study and optimization of car hood for pedestrian head safety by using simulation technique

5
@ IJTSRD | Available Online @ www ISSN No: 245 Inte R Study and Optimization Usin Mukesh C Assistant Professor, Mechanica ABSTRACT Head and face injuries in pedestrian- account for 60 % of all pedestrian whereas 17.3 % of head injuries were hood. The above ratios show the necess carefully the role of the hood in pe safety. Redesigning the hood structur pedestrian protection has recent considerable attention by automobile and industry institutes. However, there research that considers methods of choo effective thicknesses of hood skin reinforcement with respect to pedestrian The aim of these tests was to compar pedestrian friendliness of steel and alum hood material. The tests were conducted is still available on the market with eit aluminum hood, both having the same d Keywords: hood, head injury, Pedestrian I. INTRODUCTION The hood and bumper, with which ped in frequent contact, can be designed and to be pedestrian friendly, effectivel injuries [3]. During the development o and bumper structures, experiments a simulations are used to evaluate their Computer simulations contain many inaccurate modeling and approximation Equations. On the other hand, exp considered to be accurate even with the experimental errors and inaccuracies. would be the best if all the data could be w.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 56 - 6470 | www.ijtsrd.com | Volum ernational Journal of Trend in Sc Research and Development (IJT International Open Access Journ n of Car Hood for Pedestrian H ng Simulation Technique C. Chaudhari, Tushar D. Kumbhani al Engineering Department, Vadodara Institute o Vadodara, Gujarat, India car accidents fatal injuries, due to the car sity to consider edestrian head re to improve tly received manufacturers e is a lack of osing the most n and hood n safety. re the general minum, used as d on a car that ither a steel or design. n safety destrians come d manufactured ly decreasing of a safe hood and computer performances y errors from n of governing periments are e possibility of In design, it e obtained from experiments. Howeve generally very costly. Therefo are performed in many applica some experiments can be simulations. As mentione simulation has a large amount To compare the pedestrian fa different countries, Table respective population size. Th fatalities are 6359 from 26 co The maximum number of ped Polska is about 1408 in year 2 In India Delhi city accounte bicycle riders, 18.8% deaths deaths of two-wheeler riders wheeler riders in 35 metro citi the pedestrian death in year 20 Figure 1 Number of Pedest [1] n 2018 Page: 403 me - 2 | Issue 4 cientific TSRD) nal Head Safety by of Engineering, er, an experiment is ore, limited experiments ation fields. In this case, replaced by computer ed earlier, computer of errors [3]. atal accident numbers of 1take account of the he numbers of pedestrian ountries of EU country. destrian fatalities is from 011. ed for 25.1% deaths of s of pedestrians, 16.6% s and 9.2% deaths of 3 ies. [4] Fig. 1 shows that 010 is about 9.1%. trian Deaths by Country

Upload: ijtsrd

Post on 17-Aug-2019

9 views

Category:

Education


1 download

DESCRIPTION

Head and face injuries in pedestrian car accidents account for 60 of all pedestrian fatal injuries, whereas 17.3 of head injuries were due to the car hood. The above ratios show the necessity to consider carefully the role of the hood in pedestrian head safety. Redesigning the hood structure to improve pedestrian protection has recently received considerable attention by automobile manufacturers and industry institutes. However, there is a lack of research that considers methods of choosing the most effective thicknesses of hood skin and hood reinforcement with respect to pedestrian safety. The aim of these tests was to compare the general pedestrian friendliness of steel and aluminum, used as hood material. The tests were conducted on a car that is still available on the market with either a steel or aluminum hood, both having the same design. Mukesh C. Chaudhari | Tushar D. Kumbhani "Study and Optimization of Car Hood for Pedestrian Head Safety by Using Simulation Technique" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-4 , June 2018, URL: https://www.ijtsrd.com/papers/ijtsrd12964.pdf Paper URL: http://www.ijtsrd.com/engineering/mechanical-engineering/12964/study-and-optimization-of-car-hood-for-pedestrian-head-safety-by-using-simulation-technique/mukesh-c-chaudhari

TRANSCRIPT

Page 1: Study and Optimization of Car Hood for Pedestrian Head Safety by Using Simulation Technique

@ IJTSRD | Available Online @ www.ijtsrd.com

ISSN No: 2456

InternationalResearch

Study and Optimization of Car Hood for Pedestrian Head Safety by Using Simulation Technique

Mukesh C. ChaudhariAssistant Professor, Mechanical Engineering Department, Vad

ABSTRACT Head and face injuries in pedestrian- account for 60 % of all pedestrian fatal injuries, whereas 17.3 % of head injuries were due to the car hood. The above ratios show the necessity to consider carefully the role of the hood in pedestrian hesafety. Redesigning the hood structure to improve pedestrian protection has recently received considerable attention by automobile manufacturers and industry institutes. However, there is a lack of research that considers methods of choosing the most effective thicknesses of hood skin and hood reinforcement with respect to pedestrian safety.

The aim of these tests was to compare the general pedestrian friendliness of steel and aluminum, used as hood material. The tests were conducted on a car that is still available on the market with either a steel or aluminum hood, both having the same desig

Keywords: hood, head injury, Pedestrian safety

I. INTRODUCTION

The hood and bumper, with which pedestrians come in frequent contact, can be designed and manufactured to be pedestrian friendly, effectively decrinjuries [3]. During the development of a safe hood and bumper structures, experiments and computer simulations are used to evaluate their performances Computer simulations contain many errors from inaccurate modeling and approximation of governing Equations. On the other hand, experiments are considered to be accurate even with the possibility of experimental errors and inaccuracies. In design, it would be the best if all the data could be obtained

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific Research and Development (IJTSRD)

International Open Access Journal

Study and Optimization of Car Hood for Pedestrian Head Safety by sing Simulation Technique

Mukesh C. Chaudhari, Tushar D. Kumbhani Assistant Professor, Mechanical Engineering Department, Vadodara Institute of Engineering,

Vadodara, Gujarat, India

car accidents account for 60 % of all pedestrian fatal injuries, whereas 17.3 % of head injuries were due to the car hood. The above ratios show the necessity to consider carefully the role of the hood in pedestrian head safety. Redesigning the hood structure to improve pedestrian protection has recently received considerable attention by automobile manufacturers and industry institutes. However, there is a lack of research that considers methods of choosing the most

fective thicknesses of hood skin and hood reinforcement with respect to pedestrian safety.

The aim of these tests was to compare the general pedestrian friendliness of steel and aluminum, used as hood material. The tests were conducted on a car that is still available on the market with either a steel or aluminum hood, both having the same design.

hood, head injury, Pedestrian safety

The hood and bumper, with which pedestrians come in frequent contact, can be designed and manufactured to be pedestrian friendly, effectively decreasing

]. During the development of a safe hood and bumper structures, experiments and computer simulations are used to evaluate their performances Computer simulations contain many errors from inaccurate modeling and approximation of governing Equations. On the other hand, experiments are considered to be accurate even with the possibility of experimental errors and inaccuracies. In design, it would be the best if all the data could be obtained

from experiments. However, an experiment is generally very costly. Therefore, limited experiments are performed in many application fields. In this case, some experiments can be replaced by computer simulations. As mentioned earlier, computer simulation has a large amount of errors [

To compare the pedestrian fatal accidentdifferent countries, Table 1take account of the respective population size. The numbers of pedestrian fatalities are 6359 from 26 countries of EU country. The maximum number of pedestrian fatalities is from Polska is about 1408 in year 2011.

In India Delhi city accounted for 25.1% deaths of bicycle riders, 18.8% deaths of pedestrians, 16.6% deaths of two-wheeler riders and 9.2% deaths of 3 wheeler riders in 35 metro cities. the pedestrian death in year 2010 is about 9.1%.

Figure 1 Number of Pedestrian Deaths by Country [1]

Jun 2018 Page: 403

www.ijtsrd.com | Volume - 2 | Issue – 4

Scientific (IJTSRD)

International Open Access Journal

Study and Optimization of Car Hood for Pedestrian Head Safety by

odara Institute of Engineering,

from experiments. However, an experiment is ly very costly. Therefore, limited experiments

are performed in many application fields. In this case, some experiments can be replaced by computer simulations. As mentioned earlier, computer simulation has a large amount of errors [3].

fatal accident numbers of different countries, Table 1take account of the respective population size. The numbers of pedestrian fatalities are 6359 from 26 countries of EU country. The maximum number of pedestrian fatalities is from

1408 in year 2011.

Delhi city accounted for 25.1% deaths of bicycle riders, 18.8% deaths of pedestrians, 16.6%

riders and 9.2% deaths of 3 cities. [4] Fig. 1 shows that 2010 is about 9.1%.

Figure 1 Number of Pedestrian Deaths by Country

Page 2: Study and Optimization of Car Hood for Pedestrian Head Safety by Using Simulation Technique

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

As expected, more crowded countries will have higher total numbers of pedestrian deaths with China, India, and the Russian Federation in first, second, and third in that category, respectively.

II. Experimental set up

Figure 2 shows the experimental set up for the test of hood. The angle for adult pedestrian is taken as 65when it is falling on hood and the wrap around distance is 1700-2100mm.The wrap around distance is the distance measured from ground surface to the hood surface when the head will be impacted when the height of pedestrian is 154cm. For child pedestrian the wrap around distance is taken as 1000depending on the height of the pedestrian.

Figure 2 Pedestrian protection concept proposed by

the EEVC WG17 [5]

Fig.2 Head model with 4 kg selected

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018

As expected, more crowded countries will have higher total numbers of pedestrian deaths with China, India, and the Russian Federation in first, second, and third

Figure 2 shows the experimental set up for the test of . The angle for adult pedestrian is taken as 650

and the wrap around The wrap around distance

distance measured from ground surface to the hood surface when the head will be impacted when

For child pedestrian the wrap around distance is taken as 1000-1700mm depending on the height of the pedestrian.

ure 2 Pedestrian protection concept proposed by

Fig.2 Head model with 4 kg selected

Figure 4 Determination of WAD [

The wrap around distance is measured by using string.

III. Reduced Fe Model Preparation

The full co related model of Toyota Yaris is reduced by cutting it from the B-Pillar and removing the front wheels, seats, door etc. The model is reduced such that the test results will not be affected by the modification done. Fixed Boundary Constraints are applied to the reduced model at the cutting location. The reduced model helps in fast processing of the LS Dyna runs due to reduced number of elements.

Figure.5 car model cut for analysis

IV Test Procedure

The Reduced Car Model is at the same level when the Full Vehicle is standing on the level floorarrested in software and also the degree of freedom been arrested . All translational and rotational degrees of freedoms are fixed (arrested) at the cutting location of BIW. Head is positioned as per Adult Head ImpaZone at 65⁰ to horizontal. The head is impacted on different locations as the location has been assigned by the numbers. The Head is impacted with initial velocity of 9.7 m/s. Head accelerations are measured from the accelerometer which is

V. FE Model Setup& Boundary Conditions

Test Set-up consists of the reduced car model and the adult head form. The Reduced car model is fixed at BPillar cut line. Then the calibrated headpositioned so as to hit the desired location at an angle of 65⁰ to horizontal. The impact point is selected as per the regulation guideline for Adult Head Impact

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Jun 2018 Page: 404

Determination of WAD [5]

The wrap around distance is measured by using string.

III. Reduced Fe Model Preparation

model of Toyota Yaris is reduced Pillar and removing the front

wheels, seats, door etc. The model is reduced such that the test results will not be affected by the modification done. Fixed Boundary Constraints are

duced model at the cutting location. The reduced model helps in fast processing of the LS

to reduced number of elements.

car model cut for analysis

The Reduced Car Model is at the same level when the is standing on the level floor as it is

arrested in software and also the degree of freedom . All translational and rotational degrees

of freedoms are fixed (arrested) at the cutting location of BIW. Head is positioned as per Adult Head Impact

The head is impacted on different locations as the location has been assigned

The Head is impacted with initial Head accelerations are measured

which is fitted in Head form.

FE Model Setup& Boundary Conditions

up consists of the reduced car model and the form. The Reduced car model is fixed at B-

Pillar cut line. Then the calibrated head form is positioned so as to hit the desired location at an angle

to horizontal. The impact point is selected as per the regulation guideline for Adult Head Impact

Page 3: Study and Optimization of Car Hood for Pedestrian Head Safety by Using Simulation Technique

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018 Page: 405

Zone. Figure 6 shows the boundary condition applied on the reduced car model.

Figure 6 boundary condition applied to reduced model

Figure 7 Experiment set up

VI Baseline Results

As shown below the points consider for the test are shown with their numbers. The point P0 is the center point of the hood and considered as reference point in this case. The points P1A and P1B are 165mm apart from reference point. The point P2A and P2B are 165mm from P1A and P1B respectively.

Figure 8 Position of headform impact position on hood

1) Animation instances Animation instances for test point P0 is shown in figure 9. The animation shows the impact of head on hood at different time instant. This time fraction is in point second.

Figure 9 Animation instances for test point P0

2) Overall Stress Plot The overall stress plot for point P0 is distributed along the hinge supports. The maximum stress developed at the head impact section.

Figure 10 Overall Stress Plot for test point P0

3) Overall Strain Plot The overall strain plot for point P0 has maximum value at the impact section. In this plot the fringe levels on hood shows the minimum damage to pedestrian head will be possible when the thickness is optimum.

Page 4: Study and Optimization of Car Hood for Pedestrian Head Safety by Using Simulation Technique

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018 Page: 406

Figure 11 Overall Strain Plot for test point P0

4) Head Injury Criteria (HIC) The obtained HIC value for point P0 is 159.2, which is the acceptable limit of HIC.

Figure 12. HIC for test point P0

Similarly the simulation for all points is carried out. VI Conclusion

This result shows that the interdependence of the HIC value, the hood reinforcement thickness, and the hood skin thickness is very difficult. This study analyses and proposes a method of identifying the most effective values for the hood reinforcement thickness

and the hood skin thicknesses to protect pedestrians while maximizing the hood stiffness. The method presented in this study uses the regression technique to design constraints for the optimization problem. The proposed algorithm identifies numerous critical positions on the hood surface with respect to pedestrian safety. The algorithm used to optimize the thicknesses is solved by combining LS-DYNA and LS-OPT to simulate and analyze the simulation results.

References

1) World Health Organization. Global Status Report on Road Safety: Time for Action. Geneva, Switzerland: WHO Press. (2009).

2) Teng T-Land NgoV-L, “Optimization of hood thicknesswith respect to pedestrian safety”, DOI: 10.1243/09544070JAUTO1477, CASE STUDY 1513, JAUTO1477, Proc. IMechE Vol. 224 Part D: J. Automobile Engineering, publication on 16 June 2010

3) Lee J.,YoonK., KangY.,ParkG., “Vehicle Hood And Bumper Structure Design to Mitigate Casualties ofPedestrian Accidents” , Paper Number 05-0105

4) National Crime Records Bureau Ministry of Home Affairs Government of India East Block - 7, R.K. Puram New Delhi, “Accidental Deaths and Suicides in India 2010”

5) Uniform provisions concerning the approval of motor vehicles with regard to their pedestrian safety performance, Addendum 126: Regulation No. 127, Entry into force: 17 November 2012, 7 January 2013

6) “FHWA/NHTSA National Crash Analysis Center”, The George Washington University, Ashburn, Virginia, USA, Applications, Finite element model archive, 2000–2009

7) F. A. Berg, M. Egelhaaf, J. Bakker, H., Burkle, R. Herrmann, and J. Scheerer, “Pedestrian protection in Europe – the potential of car design and impact testing”, Report for the United Nations, UN Economic Commission for Europe.

8) “National Center for Statistics and Analysis”, Motor vehicle traffic crash fatality counts and estimates of people injured for 2012: 2012 annual assessment. Report DOT HS 811 552, National

Page 5: Study and Optimization of Car Hood for Pedestrian Head Safety by Using Simulation Technique

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018 Page: 407

Highway Traffic Safety Administration, Washington, DC, USA, February 2012.

9) Y. H. Han, and Y. W. Lee, “Development of a vehicle structure with enhanced pedestrian safety”, SAE paper 2003-01-1232, 2003

10) C. K. Simms, “Developments in crash safety: a triumph of design in bioengineering”, In Perspectives on design and bioengineering: essays in honour of C. G. Lyons (Eds C. K. Simms and P. J. Prendergast), 2008, pp. 39–55 (Trinity Centre for Bioengineering, Dublin).

11) I.Kalliske, and F.Friesen, “Improvements to pedestrian protection as exemplified on a standardized car”, 17th International Technical Conference on The enhanced safety of vehicles (ESV), Amsterdam, The Netherlands, 4–7 June 2001, paper 283, 10 pp. (National Highway Traffic Safety Administration, Washington, DC

12) V. Philomin, R. Duraiswami, and L. Davis, “Pedestrian tracking from a moving vehicle”, IEEE Intelligent Vehicles Symposium (IV 2000), Detroit, Michigan, USA, 3–5 October 2000, pp. 350–355 (IEEE, New York).