stopping power and range of relativistic and non-relativistic heavy ions in different materials...

4
Nuc/. Tradu pa,4~,n Meal., Vol. 22, Nm I-4, pp. 81-84, 1993 peglgllmoll Ebevter Scieace Lid Prmmi in Grim Bnt-,n. 096940"/8/94 $6.00+ 00 STOPPING POWER AND RANGE OF RELATIVISTIC AND NON- RELATIVISTIC HEAVY IONS IN DIFFERENT MATERIALS INCLUDING SOLID STATE NUCLEAR TRACK DETECTORS S. K. StUUXM&* SB~AM KUMAR*and A. P. SHAgMAT *Department of Phymcs, Kmukshetra Umvemty, Kuru~he~ 132119, Indut; and l"Depmment of Physics, Ahgarh Mushm Untver~ty, Aiigagh 202001, Ind-- ABSTRACT Calculations of stopping power and range of yam-zeus heavy zone of both the relativistic and non-relativistlc energies have been done in various elemental as well as comple:( media adopting the formulations of ~enton and Honks, Mukherjee and Nayak, Zleglor st. al. and Hubert ~t. ~;. Finally a comparison has been made with the e~perlmental results. I~EYWORDS Heavy zone, stopping power, range, solid state nuclear track detector. INTRODUCTION The study of interactions o~ heavy ions with matter Is of great Importance to many scientific fields su~h as nuclear physics, astr-oph),sxcs, elementary particle physics, radiation doelmetry, materials science, radiation biology and chemistry, health physics etc. (Rhlen, 1980) and has always been a subjec~ of vital interest of investigations due to the complex nature of the phenomenon. Charged particle detectors have been mainly responsible for most of the experimental results in hight medium and low energy Physics and the knowledge of exact stopping power and range relations for- chat-god particles xs one of the essential requirements for the calibration and use of any charged particle detector. (Benton and Honks; 1969). In the present work, a comparative study of the various stopping power and range formulations e.g. Benton and Honks (1969), l~.tkherJee and Nayak (1979), Zlegler st. al. (1985,1991) and Hube~'t St. al~ (1989) ~as been done by comparing the calculated stopping power and range values for different projectile-target combinations at different energies adoptxn 9 these formulations with the corresponding experimental values. The. theoretical calculations of stopping power and Pangs havQ ~oen done utilL=Ing the ND-IO SUPER-32, computer facilities of Kuru~shetra University, )¢urukshetra. The experimental stoppln 9 power data of Dlan~ s~. ~, 1990; Dtmbot ~t- a~., 1978,1980,198a; 8auvin st. al. 1987,1990; Heckman et~ ~I~, 1987 have been utili=ed. The Northcliff and Schilling (1970) tabulated stopping power ~alues wherever available have also been taken. RESULTS AND DISCUSSION Table-1 presents the experimental values of stopping po~er" for" dLfferent heavy ions -n different solid targets at varLous enet-g lee along with the correspond Ing theoretically computed values adopt,rig the above mentioned formulations. The percentage deviations of the calculated stopping power values from the experimental values are also presented in the table. From Table-l, it is clear that "the Zlegler mr. al. formulat,on highly undsrestlmates the stopping power values for heavy projectile and light target combinations (e.g. U, Pbw Xe, Me projectiles in Be t C, AI targets etc.) whereas for" heavy projectile and heavy target combinations (e. 9, U, Pb, Xe, Me pro~ectxles In Au, Bit U targets etc.) the formulation overestimates the ~topping power values. With the increase In the'energy of the projectile, these devlatzons reduce and it seems that above the projectile energy 50 MeVln, these devtatzon's disappear and the results are In agreement with the experimental results. For all other projectile and target combinations at all ensrg,es up to about 400 P1eV/n, the Zxegler e~, ~, formulation provides the results In good agreement w.th the experimental results. The comparlson of the calculated stopping power" values from the Benton and Honks formulation with the e:cperimental values shows that this formulation generally provides results In agreement wlth the experimental results except for heavy projectiles like U, Fb, Xo, etc. In dxff~r~f~t targets for projectile energies up to S MeV/n, where this formulation under'ms*lea*ms the experimental stopping power. Further, from table it is Qvxdent that the Calculated stopping power values from Mukhef'jee and Nayak*s formulation deviate from the experzmental values except foe ~ projectiles Ix~e i:r, Ca, Ar, O etc in 81

Upload: sk-sharma

Post on 26-Jun-2016

217 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Stopping power and range of relativistic and non-relativistic heavy ions in different materials including solid state nuclear track detectors

Nuc/. Tradu pa,4~,n Meal., Vol. 22, Nm I-4, pp. 81-84, 1993 p e g l g l l m o l l Ebevter Scieace Lid

Prmmi in Grim Bnt-,n. 096940"/8/94 $6.00+ 00

STOPPING POWER AND RANGE OF RELATIVISTIC AND NON- RELATIVISTIC HEAVY IONS IN DIFFERENT MATERIALS

INCLUDING SOLID STATE NUCLEAR TRACK DETECTORS

S. K. StUUXM&* SB~AM KUMAR* and A. P. SHAgMAT

*Department of Phymcs, Kmukshetra Umvemty, Kuru~he~ 132119, Indut; and l"Depmment of Physics, Ahgarh Mushm Untver~ty, Aiigagh 202001, Ind--

ABSTRACT

C a l c u l a t i o n s o f s t o p p i n g p o w e r and r a n g e o f yam-zeus h e a v y zone o f b o t h t h e r e l a t i v i s t i c and n o n - r e l a t i v i s t l c energ ies have been done in va r i ous e lementa l as we l l as comple:( media adopt ing the f o r m u l a t i o n s o f ~enton and Honks, Mukherjee and Nayak, Z l e g l o r s t . a l . and Hubert ~ t . ~ ; . F i n a l l y a comparison has been made w i th the e~per lmenta l r e s u l t s .

I~EYWORDS

Heavy zone, s topping power, range, s o l i d s t a t e nuc lea r t rack d e t e c t o r .

INTRODUCTION

The s t u d y o f i n t e r a c t i o n s o ~ h e a v y i o n s w i t h m a t t e r I s o f g r e a t I m p o r t a n c e t o many s c i e n t i f i c f i e l d s su~h as n u c l e a r p h y s i c s , a s t r - o p h ) , s x c s , e l e m e n t a r y p a r t i c l e phys ics , r a d i a t i o n doe lmet ry , m a t e r i a l s sc ience , r a d i a t i o n b i o l o g y and chemis t ry , hea l t h phys ics e t c . (Rhlen, 1980) and has always been a s u b j e c ~ o f v i t a l i n t e r e s t o f i n v e s t i g a t i o n s due to the complex na tu re o f the phenomenon. Charged p a r t i c l e d e t e c t o r s have been main ly r e s p o n s i b l e f o r most o f the e x p e r i m e n t a l r e s u l t s i n h i g h t medium and l o w e n e r g y P h y s i c s and t h e k n o w l e d g e o f e x a c t s t o p p i n g p o w e r and r a n g e r e l a t i o n s for - cha t -god p a r t i c l e s xs o n e o f t h e e s s e n t i a l requi rements f o r the c a l i b r a t i o n and use o f any charged p a r t i c l e d e t e c t o r . ( B e n t o n and H o n k s ; 1 9 6 9 ) . I n t h e p r e s e n t w o r k , a c o m p a r a t i v e s t u d y o f t h e v a r i o u s s t o p p i n g p o w e r and r a n g e f o r m u l a t i o n s e . g . B e n t o n and Honks ( 1 9 6 9 ) , l~.tkherJee and Nayak (1979), Z l e g l e r s t . a l . (1985,1991) and Hube~'t S t . al~ (1989) ~as been done by c o m p a r i n g t h e c a l c u l a t e d s t o p p i n g p o w e r and r a n g e v a l u e s f o r d i f f e r e n t p r o j e c t i l e - t a r g e t c o m b i n a t i o n s a t d i f f e r e n t e n e r g i e s a d o p t x n 9 these f o r m u l a t i o n s w i th the cor respond ing expe r imen ta l va lues . The. t h e o r e t i c a l c a l c u l a t i o n s o f s topp ing power and Pangs havQ ~oen done u t i l L = I n g the ND-IO SUPER-32, computer f a c i l i t i e s o f Kuru~shetra U n i v e r s i t y , )¢urukshetra. The exper imenta l s topp ln 9 power da ta o f Dlan~ s~. ~ , 1990; Dtmbot ~ t - a~., 1978,1980,198a; 8auvin s t . a l . 1987,1990; Heckman et~ ~I~, 1987 have been u t i l i = e d . The N o r t h c l i f f and S c h i l l i n g (1970) t a b u l a t e d s topp ing power ~alues wherever a v a i l a b l e have a l so been taken.

R E S U L T S AND DISCUSSION

T a b l e - 1 p r e s e n t s t h e e x p e r i m e n t a l v a l u e s o f s t o p p i n g po~er" for " d L f f e r e n t h e a v y ions -n d i f f e r e n t s o l i d t a r g e t s a t varLous enet-g lee a long w i t h the correspond Ing t h e o r e t i c a l l y computed va lues adopt , r ig the above mentioned f o r m u l a t i o n s . The percentage d e v i a t i o n s o f the c a l c u l a t e d s topp ing power va lues from the exper imenta l values are a l s o presented in the t a b l e . From T a b l e - l , i t i s c l e a r t h a t "the Z l e g l e r mr. a l . f o r m u l a t , o n h i g h l y unds res t lma tes the s t o p p i n g p o w e r v a l u e s f o r h e a v y p r o j e c t i l e and l i g h t t a r g e t c o m b i n a t i o n s ( e . g . U, Pbw Xe, Me p r o j e c t i l e s i n Be t C, A I t a r g e t s e t c . ) w h e r e a s for" heavy p r o j e c t i l e and h e a v y t a r g e t c o m b i n a t i o n s ( e . 9 , U, Pb, Xe, Me p r o ~ e c t x l e s I n Au , Bi t U t a r g e t s e t c . ) the f o r m u l a t i o n o v e r e s t i m a t e s the ~ topp ing power va lues . With the increase In t he ' ene rgy o f the p r o j e c t i l e , these dev la t zons reduce and i t seems tha t above the p r o j e c t i l e energy 50 MeVln, these devtatzon's d i sappear and the r e s u l t s are In agreement w i t h the expe r imen ta l r e s u l t s . For a l l o t h e r p r o j e c t i l e and t a r g e t combinat ions a t a l l ens rg ,es up to about 400 P1eV/n, the Zxegler e~, ~ , f o r m u l a t i o n p rov ides the r e s u l t s In good agreement w . th the exper imenta l r e s u l t s . The comparlson o f the c a l c u l a t e d s topp ing power" va lues from the Benton and Honks f o r m u l a t i o n w i t h the e:cper imental va lues shows t h a t t h i s f o r m u l a t i o n g e n e r a l l y p rov ides r e s u l t s In agreement w l t h the expe r imen ta l r e s u l t s except f o r heavy p r o j e c t i l e s l i k e U, Fb, Xo, e t c . In dx f f~ r~ f~ t t a r g e t s f o r p r o j e c t i l e energ ies up to S MeV/n, where t h i s f o r m u l a t i o n under'ms*lea*ms the exper imenta l s topp ing power. F u r t h e r , from t a b l e i t i s Qvxdent t h a t the Ca lcu la ted s topp ing power va lues from Mukhef'jee and Nayak*s f o r m u l a t i o n d e v i a t e from the experzmental va lues except foe ~ p r o j e c t i l e s Ix~e i : r , Ca, Ar , O e t c in

81

Page 2: Stopping power and range of relativistic and non-relativistic heavy ions in different materials including solid state nuclear track detectors

82 S.K. SHARMA et oZ.

d i f f e r e n t t a r g e t s zn the energy ;,ange ~ 20-100 MeV/n ~*hePe the foPmulatzon prey,des a e'easonable agreement ~ i t h the e:(pePzmental r e s u l t s . N o e - t h c l l f f e and 8 h l l l i n e ' s data a l so shows l a rge day (a t ~ons f r o m the e:¢per, Imenta I va lues especza l l y f o r heavy p r o j e c t : l e e . F u r t h e r znepectzon o f the t a b l e shows t h a t - the c a l c u l a t e d s topping power va lues the from the Hubert s t . e l , f o r m u l a t i o n a re always zn best agreement w~th the e~pee-imental r e s u l t s (ma:¢zmum-dev~ation ~ 5%

)~ most o f the txme wi thzn the e:4pePzmen~al e r r o r s f o r a l l p r o j e ~ t z l e - t a P g e t ¢ombznatzons znclud~ng those where the o t h e r fo rmu la (zone sho~ l a r g e " dev ta t zons a t a l l energxes considered (maximum 400 MeV/n). This f o m u l a t i o n a l s o provxdes agreement wzth comple:c t a r g e t media,

In add i tzon to the s topping power ¢ a l c u l a t z o n s , we have a l s o c a l c u l a t e d the range values o f d i f f e r e n t pc -e jec t ( l ee zn d : f f e r e n t s o l ; d e a t vaPlous energx~s adopt ing a l l the a b o v e mentzoned f o r m u l a t i o n s ( r e s u l t s are not presented h e r e ) . Aga;n the compaPzson o f c a l c u l a t e d ~ange va lues wzth the coPPespondzng e~perzmental va lues shows t h a t the B e n t o n and Honks and Hubee-t ~ t , ~,~ f o rmu la t i ons p rov ide the best ageement w i th the e:(perxmental r e s u l t s (8harma a t . a 1 . , 1992).

TABLE-1. E:(per~mental and computed s topp ing power va lues a long wzth t h e i r percentage dev~atzons (~-esented in the p~ranth~s~s) ft'~m ~:¢pee'~mental v a l u e s .

ION TAR- £NE- CALCUL~TEO VALUE

GET RGY Szxe . z

(MeV/n) (Mev/n~/¢m) Hubert Benton & ~t~ al~ Henke

U Be 3.99 200~7" 2P0.77(0) 142.1(-29) U C 3.13 15/`±5 * 154.2( -1) 1 4 0 . 7 ( - I 0 ) U A1 4.60 125~+3 ~ 121.61(-~) 105.4(--16) Pb Be 3.9/` 175~/` ~ 176 .79( I ) 126.2(-28) Pb A1 4.58 110±3" 109.54(0) 9~,60( -15) XO Be 4.10 1 0 3 ~ * 101.89(-1) 83 ,12( -19) Xe C 4.58 89.0~3 ~ 91.20(2) 84 ,48( -5 ) KP C ~.20 57.73±1,5/`f 57.74(0) 54 ,92( -5 ) U Bz 4.92 43.0~4 ~ 45.28(5) 79 ,77( -8 ) U U 4 . 8 5 4 1 , 5 ± 2 . 5 ~ 4 2 . / - 2 ( 3 ) 3 6 , / ` 2 ( - 1 2 ) Pb Au 4.89 40.0±2.5 ~ 41.79(4) 3 / ` ,70( -8) Xe Au 4.95 25.7~1.5 ~ 2 7 . 3 9 ( 7 ) 25 ,21( -2 ) KP Ta 4 . 6 2 2 / - , 9 ± 0 . 7 " 1 7 , 4 3 ( 3 ) 1 6 , 8 ( - 1 ) Xe Be 2 4 ° 0 7 4 4 . / - ± 0 , 9 e 4 3 . 1 4 ( - - 3 ) 4 4 , 5 7 ( O ) . 0 Bo 23.14 294~08: 2 8 . 3 ~ ( - 4 ) 29,22(-1) Xs Ta 22.39 20.9~0.4 ~ 21.49(3) 21.25(2) Xe Au 2 3 . 2 3 2 0 , 4 ~ 0 . 8 e 2 0 . 4 3 ( 0 ) 2 0 , 2 5 ( - 1 ) Mo Ta 20.24 14,7~0,2 e 15.11(3) 14,82(1) Me Au 23,39 17&1±0,5 e 13./-B(4) 13,4/-(3) Au Au 25.0 7 6 . 2 3 4 . b 0 ( - 4 ) 3 5 , 0 9 ( - 3 ) AU Au 50.0 27.58o 2/-.78(3) 27,56((}) Au Au 75.0 23.4 ~.~ 29( -5) ~,~ 85( -2) AU Au 150.0 16.20 ° 15.74(-3) 1/` ,01(-1) Ar C 3.4/` 20-0~0-7 ! , 20,49(2) 21.03(5) AP Nx 5.21 10.81¢0,2~" 10,79(0) 10,81(0) AP Ag 5,36 8.02~0.45; 8.2/`(3) 8.19(2) 0 A1 /`.10 2.99±0.12 ! 3.02(+1) 3.11(4) 0 Ni 6.06 2.48±+0,2o 2.50(1) 2 .58(4) 0 Au 4.39 1.72±0,0~ T 1.73(1) 1.79(4) KP Be 24.14 21 .3±0 .3 - 20 .82( -2 ) 21,44(1) Kr A1 4 2 . 7 8 1 3 . ~ ± 0 . 6 e 1 2 , 9 1 ( - - 3 ) 1 3 , 1 0 ( - 1 ) K~ Sz 25.42 19.5~0.4 e 18./-3(-4) 19,07(-2) KP Nz 42.50 11.1~0.4 e 11.35(2) 11,44(3) t ( r Ag 41.77 9.6±0.02 a 9 .52 ( -1 ) 9 .49 ( -1 ) KP Au 24.02 10.3±0,~ e 10.46(2) 11.26(9) KP Au 43,01 7 .5±0.7" = 7./-7(2) 7 .50(0) Ca Be 70.09 3.08~0.0~ : 3 .09(1) 3 .11(1) Ca C 70.52 3.44~0.04m~ 3 .35 ( -~ ) 3 .3 / - ( -2) Ca A1 75.60 2.74±0.06~e 2.78(2) 2 .78(2) Ca N~ 75.28 2.49~0.06 2.49(0) 2 .48(0) Ca Au 72.98 ~+ ~em 1 .8~_0 .0~ 1 .79( -2) 1.7/- ( -4) Ar Be 25.94 5.75±0.10 ~ 5.38(1) 5 ,51(3)

.UES OF STOF'PING POWER~ S e e l .

Z l e g l a r M u k h e r j o o N o t ~ t h c l l Y f ~ t , a ~ • Na~ak & Sh i l zn 9

1 2 4 . 8 ( - 3 8 ) 1 / - 2 . / - 9 ( - 1 9 ) 1 2 5 . 7 4 ( - 3 4 ) 1 2 7 . 2 ( - 1 8 ) 1 4 9 . 7 ( - 4 ) 1 2 7 . 2 3 ( - 1 8 ) 1 0 5 . O ( - 1 / - ) 1 3 0 . 8 8 ( ~ ) 113. (-35) 106.2( -39) 1 0 8 , 3 8 ( - - 3 8 1 9 4 . 5 0 ( - 1 4 ) 1 1 8 . 1 0 ( 7 ) 7 4 . 4 5 ( - 2 8 ) 6 7 , 7 0 ( - 3 4 ) 6 4 . 1 9 ( - 3 8 ) 7 7 . 0 3 ( - 1 ~ ) 9 4 , 2 9 ( 6 ) 50.99( -12) 57,/`3(0) 4 4 . 4 ( - - 2 3 ) 5 0 . 5 / ` ( 1 8 ) 5 ~ , 0 3 ( 2 8 ) 4 & . 8 3 ( 1 3 ) 4 9 . 8 1 ( 2 0 ) 4 / - . b 5 ( 1 2 ) 45,78(14) 51.7/`(29) 29.49(15) 33,0/`(29) 18 ,52 ( I0 ) 20,34(20) 39 .81( -11) 42,~2(15) 2/ - .58(-10) 23, 46(12) 23.21(11) 22.43(10) 21,97(8) 1/-.30(11) 1/-. 17 (10) 1 4 . 8 1 ( 1 3 ) 14, 4 7 ( 1 0 ) 3 8 . 9 3 ( 8 ) 3 9 , 0 2 ( 8 ) 2 9 . 4 0 ( 7 ) 2 7 , 4 4 (0) 2 4 . 0 0 ( 7 ) 2 1 , 2 9 ( - 9 ) 1 A- 4/` (2 ) 13, 17 ( -19 ; ) 19.43(--3) 19, / -3(-2) 10./-9(-1) 11,/-4(8) 8.21 (2) 9. 4/- (18) 2 . 9 4 ( - 1 ) 3. 17(/-) 2 . 4 5 ~ - I ) 2 .79(12) 1.72(0) 2.05(19) 20 ,43 ( -4 ) 20, 43(-4J 1 2 . 8 9 ( - 3 ) 1- . ,31 ( - 7 ) 19.05(--2) 18,35(--6) 11.45(7) 12,17(1) 9 .75(2) 9 .72(1) 10.97 (&) 7.95 (6) 7, 65 (2) 3. 11 (1) 2.89(--b) 3 .38 ( -2 ) 3 . 0 7 ( - - I I ) 2 .79(2) 2 . 5 7 ( - 6 ) 2. 49 (0 ) 2.7b ( -5) 1.D1(-1) 1 .77 ( -5 ) 5 .48(2) 5 . 4 3 ( I )

c o n t d . .

Page 3: Stopping power and range of relativistic and non-relativistic heavy ions in different materials including solid state nuclear track detectors

RELATIVISTIC AND NON-RELATIVISTIC HEAVY IONS 83

c o n t d . , t a b l e 1.

'iUN TA~-- ~ 4 ~ -

( M e V / n ) ~ v ~ m l ~ , , ~ H u b e r t B e n t o n & Z z e g l e r M u k h e r # e e - . . . . . . . . . . . . . . . . eC......al. . Hen k I . . . . . . . ~ a~.~ & N a y a k

- - : : _ Ar C 75.70 2.50¢0.07 2.58(3) 2. SB(~) 2 .59(4) Z . ~ o, A r A I 2 3 . 6 6 5 . ~ 3 ~ 0 . 0 5 = e 5 . 3 4 ( 0 ) 5 . 4 2 ( 2 ) 5 . 4 1 ( 2 ) 5 . 3 8 ( 1 ) A r Tz 7 4 . 3 5 2 . 0 4 ÷ 0 . 0 4 ~ - e 2 . 0 6 ( 1 ) 2 . 0 ~ ( - 1 ) 2 . 0 7 ( 2 ) 1 . B 6 ( - 6 ) A r A9 2 5 . 9 2 3 . 5 9 ~ 0 . 0 6 _ ~ 3 . 5 6 ( 0 ) ~ . 5 9 ( 0 ) 3 . ~ 9 ( ~ ) 3 . S 9 ( 9 ) A r Au 7 3 . 9 3 1 . 4 4 ~ 0 . 0 2 ~ 1 . 4 5 ( 0 ) 1 . 4 1 ( - 2 ) 1 . 4 6 ( 1 ) 1 . 3 9 ( - - 4 ) 0 Be 2 3 . 5 9 1 . 2 2 ~ . 0 0 2 ~ 1 . 1 9 ( - 2 ) 1 . 1 9 ( - 2 ) 1 . 2 1 ( - 1 ) 1 . 1 B ( - ~ ) 0 C 9 1 . 8 6 0 . 4 5 ± 0 . 0 1 # 0 . 4 4 6 ( - 1 ) 0 . 4 4 1 ( - 2 ) 0 . 4 4 3 ( - 1 ) 0 . 3 9 ( - 1 3 ) 0 8x 88.06 0.417~.005: 0 . 4 1 3 ( - I ) 0 .409( -2 ) 0 .414 ( -1 ) 0 .317( -11 ) 0 Ti 45.~8 0.594~.008 0.595(0) 0 .558( -6 ) 0 .599(1) 0 .549 ( -8 ) 0 Ta 90.83 0.257~.006 ~ 0.259(1) 0 .248( -4 ) 0 .255 ( -1 ) 0 .237( -B) O Au 8 4 . 3 8 0 . 2 ~ 3 ~ . 0 0 ~ # 0 . 2 6 2 ( 0 ) 0 . 2 5 5 ( - - ~ ) 0 . 2 6 2 ( 0 ) 0 . 2 4 6 ( - - ~ ) U Mylae" 4 . 7 4 1 7 6 ¢ 1 ~ ~ 1 7 7 . 2 0 ( 0 ) 1 5 6 . 0 ( - 1 2 ) 1 ~ B . 8 3 ( - 2 2 ) 1 7 8 . 7 7 ( 0 ) Au (CH~ 1 5 . 0 1 1 9 . 0 1 1 7 . 2 5 ( - 1 ) 1 2 5 ( 5 ) 1 0 ~ . 4 2 ( - 1 3 ) 1 2 3 . 3 1 ( 4 )

Au (CH~ 150.0 ~0.4 30.~8(2) ~2.&2(7) 31.77(5) 25.25(--17)

. 3 1 . 5 ~ ( 1 ) 3 3 . ~ 2 ( & ) 3 1 . 2 3 ( 0 ) 3 1 . 1 7 ( 0 ) Me Mylar ~2 76 3 1 . ~ 0 . 7 e 0 Mylar 24.95 1.26±0.0~ # 1.29(1) 1.30(2) 1.31(2) 1 .26 ( -2 ) 0 Mylar 93.10 .45¢0.04-- 0 .46(2) 0 .46(2) 0.4&(2) 0 . 4 1 ( - 9 )

• ( S t o p p i n g p o w e r zn u n x t s o f M e V / n u c l e o n ) A r C 4 0 0 . ~ 3 2 0 . 2 8 ± . 2 ~ $ 1 9 . 7 1 ( - 3 ) ~ 1 9 . b 4 ( - ~ ) 1 9 . 4 0 ( - 4 ) 1 2 . 0 0 ( - 4 1 )

( th i ckness o f C t a r g e t ' ~ 8 ~ 0 m9/cm ) P Al 362.14 100.96~.22 ° 99.1B(-2~ 99 .27( -2 ) 99 .60( -1 ) b4.3b( -3&)

( t h x c k n e s s o f A l t a r g e t ~ ~ 7 8 7 m g / c e ) N C 1 4 6 . 6 7 2 6 . & 8 ± 0 . 1 0 " 2 8 . 7 9 ( 0 ) x 2 8 . 6 8 ( 0 ) 2 9 . 2 0 ( 2 ) 2 3 . 5 4 ( - 1 8 )

( t h i c k n e s s o~ C t a r g e t ~ 1 ~ 7 3 . mg/cm ) L i A1 1 ~ 1 . 1 & 2 ~ . 7 1 ~ 0 . 0 9 ° 2 3 . 6 1 ( 0 ) ~ 3 . 4 7 ( 1 ) 2 ~ . 8 8 ( 1 ) 2 0 . 0 9 ( - 1 5 )

( t h x c k n e e e o f C t a r g e t ~ 5 7 4 7 . mg/¢m )

• Heckma~ i t . # ~ , . ( 1 9 B 7 ) I * B x m b o t I t . a l . . . ( 1 9 B O ) 1 1 B z m b o t ~ t . ~ , . ( 1 9 7 B ) ~ • 6auvln e~e F~T. (1990);o* Bimbot I t . a l . . (1986);# Gauv~n ~ t . a l . . (1987)! $ Blank I t . a l . . (1990); 6¢x P Exper lmenta l s topp:n9 power va lue .

ACKNOWLEDGEMENTS

One o f the au thors (S. K. Sharma) zs t h a n k f u l to the Councxl o f 6 ¢ l e n t l f i ¢ and [ n d u s t r z a l R e s e a r c h , G o v e r n m e n t o f I n d i a , New D e l h z f o r p r o v x d ~ n g f z n e n c ; a l s u p p o r t . The a u t h o r s a r e a l s o t h a n k f u l t o D r . F . H u b e r t f o r many u s e f u l s u g g e s t i o n s a n d t o D r . J . F. Z i e g l e r f o r k x n d c o - o p e r a t L o n .

REFERENCES

A l h e n 6 . P. ( 1 9 8 0 ) " T h e t h e o r e t i c a l a n d e x p e r i m e n t a l a s p e c t s o f t h e e n e r g y l o l l o f r e l a t i v i s t i c h e a v i l y i o n i z i n g p a r t i c l e s * * R e v . Mod P h y s . . 5 2 ~ 1 2 1 - 1 7 3 . 7 3 .

B e n t o n £ . V . and R . P . H e n k e ( 1 9 6 9 ) " H e a v y p a r t z c l e r a n g e - e n e r g y r m l a t z o n s f o r d i e l e c t r i c n u c l e a r t r a c k d e t e c t o r s ' ~ N u t 1 . Z n s t r u m . M e t h o d s 09"~ 67 - -?2 .

B i m b o t R . , 6 . D e l l a N e g r a t D. G a r d e s ~ H. G a u v i n ~ A. F l e u r y a n d F. H u b e r t ( 1 9 7 8 ) S t o p p i n g P o w e r M e a s u r e m e n t s o f 4 - 5 M e V / N u ¢ l e o n s d ~ a ~ A ; % d l C u AND l a K P i n Ct AI~ N I , A 9 and Au N u t 1 . [ n s t r u m . M e t h o d s . l g 3 , 1 b 1 - 1 6 9 .

B l m b o t R . , D. S a r d i s , H. G e i s s e l , T . K i t a h a r a t P. A r m b r u s t e P , A . , F l e u r y : ~ X F ' ~ e , ~ e r t ( 1 9 8 ~ " S t o p p i n g P o w e r M e a s u r e m e n t s o~ 3 - 5 M e V / N u c l e o n e ~ K r , - - P b and " ' ' U i n S o l i d ~ N u t 1 . Z n s t r u m . M e t h o d s . 1 7 4 , 2 3 1 - 2 ~ 4 .

Bimbot R., H. Gauvln, I . Or l l an9e ~ R. Annet S. Bas t i n and F. Hubert (19Sb) • ' 6 t o p p x n g P o w e r s o f S o l i d s f o r aOAp a n d 4 ° C a I o n s a t I n t e r m e d z a t e E n e r g x e a ( 2 0 - 8 0 M e V / u ) " N u t 1 . I n s t r u m . M ~ t h o d s 817e 1--10.

B l a n k B . , J . J . Gaxmard~ H. G e t e s e l t 8 . M Q n : e n b e r g t K . - H . 6 c h m i d t , H. 6 t e l = e r ! and 6Qmmerer ( 1 9 9 0 ) . ' * E n e r g y - - l o s s m e a s u r e m e n t s w z t h h e a v y l e n s a t r e l a t t v x s t l c e n e r g i e s " ~ N u t 1 u I n e t r u m ~ M e t h o d s BS~p 8 5 - 8 6 .

S a u v i n H.~ R. b ; m b o t , J . H ~ a u l t t R. Anne~ G. B a s t x n , F. H u b e r t ( 1 9 8 7 ) "St(=qDptn 9 P o w e r s o f S o l i d s ~ o r 0 I o n s a t I n t e r m e d x a t e E n e r g z e s ( 2 0 - 9 5 M e V / u ) - N u ¢ l , I n s t r u m ~ M e t h o d s . B2B, 1 9 1 - 1 9 4 .

Gauvxn H., R. Bzmbot~ J. H e r a u l t t B. Kubzca, R. Anne, 6. Bast in~ F Hubert (1990) "6toppzn 9 Power o f So l i ds fop Kr , Me and Xe zoos a t In ta rmed~ate e n e r g i e s (20- -45 M e V / u ) a n d t h e c h a r g e d s t a t e d x n t r x b u t z o n s a t e q u x l i b r l u m " Nuc~ Ins t rvm I M e t h o ~ . B47, 339-~50.

Heckman H.H.~ H.R. Bowman, Y .J . Karan t t J.O. Rasmussen, A . I . Narwlck and Z . Z ~ X u ( 1 9 8 7 ) . " R a n g e - E n e r g y R e l a t i o n f o r Au I o n s , E / A ~ 150 MeV. P h y s . R ~ v . , _ ~

NTAItM 22/I-t.--H

Page 4: Stopping power and range of relativistic and non-relativistic heavy ions in different materials including solid state nuclear track detectors

84 S . K . S ~ ~ .

3 6 ~ 4 - 3 6 6 8 . H u b e r t F , R. BLmbot a n d H. G a u v L n ( 1 9 8 9 ) " S e m i - e m p z r z c a | f o t - m u l a e fo r - h e a v y i o n

s t o p p i n 9 p o w e r s Ln s o l i d s Ln t h e i n t e r m e d z a t e e n e r g y f *ange* ' N ~ c l . [ n s t r u m . t t J f t h o d s , B3Q, 3 = 7 - 3 6 3 .

M u k h e t . J e e S. And A . K . N a y a k ( 4 9 7 9 ) " C a l c u l a t i o n o f h e a v y i o n i . a n g e zn c o m p l e x m e d i ~ " N u t 1 . I n s t r u m . H e t h o d s . 2 5 g , 4 2 1 - 4 3 1 .

N o r t h c l i f f e L . C . a n d R . F . 8 h t l | L n g ( 1 9 7 0 ) ' *Range a n d s t o p p z n 9 power" ~ a b l e e f o r h e a v y i o n s A A t o m i c D a t a ~ ~ D a t a T a b l e s 7 , 2 3 3 - 4 6 3 .

Skal-ma S. I ( . , Shy~m K u m a , a n d A. P. S h a r m a ( 1 9 9 2 ) R e s p o n s e o f s o d a 9 1 a s s d e t e c t o r t o - I I U a n d Fe Lens ~ R ~ d l a t ~ l e o . 4 3 , 1 4 9 3 - 1 4 9 8 .

Z L e g l e r ~ . F . , J . P . B t e , 0 s a c k auld U. LLttmalok ( 2 9 8 S ) " T h e S ~ o p p L n 9 a n d R a n g e o f Zone zn 8 o l x d l . V o l . 1. ( P e r g a m o n P r e s s , New Y o r k ) .

Z i e g l e r J . F . ( 1 9 9 1 ) TRXM-gXt The T r a n s p o r ~ o f I o n s Ln M a ~ e ~ ' . I . B . M . - R e s e a r c h , 2 8 - O ~ . Y o r k t o w n , New Y o r k ~ 0 S 9 8 U . S . A .