structure determination of triacylglycerols from powder diffraction data rené peschar laboratory...

50
Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Upload: sheryl-washington

Post on 15-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Structure determination of triacylglycerols from powder

diffraction data

René Peschar

Laboratory for Crystallography

Universiteit van Amsterdam

The Netherlands

Page 2: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Overview

• Introduction– Why structure determination of TAG’s?– Why Powder diffraction data

• X-ray diffraction and crystals• Powder diffraction• Structure determination using powder diffraction

data• Application to triacylglycerols• Conclusion

Page 3: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Scheme of bloom formation on chocolate

Page 4: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Introduction

• Melt and crystallization behaviour of (natural) fats and triacylglycerols

• (Natural) fats consist mainly of triacylglycerols

• Phase transition behaviour

• Explanation at atomic level => structure information

• In solid state: crystalline!

• X-ray diffraction (Single crystal/powder)

Page 5: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

X-ray diffraction and crystals

• Crystal: regular 3D stacking of identical units

• X-rays on crystal => diffraction (Bragg’s Law)

• Single crystal (0.1 mm) : 3D diffraction pattern

• Triacylglycerols single crystals difficult to grow

• => Powder diffraction

Page 6: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Bragg’s LawAll waves scatterd by the planes (hkl) must be

in phase

2dhkl sin(hkl) = n

Page 7: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

X-ray diffraction

• Intensity Ihkl | Fhkl|2

• Structure factor Fhkl = | Fhkl| exp (ihkl)

• Atomic coordinates xj,yj,zj

• Electron density (x,y,z)

• Maxima in (x,y,z) are the xj,yj,zj

• Phase problem: hkl unknown

)(2exp1

jjjj

N

jhkl lzkyhxfF

)](2exp[1

),,( lzkyhxiFzyx hkllkh

Page 8: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands
Page 9: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands
Page 10: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands
Page 11: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands
Page 12: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands
Page 13: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands
Page 14: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands
Page 15: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Powder diffraction

– Small crystals ( <10 m)– Uniformly oriented sample (flat sample/capillary)

• Diffraction gives:– ‘ID’ diffraction pattern Intensity (I) vs 2

• Application:– (Qualitative) identification

• e.g. Polymorphs cocoa butter or TAGs

– Crystal Structure determination• chain packing, atomic positions)• => 3D periodic electron density

Page 16: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Polymorphs of cocoa

butter

Page 17: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands
Page 18: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands
Page 19: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Prerequisites for a successful structure determination from powder data

• Sample preparation

• Data collection

• Pattern fitting and indexing

• Choice of structure determination technique

Page 20: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Sample preparation

• Capillary diameter (0.3-1.5 mm)

• Wavelength !

• Absorption

• Particle statistics (Capillary 0.3 mm)

• Preferred orientation

• Laboratory data collection beforehand!

Page 21: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Data collection

• Synchrotron (if possible) FWHM = 0.04• Wavelength ( > 0.8 Å)• Small slit size (reduce peak asymmetry at low 2)

• Data collection protocol– Reciprocal lattice point density vs exposure time– Total exposure time (~ 8 h)– Start at lowest possible 2

• 0-30

• 10-30

• 20-30

– Step size 0.005° 2

Page 22: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Pattern fitting and indexing

• Extract intensity maxima– Background– Peak profile (e.g. Pseudo Voigt)

• Auto-indexing programs (eg ITO, TREOR, DICVOL)• Check pattern if all maxima are covered (eg

CHEKCELL, see CCP14 home page)• Extract reflection intensities and/or cluster intensities

Page 23: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Pattern indexing

E.g. orthorhombic lattice:

(1/dhkl)2 = (h/a)2 + (k/b)2 + (l/c)2

Page 24: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Results from powder data

Page 25: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Choice of structure determination technique• ‘Traditional’ single-crystal methods

– Patterson, Direct Methods, incl. maximum entropy/maximum likelyhood– Reciprocal space

• No complete initial model required• Individual reflection intensities• Atomic resolution

• Direct space grid search methods– Direct space

• Complete model• Some but not all individual intensities required

– Grid search, Monte Carlo, Simulated Annealing, Genetic algorithm

Page 26: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Structure of C13C13C13

Page 27: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Direct space grid search techniques

• Basic assumption:– Almost complete structural model or fragment:

standard inter atomic distances and angles (or from similar structure in data base, or via molecular modelling)

– Structure can be expressed in terms of a set of 6+n variables (degrees of freedom):

• Position (x,y,z) of a specific atom• Eulerian angles (,,)

• n Torsian angles 1,2,….,n

Page 28: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Stereochemical model (trial model)

• Build from stereochemical descriptors in Cartesian coordinate system– interatomic distances

– interatomic angles

– dihedral angles (torsian angles)

– transform model to crystallographic unit cell

• Take similar model– e.g. from Cambridge Structural Database. Modify

wherever necessary (standard bond lengths, angles), optionally using Molecular Modelling (eg Cerius2TM)

Page 29: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Grid search direct space• General algorithm

– Generate trial structures(s)– Calculate powder diffraction pattern/intensities/structure

factors– Compare with experimental data– Accept or reject on basis of a criterion function

• Advantage: Extraction of all individual intensities not required. Degrees of freedom determine complexity of global optimization problem

• Disadvantage: Model should be realistic; time consuming

Page 30: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Consistency criterion)(|)()(|)( obsXcalsXobsXXR j

j

jj

j

Single (resolved) reflection

Xj(obs) = Ihkl

Cluster of overlapping reflections

Xj(obs) = Ihkl

Correct solution: low R(X) ( < 0.5)

Page 31: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Grid search implementation• Systematic change of variable values (pre-defined grid increments)

– Extract 50-300 low-angle individual intensities X=I or clusters of overlapping intensities X= I in full pattern decomposition

– Perform rotation (steps 10-30°) and translation searches (0.5-0.6Å)

– For minima found: decrease steps to 5° - 1° and 0.1 Å

– Torsion angle searches (initially 20° => 5°)

• Advantage: minimum in criterion function R(X) not likely to be missed

• Disadvantage: Time-consumpton can become prohibitive if degrees of freedom is large

MRIA system (local version) Zlokazov V.B. and Cherneyschev V.V. (1992) J Appl. Cryst. 25 - 447-451 (MRIA)

Chernyshev V.V. and Schenk H. (1998) Z. Kristallogr. 213, 1-3 (Grid Search)

Page 32: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Refinement

• Bond-restrained Rietveld refinement – e.g. Baerlocher, 1993

• Very small parameter shifts

• Coupling Uiso

Page 33: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Nomenclature of some fatty acidsChain: double bond10:0 decanoic C(apric)

12:0 dodecanoic L(auric)

13:0 tridecanoic

14:0 tetradecanoic M(yristic)

15:0 pentadecanoic

16:0 hexadecanoic P(almitic)

17:0 heptadecanoic

18:0 octadecanoic S(t)(earic)

18:1 octadec-cis-9-enoic O(leic)

18:1 octadec-trans-9-enoic E(laidic)

19:0 nonadecanoic

20:0 icosanoic A(rachidic)

Page 34: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Structures of triacylglycerols on the basis of powder-diffraction data

• -CnCnCn (n=even; 14 =MMM, 18=SSS)

• -CnCnCn (n=13,15,17,19)

• ’-CnCn+2Cn (n=14; MPM)

Poster: The structure of ’-PSP and -PSP

Page 35: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

References (ESRF beam-line used)15.15.15; 17.17.17; 19.19.19

Helmholdt R.B., Peschar R. and Schenk H. (2002) Acta Cryst B58, 134-139 (BM16)

MMM; SSS

Van Langevelde A., Peschar, R. and Schenk, H. (2001) Acta Cryst B57, 372-377 (BM01B, BM16)

13.13.13

Van Langevelde A., Peschar, R. and Schenk, H. (2001) Chem. Mater. 13, 1089-1094. (BM16)

MPM; CLC (Single Crystal)

Van Langevelde, A., Van Malssen, K.F., Driessen, R., Goubitz, K., Hollander, F., Peschar, R., Zwart, P. and Schenk, H.. (2000) Acta Cryst. B56, 1103-1111 (ID11,

BM16)

Page 36: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

CnCnCn (n=even) series

• Structures are homologous, Unit cell transformed• CCC(10.10.10), LLL(12.12.12),MMM(14.14.14),PPP(16.16.16)

Page 37: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

CnCnCn (n=even) series

• Structures are homologous, Unit cell transformed• CCC(10.10.10), LLL(12.12.12),MMM(14.14.14),PPP(16.16.16)

Page 38: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Structures of triacylglycerols on the basis of powder-diffraction data

• -CnCnCn (n=even; 14 =MMM, 18=SSS)

• -CnCnCn (n=13,15,17,19)

• ’-CnCn+2Cn (n=14; MPM)

Poster: The structure of ’-PSP and -PSP

Page 39: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Melting point alternationLarson (1966): melting point alternation for long-chain

compounds is caused by differences in packing densities at the layer interface

Lutton and Fehl (1970)

Page 40: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Triacylglycerol cell parameters

Compound C13C13C13a C15C15C15 C17C17C17 C19C19C19

a (Å) 11.9438(6) 11.8998(1) 11.8664(2) 11.8680(1)b (Å) 41.342(1) 46.3879(4) 51.450(1) 56.5143(9)c (Å) 5.4484(3) 5.4400(1) 5.4321(1) 5.4280(1) ( ) 71.905(4) 72.359(1) 72.765(2) 73.064(1) ( ) 100.291(5) 100.211(1) 100.095(1) 100.020(1) ( ) 121.824(3) 121.125(1) 120.577(2) 120.084(1)Volume (Å3) 2172.5(1) 2448.9(1) 2725.8(1) 3011.8(1)Dcalc (g/cm3) 1.04 1.04 1.03 1.03

The unit cell parameters for the phase of the triacylglycerols C13C13C13,

C15C15C15, C17C17C17,and C19C19C19 as determined from the synchrotronXRPD data when the acyl chains are as parallel as possible with the longestaxis

a) Van Langevelde A.J. (2000), Van Langevelde et al. (2001a)

Page 41: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Melting point alternation CnCnCn (Left, A: n=odd, right, B: n=even)

For n=odd packing is less dense, so a lower melting point

Page 42: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Structures of triacylglycerols on the basis of powder-diffraction data

• -CnCnCn (n=even; 14 =MMM, 18=SSS)

• -CnCnCn (n=13,15,17,19)

• ’-CnCn+2Cn (n=14; MPM)

Poster: The structure of ’-PSP and -PSP

Page 43: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

The ’ structure of CLC and MPM• Homologous

Page 44: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

The ’ structure of CLC and MPM• Homologous

Compound '-CLCa '-LMLb '-MPMb '-MPMb '-PSPb

a (Å) 22.783(2) 22.650(2) 22.63(1) 22.660(2)b (Å) 5.6945(6) 5.6513(4) 5.621(7) 5.6261(7) 5.5946(8)c (Å) 57.368(6) 67.183(6) 76.21(4) 76.217(8) 85.48(2) ( ) 90.0 90.0 90.0 90.0 90.0 ( ) 90.0 90.391(7) 90.0 90.18(1) 22.829(4) ( ) 90.0 90.0 90.0 90.0 90.0Volume (Å3) 7443(1) 8599.3(9) 9784 9717(1) 10917(3)Space Group Ic2a I2 Ic2a I2 Ic2aChem. Form. C35H66O6 C41H78O6 C47H90O6 C47H90O6 C53H102O6

Z 8 8 8 8 8Dcalc (g/cm3) 1.04 1.03 1.02 1.03 1.02Tdata collection (K) 295 250 295 250 250

Page 45: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

The ’ structures of CLC and MPM• Bend molecules

• Orthogonal zigzag planes

Page 46: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Packing diagrams of ’-CLCTop: Along the b-axis, showing the bending of the molecules

Bottom: Along the c-axis, showing the chain packing

Notice: flat methyl-end planes

Page 47: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

’-CnCn+2Cn vs -CnCnCn structuresCLC (Chair I, II, III) PPP (Tuning fork, I, III,

II)

Page 48: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Triacylglycerol conformations

Chair

Tuning fork

Page 49: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

Conclusion

Crystal structure determination of triacylglycerols on the basis of powder diffraction data is possible, provided

• Well-prepared sample

• High-resolution (synchrotron) data

• Pattern can be indexed

• Homologous model available

Page 50: Structure determination of triacylglycerols from powder diffraction data René Peschar Laboratory for Crystallography Universiteit van Amsterdam The Netherlands

AcknowledgementsLaboratorium voor Kristallografie,

Universiteit van Amsterdam, The Netherlands

V. Chernyshev (Moscow State University)

D.J.A. De Ridder

E. Dova

R.A.J. Driessen

K. Goubitz

R.B. Helmholdt

A. van Langevelde

K.F. van Malssen

J.B. van Mechelen

M.M. Pop

H. Schenk

E. Sonneveld

P. Zwart

ESRF (Grenoble, France) Staff at BM16 and BM01b

NWO/CW Netherlands Foundation for Chemical Research

STW Netherlands Technology Foundation

Unilever