structural calculations - crw.cityofoceanside.com

28
Structural Calculations For 509 Sunset Dr. Submittal: For Approval Submitted: 07/15/2019 Prepared By: Hung Nguyen, SE 27520 Glenwood Drive Mission Viejo, CA 92692 (949) 354-4459 Project No.: 2019-009 EXP. 09-30-19

Upload: others

Post on 02-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structural Calculations - crw.cityofoceanside.com

Structural Calculations

For

509 Sunset Dr.

Submittal: For Approval

Submitted: 07/15/2019

Prepared By:

Hung Nguyen, SE 27520 Glenwood Drive

Mission Viejo, CA 92692

(949) 354-4459

Project No.: 2019-009

EXP. 09-30-19

Page 2: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 3 Of: 28

Subject By Date

Table of Contents

Table of Contents ............................................................................................................................................................ 3

PROJECT DESCRIPTION .................................................................................................................................................... 4

SCOPE OF WORK .......................................................................................................................................................... 4

GRAVITY LOAD RESISTING SYSTEM ............................................................................................................................. 4

LATERAL LOAD RESISTING SYSTEM.............................................................................................................................. 4

BASIS OF DESIGN: ............................................................................................................................................................ 5

FOUNDATIONS ............................................................................................................................................................. 5

MATERIALS .................................................................................................................................................................. 5

ROOF DEAD LOAD (Wood) ............................................................................................................................................... 7

Wall Dead Load (Wood) ................................................................................................................................................... 8

Roof Framing Design:....................................................................................................................................................... 9

Roof Joist Design (RJ-1):............................................................................................................................................. 10

Roof Header Design: .................................................................................................................................................. 11

Footing Design: .............................................................................................................................................................. 12

LATERAL ANALYSIS AND DESIGN ................................................................................................................................... 13

Wind: ......................................................................................................................................................................... 13

BUILDING WEIGHT: .................................................................................................................................................... 19

USGS Design Maps: .................................................................................................................................................... 20

Seismic Base Shear-New Patio: ................................................................................................................................. 21

Seismic Forces (ASCE 7-10) ........................................................................................................................................ 21

Load Distributions-Addition: ..................................................................................................................................... 23

SHEAR WALL DESIGN: .................................................................................................................................................... 23

Shear Wall at Line 1.1: ............................................................................................................................................... 24

Wood shear wall design (NDS) .................................................................................................................................. 24

Shear Wall at Line 3 and Line A: ................................................................................................................................ 29

Page 3: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 4 Of: 28

Subject By Date

PROJECT DESCRIPTION

SCOPE OF WORK

Summary:

This project is a single story, wood framed residence. The home was probably built in the early 60’s as a

tract home. The tenant would like to add a cover patio at the back of the house

GRAVITY LOAD RESISTING SYSTEM

Roof Framing System: The roof framing primarily consists of 2x conventional framing

Foundation System: It is anticipated that the foundation system is conventional continuous and spread

footing with the first floor is a raised floor with conventional framing

Walls: All the exterior interior walls are 2x4 wood framed walls.

LATERAL LOAD RESISTING SYSTEM

Lateral Resisting System: The lateral resisting system of the existing building is combination of drywall and

plywood shear wall. Lateral analysis will be performed for the added portion of the house.

Page 4: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 5 Of: 28

Subject By Date

BASIS OF DESIGN:

CODES

2016 California Building Code

FOUNDATIONS

Soils report by: Use code minimum

Footing Min. Ftg. Width Min. Ftg. Embed. Allow. Bearing

Pressure

Continuous Footing 12 inches 12" below grade 1500 psf

Pad Footing 24 inches 12" below grade 1500 psf

MATERIALS

CONCRETE:

Design compressive strength at 28 days shall be as follows:

Slab on grade: fc’ = 2,500 psi Footings: fc’ = 2,500 psi

REINFORCING STEEL:

(ASTM A615 Grade 60) fy = 60 ksi

Page 5: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 6 Of: 28

Subject By Date

STRUCTURAL LUMBER: (Based on 2012 NDS)

2x Joists & Blocking (Repetitive member use) Douglas Fir Larch No.2

4x Beams Douglas Fir Larch No.1

4x header Douglas Fir Larch No.2

6x Beams (Posts and Timbers) Douglas Fir Larch No.2

Ledgers and Nailers (2x, 3x and 4x) Douglas Fir Larch No.2

2x4 & 2x6 Studs (Repetitive member used) Douglas Fir Larch Stud

Grade

4x Posts Douglas Fir Larch No.2

6x Posts Douglas Fir Larch No.2

Top Plates Douglas Fir Larch No.2

Sill and Sole Plates Douglas Fir Larch No.2

Glued Laminated Timber Beams 24F-V4 simple span

24F-V8 cantilevered span

Fb= 2400 psi Fv= 265 psi E= 1,800,000 psi

Parallel Strand Lumber (PSL) - Stock Beams (18" & Less Depth)

Fb= 2900 psi Fv= 290 psi E= 2,000,000 psi

Laminated Veneer Lumber (LVL)

Fb= 2600 psi Fv= 285 psi E= 1,900,000 psi

Nailing Schedule

Per 2012 IBC Table 2304.9.1

Framing Connectors

Use ICC-ES approved framing connectors (Simpson Strong-Tie or equal, latest catalog)

Page 6: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 7 Of: 28

Subject By Date

ROOF DEAD LOAD (Wood)

Slope Roof: Deck

(psf)

Joist

(psf)

Beam

(psf)

Lateral

(psf)

Asphalt Shingles 3.0 3.0 3.0 3.0

Plywood Sheathing 1.5 1.5 1.5 1.5

Roof framing 3.0 3.0 3.0

Insulation 0.5 0.5 0.5

Mechanical / Electrical / Plumbing 1.2 1.2 1.2

Gypsum Board Ceiling 2.8 2.8 2.8

Miscellaneous 0.5 2.0 2.0 2.0

TOTAL ROOF DEAD LOAD: 5.0 14.0 14.0 14.0

Roof Live Load = 20 psf

Page 7: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 8 Of: 28

Subject By Date

Wall Dead Load (Wood)

EXTERIOR WALL DEAD LOAD:

Stucco 10.0 psf

Plywood Sheathing 1.5 psf

Stud Wall 1.5 psf

Insulation 0.5 psf

Mechanical / Electrical / Plumbing 0.7 psf

Gypsum Board 2.8 psf

Miscellaneous 1.0 psf

TOTAL WALL DEAD LOAD: 18.0 psf

INTERIOR BEARING WALL DEAD LOAD:

Gypsum Board (both sides) 5.6 psf

Plywood Sheathing 1.5 psf

Stud Wall 1.5 psf

Mechanical / Electrical / Plumbing 0.7 psf

Miscellaneous 0.7 psf

TOTAL WALL DEAD LOAD: 10.0 psf

INTERIOR PARTITION WALL DEAD LOAD:

Gypsum Board (both sides) 5.6 psf

Stud Wall 1.5 psf

Mechanical / Electrical / Plumbing 0.7 psf

Miscellaneous 1.2 psf

TOTAL WALL DEAD LOAD: 9.0 psf

Page 8: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 9 Of: 28

Subject By Date

Roof Framing Design:

Page 9: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 10 Of: 28

Subject By Date

Roof Joist Design (RJ-1):

Page 10: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 11 Of: 28

Subject By Date

Roof Header Design:

Page 11: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 12 Of: 28

Subject By Date

Footing Design:

CONTINUOUS EXTERIOR FOOTING: Roof Dead Load RDL = 14 psf

Wall Dead Load Wall = 18 psf

Roof Live Load LLr = 20 psf

Roof Tributary Width At,roof = 8 ft

WDL =RDL × At,roof + Wall × 8 ft =256 plf

WLL = LLr × At,roof = 160 plf

Assume Footing Depth = 18”, Footing Width =12”

WFtg = 150 pcf × 2.5 ft × 1.0 ft =375 plf

Total load W = WDL + WLL + WFtg = 791.000plf

Soils pressure Qallow = 1500 psf

Footing Width Width = W/ Qallow = 0.527 ft

Use 12” wide footing with 1-#4 top and bott

Page 12: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 13 Of: 28

Subject By Date

LATERAL ANALYSIS AND DESIGN :

Wind:

WIND LOADING (ASCE7)

WIND LOADING

In accordance with ASCE7-10

Using the directional design method

Tedds calculation version 2.1.03

Building data

Type of roof Flat

Length of building b = 25.00 ft

Width of building d = 12.00 ft

Height to eaves H = 4.00 ft

Mean height h = 4.00 ft

General wind load requirements

Basic wind speed V = 110.0 mph

Risk category II

Velocity pressure exponent coef (Table 26.6-1) Kd = 0.85

Exposure category (cl 26.7.3) B

Enclosure classification (cl.26.10) Enclosed buildings

Internal pressure coef +ve (Table 26.11-1) GCpi_p = 0.18

Internal pressure coef –ve (Table 26.11-1) GCpi_n = -0.18

Gust effect factor Gf = 0.85

Minimum design wind loading (cl.27.4.7) pmin_r = 8 lb/ft2

Topography

Topography factor not significant Kzt = 1.0

Velocity pressure equation q = 0.00256 × Kz × Kzt × Kd × V2 × 1psf/mph2

Velocity pressures table

z (ft) Kz (Table 27.3-1) qz (psf)

4.00 0.57 15.01

12 ft

4 f

t

Page 13: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 14 Of: 28

Subject By Date

Peak velocity pressure for internal pressure

Peak velocity pressure – internal (as roof press.) qi = 15.01 psf

Pressures and forces

Net pressure p = q × Gf × Cpe - qi × GCpi

Net force Fw = p × Aref

Roof load case 1 - Wind 0, GCpi 0.18, -cpe

Zone

Ref.

height

(ft)

Ext pressure

coefficient cpe

Peak velocity

pressure qp

(psf)

Net pressure

p

(psf)

Area

Aref

(ft2)

Net force

Fw

(kips)

A (-ve) 4.00 -0.90 15.01 -14.18 50.00 -0.71

B (-ve) 4.00 -0.90 15.01 -14.18 50.00 -0.71

C (-ve) 4.00 -0.50 15.01 -9.08 100.00 -0.91

D (-ve) 4.00 -0.30 15.01 -6.53 100.00 -0.65

Total vertical net force Fw,v = -2.98 kips

Total horizontal net force Fw,h = 0.00 kips

Walls load case 1 - Wind 0, GCpi 0.18, -cpe

Zone

Ref.

height

(ft)

Ext pressure

coefficient cpe

Peak velocity

pressure qp

(psf)

Net pressure

p

(psf)

Area

Aref

(ft2)

Net force

Fw

(kips)

A 4.00 0.80 15.01 7.50 100.00 0.75

B 4.00 -0.50 15.01 -9.08 100.00 -0.91

C 4.00 -0.70 15.01 -11.63 48.00 -0.56

D 4.00 -0.70 15.01 -11.63 48.00 -0.56

Overall loading

Projected vertical plan area of wall Avert_w_0 = b × H = 100.00 ft2

Projected vertical area of roof Avert_r_0 = 0.00 ft2

Minimum overall horizontal loading Fw,total_min = pmin_w × Avert_w_0 + pmin_r × Avert_r_0 = 1.60 kips

Leeward net force Fl = Fw,wB = -0.9 kips

Windward net force Fw = Fw,wA = 0.8 kips

Overall horizontal loading Fw,total = max(Fw - Fl + Fw,h, Fw,total_min) = 1.7 kips

Roof load case 2 - Wind 0, GCpi -0.18, -0cpe

Zone

Ref.

height

(ft)

Ext pressure

coefficient cpe

Peak velocity

pressure qp

(psf)

Net pressure

p

(psf)

Area

Aref

(ft2)

Net force

Fw

(kips)

A (+ve) 4.00 -0.18 15.01 0.41 50.00 0.02

B (+ve) 4.00 -0.18 15.01 0.41 50.00 0.02

C (+ve) 4.00 -0.18 15.01 0.41 100.00 0.04

D (+ve) 4.00 -0.18 15.01 0.41 100.00 0.04

Total vertical net force Fw,v = 0.12 kips

Total horizontal net force Fw,h = 0.00 kips

Page 14: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 15 Of: 28

Subject By Date

Walls load case 2 - Wind 0, GCpi -0.18, -0cpe

Zone

Ref.

height

(ft)

Ext pressure

coefficient cpe

Peak velocity

pressure qp

(psf)

Net pressure

p

(psf)

Area

Aref

(ft2)

Net force

Fw

(kips)

A 4.00 0.80 15.01 12.91 100.00 1.29

B 4.00 -0.50 15.01 -3.68 100.00 -0.37

C 4.00 -0.70 15.01 -6.23 48.00 -0.30

D 4.00 -0.70 15.01 -6.23 48.00 -0.30

Overall loading

Projected vertical plan area of wall Avert_w_0 = b × H = 100.00 ft2

Projected vertical area of roof Avert_r_0 = 0.00 ft2

Minimum overall horizontal loading Fw,total_min = pmin_w × Avert_w_0 + pmin_r × Avert_r_0 = 1.60 kips

Leeward net force Fl = Fw,wB = -0.4 kips

Windward net force Fw = Fw,wA = 1.3 kips

Overall horizontal loading Fw,total = max(Fw - Fl + Fw,h, Fw,total_min) = 1.7 kips

Roof load case 3 - Wind 90, GCpi 0.18, -cpe

Zone

Ref.

height

(ft)

Ext pressure

coefficient cpe

Peak velocity

pressure qp

(psf)

Net pressure

p

(psf)

Area

Aref

(ft2)

Net force

Fw

(kips)

A (-ve) 4.00 -0.90 15.01 -14.18 24.00 -0.34

B (-ve) 4.00 -0.90 15.01 -14.18 24.00 -0.34

C (-ve) 4.00 -0.50 15.01 -9.08 48.00 -0.44

D (-ve) 4.00 -0.30 15.01 -6.53 204.00 -1.33

Total vertical net force Fw,v = -2.45 kips

Total horizontal net force Fw,h = 0.00 kips

Walls load case 3 - Wind 90, GCpi 0.18, -cpe

Zone

Ref.

height

(ft)

Ext pressure

coefficient cpe

Peak velocity

pressure qp

(psf)

Net pressure

p

(psf)

Area

Aref

(ft2)

Net force

Fw

(kips)

A 4.00 0.80 15.01 7.50 48.00 0.36

B 4.00 -0.30 15.01 -6.48 48.00 -0.31

C 4.00 -0.70 15.01 -11.63 100.00 -1.16

D 4.00 -0.70 15.01 -11.63 100.00 -1.16

Overall loading

Projected vertical plan area of wall Avert_w_90 = d × H = 48.00 ft2

Projected vertical area of roof Avert_r_90 = 0.00 ft2

Minimum overall horizontal loading Fw,total_min = pmin_w × Avert_w_90 + pmin_r × Avert_r_90 = 0.77 kips

Leeward net force Fl = Fw,wB = -0.3 kips

Windward net force Fw = Fw,wA = 0.4 kips

Overall horizontal loading Fw,total = max(Fw - Fl + Fw,h, Fw,total_min) = 0.8 kips

Page 15: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 16 Of: 28

Subject By Date

Roof load case 4 - Wind 90, GCpi -0.18, +cpe

Zone

Ref.

height

(ft)

Ext pressure

coefficient cpe

Peak velocity

pressure qp

(psf)

Net pressure

p

(psf)

Area

Aref

(ft2)

Net force

Fw

(kips)

A (+ve) 4.00 -0.18 15.01 0.41 24.00 0.01

B (+ve) 4.00 -0.18 15.01 0.41 24.00 0.01

C (+ve) 4.00 -0.18 15.01 0.41 48.00 0.02

D (+ve) 4.00 -0.18 15.01 0.41 204.00 0.08

Total vertical net force Fw,v = 0.12 kips

Total horizontal net force Fw,h = 0.00 kips

Walls load case 4 - Wind 90, GCpi -0.18, +cpe

Zone

Ref.

height

(ft)

Ext pressure

coefficient cpe

Peak velocity

pressure qp

(psf)

Net pressure

p

(psf)

Area

Aref

(ft2)

Net force

Fw

(kips)

A 4.00 0.80 15.01 12.91 48.00 0.62

B 4.00 -0.30 15.01 -1.07 48.00 -0.05

C 4.00 -0.70 15.01 -6.23 100.00 -0.62

D 4.00 -0.70 15.01 -6.23 100.00 -0.62

Overall loading

Projected vertical plan area of wall Avert_w_90 = d × H = 48.00 ft2

Projected vertical area of roof Avert_r_90 = 0.00 ft2

Minimum overall horizontal loading Fw,total_min = pmin_w × Avert_w_90 + pmin_r × Avert_r_90 = 0.77 kips

Leeward net force Fl = Fw,wB = -0.1 kips

Windward net force Fw = Fw,wA = 0.6 kips

Overall horizontal loading Fw,total = max(Fw - Fl + Fw,h, Fw,total_min) = 0.8 kips

Page 16: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 17 Of: 28

Subject By Date

Page 17: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 18 Of: 28

Subject By Date

C

25 ft

Side face

A

12 ft

Windward face

B

12 ft

Leeward face

Page 18: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 19 Of: 28

Subject By Date

BUILDING WEIGHT:

New Patio:

Roof Dead Load RDL = 14 psf

Ext. Wall Dead Load Walle = 18 psf

Int Wall Dead Load Walli = 10 psf

Roof Area Ar = 300 ft2

Ext. Wall Length Lewr = 74 ft

Int. Wall Length Liwr = 0 ft

Wall height Hr = 8.0 ft

Weight of Roof Wr = RDL × Ar = 4.200 kips

Wall Weight at Roof level Wwr = (Lewr *Walle + Liwr *Walli) × Hr/2 = 5.328 kips

Total Roof Weight Wtr = Wr + Wwr = 9.528 kips

Page 19: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 20 Of: 28

Subject By Date

USGS Design Maps:

Page 20: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 21 Of: 28

Subject By Date

Seismic Base Shear-New Patio:

SEISMIC FORCES (ASCE 7-10)

Tedds calculation version 3.1.00

Site parameters

Site class D

Mapped acceleration parameters (Section 11.4.1)

at short period SS = 1.17

at 1 sec period S1 = 0.45

Site coefficientat short period (Table 11.4-1) Fa = 1.032

at 1 sec period (Table 11.4-2) Fv = 1.550

Spectral response acceleration parameters

at short period (Eq. 11.4-1) SMS = Fa × SS = 1.207

at 1 sec period (Eq. 11.4-2) SM1 = Fv × S1 = 0.698

Design spectral acceleration parameters (Sect 11.4.4)

at short period (Eq. 11.4-3) SDS = 2 / 3 × SMS = 0.805

at 1 sec period (Eq. 11.4-4) SD1 = 2 / 3 × SM1 = 0.465

Seismic design category

Risk category (Table 1.5-1) II

Seismic design category based on short period response acceleration (Table 11.6-1)

D

Seismic design category based on 1 sec period response acceleration (Table 11.6-2)

D

Seismic design category D

Approximate fundamental period

Height above base to highest level of building hn = 8 ft

From Table 12.8-2:

Structure type All other systems

Building period parameter Ct Ct = 0.02

Building period parameter x x = 0.75

Approximate fundamental period (Eq 12.8-7) Ta = Ct × (hn)x × 1sec / (1ft)x= 0.095 sec

Building fundamental period (Sect 12.8.2) T = Ta = 0.095 sec

Long-period transition period TL = 8 sec

Seismic response coefficient

Seismic force-resisting system (Table 12.2-1) A. Bearing_Wall_Systems

15. Light-frame (wood) walls sheathed with wood structural panels

Response modification factor (Table 12.2-1) R = 6.5

Seismic importance factor (Table 1.5-2) Ie = 1.000

Seismic response coefficient (Sect 12.8.1.1)

Calculated (Eq 12.8-3) Cs_calc = SDS / (R / Ie) = 0.1238

Maximum (Eq 12.8-3) Cs_max = SD1 / ((T / 1 sec) × (R / Ie)) = 0.7520

Page 21: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 22 Of: 28

Subject By Date

Minimum (Eq 12.8-5) Cs_min = max(0.044 × SDS × Ie,0.01) = 0.0354

Seismic response coefficient Cs = 0.1238

Seismic base shear (Sect 12.8.1)

Effective seismic weight of the structure W = 9.5 kips

Seismic response coefficient Cs = 0.1238

Seismic base shear (Eq 12.8-1) V = Cs × W = 1.2 kips

Page 22: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 23 Of: 28

Subject By Date

Load Distributions-Addition:

Longitudinal Direction:

Shear Forces along Line A and B

Assume each line take equal amout of seimic force FSeismic = 1.2 kips/2 = 0.60 kips

Assume each line take about 50% of wind forces Fwind = 0. 8 kips x 0.50 = 0.4 kips

Transverse Direction:

Shear Forces along Line 1.1 and 3

Assume each line take equal amout of seimic force FSeismic = 1.2 kips/2 = 0.60 kips

Assume each line take about 50% of wind forces Fwind = 1.7 kips x 0.50 = 0.85 kips

SHEAR WALL DESIGN:

Page 23: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 24 Of: 28

Subject By Date

Shear Wall at Line 1.1:

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2015 allowable stress design and the perforated shear wall method

Tedds calculation version 1.2.03

Panel details

Structural wood panel sheathing on one side

Panel height h = 7.5 ft

Panel length b = 12 ft

Panel opening details

Width of opening wo1 = 5 ft

Height of opening ho1 = 3 ft

Height to underside of lintel over opening lo1 = 6 ft

Position of opening Po1 = 3.5 ft

Total area of wall A = h × b - wo1 × ho1 = 75 ft2

Panel construction

Nominal stud size 2'' x 4''

Dressed stud size 1.5'' x 3.5''

Cross-sectional area of studs As = 5.25 in2

Stud spacing s = 16 in

Nominal end post size 2 x 2'' x 4''

o1

s1 s2

Ch1 Ch2

3' 6" 5' 3' 6"

W + Eq

D + Lr

Page 24: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 25 Of: 28

Subject By Date

Dressed end post size 2 x 1.5'' x 3.5''

Cross-sectional area of end posts Ae = 10.5 in2

Hole diameter Dia = 0.625 in

Net cross-sectional area of end posts Aen = 8.625 in2

Nominal collector size 2 x 2'' x 4''

Dressed collector size 2 x 1.5'' x 3.5''

Service condition Dry

Temperature 100 degF or less

Vertical anchor stiffness ka = 600000 lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2'' - 4'' thick)

Species, grade and size classification Douglas Fir-Larch, stud grade, 2'' & wider

Specific gravity G = 0.50

Tension parallel to grain Ft = 450 lb/in2

Compression parallel to grain Fc = 850 lb/in2

Modulus of elasticity E = 1400000 lb/in2

Minimum modulus of elasticity Emin = 510000 lb/in2

Sheathing details

Sheathing material 7/16'' wood panel oriented strandboard sheathing

Fastener type 8d common nails at 4''centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design vs = min(760 plf, 1740 plf) = 760 lb/ft

Nominal unit shear capacity for wind design vw = min(1065 plf, 2435 plf) = 1065 lb/ft

Apparent shear wall shear stiffness Ga = 22 kips/in

Loading details

Dead load acting on top of panel D = 28 lb/ft

Roof live load acting on top of panel Lr = 20 lb/ft

Self weight of panel Swt = 18 lb/ft2

In plane wind load acting at head of panel W = 850 lbs

Wind load serviceability factor fWserv = 1.00

In plane seismic load acting at head of panel Eq = 600 lbs

Design spectral response accel. par., short periods SDS = 0.805

From IBC 2015 cl.1605.3.1 Basic load combinations

Load combination no.1 D + 0.6W

Load combination no.2 D + 0.7E

Load combination no.3 D + 0.45W + 0.75Lf + 0.75(Lr or S or R)

Load combination no.4 D + 0.525E + 0.75Lf + 0.75S

Load combination no.5 0.6D + 0.6W

Load combination no.6 0.6D + 0.7E

Adjustment factors

Load duration factor – Table 2.3.2 CD = 1.60

Size factor for tension – Table 4A CFt = 1.10

Size factor for compression – Table 4A CFc = 1.05

Wet service factor for tension – Table 4A CMt = 1.00

Wet service factor for compression – Table 4A CMc = 1.00

Page 25: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 26 Of: 28

Subject By Date

Wet service factor for modulus of elasticity – Table 4A

CME = 1.00

Temperature factor for tension – Table 2.3.3 Ctt = 1.00

Temperature factor for compression – Table 2.3.3

Ctc = 1.00

Temperature factor for modulus of elasticity – Table 2.3.3

CtE = 1.00

Incising factor – cl.4.3.8 Ci = 1.00

Buckling stiffness factor – cl.4.4.2 CT = 1.00

Adjusted modulus of elasticity Emin' = Emin × CME × CtE × Ci × CT = 510000 psi

Critical buckling design value FcE = 0.822 × Emin' / (h / d)2 = 634 psi

Reference compression design value Fc∗ = Fc × CD × CMc × Ctc × CFc × Ci = 1428 psi

For sawn lumber c = 0.8

Column stability factor – eqn.3.7-1 CP = (1 + (FcE / Fc∗)) / (2 × c) – √([(1 + (FcE / Fc

∗)) / (2 × c)]2 - (FcE / Fc∗) / c)

= 0.39

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio 3.5

Perforated wall length b1 = 3.5 ft

Shear wall aspect ratio h / b1 = 2.143

Perforated wall length b2 = 3.5 ft

Shear wall aspect ratio h / b2 = 2.143

Shear capacity adjustment factor – cl.4.3.3.5

Sum of perforated shear wall lengths ΣLi = b1 × 2 × bs / h + b2 × 2 × bs / h = 6.533 ft

Total length of perforated shear wall Ltot = b1 + wo1 + b2 = 12 ft

Total area of openings Ao = wo1 × ho1 = 15 ft2

Sheathing area ratio (eqn. 4.3-6) r = 1 / (1 + Ao /(h × ΣLi)) = 0.766

Shear capacity adjustment factor (eqn. 4.3-5) Co = 0.957

Perforated shear wall capacity

Maximum shear force under wind loading Vw_max = 0.6 × W = 0.51 kips

Shear capacity for wind loading Vw = vw × Co × ΣLi / 2 = 3.331 kips

Vw_max / Vw = 0.153

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading Vs_max = 0.7 × Eq =

0.42 kips

Shear capacity for seismic loading Vs = vs × Co × ΣLi / 2 = 2.377 kips

Vs_max / Vs = 0.177

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Load combination 6

Shear force for maximum tension V = 0.7 × Eq = 0.42 kips

Axial force for maximum tension P = (0.6 × (D + Swt × h) - 0.7 × 0.2 × SDS × (D + Swt × h)) × b / 2 = 0.477

kips

Maximum tensile force in chord T = V × h / ((Co × ΣLi)) - P = 0.027 kips

Maximum applied tensile stress ft = T / Aen = 3 lb/in2

Page 26: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 27 Of: 28

Subject By Date

Design tensile stress Ft' = Ft × CD × CMt × Ctt × CFt × Ci = 792 lb/in2

ft / Ft' = 0.004

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression V = 0.6 × W = 0.51 kips

Axial force for maximum compression P = ((D + Swt × h)) × s / 2 = 0.109 kips

Maximum compressive force in chord C = V × h / ((Co × ΣLi)) + P = 0.720 kips

Maximum applied compressive stress fc = C / Ae = 69 lb/in2

Design compressive stress Fc' = Fc × CD × CMc × Ctc × CFc × Ci × CP = 561 lb/in2

fc / Fc' = 0.122

PASS - Design compressive stress exceeds maximum applied compressive stress

Collector capacity

Collector seismic design force factor FColl = 1

Maximum shear force on wall Vmax = max(FColl × Vs_max, Vw_max) = 0.51 kips

Uniform shear applied to wall va = Vmax / ((Co × ΣLi)) = 81.5 plf

Shear resisted by wall segments vb = va × b / (b1 + b2) = 139.8 plf

Maximum force in collector Pcoll = 0.204 kips

Maximum applied tensile stress ft = Pcoll / (2 × As) = 19 lb/in2

Design tensile stress Ft' = Ft × CD × CMt × Ctt × CFt × Ci = 792 lb/in2

ft / Ft' = 0.025

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress fc = Pcoll / (2 × As) = 19 lb/in2

Column stability factor CP = 1.00

Design compressive stress Fc' = Fc × CD × CMc × Ctc × CFc × Ci × CP = 1428 lb/in2

fc / Fc' = 0.014

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1 T1 = 0.027 kips

Chord 2 T2 = 0.027 kips

Wind load deflection

Design shear force Vδw = fWserv × W = 0.85 kips

Deflection limit ∆w_allow= h / 600 = 0.15 in

0

-0.2

0.2

-0.2

0.2

0

Collector axial force diagram (kips)

Page 27: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 28 Of: 28

Subject By Date

Induced unit shear vδw_max = Vδw / (Co × ΣLi) = 135.88 lb/ft

Anchor tension force Tδ = max(0 kips,vδw_max × h - 0.6 × (D + Swt × h) × b / 2) = 0.432 kips

Shear wall deflection – Eqn. 4.3-1 δsww = 2 × vδw_max × h3 / (3 × E × Ae × ΣLi) + vδw_max × h / (Ga) + h × Tδ / (ka

× ΣLi) = 0.052 in

δsww / ∆w_allow = 0.346

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force Vδs = Eq = 0.6 kips

Deflection limit ∆s_allow= 0.020 × h = 1.8 in

Induced unit shear vδs_max = Vδs / (Co × ΣLi) = 95.92 lb/ft

Anchor tension force Tδ = max(0 kips,vδs_max × h - (0.6 - 0.2 × SDS) × (D + Swt × h) × b / 2) =

0.290 kips

Shear wall elastic deflection – Eqn. 4.3-1 δswse = 2 × vδs_max × h3 / (3 × E × Ae × ΣLi) + vδs_max × h / (Ga) + h × Tδ / (ka

× ΣLi) = 0.037 in

Deflection ampification factor Cdδ = 4

Seismic importance factor Ie = 1

Amp. seis. deflection – ASCE7 Eqn. 12.8-15 δsws = Cdδ × δswse / Ie = 0.147 in

δsws / ∆s_allow = 0.081

PASS - Shear wall deflection is less than deflection limit

Uplift is only 27 lbs, cross wall can resist uplift:

Page 28: Structural Calculations - crw.cityofoceanside.com

509 Sunset Dr. 2019-009

Project Project No.

CALCULATION SUBJECT Hung Nguyen, S.E 06/11/18 Page: 29 Of: 28

Subject By Date

Shear Wall at Line 3 and Line A:

Seismic Load = 0.60 kips

Wind Load = 0.85 kips

Use Simpson WSW 12x7 Wall