strobe actively securing wireless communications using zero-forcing beamforming narendra anand rice...

109
STROBE Actively Securing Wireless Communications using Zero- Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice University

Upload: dustin-watson

Post on 16-Dec-2015

222 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

STROBEActively Securing Wireless Communications

using Zero-Forcing Beamforming

Narendra AnandRice University

Sung-Ju LeeHP Labs

Edward KnightlyRice University

Page 2: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

AP

Page 3: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

AP

Page 4: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP

Page 5: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP

Page 6: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP WEP/WPA

Page 7: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP

Omnidirectional

WEP/WPA

Page 8: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP

Omnidirectional

WEP/WPA

Page 9: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP

Omnidirectional

WEP/WPA

Page 10: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP

Omnidirectional

WEP/WPA

Problem:Omnidirectional Transmissions

broadcast signal energy everywhere allowing any user in range to overhear

the transmission.

Page 11: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP

Page 12: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP

Potential Solution:Keep signal away from E withSingle-User Beamforming orDirectional Antenna

Page 13: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP

Potential Solution:Keep signal away from E withSingle-User Beamforming orDirectional Antenna

Page 14: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Motivation

Indoors (eg. Coffee Shop)

IU

E

EAP

Potential Solution:Keep signal away from E withSingle-User Beamforming orDirectional Antenna

**Beampatterns for Illustration purposes only.

Page 15: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

E

Motivation

Indoors (eg. Coffee Shop)

IU

E

AP

Potential Solution:Keep signal away from E withSingle-User Beamforming orDirectional Antenna

LOS

**Beampatterns for Illustration purposes only.

Page 16: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

E

Motivation

Indoors (eg. Coffee Shop)

IU

E

AP

Potential Solution:Keep signal away from E withSingle-User Beamforming orDirectional Antenna Multi-Path

LOS

**Beampatterns for Illustration purposes only.

Page 17: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

E

Motivation

Indoors (eg. Coffee Shop)

IU

E

AP

Potential Solution:Keep signal away from E withSingle-User Beamforming orDirectional Antenna Multi-Path

LOS

Problem:Single Target directional methods are agnostic to user locations other than

IU. Multi-path effects and knowledge of IU location can be used to

compromise the transmission.

**Beampatterns for Illustration purposes only.

Page 18: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Solution 

 

 

     

 

 

 

 

 

Page 19: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Solution• Problem: How can we reliably keep

eavesdroppers from decoding the IU’s data? 

 

     

 

 

 

 

 

Page 20: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Solution• Problem: How can we reliably keep

eavesdroppers from decoding the IU’s data?• Solution: Simultaneously Blind (actively

interfere) Eavesdroppers while serving the IU. 

     

 

 

 

 

 

Page 21: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Solution• Problem: How can we reliably keep

eavesdroppers from decoding the IU’s data?• Solution: Simultaneously Blind (actively

interfere) Eavesdroppers while serving the IU.• How: By leveraging the multi-stream/user

abilities of recent multi-antenna technologies (802.11n/ac)     

 

 

 

 

 

Page 22: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Solution• Problem: How can we reliably keep

eavesdroppers from decoding the IU’s data?• Solution: Simultaneously Blind (actively

interfere) Eavesdroppers while serving the IU.• How: By leveraging the multi-stream/user

abilities of recent multi-antenna technologies (802.11n/ac)– AP creates simultaneous streams   

 

 

 

 

 

Page 23: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Solution• Problem: How can we reliably keep

eavesdroppers from decoding the IU’s data?• Solution: Simultaneously Blind (actively

interfere) Eavesdroppers while serving the IU.• How: By leveraging the multi-stream/user

abilities of recent multi-antenna technologies (802.11n/ac)– AP creates simultaneous streams– Use one for IU 

 

 

 

 

 

Page 24: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Solution• Problem: How can we reliably keep

eavesdroppers from decoding the IU’s data?• Solution: Simultaneously Blind (actively

interfere) Eavesdroppers while serving the IU.• How: By leveraging the multi-stream/user

abilities of recent multi-antenna technologies (802.11n/ac)– AP creates simultaneous streams– Use one for IU– Use remaining to Blind Eavesdroppers

 

 

 

 

 

Page 25: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Solution• Problem: How can we reliably keep

eavesdroppers from decoding the IU’s data?• Solution: Simultaneously Blind (actively

interfere) Eavesdroppers while serving the IU.• How: By leveraging the multi-stream/user

abilities of recent multi-antenna technologies (802.11n/ac)– AP creates simultaneous streams– Use one for IU– Use remaining to Blind Eavesdroppers

STR O B E

 

 

 

 

 

Page 26: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Solution• Problem: How can we reliably keep

eavesdroppers from decoding the IU’s data?• Solution: Simultaneously Blind (actively

interfere) Eavesdroppers while serving the IU.• How: By leveraging the multi-stream/user

abilities of recent multi-antenna technologies (802.11n/ac)– AP creates simultaneous streams– Use one for IU– Use remaining to Blind Eavesdroppers

STR O B E

imultaneous

ansmissions with

 

 

 

Page 27: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Solution• Problem: How can we reliably keep

eavesdroppers from decoding the IU’s data?• Solution: Simultaneously Blind (actively

interfere) Eavesdroppers while serving the IU.• How: By leveraging the multi-stream/user

abilities of recent multi-antenna technologies (802.11n/ac)– AP creates simultaneous streams– Use one for IU– Use remaining to Blind Eavesdroppers

STR O B E

imultaneous

ansmissions with

rthogonally

linded

avesdroppers

Page 28: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

E

STROBE Overview

Indoors (eg. Coffee Shop)

IU

E

AP

STROBE

**Beampatterns for Illustration purposes only.

Page 29: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

E

STROBE Overview

Indoors (eg. Coffee Shop)

IU

E

AP

STROBE

**Beampatterns for Illustration purposes only.

Blinding Streams

Page 30: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

E

STROBE Overview

Indoors (eg. Coffee Shop)

IU

E

AP

STROBE

**Beampatterns for Illustration purposes only.

Blinding Streams

Page 31: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

E

STROBE Overview

Indoors (eg. Coffee Shop)

IU

E

AP

STROBE

**Beampatterns for Illustration purposes only.

Blinding Streams

STROBE:     

Page 32: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

E

STROBE Overview

Indoors (eg. Coffee Shop)

IU

E

AP

STROBE

**Beampatterns for Illustration purposes only.

Blinding Streams

STROBE:•Leverages existing multi-stream capabilities   

Page 33: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

E

STROBE Overview

Indoors (eg. Coffee Shop)

IU

E

AP

STROBE

**Beampatterns for Illustration purposes only.

Blinding Streams

STROBE:•Leverages existing multi-stream capabilities•Cross-layer approach but requires minimal hardware modification (11n/ac compatible) 

Page 34: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

E

STROBE Overview

Indoors (eg. Coffee Shop)

IU

E

AP

STROBE

**Beampatterns for Illustration purposes only.

Blinding Streams

STROBE:•Leverages existing multi-stream capabilities•Cross-layer approach but requires minimal hardware modification (11n/ac compatible)•Coexists with existing security protocols

Page 35: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

T

CCCC

BBBB

AAAA

wwww

wwww

wwww

HHHHW

4321

4321

43211**†

BackgroundZero Forcing Beamforming (ZFBF)

• Assume 4 Tx Antennas and 3 single-antenna receivers

4321

4321

4321

CCCC

BBBB

AAAA

hhhh

hhhh

hhhh

H hk's – H for each recv.

• Calculate weights with pseudo-inverse

wj's

• “Zero Interference” Condition

jkwh Tjk ,0)(

Page 36: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding 

     

 

   

 

Page 37: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

     

 

   

 

Page 38: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)   

 

   

 

Page 39: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt  

 

   

 

Page 40: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt – New H matrix is unitary (pseudo-inverse is complex conjugate

transpose) 

   

 

Page 41: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt – New H matrix is unitary (pseudo-inverse is complex conjugate

transpose)– Intended user’s steering weight is equivalent to SUBF

   

 

Page 42: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt – New H matrix is unitary (pseudo-inverse is complex conjugate

transpose)– Intended user’s steering weight is equivalent to SUBF

• Ease of implementation/integration 

 

Page 43: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt – New H matrix is unitary (pseudo-inverse is complex conjugate

transpose)– Intended user’s steering weight is equivalent to SUBF

• Ease of implementation/integration– ZFBF systems can use QR-decomposition (followed by

backsubstitution) to calculate pseudo-inverse 

Page 44: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt – New H matrix is unitary (pseudo-inverse is complex conjugate

transpose)– Intended user’s steering weight is equivalent to SUBF

• Ease of implementation/integration– ZFBF systems can use QR-decomposition (followed by

backsubstitution) to calculate pseudo-inverse– QR is used to implement Gram-Schmidt (existing silicon can be re-

used for STROBE)

Page 45: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Experimental Methodology• STROBE implemented in WARPLab using ZFBF testbed

developed in:– E. Aryafar, N. Anand, T. Salonidis, and E. Knightly. Design and experimental

evaluation of multi-user beamforming in Wireless LANs. In Proc. ACM MobiCom, Chicago, Illinois, September 2010

• Performance Metric: Received signal strength (dB)

Page 46: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Experimental Methodology

Scheme ComparisonsNon-

Directional

OMNI(Omni-

directional)

Single-Target Directional

SUBF(Single-User

Beamforming)

DA(Directional

Antenna)

Multi-Target Directional

CE(Cooperating

Eavesdropper)

STROBE

Page 47: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Experimental Methodology

Unrealistic scenario in which Eavesdroppers

provide AP with their CSI to be precisely blinded.

Scheme ComparisonsNon-

Directional

OMNI(Omni-

directional)

Single-Target Directional

SUBF(Single-User

Beamforming)

DA(Directional

Antenna)

Multi-Target Directional

CE(Cooperating

Eavesdropper)

STROBE

Page 48: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Experimental Methodology

Scheme ComparisonsNon-

Directional

OMNI(Omni-

directional)

Single-Target Directional

SUBF(Single-User

Beamforming)

DA(Directional

Antenna)

Multi-Target Directional

CE(Cooperating

Eavesdropper)

STROBE

•Fairness• Net transmit power equivalent for all schemes

Page 49: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

ExperimentsBaseline How does STROBE perform in a typical, indoor,

wireless scenario?

Relative Eavesdropper location

How does STROBE cope with varying eavesdropper proximity to IU?

How does STROBE handle eavesdroppers in-line with IU?

Verifying necessity of multi-path (outdoor)

How dependent is STROBE on multi-path scattering characteristic of indoor WLAN

environments?

Nomadic EavesdropperIs it possible for an eavesdropper to exhaustively traverse an environment to find a location where

STROBE’s performance diminishes?

Page 50: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

ExperimentsBaseline How does STROBE perform in a typical, indoor,

wireless scenario?

Relative Eavesdropper location

How does STROBE cope with varying eavesdropper proximity to IU?

How does STROBE handle eavesdroppers in-line with IU?

Verifying necessity of multi-path (outdoor)

How dependent is STROBE on multi-path scattering characteristic of indoor WLAN

environments?

Nomadic EavesdropperIs it possible for an eavesdropper to exhaustively traverse an environment to find a location where

STROBE’s performance diminishes?

Page 51: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

ExperimentsBaselineHow does STROBE perform in a typical, indoor,

wireless scenario?

Relative Eavesdropper locationHow does STROBE cope with varying eavesdropper proximity to IU?

How does STROBE handle eavesdroppers in-line with IU?

Verifying necessity of multi-path (outdoor) How dependent is STROBE on multi-path scattering characteristic of indoor WLAN environments?

Nomadic EavesdropperIs it possible for an eavesdropper to exhaustively traverse an environment to find a location where

STROBE’s performance diminishes?

Page 52: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Baseline

Page 53: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Baseline 

Page 54: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Baseline

0

5

10

15

20

SIN

R (

dB

)

Received SINR of transmission to IU

IU E1 E

2 E

3

Omni SUBF STROBE CE

 

Page 55: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Baseline

0

5

10

15

20

SIN

R (

dB

)

Received SINR of transmission to IU

IU E1 E

2 E

3

Omni SUBF STROBE CE

• Omni - In range clients receive transmission with high SINR, distance from transmitter is not always a good predictor

Page 56: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Baseline

0

5

10

15

20

25

SIN

R (

dB

)

Received SINR of transmission to IU

IU E1 E

2 E

3

Omni SUBF STROBE CE

• Omni - In range clients receive transmission with high SINR, distance from transmitter is not always a good predictor

 

Page 57: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Baseline

0

5

10

15

20

25

SIN

R (

dB

)

Received SINR of transmission to IU

IU E1 E

2 E

3

Omni SUBF STROBE CE

• Omni - In range clients receive transmission with high SINR, distance from transmitter is not always a good predictor

• SUBF – Maximizes SINR at IU but agnostic to signal energy afterwards

Page 58: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Baseline

0

5

10

15

20

25

SIN

R (

dB

)

Received SINR of transmission to IU

IU E1 E

2 E

3

Omni SUBF STROBE CE

• Omni - In range clients receive transmission with high SINR, distance from transmitter is not always a good predictor

• SUBF – Maximizes SINR at IU but agnostic to signal energy afterwards

 

Page 59: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Baseline

0

5

10

15

20

25

SIN

R (

dB

)

Received SINR of transmission to IU

IU E1 E

2 E

3

Omni SUBF STROBE CE

• Omni - In range clients receive transmission with high SINR, distance from transmitter is not always a good predictor

• SUBF – Maximizes SINR at IU but agnostic to signal energy afterwards

• STROBE – Serves IU with high SINR, restricts E SINR to < 4dB

Page 60: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Baseline

0

5

10

15

20

25

SIN

R (

dB

)

Received SINR of transmission to IU

IU E1 E

2 E

3

Omni SUBF STROBE CE

• Omni - In range clients receive transmission with high SINR, distance from transmitter is not always a good predictor

• SUBF – Maximizes SINR at IU but agnostic to signal energy afterwards

• STROBE – Serves IU with high SINR, restricts E SINR to < 4dB

 

Page 61: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Baseline

0

5

10

15

20

25

SIN

R (

dB

)

Received SINR of transmission to IU

IU E1 E

2 E

3

Omni SUBF STROBE CE

• Omni - In range clients receive transmission with high SINR, distance from transmitter is not always a good predictor

• SUBF – Maximizes SINR at IU but agnostic to signal energy afterwards

• STROBE – Serves IU with high SINR, restricts E SINR to < 4dB

• CE – Precise blinding of E comes at the cost of SINR served to IU

Page 62: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

ExperimentsBaseline How does STROBE perform in a typical, indoor,

wireless scenario?

Relative Eavesdropper location

How does STROBE cope with varying eavesdropper proximity to IU?

How does STROBE handle eavesdroppers in-line with IU?

Verifying necessity of multi-path (outdoor)

How dependent is STROBE on multi-path scattering characteristic of indoor WLAN

environments?

Nomadic EavesdropperIs it possible for an eavesdropper to exhaustively traverse an environment to find a location where

STROBE’s performance diminishes?

Page 63: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Nomadic Eavesdropper

Page 64: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Nomadic EavesdropperOmni

(dB)

Page 65: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Nomadic EavesdropperSUBF

Omni

(dB)

Page 66: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Nomadic EavesdropperDA

Omni

SUBF

(dB)

Page 67: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Nomadic EavesdropperSTROBE

Omni

SUBF

DA

(dB)

Page 68: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Conclusions• Verified STROBE’s performance in indoor

environments– Functionality does not degrade with relative

eavesdropper position• STROBE’s performance depends on indoor

multi-path effects– Verified by outdoor testing

• STROBE successfully withstands attacks from a nomadic eavesdropper

• On average, STROBE provides the IU with a 15 dB stronger signal than the eavesdropper

Page 69: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

ALL EXPERIMENTS

Page 70: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding 

   

   

   

 

Page 71: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

   

   

   

 

Page 72: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector) 

   

   

 

Page 73: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt Orthonormalization

process   

   

 

Page 74: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt Orthonormalization

process– New H matrix is unitary (pseudo-inverse is complex conjugate transpose) 

   

 

Page 75: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt Orthonormalization

process– New H matrix is unitary (pseudo-inverse is complex conjugate transpose)– Intended user’s steering weight is equivalent to SUBF

   

 

Page 76: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt Orthonormalization

process– New H matrix is unitary (pseudo-inverse is complex conjugate transpose)– Intended user’s steering weight is equivalent to SUBF

• Ease of implementation/integration 

 

Page 77: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt Orthonormalization

process– New H matrix is unitary (pseudo-inverse is complex conjugate transpose)– Intended user’s steering weight is equivalent to SUBF

• Ease of implementation/integration– ZFBF systems can use QR-decomposition (followed by backsubstitution)

to calculate pseudo-inverse 

Page 78: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Orthogonal Blinding• Limited Channel State Information (CSI)

– Only know IU’s channel (h vector)– Generate orthogonal h vectors using Gram-Schmidt Orthonormalization

process– New H matrix is unitary (pseudo-inverse is complex conjugate transpose)– Intended user’s steering weight is equivalent to SUBF

• Ease of implementation/integration– ZFBF systems can use QR-decomposition (followed by backsubstitution)

to calculate pseudo-inverse– QR is used to implement Gram-Schmidt (existing silicon can be re-used

for STROBE)

Page 79: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

ExperimentsBaseline How does STROBE perform in a typical, indoor,

wireless scenario?

Relative Eavesdropper location

How does STROBE cope with varying eavesdropper proximity to IU?

How does STROBE handle eavesdroppers in-line with IU?

Verifying necessity of multi-path (outdoor)

How dependent is STROBE on multi-path scattering characteristic of indoor WLAN

environments?

Nomadic EavesdropperIs it possible for an eavesdropper to exhaustively traverse an environment to find a location where

STROBE’s performance diminishes?

Page 80: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Relative E Location: Proximity

Page 81: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

Relative E Location: Proximity

 

Page 82: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

Relative E Location: Proximity

• Omni - High SINR variability indicator of multipath effects

Page 83: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

Relative E Location: Proximity

• Omni/SUBF - High SINR variability indicator of multipath effects

Page 84: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

Relative E Location: Proximity

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

• Omni/SUBF - High SINR variability indicator of multipath effects

 

Page 85: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

Relative E Location: Proximity

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

• Omni/SUBF - High SINR variability indicator of multipath effects

• CE – Precise blinding regardless of distance, consistent results regardless of multi-path

Page 86: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

Relative E Location: Proximity

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

• Omni/SUBF - High SINR variability indicator of multipath effects

• CE – Precise blinding regardless of distance, consistent results regardless of multi-path

 

Page 87: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

Relative E Location: Proximity

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30a. Omni

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30b. SUBF

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30c. STROBE

SIN

R (

dB)

Distance ()

IU E1

E2

E3

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30d. CE

Distance ()

SIN

R (

dB)

IU E1

E2

E3

• Omni/SUBF - High SINR variability indicator of multipath effects

• CE – Precise blinding regardless of distance, consistent results regardless of multi-path

• STROBE – Mildly affected at close distances, consistent results regardless of multi-path, provides far greater SINR to IU than CE

Page 88: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

ExperimentsBaseline How does STROBE perform in a typical, indoor,

wireless scenario?

Relative Eavesdropper location

How does STROBE cope with varying eavesdropper proximity to IU?

How does STROBE handle eavesdroppers in-line with IU?

Verifying necessity of multi-path (outdoor)

How dependent is STROBE on multi-path scattering characteristic of indoor WLAN

environments?

Nomadic EavesdropperIs it possible for an eavesdropper to exhaustively traverse an environment to find a location where

STROBE’s performance diminishes?

Page 89: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Relative E Location: In-Line

Page 90: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Relative E Location: In-Line 

 

 

 

Page 91: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Relative E Location: In-Line  Omni – SINR not predicted by location in line

 

 

 

Page 92: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Relative E Location: In-Line  Omni – SINR not predicted by location in line

• SUBF – Single-target directional scheme; to defeat, get in LOS

 

 

Page 93: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Relative E Location: In-Line  Omni – SINR not predicted by location in line

• SUBF – Single-target directional scheme; to defeat, get in LOS

• STROBE – Multiple eavesdroppers in direct LOS between IU and Tx are successfully blinded

 

Page 94: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Relative E Location: In-Line  Omni – SINR not predicted by location in line

• SUBF – Single-target directional scheme; to defeat, get in LOS

• STROBE – Multiple eavesdroppers in direct LOS between IU and Tx are successfully blinded

• CE – Precise blinding comes at a price.

Page 95: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

ExperimentsBaseline How does STROBE perform in a typical, indoor,

wireless scenario?

Relative Eavesdropper location

How does STROBE cope with varying eavesdropper proximity to IU?

How does STROBE handle eavesdroppers in-line with IU?

Verifying necessity of multi-path (outdoor)

How dependent is STROBE on multi-path scattering characteristic of indoor WLAN

environments?

Nomadic EavesdropperIs it possible for an eavesdropper to exhaustively traverse an environment to find a location where

STROBE’s performance diminishes?

Page 96: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Verifying necessity of Multi-PathOutdoors

Page 97: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Verifying necessity of Multi-PathOutdoors

Page 98: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Verifying necessity of Multi-PathOutdoors

 

 

 

Page 99: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Verifying necessity of Multi-PathOutdoors

  Multi-Stream methods fail outdoors 

 

Page 100: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Verifying necessity of Multi-PathOutdoors

  Multi-Stream methods fail outdoors

• STROBE becomes directional

 

Page 101: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Verifying necessity of Multi-PathOutdoors

  Multi-Stream methods fail outdoors

• STROBE becomes directional

• CE completely fails

Page 102: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

BACKUP SLIDES

Page 103: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Prior Work 

 

Page 104: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Prior Work• Beamforming-based multiple AP cooperation

 

Page 105: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Prior Work• Beamforming-based multiple AP cooperation

• Information theoretic multi-antenna security

Page 106: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Prior Work• Beamforming-based multiple AP cooperation

1. J. Carey and D. Grunwald. Enhancing WLAN security with smart antennas: a physical layer response for information assurance. In Proc. IEEE Vehicular Technology Conference, September 2004.

• Information theoretic multi-antenna security

Page 107: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Prior Work• Beamforming-based multiple AP cooperation

1. J. Carey and D. Grunwald. Enhancing WLAN security with smart antennas: a physical layer response for information assurance. In Proc. IEEE Vehicular Technology Conference, September 2004.

2. S. Lakshmanan, C. Tsao, R. Sivakumar, and K. Sundaresan. Securing Wireless Data Networks against Eavesdropping using Smart Antennas. In The 28th International Conference on Distributed Computing Systems, Beijing, China, June 2008.

• Information theoretic multi-antenna security

Page 108: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Prior Work• Beamforming-based multiple AP cooperation

1. J. Carey and D. Grunwald. Enhancing WLAN security with smart antennas: a physical layer response for information assurance. In Proc. IEEE Vehicular Technology Conference, September 2004.

2. S. Lakshmanan, C. Tsao, R. Sivakumar, and K. Sundaresan. Securing Wireless Data Networks against Eavesdropping using Smart Antennas. In The 28th International Conference on Distributed Computing Systems, Beijing, China, June 2008.

• Information theoretic multi-antenna security1. S. Goel and R. Negi. Guaranteeing secrecy using artificial noise.

IEEE Transactions on Communications, 7(6):2180–2189, June 2008.

Page 109: STROBE Actively Securing Wireless Communications using Zero-Forcing Beamforming Narendra Anand Rice University Sung-Ju Lee HP Labs Edward Knightly Rice

Prior Work• Beamforming-based multiple AP cooperation

1. J. Carey and D. Grunwald. Enhancing WLAN security with smart antennas: a physical layer response for information assurance. In Proc. IEEE Vehicular Technology Conference, September 2004.

2. S. Lakshmanan, C. Tsao, R. Sivakumar, and K. Sundaresan. Securing Wireless Data Networks against Eavesdropping using Smart Antennas. In The 28th International Conference on Distributed Computing Systems, Beijing, China, June 2008.

• Information theoretic multi-antenna security1. S. Goel and R. Negi. Guaranteeing secrecy using artificial noise.

IEEE Transactions on Communications, 7(6):2180–2189, June 2008.

2. L. Dong, Z. Han, A. Petropulu, and V. Poor. Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3):1875–1888, March 2010.