of side!)

Page 35: Statics Course Notes

Problem 2.108Problem 2.108

Determine the angle θ between the lines AB and AC

a) using the law of cosines

b) using the dot product

Page 36: Statics Course Notes

Problem 2.131Problem 2.131

The force F = 10i – 4j (N). Determine the cross product rAB X F.

Page 37: Statics Course Notes

Problem 2.119 ‐ The disk A is at the midpoint of the sloped surface.  The string from A to B exerts a 0.2‐lb force F on the disk.  If you express F in terms of vector components parallel and normal to the sloped surface, what is the component normal to the surface?

Page 38: Statics Course Notes

Problem 2.141 – Determine the minimum distance from point P to the plane defined by the three points A B and Cplane defined by the three points A, B, and C.

Page 39: Statics Course Notes

Forces, Equilibrium, and F.B.D.’so ces, qu b u , a d s

• Terminologygy– Line of Action – the straight line collinear with a force

vector

Page 40: Statics Course Notes

Forces, Equilibrium, and F.B.D.’so ces, qu b u , a d s

• Terminologygy– Systems of Forces – a set of forces which can be two

(coplanar) or three-dimensional.

Concurrent forces Parallel forces theirConcurrent forces -their lines of action intersect at a point

Parallel forces – their lines of action do not intersect

Page 41: Statics Course Notes

Forces, Equilibrium, and F.B.D.’so ces, qu b u , a d s

• Terminology If the car and driver is th bj t d

gy– External Forces

the object under consideration…

the road exerts an external force on the tires, and

– Internal Forces

the driver’s rear end exerts an internal force on the car seat.

Page 42: Statics Course Notes

Forces, Equilibrium, and F.B.D.’so ces, qu b u , a d s

• Terminologygy– Body Forces – act on the volume of the object (e.g.

gravity and magnetic forces)

Tractor beam!

– Surface Forces – act on the surface of an object

Tractor beam!

Page 43: Statics Course Notes

Forces, Equilibrium, and F.B.D.’so ces, qu b u , a d s

• Contact Forces– Surfaces

Smooth surfaces only have normal forces.

fNormal force is perpendicular and friction force is parallel to the contact plane.

Page 44: Statics Course Notes

Forces, Equilibrium, and F.B.D.’so ces, qu b u , a d s

• Contact Forces– Ropes, Cables, and Pulleys

Tension force is collinear with the cable and acts on box and craneTension force is collinear with the cable and acts on box and crane (equal magnitude and opposite direction).

Page 45: Statics Course Notes

Forces, Equilibrium, and F.B.D.’so ces, qu b u , a d s

• Contact Forces– Ropes, Cables, and Pulleys

• Frictionless pulleys only change the direction of the force, not the magnitudethe magnitude.

Frictionless bearings in pulley

Page 46: Statics Course Notes

Forces, Equilibrium, and F.B.D.’so ces, qu b u , a d s

• Contact Forces– Springs

Original length of spring, Lo

Spring is stretched to length L

Spring exerts a force on the wall

SWall exerts an equal and opposite force on the spring

Spring constant has units of force per length (lb/ft or N/m)

* Spring force depends on the change in length of the spring.oLLkF −=

Page 47: Statics Course Notes

Forces, Equilibrium, and F.B.D.’sForces, Equilibrium, and F.B.D. s

• Equilibriumq– Objects within the Newtonian (or inertial) reference

frame are at rest (or constant velocity).

0=∑Fr

Entire train is taken as the Constant velocity

0=∑ xF

0=∑F reference frame.0=∑ yF

Train accelerates

Page 48: Statics Course Notes

Forces, Equilibrium, and F.B.D.’sForces, Equilibrium, and F.B.D. s

• Free Body Diagramsy g– Used to isolate objects from their surroundings

• Step 1 – Identify the object to isolate• Step 2 – Sketch the object isolated from surroundings• Step 3 – Draw vectors representing external forces

Page 49: Statics Course Notes

Forces, Equilibrium, and F.B.D.’sForces, Equilibrium, and F.B.D. s

• Free Body Diagramsy g– Used to isolate objects from their surroundings

• Step 1 – Identify the object to isolate• Step 2 – Sketch the object isolated from surroundings• Step 3 – Draw vectors representing external forces

Page 50: Statics Course Notes

Forces, Equilibrium, and F.B.D.’sForces, Equilibrium, and F.B.D. s

• Free Body Diagramsy g– Used to isolate objects from their surroundings

• Step 1 – Identify the object to isolate• Step 2 – Sketch the object isolated from surroundings• Step 3 – Draw vectors representing external forces

Page 51: Statics Course Notes
Page 52: Statics Course Notes
Page 53: Statics Course Notes

Tension is now anTension is now an internal force!

Page 54: Statics Course Notes

What is the tension in the rope?

m

Page 55: Statics Course Notes

What is the tension in the rope?

m

Page 56: Statics Course Notes

What is the tension in the rope?

m

Page 57: Statics Course Notes

Problem 3.44Problem 3.44

Page 58: Statics Course Notes

Problem 3.50Problem 3.50

Page 59: Statics Course Notes

Problem 3.53Problem 3.53

Page 60: Statics Course Notes

Problem 3.35Problem 3.35

Page 61: Statics Course Notes

Three-Dimensional Force SystemsThree Dimensional Force Systems∑ = 0F

v

• In 2-D, In terms of components,

∑ = 0F

∑∑

=

=

0

0

y

x

F

F

In terms of components• In 3-D,

In terms of components,

∑∑

=

=

0

0x

F

F

∑∑

= 0

0

z

y

F

F

Page 62: Statics Course Notes

Problem 3.69Problem 3.69

Page 63: Statics Course Notes

Systems of Forces and MomentsSystems of Forces and Moments

• Moments – rotation at a point due to a force applied at some distance

Sign Convention

Clockwise  = negative

Counterclockwise = positive

MP = DF

Page 64: Statics Course Notes

In terms of components…In terms of components…

FxyyxP FDFDM +=∑

Fy

FxDyIf line of action goes through P…

Dx

FxDy

then MP = 0

Page 65: Statics Course Notes

Problem 4.24 – The tension in the cable is the same on both sides of the pulley.  p yThe sum of the moments about point A due to the 800‐lb force and the forces exerted on the bar by the cable at B and C is zero.  What is the tension in the cable?

Page 66: Statics Course Notes

The weights W1 and W2 are suspended by the cable system shown.  The cable g 1 2 p y yBC is horizontal.  If the largest moment that can be resisted by the pole DP at point P is 100 lb‐ft, determine W1.

Page 67: Statics Course Notes

The Moment Vector: Moment About a PointThe Moment Vector: Moment About a Point

…any position vector from the point to the line of action ofpoint to the line of action of the force.

FDMvv

=θiFMvvvFrM

vvv×=

The moment vectorThe magnitude of the 

moment vectorIf the position vector is perpendicular

FDM P =θsinFrM Pv=FrM P ×=

Page 68: Statics Course Notes

The Moment Vector: Moment about a PointThe Moment Vector: Moment about a Point

Moment about point P generated by force F.

Moment vector is drawn according to the rotation and right‐hand rule.

Page 69: Statics Course Notes

Moment of a Force About a LineMoment of a Force About a Line

The capstan will rotate about the vertical axis (line)

The capstan will not rotate

If h li f i f h fThe line of action of the force must be skew to the line that we want to rotate about.

If the line of action of the force is parallel or intersects the line, then there will be no rotation.

Page 70: Statics Course Notes

Position vector from any arbitrary point on os o ec o o a y a b a y po oline to any point on Line of Action

FrM P

vvv×=P

The cross product will give us the moment about a point on the line.

but we want the moment about the line…but we want the moment about the line, or the component of the moment vector that is in the direction of the line.

Page 71: Statics Course Notes

The dot product should give us the component acting in the direction of the linecomponent acting in the direction of the line.

PL MeMv

•= ˆ

but if I want it in vector form

[ ]eMM LL ˆ=v

…but if I want it in vector form…

[ ]LL

Page 72: Statics Course Notes

Special Cases…Special Cases…

Force is perpendicular to planeLOA of Force

Force is perpendicular to plane containing line

Force is parallel to line

intersects line

FDM L ⋅=

Page 73: Statics Course Notes

A concrete precast wall section is held by 2 cables, where one cable is not shown (behind wall). The tension in BD = 800 N

Find:

a) Moment about point O of the force exerted by the cable at B.

b) Moment about the x-axis generated by force BD.

c) Angle between cable BD and the vertical side BCc) Angle between cable BD and the vertical side BC.

y

B

3.5 m

4 mA

x3 5 m

O C

z

3.5 m

1 m

D

Page 74: Statics Course Notes

CouplesCouples

Couples are two forces with equal magnitudes, opposite directions, and

100 N

magnitudes, opposite directions, and different LOA’s

100 N

Page 75: Statics Course Notes

CouplesCouples

What is the moment generated about point P due to the couple?

100 N

100 N

5 m)5)(100()( +=+ ∑ mNMCCW

7 m

P

...)5)(100()( +=+ ∑ mNMCCW P

mNmNmNMCCW P ⋅−=−=+ ∑ 200)7)(100()5)(100()(

Page 76: Statics Course Notes

CouplesCouples

100 N

P1 m

1 m

100 N

...)1)(100()( +−=+ ∑ mNMCCW P

mNmNmNMCCW P ⋅−=−−=+ ∑ 200)1)(100()1)(100()( P∑ ))(())(()(

The moment it exerts about any point is the same!

Page 77: Statics Course Notes

Problem 4.115 ‐ Determine the sum of the moments exerted on the plate by the two couples.

Page 78: Statics Course Notes

Problem 4.114 – The moment of two couples are shown.  What is the sum of the moments about point P?

Page 79: Statics Course Notes

Same magnitude…negative let’s k th t it i i thus know that it is in the opposite direction

[ ] [ ][ ] [ ]FrFrMvvvvv

−×+×= 21

Page 80: Statics Course Notes

[ ] [ ] FrrFrFrMvvvvvvvv

×−=−×+×= )( 2121

Remember from vector vvvRemember from vector addition/subtraction 12 rrr =+

The couple moment can be calculated using a position vector from one line‐of‐action to the other.

However, the force vector on which the position vector ends is the one used in the cross‐product.

Page 81: Statics Course Notes

vvS i lFrM v×= Special case…

DFM DFM =

Since the total force exerted by the In 2 D the couple can becouple is zero, it is often represented 

by the moment it exerts.

In 2‐D, the couple can be represented by its magnitude and a 

circular arrow.

Page 82: Statics Course Notes

Examples of CouplesExamples of Couples

Page 83: Statics Course Notes

The forces are contained in the x‐y planeThe forces are contained in the x y plane.a) Determine the moment of the couple and represent it as shown in Fig. 

4.18c.b) What is the sum of the moments of the two forces about the point    

(10, ‐40, 20) ft?

Page 84: Statics Course Notes

Equivalent SystemsEquivalent Systems

The two systems are equivalent if:

1)  The sum of forces in System 1 and 2 are hthe same.2)  The sum of moments about a point for System 1 and 2 are the same.

Page 85: Statics Course Notes

FFF

FFvvv

vv

+

=∑∑ 21

DBA FFF =+

Page 86: Statics Course Notes

( ) ( )vv∑∑( ) ( )

( ) ( ) ( ) FEDDCBBAA

PP

MMFrMFrFr

MMvvvvvvvvv ++×=+×+×

= ∑∑ 21

Page 87: Statics Course Notes

System 1 is equivalent to  a force and y qcouple moment acting at Q

The simplest system that can be equivalent to any system of forces and momentsy y

WRENCH

Page 88: Statics Course Notes

50 k‐ft

100 k

System 1

Page 89: Statics Course Notes

0.5 ft

100 k

System 2

Page 90: Statics Course Notes

If the system of forces is concurrent,

we can represent System 1 as a single force.

Page 91: Statics Course Notes

If the system of forces is parallel,

we can represent the system as a single force k l iat a known location.

Page 92: Statics Course Notes

25 lb

Find an equivalent single force and couple moment at point A which can represent the system below.

10 lb

15 lb20 lb

25 lb

5 lb

3’ 3’ 3’ 3’A B

Can the single force and couple moment be replaced by a single force?

Page 93: Statics Course Notes

Replace the system of forces by a single force passing through O and a couple.  Can the reduced system be replaced further by a single force?

F1 200#

Can the reduced system be replaced further by a single force?

y F1 = 200#

F2 300#

3

4(2,8) ft

F2 = 300#

60 deg

4

(6,4) ft

(4,0) ft

60 deg

Ox

F3 = 100#

O

Page 94: Statics Course Notes

Equivalent Systems: Distributed LoadsEquivalent Systems: Distributed Loads

15 lb20 lb

25 lb

5 lb10 lb

3’ 3’ 3’ 3’A

75 lb

A

8’

A

Page 95: Statics Course Notes

Equivalent Systems: Distributed LoadsEquivalent Systems: Distributed Loads

50 lb 50 lb

3’ 6’ 3’A

100 lb

A

6’

A

Page 96: Statics Course Notes

Equivalent Systems: Distributed LoadsEquivalent Systems: Distributed Loads

Split the 50‐lb forces into four 20‐lb and two 10‐lb forces

20 lb 20 lb 20 lb 20 lb10 lb

and two 10 lb forces

3’ 3’ 3’A

10 lb10 lb

3’

100 lb

A

6’

A

Page 97: Statics Course Notes

Equivalent Systems: Distributed LoadsEquivalent Systems: Distributed Loads

Split the forces such that the distance between them approaches zero.

Total of 100 lb over 12’, so:

between them approaches zero.

12’A

x

ftlb

ftlbxw 33.8

12100)( ==

x

ff“w” is usually associated with distributed loads Function of 

distance alongMeasure of intensity of load along a givendistance along 

beamof load along a given distance

Page 98: Statics Course Notes

w(x) = 1.2 k/ft

20’

Replace the distributed load by a single (equivalent) force

The equivalent force can be thought of as the area under the

( ) kipsftft

kipsF 24202.1 ==

24 kips

the area under the distributed load

∫= dxxwF )(10’

∫L

20’

Page 99: Statics Course Notes

For a uniform distributed load the equivalent loadload, the equivalent load is the area under the loading curve, and it acts at the center. L

L/2

For a triangular distributed load the equivalent load isload, the equivalent load is the area under the loading curve, and it acts 1/3 from the “heavy” end or 2/3  Lfrom the “light” end.

(2/3) L (1/3) L

Page 100: Statics Course Notes

“plf” means pounds per linear foot (lb/ft)300 plf

plf  means pounds per linear foot (lb/ft)

10 f 8 f10 ft 8 ft

lb1500 lb

3.33 ft 14.67 ft

Page 101: Statics Course Notes

300 plf

150 plf

10 f 10 f10 ft 10 ft

3000 lb

750 lb

3.33 ft 10 ft6.67 ft

Page 102: Statics Course Notes

3000 lb

750 lb

3.33 ft 10 ft6.67 ft

3750 lb

8.67 ft

Page 103: Statics Course Notes

500 plf 500 plf

70 plf70 plf

p p200 plf

6 f 6 f 6 f10 f6 ft 6 ft 6 ft10 ft

( ) lbftplfplf 2580)6(7050012 =⎥⎤

⎢⎡ −

( ) lbftplf 600)6(20021

=( ) lbftplfplf 2580)6(70500

22 =⎥⎦⎢⎣

lbftplf 1540)22(70 =

Page 104: Statics Course Notes

600 lb @ 4ft

2580 lb @ 22ft

1540 lb @ 17ft

( ) lbF 352025801540600↓ ∑

A

( ) lbFy 352025801540600 =++−=↓+ ∑

( ) ( ) ( ) ( )

lbf

MCW A ++−=+ ∑

80540

2225801715404600

lbft ⋅= 80540

Page 105: Statics Course Notes

ftlbftFx y 882280540

=⋅

== ∑

3520 lb

ftlbM

xA

88.223520

===∑

A

x = 22.88 ft

Page 106: Statics Course Notes

Objects in EquilibriumObjects in Equilibrium

Forces are no longer concurrent

Page 107: Statics Course Notes

Wh d li ithWhen we were dealing with concurrent forces, we  analyzed equilibrium of a particle.  

∑ = 0Fv

Th f dThe forces generated no moment about the point, so we couldn’t use any equations involving moments.  

Now that we are analyzing the equilibrium of an object that has 

mass and size, we can introduce  an equilibrium equation involving 

moments.

∑∑

=

=

0

0

M

Fv

v

∑ = 0anywhereM

Page 108: Statics Course Notes

Generally speaking… 2‐D

∑v ∑

Vector Sum Sum of Components

∑ = 0Fv

∑∑

=

=

0

0

y

x

F

F

∑ = 0anywhereMv

∑ = 0anywhereM

3 equations, so we can only solve for 3 unknowns

Page 109: Statics Course Notes

Supports and their ReactionsSupports and their ReactionsForces and couples exerted on an object by a support are called reactions

Support

Reactions – represents the i i f drestraining forces and moments 

that the support can offer.

Page 110: Statics Course Notes

Pin SupportPin Support

Pin prevents vertical and horizontal motion (offers an xand y reaction)…

but, pin allows rotation ( t ff i ti(cannot offer any resisting couple moment)

Page 111: Statics Course Notes

Pin SupportPin Support

Page 112: Statics Course Notes

Roller SupportRoller Support

Roller can only prevent object from moving in one directionfrom moving in one direction (offers only an x or y reaction)

Pin on wheels!

If A is negative, the roller is lifting off of the ground!

Page 113: Statics Course Notes

Kind of like a Roller SupportKind of like a Roller SupportThese can offer resistance in both directions along a line of 

iaction

A can be positive or negative.

Page 114: Statics Course Notes

Fixed SupportFixed Support

Object is embedded in the wall.j

A fixed support has the potential to develop all three reactions.reactions.

Page 115: Statics Course Notes
Page 116: Statics Course Notes

Free‐Body DiagramsFree Body DiagramsF F

Ax

Ay B

lbB

W = 50 lb

50 lb

Ay

Ax

Page 117: Statics Course Notes

Free‐Body DiagramsFree Body Diagrams

B30o

60o

2000 lb

20o

2000 lbA

70o

Page 118: Statics Course Notes

Free‐Body DiagramsFree Body Diagrams

RRx

TT

Frictionless surface

RRy

Page 119: Statics Course Notes

Free‐Body DiagramsFree Body Diagrams

10 plf

20 ft

(20 ft)10 plf = 200 lb

A

10 plf

10 ft

A

Ax

MAy MA

Page 120: Statics Course Notes
Page 121: Statics Course Notes

Free‐Body DiagramsFree Body Diagrams

500 N/m500 N/m

Weight = 20 N/m

A

3 N1 kN‐m

A B

3 N

3 m 3 m 6 m

Page 122: Statics Course Notes

Free‐Body DiagramsFree Body Diagrams1/2(500 N/m)(6 m)(20 N/m)(12 m)

Bx

3 N1 kN‐m

ByA

3 N

3 m 3 m 4 m 2 m

( )

( ) ( ) ( ) ( ) ( )NAN

MCCW

NN

B

02650016122093121000

0=+ ∑( ) ( ) ( ) ( ) ( )

NA

mmmmmNAmmN mN

mN

08.451

0265002

6122093121000

=

=++−−⋅

Page 123: Statics Course Notes

Free‐Body DiagramsFree Body Diagrams1/2(500 N/m)(6 m)(20 N/m)(12 m)

Bx

3 N1 kN‐m

ByA

3 N

3 m 3 m 4 m 2 m

( )( ) ( ) BmmNN

F

NN

y

0650011220308.451

0

=+−−+

=↑+ ∑ ( )0

0=

=→+ ∑x

x

BF

( ) ( )NB

BmmNN

y

ymm

92.1285

065002

1220308.451

=

++

Page 124: Statics Course Notes

If F = 4 kN, what are the reactions at A and B?

Page 125: Statics Course Notes

Problem 5.18 Draw the free‐body diagram of the structure by isolating it from its supports at A and E.  Determine the reactions at Aand E.

Page 126: Statics Course Notes

Problem 5.55 Suppose that you want to design the safety valve to open when the difference between the pressure p in thevalve to open when the difference between the pressure p in the circular pipe (diameter = 150 mm) and atmospheric pressure is 10 MPa.  The spring is compressed 20 mm when the valve is closed.  What should the value of the spring constant be?

Page 127: Statics Course Notes

Problem 5.63 The boom derrick supports a suspended 15‐kip load The booms BC and DE are each 20 ft long The distances areload.  The booms BC and DE are each 20 ft long.  The distances are a = 15 ft and b = 2 ft, and the angel θ = 30o.  Determine the tension in cable AB and the reactions at the pin supports C and D.

Page 128: Statics Course Notes

120 lb/ft6 ft 5 ft

1 ft

120 lb/ft

BA

self wt = 100 lb/ftself wt. = 100 lb/ft

W1

W2

A) Find W2 for equilibrium if W1 = 400 lb.2 1B) Find the reactions at A and B.

Page 129: Statics Course Notes

beam. wt. = 70 plf

50o 4

30 ft‐lbA C

50

3

43 ft3 ft4 ft B

Find the reactions.

Page 130: Statics Course Notes

Bm. Wt. = 70 plf

30 ft‐lbA C

3 ft3 ft4 ft B

How is this different than the previous?

Page 131: Statics Course Notes

Statically Indeterminate ObjectsStatically Indeterminate Objects

0=∑F

0

0

0

=

=

=

∑∑∑

y

x

M

F

F3 equations, 3 unknowns

0=∑ anywhereMWe can solve…

!NOT ALWAYS!

Page 132: Statics Course Notes

Statically Ind. – Case 1Statically Ind.  Case 1

More unknowns than equations of equilibrium.

How?

More supports than theminimum numberMore supports than the minimum number necessary to maintain equilibrium (redundant supports)

8 unknowns, so (8‐3) = 5 degrees of redundancy (or indeterminacy)indeterminacy)

Page 133: Statics Course Notes

F = 100 N

BA

1 m1 m

100 N

AxFBD

MA

1 m

BAy

1 m

Page 134: Statics Course Notes

Statically Ind. – Case 2Statically Ind.  Case 2

Improper Supports

…the object will move!

BAF Object takes off 

down the road!!!

F0≠∑ xF

Ay By

Page 135: Statics Course Notes

This occurs anytime all of the reactions are parallelThis occurs anytime all of the reactions are parallel…

BA BAF

3 eq. and 3 unknowns, but we’re still indeterminate!

Page 136: Statics Course Notes

or concurrent!

BAF

P

BAF

If F causes a moment about point P, then the object rotates!

Page 137: Statics Course Notes

P

BAF

BA

P

However…

BAF

Page 138: Statics Course Notes

Properly or improperly supported?Properly or improperly supported?

Page 139: Statics Course Notes

Statically Ind. – Case 1Statically Ind.  Case 1

More unknowns than equations of equilibrium.

How?

More supports than theminimum numberMore supports than the minimum number necessary to maintain equilibrium (redundant supports)

8 unknowns, so (8‐3) = 5 degrees of redundancy (or indeterminacy)indeterminacy)

Page 140: Statics Course Notes

Statically Ind. – Case 2Statically Ind.  Case 2

Improper Supports

…the object will move!

BAF Object takes off 

down the road!!!

F0≠∑ xF

Ay By

Page 141: Statics Course Notes

This occurs anytime all of the reactions are parallelThis occurs anytime all of the reactions are parallel…

BA BAF

3 eq. and 3 unknowns, but we’re still indeterminate!

Page 142: Statics Course Notes

or concurrent!

BAF

P

BAF

If F causes a moment about point P, then the object rotates!

Page 143: Statics Course Notes

P

BAF

BA

P

However…

BAF

Page 144: Statics Course Notes

Properly or improperly supported?Properly or improperly supported?

Page 145: Statics Course Notes

Problem 5.76Problem 5.76

State whether each of the L‐shaped bars shown is properly or improperly p p p y p p ysupported.  If a bar is properly supported, determine the reactions at its supports.

Page 146: Statics Course Notes

Equilibrium in 3‐DEquilibrium in 3 D

2‐D 3‐D

∑ = 0Fv

∑∑

=

=

0

0

y

x

F

F∑ = 0F

v

∑∑

=

=

0

0

y

x

F

F

∑ = 0Mv

= 0anywhere

y

M∑ = 0zF

∑ = 0Mv

∑∑∑

=

=

0

0

y

x

M

M

∑ = 0zM

6 scalar equilibrium equations!6 scalar equilibrium equations!

Page 147: Statics Course Notes

Supports and ReactionsSupports and Reactions

Ball‐and‐SocketBall‐and‐Socket

Free rotation, but no translation in any direction.

Page 148: Statics Course Notes
Page 149: Statics Course Notes

Ball‐and‐socket joint to connect the housingthe housing of an earth grader to its frame.

Page 150: Statics Course Notes

Supports and ReactionsSupports and Reactions

RollerRoller

A ball and socket on wheels.  Free rotation, free translation in the x‐z plane, but no translation in the y‐direction

Page 151: Statics Course Notes

Supports and ReactionsSupports and Reactions

HingeHinge

Can rotate freely only about the hinge axis and cannot translate.

Page 152: Statics Course Notes

Pin usedPin used to support a strut on a tractor.

Page 153: Statics Course Notes

Why don’t we use only one hinge on ahinge on a door?

Page 154: Statics Course Notes

The forces Fxexert a coupleexert a couple moment to resist the moment due to the weight.

Page 155: Statics Course Notes

Supports and ReactionsSupports and Reactions

BearingBearing

Similar reactions to those of the hinge, but in some cases,  Some bearings do not restrict  

translation in the z‐directiontranslation is allowed in the longitudinal direction.

translation in the z direction. 

Page 156: Statics Course Notes

Journal bearing used toused to support the end of a shaft.

Page 157: Statics Course Notes

Thrust bearing used to support a drive shaft.

Page 158: Statics Course Notes

Supports and ReactionsSupports and Reactions

FixedFixed

No translation or rotation.

Page 159: Statics Course Notes
Page 160: Statics Course Notes
Page 161: Statics Course Notes
Page 162: Statics Course Notes
Page 163: Statics Course Notes

Problem 5.149Problem 5.149The 80‐lb bar is supported by a ball and socket support at A, the smooth wall it leans against, and the cable BC.  The weight of the bar acts at its midpoint.a) Draw the free‐body diagram of the bar.b) Determine the tension in cable BC and the reactions at A.

Page 164: Statics Course Notes

Two and Three‐force MembersTwo and Three force Members

A two‐force member is subjected to no couple moments and forces f j pare applied to only two points on the member.  Weight is neglected.

Notice that the two forces are collinear.

Page 165: Statics Course Notes

Two‐force members will maintain translational (or force) equilibrium if FA and FB are equal and opposite.

Page 166: Statics Course Notes

Two‐force members will maintain rotational (or moment) equilibrium if FA and FB are collinear.

Therefore, only the magnitude of the force must be determined, since the direction can be determined by the line AB.

Page 167: Statics Course Notes

A three‐force member is subjected to only three forces that must be either concurrent or parallel.

LOA’s are parallel and intersect at infinity

0=∑ PMP0=∑ ∞M

Page 168: Statics Course Notes
Page 169: Statics Course Notes
Page 170: Statics Course Notes

TrussesTrusses

A truss is a structure composed of slender members joined together at their end points two force membersend points…two‐force members.

Welded, bolted, or riveted to a gusset plate

Connected with large bolt

Page 171: Statics Course Notes

A truss can only be loaded at the joints,A truss can only be loaded at the joints, and the members are assumed to be weightless (negligible).

Page 172: Statics Course Notes

Top chords

Bottom chordsWeb

Top and bottom chords usually carry significantlyTop and bottom chords usually carry significantly higher loads than the web elements.

Page 173: Statics Course Notes

R f t t i ll l d d thRoof trusses are typically loaded on the top joints whereas bridge trusses are typically loaded on the bottom joints.

Page 174: Statics Course Notes

Truss Assumptions:1) Loaded only at joints which are assumed to be pinned2) Composed entirely of two‐force members2) Composed entirely of two‐force members3) Neglect weight (weightless)

Warren truss

Tension – force points awayCompression – force points towardCompression – force points toward

Page 175: Statics Course Notes

Though actual trusses are seldom pinned joints or connections they areThough actual trusses are seldom pinned joints or connections, they are designed such that the couple moments exerted at the joints are small compared to the axial forces!

Page 176: Statics Course Notes

Truss Analysis: Method of JointsTruss Analysis: Method of Joints

First step is to draw a F.B.D. and solve for the reactions.p

Page 177: Statics Course Notes

Truss Analysis: Method of JointsTruss Analysis: Method of Joints

Second, examine the axial forces acting on the joints , g j(equilibrium of a particle)…start with knowns.

Page 178: Statics Course Notes

Truss Analysis: Method of JointsTruss Analysis: Method of Joints

Two ways of viewing at the jointTwo ways of viewing at the joint…

T

Cut through member

TAB

TAB

Look at forces on pin

TAC

60oTAC

TAB

60o

500 N 500 N

Page 179: Statics Course Notes

Truss Analysis: Method of JointsTruss Analysis: Method of Joints

Thirdly, use the two available equations of equilibrium to y, q qsolve for the two unknowns and verify their correct sense (tension or compression).

0

0

=

=

∑∑

y

x

F

F Cannot use sum of moments since forces are concurrent.∑ y

Member AB is 577N in tensionMember AC in 289N in compression

Page 180: Statics Course Notes

Truss Analysis: Method of JointsTruss Analysis: Method of Joints

Lastly, methodically move from joint‐to‐joint, and determine y, y j j ,the axial forces in each member.

Move here next…

…or here.

Page 181: Statics Course Notes

Determine the force in each member of the truss shown.  Indicate whether the members are in tension or compression.

Page 182: Statics Course Notes
Page 183: Statics Course Notes

Zero‐Force MembersZero Force Members

Suppose we want to use the method of joints to determine the axial forces in the members…

It would greatly simplify the process if we could identify b hi h d l di (any members which do not support any loading (zero‐

force members).

Page 184: Statics Course Notes

Zero‐Force MembersZero Force Members

Therefore members AB and AF are zero force membersTherefore, members AB and AF are zero‐force members under this particular loading.

However, they may not longer be zero‐force members ifHowever, they may not longer be zero force members if the loading changes!

Page 185: Statics Course Notes

Zero‐Force MembersZero Force Members

Page 186: Statics Course Notes

Zero‐Force MembersZero Force Members

Now there are only 4 joints to consider!Now there are only 4 joints to consider!

Page 187: Statics Course Notes

H il id tif f b ?How can we easily identify zero‐force members?

Three members, two of which areThree members, two of which are collinear, and no load.

Two noncollinear members and no load.

Page 188: Statics Course Notes

By inspection, which of the following are zero‐forcefollowing are zero force members?

Page 189: Statics Course Notes

By inspection, determine all the zero‐force members of the Fink roof truss.  Assume all joints are pin connected.

Page 190: Statics Course Notes
Page 191: Statics Course Notes
Page 192: Statics Course Notes
Page 193: Statics Course Notes
Page 194: Statics Course Notes
Page 195: Statics Course Notes

24 kips

36 kips

AA

Page 196: Statics Course Notes

For the truss shown below, determine all zero‐force members and the axial force in member LOin member LO.

Page 197: Statics Course Notes

Method of SectionsMethod of Sections

Quicker method of determining the axial force in a particular member.

What if I only care about the axial force in member BC?   

Do I still have to go through the  method of joints to eventually get to BC?

Page 198: Statics Course Notes

Method of SectionsMethod of Sections

After determining the reactions at the gsupports, we can make a cut through the truss to find the axial forces in the desired member.

Notice that we have to cut through the member in question (BC).q ( )

After we make the cut, remove one side or the other and include the unknownor the other and include the unknown axial forces.

Our forces are no longer concurrent like they were in the method of joints wethey were in the method of joints...we can use the sum of moments equation!

Page 199: Statics Course Notes

Method of SectionsMethod of Sections

0=∑ yFWe can find TBCdirectly!

0∑M 0=∑ cMWe can find TBDdirectly!

0=∑ xFNow we can find Tfind TAC 

We can only cut through as many members as our equations of equilibrium will allow us to solve.

Page 200: Statics Course Notes

Th P tt b id t i bj t d t th l di h D t i thThe Pratt bridge truss is subjected to the loading shown.  Determine the force in members JI, EI, and DE.

Page 201: Statics Course Notes

For the truss shown below,a) Identify all zero force members;b) D i h i l f i b BG d AB i h h d fb) Determine the axial force in members BG and AB using the method of 

sections; andc) Determine the axial force in member BE using the method of joints.

Page 202: Statics Course Notes

Frames and MachinesFrames and Machines

Frames Machines

‐ Remain stationary and support loads ‐ Move and apply loads

Frames and machines are two common pin‐connected structures composed of multiforce members.  

They are not entirely composed of two‐force members and cannot be analyzed like trusses!

Page 203: Statics Course Notes

Determine the forces on each of the members of the frame.

Page 204: Statics Course Notes

Step 1: Analyze the entire structure (a.k.a. find the reactions at the supports).

6 kN

Ax

1 m

BC

Ay 8 kN

1 m

Gx

1 m

E D

Gy

1 m 1 m 1 m

Page 205: Statics Course Notes

Step 2: Disassemble the frame.Load at joint?  It doesn’t matter, but only at one of the joints.

‐13

6 kN

Cx

Ay

T

T

Cy

CyCx

8 kN

T

Two‐force members!

Dx

D

T

Two force members!

5Dx

Dy

Dy

T

Cy

Page 206: Statics Course Notes

For the frame shown draw the free‐body diagrams of (a) the entireFor the frame shown, draw the free body diagrams of (a) the entire frame including the pulleys and cords, (b) the frame without the pulleys and cords, and (c0 each of the pulleys.

Page 207: Statics Course Notes

Determine the horizontal and vertical components of force which the pin at C exerts on member ABCD of the frame.

Page 208: Statics Course Notes

Problem 6.73 – The force F = 10 kN. Determine the forces on member ABC, presenting your answers as shown in Fig. 6.25.

Page 209: Statics Course Notes

Problem 6.88 – The weight W = 80 lb.  Determine the forces on member ABCD.

Page 210: Statics Course Notes

Problem 6.83 – The mass m = 50 kg.  Bar DE is horizontal.  Determine the forces on member ABCD, presenting your answers as shown in Fig. 6.25.

Page 211: Statics Course Notes

Problem 6.133 – Determine the reactions on member ABCat B and C.

Page 212: Statics Course Notes

Internal Forces and MomentsInternal Forces and Moments

P P

Wh d li i h f bWhen dealing with two‐force members, we can cut through the member to determine the internal force.  

P P

The only internal force is an axial force!

Page 213: Statics Course Notes

Internal Forces and MomentsInternal Forces and Moments

Wh d li i h h f ( )When dealing with three‐force (or more) members, we get more internal forces than just a simple axial force!  

M (Internal bending moment)

P

V (Internal shear force)

(Internal axial force)

Page 214: Statics Course Notes

B

Why can’t we perform a method of sections on a frame?

D E

CB

A C

D

Page 215: Statics Course Notes

Positive Sign ConventionsPositive Sign Conventions

Positive shear forces make the Positive bending momentsPositive shear forces make the segment rotate clockwise

Positive bending moments rotate the segment upwards…make the segment smile!

Page 216: Statics Course Notes

Beams Columns

Long, slender structural members which are intended to support loads

Loads are primarily applied parallel to the longitudinal axis and are compressivewhich are intended to support loads 

perpendicular to its longitudinal axis.longitudinal axis and are compressive.

Page 217: Statics Course Notes

Types of Supports

Simply supported

Overhanging

Cantilevered

Fixed

ProppedPropped

3‐span Continuous

Page 218: Statics Course Notes

Types of Loads

Concentrated

Uniform distributed

Moment/couple/pure moment

Non‐uniform distributed

Combined

Page 219: Statics Course Notes

10 ft 5 ft

200 lb10 lb/ft

A B

Page 220: Statics Course Notes

5 ft 5 ft 2.5 ft 2.5 ft

200 lb10 lb/ft

50 lb

A BD C

350 lb

‐50 lb

F 0)( ↑ ∑F 0)( ↑ ∑lbV

F

C

y

200

0)(

=

=↑+ ∑lbV

F

D

y

100

0)(

−=

=↑+ ∑

ftlbMMCCW

C

C

⋅−=

=+ ∑500

0)(

ftlbMMCCW

D

D

⋅−=

=+ ∑375

0)(

Page 221: Statics Course Notes

200

250

0

50

100

150

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shear (lb)

‐200

‐150

‐100

‐50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Distance along beam (ft)g ( )

‐200

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

‐600

‐400

omen

t (ft‐lb

)

‐1200

‐1000

‐800Mo

Distance along beam (ft)Distance along beam (ft)

Page 222: Statics Course Notes

25 kN/m

8 kN/m

200 kN‐m

5 m 1 8 m 3 7 m

A BC D

1 5 m5 m 1.8 m 3.7 m1.5 m

Determine the shear force and bending moment at point CDetermine the shear force and bending moment at point C.

Page 223: Statics Course Notes

Shear and Bending Moment DiagramsShear and Bending Moment Diagrams

‐Plot of the shear force and bending moment along the length of the beam‐Plot of the shear force and bending moment along the length of the beam.

F

2/3 L 1/3 L

F

2/3 F1/3 F2/3 L 1/3 L

2/3 F1/3 F

Page 224: Statics Course Notes

F

2/3 L 1/3 L2/3 F1/3 F

/ /

x

Between x = 0 and x = 2/3 L

P

M

xFM

MCCW cut

31 0)(

0)(

=−

=+ ∑x

1/3 F

V FxM 31=

Fy 0)( =↑+ ∑

FVFV

31

31 0

=

=+−

Page 225: Statics Course Notes

F

2/3 L 1/3 L2/3 F1/3 F

/ /

x

Between x = 2/3 L and x = L

F

P

M

x

1/3 F

V

0)()(

0)(21 LFFM

MCCW cut

+

=+ ∑Fy 0)( =↑+ ∑

)(0)()(

32

32

31

xLFMLxFxFM

−=

=−+−

FVFFV

3231 0

−=

=−+−

Page 226: Statics Course Notes

Relationship Between Loading, Shear, and B di MBending Moment

w

dxwV ∫−=Δ )( wddV

−=

V

dxwV ∫Δ )(

dM

dx

M

dxVM ∫=Δ VdxdM

=

Page 227: Statics Course Notes

Draw the shear and bending moment diagram.

100 lb

50 lb20 ft20 ft

50 lb

Page 228: Statics Course Notes

Draw the shear and bending moment diagram.

200 lb10 lb/ft

5 ft 5 ft 2.5 ft 2.5 ft

A B

350 lb

‐50 lb

350 lb

Page 229: Statics Course Notes

450 ft-lb

300 lb

40 plf

4 ft 3 ft 8 ft

V (lb) 0

M (lb-ft) 0

Page 230: Statics Course Notes

75 ft-lb 50 lb

10 ft 10 ft

V (lb) 0

M (lb-ft) 0

50 plf

Page 231: Statics Course Notes

Centroids & Center of Mass/Gravity

Centroid – The geometric center of an object.

2L/3

x

x

y

y

Page 232: Statics Course Notes

Centroids & Center of Mass/Gravity

x

y

Lx 32=

Ly 31=

In general…

Centroid only depends on geometry, not density

Page 233: Statics Course Notes

Coordinates of the centroid, or average position, of an area is…

=

=

A

A

A

A

dA

ydAy

dA

xdAx

2 x

y

y = x2 –x + 1

Determine the x-component of the centroid of the area.

Page 234: Statics Course Notes

In discrete form, or when dealing with a combination of simple shapes…

=

=

A

A

A

A

dA

ydAy

dA

xdAx

∑∑

∑∑

=

=

ii

iii

ii

iii

A

Ayy

A

Axx

Sum of individual centroids times area

Sum of areas

Centroids of Composite Areas

1

2

x

y

Page 235: Statics Course Notes

12’

6” 4”

15”

6”

4”

18”

24”

??

==

xy

Page 236: Statics Course Notes

3”

4”

4”

1”

Find the location of the centroid.

Page 237: Statics Course Notes

Centroids & Center of Mass/Gravity

Center of gravity vs. Center of mass

The point at which the resultant weight of a system of particles acts.

Since c.g. depends on the acceleration of gravity, center of mass is a better term to use.

Center of gravity of the solar system???

Center of mass is independent of gravity.

Page 238: Statics Course Notes

c.g.

∑∑∑∑∑∑

=

=

=

WzW

z

WyW

y

WxW

x

Center of mass

∑∑∑∑∑∑

=

=

=

mzm

z

mym

y

mxm

x

100 lb

300 lb

100 lb

(4,8)ft

(10,6)ft

(5,3)ft Find the center of gravity.

Page 239: Statics Course Notes

Moments of Inertia

Area Moment of Inertia Mass Moment of Inertia

- used in Dynamics to calculate the rotational motions of objects.

- used to calculate stresses and deflections in beams.

Can be thought of as a measure of the cross-sectional area’s resistance to bending.

F

F

Much easier to bend the board in this orientation…

…than this one.

Page 240: Statics Course Notes

v.s.

b

h

x

y

3

121

bhI x =

43 95.1)5.2)(5.1(121

inI x ==

We are taking the larger dimension to the third power, therefore we get a larger moment of inertia about the centroidal x-axis.

b

h x

y

…only for a rectangular cross-section…

43 70.0)5.1)(5.2(121

inI x ==

By nature, the cross-section will try to rotate about its centroidal axis.

Page 241: Statics Course Notes

∫=A

x dAyI 2

∫=A

y dAxI 2

Moment of inertia about x-axis

Moment of inertia about y-axis

AkI xx2=

AkI yy2=

kx (rx ) is called the radius of gyration

Page 242: Statics Course Notes

∫=A

y dAxI 2

∫=

A

A

dA

xdAx

1st moment of an area

2nd moment of an area

Page 243: Statics Course Notes

xy 4002 =

100 mm

200 mm

Determine the moment of inertia of the area bounded by the curve and the vertical line.

Page 244: Statics Course Notes

x

y

x

y

10”

4”

Diameter = 4”

What is the moment of inertia about the x and y-axis for the following shapes?

Page 245: Statics Course Notes

y’ Diameter = 4”

x’

y

x

What if the shape is removed some distance away from a parallel axis?

C(6,10)in

Parallel Axis Theorem

2'

2'

xyy

yxx

AdII

AdII

+=

+=

d is the distance from parallel axis to the axis of the individual shape.

Page 246: Statics Course Notes

12’

6” 4”

15”

6”

4”

18”

24”

"72"76.23

==

xy

What is the moment of inertia about the centroidal x-axis of the large beam?

Page 247: Statics Course Notes

Polar Moment of Inertia

yxO

AO

IIJ

dArJ

+=

= ∫ 2

Resistance to rotation about the origin (or z-axis)

AkJ OO2=OR

where kO is the radius of gyration about the origin.

222yxO kkk +=

Page 248: Statics Course Notes

Determine the moment of inertia, both Ix and Iy, about the x and y-axis.

Determine the location of the centroid.

Page 249: Statics Course Notes

Determine the moment of inertia, both Ix and Iy, about the centroidal x and y-axis.

What is the polar moment of inertia?

Page 250: Statics Course Notes

2” 2-1/8”

Determine the moment of inertia and polar moment of inertia about the centroidal axes.

What is the radius of gyration about the x and y-axis?

Page 251: Statics Course Notes

Determine the moment of inertia about the centroidal x and y-axis.

Page 252: Statics Course Notes

Determine the location of the centroid.

3”

1”

4”

4”

1” 1” 2”

2 x φ5/8”

Page 253: Statics Course Notes

Friction

Book is not in static equilibrium.

Frictional component opposes motion!

Page 254: Statics Course Notes

Before, we assumed a smooth surface…

…but in reality, the surface has some degree of roughness which contributes to friction. Frictional

component opposes motion!

Page 255: Statics Course Notes

N f

f

N θ θ = Angle of Friction, or

the Internal Friction Angle

Frictional force only increases as the need arises in order to maintain static equilibrium.

Page 256: Statics Course Notes

F

f

Nf sµ=

Nf kµ=

No motion

Motion

Impending motion

Page 257: Statics Course Notes

ss

s Nfµθ

µ=

=tan

kk

k Nfµθ

µ=

=tan

F

f

No Yes

Are the surfaces in motion relative to each other?

Friction force opposes motion

Is slip impending?

F

f

No

Yes

You must determine mag. and direction using eq. of equilibrium.

Friction force opposes impending motion

Page 258: Statics Course Notes

P 200 lbs

A 200-lb block is initially at rest on the horizontal surface. If µs = 0.35 and µk = 0.2 between the surfaces, find the magnitude of the friction force acting on the block when P is: a) 30 lbs, b) 50 lbs, c) 70lbs, and d) 90 lbs

Page 259: Statics Course Notes

3 Problem Types

Equilibrium

Using sum of forces and moments for each bar (6 eq. and 6 unknowns), find NA, fA, NC, and fC.

A

B

C

µA = 0.3 µC = 0.5

100-N bars

…then verify that

CC

AA

NfNf

5.03.0

≤≤

Page 260: Statics Course Notes

3 Problem Types

Impending Motion At All Points

What is the largest force for which the boxes will not slip? The ends of the bar must slip

at the same time.

Page 261: Statics Course Notes

3 Problem Types

Impending Motion At Some Points

Either block A slips relative to B, or both A and B move together.

Page 262: Statics Course Notes

The mass of box A is 15 kg, and the mass of box B is 60 kg. The coefficient of static friction between boxes A and B and between box B and the inclined surface is 0.12. What is the largest force for which the boxes will not slip? What is the smallest force for which the boxes will not slip?

Page 263: Statics Course Notes

The mass of box A is 15 kg, and the mass of box B is 60 kg. The coefficient of static friction between boxes A and B and between box B and the inclined surface is 0.12. What is the largest force for which the boxes will not slip?

What is the smallest force for which the boxes will not slip?

Page 264: Statics Course Notes

P 200 lb

75 lb

Two blocks resting on each other weigh 200-lb and 75-lb, respectively. If the coefficient of friction between the blocks is 0.5 and between the 75-lb block and the floor is 0.3, determine the largest force P that can be applied without upsetting equilibrium.

Page 265: Statics Course Notes

F

250 lb

3 ft

5 ft

52 in

Tipping / Overturning

Will the refrigerator tip or slip?

µs = 0.25

As F increases, either the crate will be on the verge of sliding (f = µsN), or …

If the surface is rough (large µs) then N shifts to the corner and the crate tips over.

F W

N

f

F W

N f

x

Page 266: Statics Course Notes

F

250 lb

2 ft

5 ft

52 in

µs = 0.25

The refrigerator has a weight of 250-lb. If F = 60-lb, determine if it remains in equilibrium.

Page 267: Statics Course Notes

0.2 m

0.8 m µs = 0.3

30o

The crate has a mass of 20-kg. If P = 80N, determine if it remains in equilibrium.

P

Page 268: Statics Course Notes

Wedges

A bifacial tool with the faces set at a small acute angle. When pushed forward, the faces exert very large normal forces!

F

Wedges are very efficient when there is no friction…

…however, they may slip out!

Page 269: Statics Course Notes

The box A has a mass of 80-kg, and the wedge B has a mass of 40-kg. Between all contacting surfaces, µs = 0.15 and µk = 0.12. What force F is required to raise A at a constant rate?

Page 270: Statics Course Notes

The box A has a mass of 80-kg, and the wedge B has a mass of 40-kg. Between all contacting surfaces, µs = 0.15 and µk = 0.12. What force F is required to raise A at a constant rate?

010sin10cos0)(

211 =+−−

=→ ∑NNf

Fx

010cos10sin8.784

0)(

112 =+−−−

=↑ ∑Nff

Fy

010cos10sin10cos10cos0)(

3311 =++++−

=→ ∑fNNfF

Fx

010cos10cos10sin10sin4.392

0)(

1313 =−++−−

=↑ ∑NNff

Fy

For Block A:

For Block B:

Page 271: Statics Course Notes

Belt Friction

βµseTT 12 =

The force T2 necessary to cause impending slip of the rope in the direction of T2 is…

Page 272: Statics Course Notes

Belt Friction βµseTT 12 =

T2 is always the larger of the two forces

β is the angle of contact in radians.

I want the rope to slip in the direction

of T2

Page 273: Statics Course Notes

100 lb 30o

3 ft 3 ft

6 ft

F

What are the maximum and minimum values of F that may be applied without causing the 6 ft x 3 ft, 100-lb block to slip or tip? The coefficient of static friction between the block and the ramp is 0.5, and the coefficient of static friction between the rope and the fixed drum is 0.3.

Page 274: Statics Course Notes

P

200 lb

Platform

Find the minimum and maximum values of P which may be applied without causing the 200 lb block to slip. The coefficient of friction between the platform and the block is 0.8; the coefficient of friction between the rope and the drum is 0.2. Assume that the platforms attached to the identical springs (k = 75 lb/in) are only able to move horizontally. Each spring is compressed 1.2 in relative to its original length.