status of the micro vertex detector m. deveaux, goethe university frankfurt for the cbm-mvd...

41
Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Upload: sabina-shepherd

Post on 23-Dec-2015

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Status of the Micro Vertex Detector

M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Page 2: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

The CBM-MVD

M. Deveaux 2

CB

M

We are here

Page 3: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

How will it look

M. Deveaux 3

Magnet Silicon Tracking System

DAQcards

Vacuum vessel

MVD - planes

Page 4: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

4M. Deveaux,

Open charm reconstruction: Concept

Primary Beam: 25 AGeV Au Ions (up to 109/s)

Primaryvertex Secondary

vertex

Short lived particle D0 (ct = ~ 120 µm)

Detector 1Detector2Target

(Gold)

z

Reconstruction concept for open charm

Central Au + Au collision (25 AGeV)

• A good time resolution to distinguish the individual collisions (few 10 µs)

• Very good radiation tolerance (>1013 neq/cm²)

Reconstructing open charm requires: • Excellent secondary vertex resolution (~ 50 µm)=> Excellent spatial resolution (~5 µm)=> Very low material budget (few 0.1 % X0)=> Eventually: Detectors in vacuum

Page 5: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

5

Status of the sensors (last meeting 2011)

M. Deveaux

CBMSIS300

MAPS*(2003)

MAPS* (2011)

MIMOSA-26

(2010)

Single point res. ~ 5 µm 1.5 µm 1 µm 4 µm

Material budget < 0.3% X0 ~ 0.1% X0 ~ 0.05% X0 ~ 0.05% X0

Rad. hard. non-io. >1013 neq 1012 neq/cm² 1x1013 neq 1013 neq

Rad. hard. io > 3 Mrad 200 krad > 1 Mrad > 500 krad

Time resolution < 30 µs ~ 1 ms ~ 25 µs 110 µs

Optimized for one parameter Current compromise

Monolithic Active Pixel Sensors(MAPS, also CMOS-Sensors)

• Invented by industry (digital camera)• Modified for charged particle detection

since 1999 by IPHC Strasbourg • Also foreseen for ILC, STAR, ALICE…

=> Sharing of R&D costs.

Page 6: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

A word on simulation

6M. Deveaux

MVD and STS

integration

Page 7: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Global design: How many MVD stations?

M. Deveaux 7

5 cm

Targ

et

MV

D 1

MV

D 2

ST

S 1

ST

S 2

ST

S 3

Vacuumwindow

Tracking, artist view

Page 8: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Global design: How many MVD stations?

M. Deveaux 8

5 cm

Targ

et

MV

D 1

MV

D 2

ST

S 1

ST

S 2

ST

S 3

Vacuumwindow

Tracking, artist view

Page 9: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Global design: How many MVD stations?

M. Deveaux 9

5 cm

Targ

et

MV

D 1

MV

D 2

ST

S 1

ST

S 2

ST

S 3

Vacuumwindow

Tracking, artist view

Page 10: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Global design: How many MVD stations?

M. Deveaux 10

5 cm

Targ

et

MV

D 1

MV

D 2

ST

S 1

ST

S 2

ST

S 3

Vacuumwindow

Tracking, artist view

Page 11: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Global design: How many MVD stations?

M. Deveaux 11

5 cm

Targ

et

MV

D 1

MV

D 2

ST

S 1

ST

S 2

ST

S 3

Vacuumwindow

Tracking, artist view

Page 12: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Global design: How many MVD stations?

M. Deveaux 12

5 cm

Targ

et

MV

D 1

MV

D 2

ST

S 1

ST

S 2

ST

S 3

Vacuumwindow

Tracking, artist view

Page 13: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

L1 “MVD track finding efficiency” vs. MVD design

13

MV

D tr

ack

findi

ng e

ffici

ency

[%]

2 MVD stations

3 MVD stations

4 MVD stations

5 10None pile up

100% = primary tracks, geo-metrically accepted by MVD,> 4 hits in STS

90

50

Tracking efficiency = 83% for standard MVD, drops to <55% at pile up 10

Tracking efficiency is substantially improved by additional stations

Impact for 4th station to be studied in detail

M. Deveaux

C. T

rageser

Page 14: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Background rejection capabilities of the MVD

14

0

50

None 5 10

acce

pted

BG

-tra

cks

/ eve

nt

Bad reconstruction

Some bad hits

Good track finding

Not accepted

Cuts:p >1 GeVpt>0.3 GeVLong (>4 in STS)IP<600µmIP/sIP>6

M. Deveaux

More than 2 MVD stations are needed for BG rejectionExpect good sensitivity for open charm with >3 stations

C. T

rageser

Page 15: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Sensor R&D

M. Deveaux 15

for (Int_t Mimosa=1; true; Mimosa++) {

Build_Next_Prototype (Mimosa);Test_Prototype (Mimosa);Enjoy_Spectacular_Progress_Of(Mimosa);

ImproveDesign(Mimosa);}

Page 16: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

0 5 10 15 20 25 30 35 401011

1012

1013

1014

1015

MIMOSA-9

MIMOSA-9

MIMOSA-15 (2006)MIMOSA-18 (2008)

Uncertainty range

Radia

tion tole

rance

[n

eq/c

m²]

Pixel pitch [µm]

Long standing believes vs. technological progress

16

A small pixel pitch is needed to reach the radiation tolerance needed for CBM

CBM goal

M. Deveaux

Page 17: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

17M. Deveaux

Sensor R&D: The operation principle

Reset+3.3V+3.3V

Output

SiO2 SiO2 SiO2

N++ N++N+ P+

P-

P+

15µm50µm

Page 18: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

18

Sensor R&D: Tolerance to non-ionising radiation

+3.3VOutput

SiO2 SiO2

N++

N+SiO2 SiO2

P++ P++ P++

GND GND

+3.3V

Page 19: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

19

Sensor R&D: Tolerance to non-ionising radiation

+3.3VOutput

SiO2 SiO2

N++

N+SiO2 SiO2

P++ P++ P++

GND GND

+3.3V

Key observation: Signal amplitude is reduced by bulk damage

Page 20: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

20

Sensor R&D: Tolerance to non-ionising radiation

+3.3VOutput

SiO2 SiO2

N++

N+SiO2 SiO2

P++ P++ P++

GND GND

+3.3V

Electric field increases the radiation hardness of the sensorDraw back: Need CMOS-processes with low doping epitaxial layer

E

Page 21: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Long standing believes vs. technological progress

21

A small pixel pitch is needed to reach the radiation tolerance needed for CBM

MIMOSA-32:20x40µm² pixel99.5%0 5 10 15 20 25 30 35 40

1011

1012

1013

1014

1015

MIMOSA-9

MIMOSA-9

MIMOSA-15 (2006)MIMOSA-18 (2008)

MIM

OSA-18 AHR (2011)*

Sensor based on high-resistivity EPI layer Sensor based on low-resistivity EPI layer Uncertainty range

Ra

dia

tion

to

lera

nce

[n

eq/c

m²]

Pixel pitch [µm]* Cooled down to -35°C

D. Doering et al. – Mimosa18 AHR

CBM goal

M. Deveaux

Page 22: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

22

Status of the sensors (last meeting 2011)

M. Deveaux

CBMSIS300

MAPS*(2003)

MAPS* (2011)

MIMOSA-26

Binary, 0

Single point res. ~ 5 µm 1.5 µm 1 µm 4 µm

Material budget < 0.3% X0 ~ 0.1% X0 ~ 0.05% X0 ~ 0.05% X0

Rad. hard. non-io. >1013 neq 1012 neq/cm² >1x1013 neq >1013 neq

Rad. hard. io > 3 Mrad 200 krad > 1 Mrad > 500 krad

Time resolution < 30 µs ~ 1 ms ~ 25 µs 110 µs

Optimized for one parameter Current compromise

Monolithic Active Pixel Sensors(MAPS, also CMOS-Sensors)

• Invented by industry (digital camera)• Modified for charged particle detection

since 1999 by IPHC Strasbourg • Also foreseen for ILC, STAR, ALICE…

=> Sharing of R&D costs.

Page 23: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

23

Update on sensor R&D

M. Deveaux

CBMSIS300

MAPS*(2003)

MAPS* (2013)

MIMOSA-26

Binary, 0

Single point res. ~ 5 µm 1.5 µm 1 µm 4 µm

Material budget < 0.3% X0 ~ 0.1% X0 ~ 0.05% X0 ~ 0.05% X0

Rad. hard. non-io. >1013 neq 1012 neq/cm² >3x1014 neq >1013 neq

Rad. hard. io > 3 Mrad 200 krad > 1 Mrad > 500 krad

Time resolution < 30 µs ~ 1 ms ~ 25 µs 110 µs

Optimized for one parameter Current compromise

Monolithic Active Pixel Sensors(MAPS, also CMOS-Sensors)

• Invented by industry (digital camera)• Modified for charged particle detection

since 1999 by IPHC Strasbourg • Also foreseen for ILC, STAR, ALICE…

=> Sharing of R&D costs.

Page 24: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Challenge: Find MAPS-compatible 0.18µm CMOS process

• 32 mm² surface

Radiation tolerance of MAPS

24

So far - Radiation tolerance limited by:

• Leakage current – noise• Conduction channels between transistors (?)

DONE

First prototype: MIMOSA-32

• 32 different kinds of pixels• 32 µs readout time

33 mm²

Known solution: • Use 0.18 µm CMOS instead of 0.35µm CMOS

M. Deveaux

Page 25: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Long standing believes vs. technological progress

25

A small pixel pitch is needed to reach the radiation tolerance needed for CBM

MIMOSA-32:20x40µm² pixel99.5%0 5 10 15 20 25 30 35 40

1011

1012

1013

1014

1015

MIMOSA-9

MIMOSA-9

MIMOSA-15 (2006)MIMOSA-18 (2008)

MIM

OSA-18 AHR (2011)*

Sensor based on high-resistivity EPI layer Sensor based on low-resistivity EPI layer Uncertainty range

Ra

dia

tion

to

lera

nce

[n

eq/c

m²]

Pixel pitch [µm]* Cooled down to -35°C

CBM goal

Mimosa-32, 20x40µm² pitch(Beam test @ SPS by IPHC, preliminary)

99.5% detection efficiencyAfter 1013 neq/cm² + 1 MRad !

M. Deveaux

Page 26: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Long standing believes vs. technological progress

26

MIMOSA-32:20x40µm² pixel99.5%0 5 10 15 20 25 30 35 40

1011

1012

1013

1014

1015

MIMOSA-9

MIMOSA-9

MIMOSA-15 (2006)MIMOSA-18 (2008)

MIM

OSA-18 AHR (2011)*

Sensor based on high-resistivity EPI layer Sensor based on low-resistivity EPI layer Uncertainty range

Ra

dia

tion

to

lera

nce

[n

eq/c

m²]

Pixel pitch [µm]* Cooled down to -35°C

CBM goal

Mimosa-32, 20x40µm² pitch(Beam test @ SPS by IPHC, preliminary)

99.5% detection efficiencyAfter 1013 neq/cm² + 1 MRad !

A small pixel pitch is needed to reach the radiation tolerance needed for CBM

M. Deveaux

Page 27: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Why is this important?

27

Pixel with pedestal correction

~1000 discriminators

On - chip cluster-finding processor

Output: Cluster information(zero suppressed)

50 µ

s/frame

25 µ

s/frame

12 µ

s/frame

~2000

20x20µm² 20x40µm²

Requires 0.18µm CMOSTest chip submitted

M. Deveaux

Page 28: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Why is this important

28

Pixel with pedestal correction

~1000 discriminators

On - chip cluster-finding processor

Output: Cluster information(zero suppressed)

50 µ

s/frame

25 µ

s/frame

12 µ

s/frame

~2000

20x20µm² 20x40µm²

Requires 0.18µm CMOSTest chip submitted

M. Deveaux

MAPS are too slow for CBM

Page 29: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Why is this important

29

There is a clear strategy for reaching the readout speed neededfor CBM

Pixel with pedestal correction

~1000 discriminators

On - chip cluster-finding processor

Output: Cluster information(zero suppressed)

50 µ

s/frame

25 µ

s/frame

12 µ

s/frame

~2000

20x20µm² 20x40µm²

Requires 0.18µm CMOSTest chip submitted

M. Deveaux

Page 30: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

30

Update on sensor R&D

M. Deveaux

CBMSIS300

MAPS*(2003)

MAPS* (2013)

MIMOSA-26

Binary, 0

Single point res. ~ 5 µm 1.5 µm 1 µm 4 µm

Material budget < 0.3% X0 ~ 0.1% X0 ~ 0.05% X0 ~ 0.05% X0

Rad. hard. non-io. >1013 neq 1012 neq/cm² >3x1014 neq >1013 neq

Rad. hard. io > 3 Mrad 200 krad > 1 Mrad > 500 krad

Time resolution < 30 µs ~ 1 ms ~ 25 µs 110 µs

Optimized for one parameter Current compromise

Monolithic Active Pixel Sensors(MAPS, also CMOS-Sensors)

• Invented by industry (digital camera)• Modified for charged particle detection

since 1999 by IPHC Strasbourg • Also foreseen for ILC, STAR, ALICE…

=> Sharing of R&D costs.

Page 31: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

MIMOSA-32 and ionizing radiation

M. Deveaux 31

0 1 2 3 4 5 6 7 8 9 100369

1215182124273033

EN

C [e]

Ionizing radiation dose [Mrad]

0.35µm 0.18µm

Noi

seSensor irradiated with X-rays @ CERN

Noise increases much slower (as expected)Higher initial noise (not expected)

D. D

oering

Page 32: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

32

Sensor R&D: Tolerance to non-ionising radiation

+3.3VOutput

SiO2 SiO2

N++

N+SiO2 SiO2

P++ P++ P++

GND GND

+3.3V

Study noise with varied size of transistor gate

Page 33: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Comparison with 0.18µm vs. AMS 0.35

M. Deveaux 33

0 10 20 30 40 50 60 70 80 90 1001

10

100

Ent

ries

Noise [e]

Mi18AHR A2 Mi32ter P2 Std. Mi32ter P5 Tiny SF

Dennis Doering

D. D

oerin

g

0.35 µm, big 0.18µm, small

0.18µm, tiny

Page 34: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Going into details

34

0 10 20 30 40 50 60 70 80 90 1001

10

100

Ent

ries

Noise [e]

Mi18AHR A2 Mi32ter P2 Std. Mi32ter P5 Tiny SF

Dennis Doering

M. W

inter et al.

Page 35: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Random Telegraph Signal

35

M. W

inter et al.

RTS, illustration

Sensors see difference between two samples

Side peaks due to change of state.

Problem understood, => Need bigger gates

Page 36: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

36

So what?

M. Deveaux

CBMSIS300

MAPS*(2003)

MAPS* (2013)

MIMOSA-26

Binary, 0

Single point res. ~ 5 µm 1.5 µm 1 µm 4 µm

Material budget < 0.3% X0 ~ 0.1% X0 ~ 0.05% X0 ~ 0.05% X0

Rad. hard. non-io. >1013 neq 1012 neq/cm² >3x1014 neq >1013 neq

Rad. hard. io > 3 Mrad 200 krad > 1 Mrad > 500 krad

Time resolution < 30 µs ~ 1 ms ~ 25 µs 110 µs

Optimized for one parameter Current compromise

Mimosa-32, 20x20µm² pitch(Beam test @ SPS by IPHC, preliminary)

99.5% det. efficiency (S/N ~30)After 3 MRad at +15°C!

Page 37: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

37M. Deveaux

So what?

CBMSIS300

MAPS*(2003)

MAPS* (2013)

MIMOSA-26

Binary, 0

Single point res. ~ 5 µm 1.5 µm 1 µm 4 µm

Material budget < 0.3% X0 ~ 0.1% X0 ~ 0.05% X0 ~ 0.05% X0

Rad. hard. non-io. >1013 neq 1012 neq/cm² >3x1014 neq >1013 neq

Rad. hard. io > 3 Mrad 200 krad > 3 Mrad > 500 krad

Time resolution < 30 µs ~ 1 ms ~ 25 µs 110 µs

Optimized for one parameter Current compromise

Mimosa-32, 20x20µm² pitch(Beam test @ SPS by IPHC, preliminary)

99.5% det. efficiency (S/N ~30)After 3 MRad at +15°C!

Page 38: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Next steps in the R&D

38

Pixel with pedestal correction

~1000 discriminators

On - chip cluster-finding processor

Output: Cluster information(zero suppressed)

Prototype MIMOSA-22THRsubmitted

Already excellent butGet rid of RTS4 prototypes submitted

Prototype SUZE - 2submitted

First prototypes in 0.18µm CMOS show spectacular results.Full engineering run (11 CBM relevant prototypes) submitted.More to come => Stay tuned.

M. Deveaux

Page 39: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

How to integrate the sensors?

M. Deveaux, CBM Collaboration Meeting, Kolkata, 24-28. Sept 2012 39

MIMOSA-26 (600 kPixel, 104 frames/s, zero suppression) Thinned to 50µm, at IKF Frankfurt

See next talk (M. Koziel)

Page 40: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

Summary

40

Sensors for MVD (since 2010)

• Radiation tolerance (non-io.) was improved by factor 10• Radiation tolerance (io) was improved by factor > 3• All sensor requirements for CBM are individually demonstrated• Still room for improvement in 0.18µm process

• Ongoing effort to combine all functionalities

Simulation

• MVD needs 3 or 4 stations for good performance

Prototype and integration: Very promising (see next talk)

Page 41: Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration

M. Deveaux, CBM Collaboration Meeting, Kolcata, 24-28. Sept 2012 41The prototype DAQ at night

PICSEL Group IPHC, Strasbourg (sensor R&D + test)Thanks to: S. Amar-Youcef, B. Milanovic, Q. Li (Prototype firmware and analysis) M. Koziel, T.Tischler (mechanical integration)B. Neumann (JTAG slow control), M. Wiebusch (analog electronics)C. Trageser (simulation)C. Schrader (DAQ concept and coordination, now with BOSCH),