study on protective devices of a distribution substation

102
Study on protective devices of a distribution substation Chapter 1 Introduction 1.1 GENERAL BACKGROUND The modern society is so much dependent upon the use of electric energy that it has become a part parcel our life. The present day advancement in science and technology has made it possible to convert electric energy into any desired form. This has given electric energy a place of pride in the modern world. The importance of electric supply in everyday life has reached such a stage that it is desirable to protect the power system from harm during fault condition and to ensure maximum continuity of supply. For this purpose from reliable point of view the protective device used in power system takes an important role of this system. Since in our Bangladesh, Distribution Substation Distributed electric power to the total area of Bangladesh .So we want to study of electrical power protection scheme of Distribution Substation 1.2 PROBLEM DEFINATION A particular type of equipment used in electric power systems to detect abnormal conditions and to initiate appropriate corrective action known as protective device. Equipment applied to electric power systems to detect abnormal and intolerable conditions and to initiate appropriate

Upload: zareen-aabedin

Post on 25-Mar-2016

223 views

Category:

Documents


2 download

DESCRIPTION

Study on protective devices of a distribution substation

TRANSCRIPT

Page 1: Study on protective devices of a distribution substation

Study on protective devices of a distribution substation

Chapter 1

Introduction

1.1 GENERAL BACKGROUND

The modern society is so much dependent upon the use of electric energy that it has become a

part parcel our life. The present day advancement in science and technology has made it

possible to convert electric energy into any desired form. This has given electric energy a

place of pride in the modern world. The importance of electric supply in everyday life has

reached such a stage that it is desirable to protect the power system from harm during fault

condition and to ensure maximum continuity of supply. For this purpose from reliable point

of view the protective device used in power system takes an important role of this system.

Since in our Bangladesh, Distribution Substation Distributed electric power to the total area

of Bangladesh .So we want to study of electrical power protection scheme of Distribution

Substation

1.2 PROBLEM DEFINATION

A particular type of equipment used in electric power systems to detect abnormal conditions

and to initiate appropriate corrective action known as protective device.

Equipment applied to electric power systems to detect abnormal and intolerable conditions

and to initiate appropriate corrective actions. These devices include lightning arresters, surge

protectors, fuses, and relays with associated circuit breakers, reclosers, and so forth.

From time to time, disturbances in the normal operation of a power system occur. These may

be caused by natural phenomena, such as lightning, wind, or snow; by falling objects such as

trees; by animal contacts or chewing; by accidental means traceable to reckless drivers,

inadvertent acts by plant maintenance personnel, or other acts of humans; or by conditions

produced in the system itself, such as switching surges, load swings, or equipment failures.

Protective devices must therefore be installed on power systems to ensure continuity of

electrical service, to limit injury to people, and to limit damage to equipment when problem

situations develop. Protective devices are applied commensurately with the degree of

protection desired or felt necessary for the particular system.

Page 2: Study on protective devices of a distribution substation

1.3 OBJECTIVES OF THIS WORK

The development of any country of the world is based on electricity & without it on industry

is impossible. So we should take great about reliability & stability of a power system.

Protective device serve this purpose sufficiently. It is to be noted that protective device can

not remove the fault, it protect the equipment from harmful damage. As the fault in the

equipment in the supply system leads to disconnection of supply to a large portion of the

system. If the fault part is quickly disconnected the damage caused by the fault is minimum

& the faulty part can be repaired quickly & the service can be restored without further delay.

Better service continuity has its own merits.

As a protection of engineer, we should have to gain a best knowledge about protective device

that are used in our distribution system. For a better understanding we can denote ourselves to

the study of the protective device in a distribution substation.

We can summaries the objective of the study in the following lines:

1. To Study of substation & substation equipment.

2. To Study of protective devices of a distribution substation.

3. To study of protective devices used in Vurulia 33/11kv distribution

Sub-station.

4. To develop suggestion for better protection.

Chapter-2

Brief description of substation and substation equipment

Substation is an important part of power system. The continuity of supply depends to a

considerable extent upon the successful operation of sub-station. It is therefore essential to

exercise utmost care while designing and building substation. The following parts are

important point which must be kept in view while laying out a substation.

2.1 WHAT IS SUBSTATION?

Substation: The assembly of apparatus used to change some characteristic (e.g. Voltage, a.c

to d.c, frequency, p.f. etc) of electric supply is called a substation.

Page 3: Study on protective devices of a distribution substation

Importance of substation:

1. It should be located at a proper site as far as possible it should be at the center of load.

2. It should provide safe and reliable arrangement for safety consideration must be

given to the maintenance abnormal occurrence such as possibility of explosion or fire etc.

For reliability, Consideration must be given for design and constriction. The provision of

suitable protection gear etc.

3. It should involve minimum capital cost.

Classification of substation:According to service requirement:

1. Transformer substation.

2. Switching substation.

3. Power factor correction substations.

4. Frequency changer substations.

5. Converting substation.

6. Industrial substation.

According to constructional feature the substation are classified as:

1. Indoor substation.

2. Out door substation.

3. Underground substation.

4. Pole mounted substation.

2.1.1 TRANSFORMER SUBSTATION

Those substations which change the voltage level of electric supply are called transformer

these substation receive power at some voltage and deliver it at some other voltage.

Obviously, transformer will be the main component in such substation. Most of the substation

in the power system is of type this.

Page 4: Study on protective devices of a distribution substation

2.1.2 POWER FACTOR CORRECTION SUBSTATION

Those substations which improve the power factor of the system are called power factor

correction substation. Such substation is generally located at the receiving end of

transmission the power factor improvement equipment.

2.1.3 SWITCHING SUBSTATION

These substations do not change the voltage level i.e. incoming and outgoing lines have the

same the voltage. However they simple perform the switching operations of power lines.

2.1.4 FREQUENCY CHANGER SUBSTATION

Those substations which change the frequency are known as change substation, such a

frequency change may be rewired for industrial utilization.

2.1.5 CONVERTING SUBSTATION

Those substation which change a.c power into d.c power are called converting substation.

These substations which supply power with suitable apparatus (e.g. Ignitron) to supply for

such purpose as traction, electroplating, electric welding.

2.1.6 INDUSTRIAL SUBSTATION

Those substations which supply power to individual industrial concern is known as industrial

substations.

2.1.7 INDOOR SUBSTATION

For voltage upto 11kv the equipment of the substation is installed indoor because of

economic consideration .However when the atmosphere is contain with impurities these

substation can be erected for voltage upto 66kv .

2.1.8 OUT DOOR SUBSTATION:

For voltage beyond 66kv ,equipment is invariably installed out door .It is because for such

voltage the clearance between conductor and the space required for switch , circuit breaker

and equipment becomes so great it is not economical to install the equipment indoor

Page 5: Study on protective devices of a distribution substation

2.1.9 UNDER GROUND SUBSTATION

In thickly populated areas, the space available for equipment and building is limited and cost

of land is high. Under such condition the substation is created underground. The reader may

further discussion on underground substation.

2.1.10 POLE–MOUNTED SUBSTATION:

This is an out door subs station with equipment installs over head on H-pole or 4-pole

structure. It is cheapest from of substation for over voltage not exceeding 11KV (or 33 KV in

the some case. Electric power is almost distributed in localities through such substation. For

complete discussion on pole mounted substation.

2.2 EQUIPMENTS OF DISTRIBUTION SUBSTATION

The following equipments are essential for a distribution sub-station:

1. Transformer

2. Power Transformer

3. Instrument Transformer

4. Current Transformer (C.T)

5. Voltage Transformer (P.T).

6. Isolator

7. Insulator

8. Line Support

9. Metering and Indicating Instrument

10. Bus bars

11. Power Factor Improvement Device.

12. Voltage Regulator

13. Earthing

2.2.1 WHAT IS TRANSFORMER?

Transformer: A transformer is an electrical device that transfer energy from one circuit to

another by magnetic coupling with no moving parts. A transformer comprises two or more

coupled windings, or a single tapped winding and, in most cases, a magnetic core to

concentrate magnetic flux. An alternating current in one winding creates a time varying

magnetic flux in the core, which induces a voltage in the other windings. Transformers are

Page 6: Study on protective devices of a distribution substation

used to convert between high and low voltages, to change impedance, and to provide

electrical isolation between circuits.

Figure 2.1 Transformer.

2.2.2 POWER TRANSFORMERS

A power transformer is used in a substation to step-up or step-down the voltage. Except at the

power station, all the subsequent substations use step-down transformers to gradually reduce

the voltage of electric supply and finally deliver it at utilization voltage. The modern practice

is to use 3-phase transformer in substation, although 3-phase bank of transformer can also be

used. The use of 3-phase transformer (instead of 3 single phase bank of transformers) permits

two advantages. Firstly, only one 3-phase load tap changing machine can be used. Secondly,

its installation much simpler than the three single phase transformers.

The power transformer is generally installed upon lengths of rails fixed on concrete slabs

having foundations 1 to 1.5m deep. For rating unto 10MVA, naturally cooled, oil immersed

transformers are used. For higher ratings, the transformers are generally air blast cooled.

Page 7: Study on protective devices of a distribution substation

Figure 2.2 Three phase power transformer.

2.2.3 INSTRUMENT TRANSFORMERS:

The lines in substations operate at high voltages and carry current of thousands of amperes.

The measuring instruments and protective devices are designed for low voltage (generally

110) and currents (about 5A). Therefore, they will not work satisfactorily if mounted directly

on the power lines. The function of these instrument transformers is to transfer voltages or

currents in the power lines to values which are convenient for the operation of measuring

instruments and relays.

There are two types of instruments.

1. Current Transformer (C.T).

2. Potential Transformer (P.T).

2.2.4 CURRENT TRANSFORMER (C.T)

A current transformer in essentially a step-up transformer which steps down to a known ratio.

The primary of this transformer consist of one or more turns of thick wire connected in series

with the line. The secondary line consist of a large number of turns of fine wire and provides

for the measuring instruments and relays a current which is a constant fraction of the current

in the line. Suppose a current transformer rated at 100/5A is connected in the line to measure

current. if the in the line is 100A, then current in the secondary will be 5A. Similarly, if

current in the line is 50A, then secondary of C.T. will have a current of 2.5A. Thus the C.T.

under consideration will step down the line current by a factor of 20.

2.2.5 VOLTAGE TRANSFORMER

It is essentially a step down the voltage to a known ratio. The primary of this transformer

consist of a large number of turns of fine wire connected across the line. The secondary

winding consist of a few turns and provides for measuring instrument and relay a voltage

which is a known fraction of the line voltage. Suppose a potential transformer rated at

66KV/110V is connected to a power line. If line voltage is 66KV, then voltage across the

secondary will be 110V.

Page 8: Study on protective devices of a distribution substation

2.2.6 ISOLATOR

Isolator is a disconnecting switch, which operate under no load condition. It has no any

specified current breaking capacity or current making capacity. Isolator is not even used for

breaking load current.

Figure 2.3: Isolator.

In some case isolators are used for breaking charging currents of x-mission lines, Isolators are

used in addition to circuit breakers while opening a circuit. The circuit breaker is opened first.

Then isolator While closing a circuit the isolator are necessary on the supply side of circuit

breakers in order to ensure isolation of the circuit breaker form live parts for the purposes of

maintenance. The operating mechanism is manual plus one of the following:

i. Electrical motor mechanism.

ii. Pneumatic mechanism.

2.2.7 INSULATOR

The insulator serves two purposes. They support the conductor and confined the current in

the conductors. The most commonly used material for the manufacture of

Insulator porcelain:

There are several kinds of insulator (e.g. pin type, suspension type, post insulator etc.) and

their use in the sub-station will depend upon the service requirement. For example, post

Page 9: Study on protective devices of a distribution substation

Insulator is used for bus bars. a post insulator consists of a porcelain body, cast iron cap and

flagged cast iron base. The hole in the cap is threaded so that bus bars can be directly bolted

to the cap.

Types of line insulation:

a. Pin type insulators. d. Shackle insulator.

b. Suspension type insulators. e. Stay insulator:

c. Strain insulators. f. Guy insulator

Pin type insulators:

Pin type insulators are used for transmission and distribution of electric power voltage up to

33KV.

.

Figure 2.4 Pin type insulators.

SUSPENSION TYPE INSULATORS

For high voltage i.e. beyond 33KV transmission line, Suspension type insulators used. This

type insulator consists of a number of porcelain discs connected in series by the metal links in

the form of strength. The conductor is suspended at the bottom end of this string while the

other end of the string is secured to the cross-arm of the tower. Each unit or discs is designed

for 11KV. The number of discs in series would obviously depend upon the working voltage.

Page 10: Study on protective devices of a distribution substation

Figure 2.5 Suspension type insulators.

STRAIN INSULATORS

When there is a dead end of the line or there is corner or sharp curve, the line is subjected to

greater tension. In order to relieve the line of excessive tension, strain insulators are used. For

low voltage lines shackle insulators are used as strain insulators. For high voltage

transmission lines, strain insulator consists of an assemble of suspension insulators.

The discs of strain insulators are used in vertical plane.

Figure 2.6: Strain insulators

GUY INSULATOR

In Distribution Substation guy insulators are used in low voltage distribution.

STAY INSULATOR

For low voltage lines, the stays are to be insulated from ground at a height not less than 13

meters from ground.

Page 11: Study on protective devices of a distribution substation

SHACKLE INSULATOR

Such insulators can be used either in a horizontal position or in a vertical position. They can

be directly fixed to the pole with a bolt or to the cross-arm. The conductor in the groove is

fixed with a soft binding wire.

Figure 2.7: shackle insulator

2.2.8 LINE SUPPORTS

The supporting structure for overhead line conductors are various types of poles and tower

called line supports.

Classification of line supports:

1) Wooden poles.

2) Steel tower.

3) Reinforce concrete (RCC) poles.

4) Steel tubular pole.

WOODEN POLES

Wooden poles used for low voltage distribution purpose. The wooden poles generally tend to

rote below the ground level, causing foundation failure.

STEEL TUBULAR POLE

It is used instead of wooden pole in urban area or town for increasing vision satisfactory. It is

also stronger than the wooden pole. Such poles are generally used for distribution purpose in

the cities. In BPDB steel tubular poles are used distribution system.

Page 12: Study on protective devices of a distribution substation

REINFORCE CONCRETE (RCC) POLES

RCC poles have greater mechanical strength, longer life and permit longer spans than steel

poles; they require little maintenance and have good insulating properties. In BPDB, RCC

poles are used in 11KV and 33KV transmission systems.

STEEL TOWER

For long distance transmission line at higher voltages, steel towers are invariably employed.

Steel tower have greater mechanical strength, longer life can withstand most severe climatic

conditions and permit the use of longer spans. In BPDB steel towers are used in single circuit

and double circuit transmission line, which has about 132KV and 230KV.

2.2.9 METERING AND INDICATING INSTRUMENT

There are several metering and indicating instrument (e.g. ammeters, volt meters energy

meters etc.) install in a substation to maintain watch over the circuit quantities. The

instrument transformer are invariably used with them for satisfactory operation

2.2.10 BUS-BAR:

When a number of generator or feeders operating at the same voltage have to be directly

connected electrically, bus-bar are used as the common electrical component.

Bus-bars are copper rods or thin walled tubes and operated at constant voltage. Thus

electrical bus bar is the collector of electrical energy from one location.

The selection of any bus bar system depends upon the following:

1. Amount of flexibility required in operation.

2. Immunity from total shut-down.

3. Initial cost of the installation.

4. Load handled by the bus bar.

Page 13: Study on protective devices of a distribution substation

CB CB

IsolatorIsolator

CB CB

Transformer

Transformer

Single bus

C

Classification of bus bar:

1. Single bus bar system.

2. Sectionalized bus bar.

3. Duplicate bus bar.

4. Ring bus bar.

5. One and half breaker arrangement.

Arrangement of different types of bus bar and is advantages and disadvantages:

SINGLE BUS BAR:

Figure 2.8: Single Bus bar.

Advantages:

1. It is cheapest arrangement as only one circuit breaker for each outgoing circuit breaker is

required.

2. The relaying on this system is simple. It should be noted that in this system the relaying

on each of the circuit and the bus bar is only required.

3. Due to the absence of the transfer breaker and disconnections, the operation has become

simple. For de-energizing a circuit only the associated circuit breaker is to be opened.

4. The maintenance cost, which is only dependent upon the number of breakers, will be

appreciably low for a single bus bar system.

Disadvantages:

1. The biggest disadvantages of this system is complete shut-down of the line in case of a

bus bar fault.

2. It is not possible to have any regular maintenance work on the energized bus bar.

Page 14: Study on protective devices of a distribution substation

3. When a breaker on any circuit of a single bus bar system fails, the will be complete shut-

down of the station , for however re-energizing first the effected circuit breaker is

disconnected from the bus bar with the help of isolator .

4. For maintaining or repairing a circuit breaker, the circuit is required to be disconnected

from the bus bar.

5. If any stage, a circuit is required to be added to the existing single bus bar arrangement,

SINGLE BUS BAR SYSTEM WITH SECTIONALISATION:

Figure 2.9: Single Bus bar system with Sectionalisation

Advantages:

1. In this system, only one additional breaker will be needed, thus its cost in comparison to

single bus bar system will not be much.

2. The operation of this system is as simple as that of single bus bar.

3. The maintenance cost of this system is comparable with the single bus bar.

4. For maintaining or repairs of the bus bar only one-half of the busber is required to be de-

energized and possibility of complete shut-down is thereby avoided.

5. It is possible to utilize the bus bar potential for the line relays.

Disadvantages:

1. On the bus bar fault, one half of the station will be switched off.

2. For regular maintenance also, one of the bus bar is required to be de-energized.

3. For maintaining or repairing a circuit breaker, the circuit is required to be isolates from the bus bar.

CB CB

CB

CB

CB CB CB

CB CB

Isolators

Page 15: Study on protective devices of a distribution substation

MAIN AND TRANSFER BUS ARRANGEMENT:

Figure 2.10 Double bus bar systems with one circuit breaker per circuit

Advantages:

1. It ensures supply in case of bus fault, in case of any fault in one of the bus, the circuit can

be transferred to the transfer bus.

2. The circuit breaker can be maintained with uninterrupted supply as the load can be

transferred to the other bus through the bus coupler circuit breaker.

3. It is easy to connect the circuit from either bus.

4. The maintenance cost of substation decreased.

5. The bus potential can be used for relays.

Disadvantages:

The bus is maintained or expanded by transferring all of the circuit to the transfer or auxiliary

bus depending upon the remote back up relays and breaker for eliminating faults of the

circuit’s. During this connection a line fault on any pf the circuits of the bus would shut down

the entire circuit.

RING BUSBAR:

Advantages:

1. It provides double feed to all the feeders at minimum cost.

2. At the time of failure of the circuit breaker of bus section only the effective circuit goes

out of service while the heal by circuits are not affected .

3. The arrangement is quite economical as the number of breakers used is nearly the same as

that of a single bus bar system.

Disadvantages:

1. The circuit has to be energized while the maintenance of the bus is carried out,

although it may be possible to arrange tripping of supply to the concerned feeder.

2. It is necessary to supply potential to relays separately to each of the circuit.

3. The operating of any section of the breaker may cause overloading of the circuits because

power can flow in one direction only.

5. It is difficult to add any new circuit to the ring

2.2.11 POWER FACTOR:

CB

CBB

CB CB CB

CB

Transformer

CB

Main bus bar

Transfer bus bar CB

Bus coupler

Page 16: Study on protective devices of a distribution substation

Power factor:

The cosine angle between voltage and current in an a c circuit is known as power factor.

Causes of low power factor:

Low power factor is undesirable for economic point of view. Normally, the power factor of

the whole load on the supply system in lower than 0.8 .The following are the causes of low

1. Most of the c motor is of induction type which have low lagging power factor.

This motor work at a power factor which is extremely small on light load (0.2 to

0.3) and rises to 0.8 or 0.9 at full load power factor:

2. Arc lamps, electric discharge lamp and industrial heating furnaces operate at low lagging

power factor.

3. The load on the power system is varying, being high during morning and evening and low

at other times. During low load period, supply voltage is increased which increases the

magnetization current. This results in the decreased power factor.

Methods of Power factor improvement:

Normally, the power factor of the whole load on a large generating station is in the region of

0.8 to 0.9. However, sometimes it is lower in such cases it is generally desirable to take

special steps to improve the power factor. This can be achieved by the following equipments

a. Static capacitor.

b. Synchronous condenser.

c. Phase advancers.

(A) STATIC CAPACITOR

The power factor can be improved by connecting capacitor in parallel with the equipment

operating at lagging power factor. The capacitor draws a leading current and partly or

completely neutralizes the lagging reactive component of load current. This raises the power

factor of the load. For three phase loads, the capacitor can be connected in delta or star as

shown in figure. Static capacitors are invariably used for power factor improvement in

factories.

Page 17: Study on protective devices of a distribution substation

Figure 2.11 Power factor improvements by Static capacitor

(B)SYNCHRONOUS CONDENSER:

A synchronous motor takes a leading current when over excited and therefore, behaves as a

capacitor. And over excited synchronous motor running on no load is called synchronous

condenser. When such a machine is connected in parallel with the supply, it takes a leading

current which partly neutralizes the lagging reactive component of the load. Thus the power

factor is improved.

(C) PHASE ADVANCERS:

Phase advancers are used to improve the power factor of induction motors. The low power

factor of an induction motor is due to the fact that its stator winding draws exciting current

which lags behind the supply voltage by 90°. If the exciting ampere turns can be provided

from some other a.c. source, then the stator winding will be relieved of exciting current and

the power factor of the motor can be improved. This job is accomplished by the phase

advancer which is simply an a.c. exciter. The phase advancer is mounted on the same shaped

as the main motor and is connected in the rotor circuit of the motor. It provides exciting

ampere turn to the rotor circuit at slip frequency. By providing more ampere turns then

required, the induction motor can be make to operate on leading power factor like an over

excited synchronous motor.

The electrical energy is almost exclusively generated, transmitted and distributed in the form

of alternating current. Therefore the question of power factor immediately comes into picture.

Most of the loads are inductive in nature and hence have low lagging power factor. The low

power factor is highly undesirable as it causes an increase in current, resulting in additional

losses of active power in all the elements of power system from power station generator

down to the utilization devices. In order to ensure most favorable conditions for a supply

system from engineering and economical standpoint, it is important to have power factor as

close to unity as possible.

2.2.12 VOLTAGE REGULATOR

Page 18: Study on protective devices of a distribution substation

A voltage regulator is an electrical regulator designed to automatically maintain a constant

voltage level. It may use an electromechanical mechanism, or passive or active electronic

components. Depending on the design, it may be used to regulate one or more AC or DC

voltages. With the exception of shunt regulators, all voltage

regulators operate by comparing the actual output voltage to some internal fixed reference

voltage. Any difference is amplified and used to control the regulation element. This forms a

negative feedback servo control loop. If the output voltage is too low, the regulation element

is commanded to produce a higher voltage. For some regulators if the output voltage is too

high, the regulation element is commanded to produce a lower voltage; however, many just

stop sourcing current and depend on the current draw of whatever it is driving to pull the

voltage back down. In this way, the output voltage is held roughly constant. The control loop

must be carefully designed to produce the desired tradeoff between stability and speed of

response.

Figure 2.12 Voltage regulator

2.2.13 EARTHING:

The word ‘earth’ or ‘ground’ means many different things to many electrical engineers. In an

electrical installation these words can be used to mean either the protective conductor in a

mains cord; the common bonding network of the building; the earth mass electrodes of the

lightning protection system, or the conductor of the mains supply that is connected to an earth

mass electrode at the distribution transformer.

Method of Earthing

Page 19: Study on protective devices of a distribution substation

The useful method of earthing is to join the exposed metal to earth via continuity conductors

connected to an electrode buried in the ground. Three elements required for earthing systems

are Earth conductor, Earthing lead and Earth electrode.

Earth conductor:

This is the part of earthing system, which joins or bonds together all the metal parts of an

installation. The earth conductor shall have a short tine capacity adequate for the fault current

which can floe in the grounding conductors for the operating time of the system.

The following table gives the minimum size of copper circuit conductor:

Minimum cross-sectional area of the copper Earth conductors in relation to the area of

associated phase conductors:

Table -2.1

Cross-sectional area of the phase

conductors (mm2)

Minimum cross-sectional area of the

corresponding Earth conductors (mm2)

Less than 16 Same as cross-sectional area of the phase

conductor but not less then 14 SWG.

16 or greater but Less than 35 16

35 or greater Half of the cross-sectional area of the phase

conductor.

Earthing lead:

Earthing leads are the link, which provides connection between the earth conductors and the

earth electrode.

Earth electrodes:

The Earth electrodes shall as far as practicable into permanently moist soil p-referable below

associated ground water table. The resistance of earth electrodes shall be not more then one

ohm. Some important thing for the Earth electrodes:

-Copper rod shall have a minimum diameter of 12.7,

GI pipes shall have a minimum diameter of 50mm Copper plates shall not be less then

600mm,6000 in size, with 6mm thickness.

Chapter-3

Page 20: Study on protective devices of a distribution substation

Brief description of protective devices of a distribution substation

LIST OF PROTECTIVE DEVICES

1) Fuse

2) High rupturing capacity (H.R.C.) cartridge fuse

3) Relay

4) Circuit Breaker

5) Lightning Arrester

6) Auto Reclosur

7) Isolator

8) Earthing

9) Current Limiting Reactor

10) Insulator

3.1 FUSE

A fuse is a short piece of metal, inserted in the circuit which is melt when excessive current

flow through it thus breaks the circuit. The fuse element generally made of materials having

melting point & conductivity. It is inserted in series with the circuit to be protected under

normal condition it carries normal current without over heating. But abnormal condition the

increasing current flow through the fuse, produce high temperature and then fuse element

melt & disconnecting the circuit.

Page 21: Study on protective devices of a distribution substation

Figure 3.1: Drop out fuse

Properties of a fuse element:

The function of a fuse is to carry the normal current without overheating but when the current

exceeds its normal value; it rapidly heats up to melting point and disconnects the circuit

protected by it.

The fuse element should have the following desirable characteristics:

1. High conductivity.

2. Low melting point.

3. Least deterioration due to oxidation.

4. Low coast e.g. lead, tin, copper.

3.1.1 IMPORTANT TERM OF FUSE ELEMENT

Current rating of fuse element:

It is the current which the fuse element can normally carry with over heating or melting. It is

depends upon the temperature rise of the contacts of the fuse holder, fuse material and the

surrounding of the fuse.

Cut off Current

Symmetrical Current

Fault Occurs

Total operating time

Zero Current

Arcing TimePre Arcing time time

Page 22: Study on protective devices of a distribution substation

Figure 3.2: Cut off characteristics of fuse

Fusing Current:

It is the minimum current at which the fuse element melt and thus disconnects the circuits

protect by it. It value will be more than the current rating of the fuse element. Mathematically

it represent by the following

I=kd3/2

Where,

I = fusing current

d = Diameter of the wire. And

K= Fuse constant. Its value depends upon the metal of which the fuse element is made. Sir

W.H. Preece found for the different materials the value of k given in the table

Table: 3.1

Sl. No. MaterialValue of K

d in cm d in mm

1 Copper 2530 80

2 Aluminum 1873 59

3 Tin 405.5 12.8

4 Lead 340.6 10.8

Fusing factor:

It is the ratio of minimum fusing current rating of fuse element.

Fusing factor =Minimum fusing current/current rating of fuse.

Its value always more than one. The fusing factor is two fore semi enclosed or rewirable fuse.

Pre –arching time:

It is time between the commencement of fault and the instant when cut-off occurs.

The pre-arching time is very low, typically 0.001 second.

Cutoff current :

It is the maximum value of fault current reached before the fuse melts.

The cut off value depends upon

a. Current rating of fuse

b. Value of prospective current

Page 23: Study on protective devices of a distribution substation

c. Asymmetry of short circuit current.

Prospective current:

It is the r.m.s. value of the first loop of the fault current obtained if the fuse is replaced by an

ordinary conductor of negligible resistance.

Arcing time:

This is the time between the end of pre-arching time and instant when the arc is extinguished.

Operating time:

It is the sum of pre-arcing and arcing time. It may be operating time of a fuse is generally quit

low (say 0.002sec) as compared to a circuit breaker (say 0.2sec.).

Breaking capacity:

It is the r.m.s. value of a.c. component of maximum prospective current that a fuse can deal

with a rated service voltage.

3.1.2 TYPE OF FUSE

Low voltage fuse

a. Semi-enclosed rewirable fuse

b. High rupturing capacity cartridge fuse

c. H.R.C. fuse with tripping device.

High voltage fuse

a. Cartridge type fuse.

b. Liquid type fuse.

c. Metal clod fuse.

3.1.3 DESCRIBE DIFFERENT TYPES OF FUSE

Low voltage fuses

a) Semi enclosed rewirable fuse

Semi enclosed rewirable fuse are made up to 500A rated current, but their breaking capacity

is low about 4000A on 400V service. The use of this type of fuse is domestic and lighting

loads and used where of fault current are to be interrupted. It consist of

1. A base and

2. A fuse carrier.

The base is porcelain and carries the fixed contacts to which the incoming and outgoing

phase wires are connected. The fuse carrier is also of porcelain hold the fuse element between

its terminals.

b) High rupturing capacity (H.R.C.) cartridge fuse

Page 24: Study on protective devices of a distribution substation

Figure 3.3: High rupturing capacity (HRC) Cartridge fuse

The H.R.C. fuse consist of a heat resisting ceramic body having metal end cap to which is

welded silver current-carrying element .The space within the body

Surrounding the element is completely packed with a filling powder. The filling material may

be chalk, plaster of pairs, quartz or marble dust and acts as an arc quenching and cooling

medium. Under normal condition, the fuse element is at a temperature below its melting

point, it carries normal current without overheating. When fault occurs the current increases

and the fuse element melts.

Advantage of High rupturing capacity (H.R.C.) cartridge fuse

i) They are capable of clearing high as well as low fault currents.

ii) They have high speed of operation.

iii) They provide reliable discrimination.

iv) They require no maintenance.

v) They provide reliable discrimination.

vi) They permit consistent performance.

vii) They do not deteriorate with age.

Disadvantage of High rupturing capacity (H.R.C.) cartridge fuse

i) Heat produced by the arc may affect the associated switches.

ii) They have to be replaced after each operation.

c) H.R.C. fuse with tripping device

Filling powder Fuse Element

Cartridge

Outer ElementFuse link contct

Brass end plate

Filling powder Fuse Element

Cartridge

Outer Element

Brass end plate

Page 25: Study on protective devices of a distribution substation

Plunger

Chemical Charge

Weak link

Tungsten Shunt

Silver fuse element

Some times H.R.C. fuse provided with a tripping device .When the fuse blow under fault

condition the tripping device cause the circuit breaker to operate. The body of the fuse is of

ceramic materials with a metallic cap rigidly fixed at each end. These are connected by a

number of silver fuse elements. At one end is a plunger, which under fault condition

electrically connected through a fusible link, chemical charge and a tungsten wire to the other

end of the cap as shown.

Figure 3.4: H.R.C Fuse

When a fault occurs the silver fuse elements are the first to be blown out and then current is

transferred to the tungsten wire. The weak link in series with the tungsten wire gets fused and

causes the chemical charges to be detonated. This forces the plunger outward to operate the

circuit breaker. Low voltage H. R.C. fuses may be built with a breaking capacity of 1600A to

3000A at 440v.

HIGH VOLTAGE FUSES

Some type of the high voltage fuses are:

a) Cartridge type

High voltage cartridge fuse are used up to 33Kv with breaking capacity of about 8700A at

that voltage. Rating of the order of 200A at 6.6kv and 11kv and 50A at 33kv are available. In

this device there are two fuses element in parallel; one of low resistance (silver wire) and

other of high resistance (tungsten wire). Under normal condition, the low resistance element

carries the normal current. And a fault condition the low resistance element blown out and the

high resistance element reduce the short circuit current and finally breaks the circuit.

Page 26: Study on protective devices of a distribution substation

b) Liquid type

The liquid type of fuse are used for circuit up to about 100A rated current on system up to

132kv and may have breaking capacities of the order of 6100A. it consist of glass tube filled

with carbon tetrachloride solution and sealed at both with brass caps .The fuse wire is sealed

at one end of the tube and the other end of the wire is held by a strong phosphor bronze spiral

spring fixed at the other end of the glass tube. When the current exceeds the limit the fuse

wire is blown out.

3.1.4 ADVANTAGES & DISADVANTAGES OF LOW VOLTAGE FUSE

Advantage:

1. Low cost.

2. They require no maintenance.

3. They have high speed.

4. They are cheaper then other circuit interrupting devices of equal breaking

capacity.

Disadvantage:

1. This type of fuse has a low –breaking Capacity and hence cannot be used in

circuit of fault level.

2. There is a possibility of renewal by the fuse wire of wrong size.

3. They have to be replaced after each operation.

4. Heat produced by arc may affect the associated switches.

5. The fuse operates of a lower current than originally rated.

3.2 RELAY

Page 27: Study on protective devices of a distribution substation

In a power system consisting of generator, transformer, transmission and distribution circuits.

It is inevitable that sooner or later some failure will be occurring some where in the system.

When a failure occurs on any part of the system it must be quickly detected and disconnected

from the system. There are two principle reasons for it firstly if the fault is not clear quickly.

It may cause unnecessary interruption of service to the customers. Secondly rapid

disconnection of fault apparatus limits the amount of damage to it and prevents the effects of

fault form spreading in to the system. The detection of fault and disconnection of a faulty

section or apparatus can by relays in conjunction with C.B.

Figure 3.5: Protective Relay

A protective relay is a device that detects the fault and initiatives the operation of the circuit

breaker to isolate the defective element from the rest of the system. The protective relay

should have the following quantities

I) Selectivity ii) Speed iii) Sensitivity

iv) Reliability v) Simplicity VI) Economy

Selectivity:

It is the ability of the protective system to select correctly that part of the system in trouble

and disconnect the faulty part without disturbing the rest of the system.

Sensitivity:

It is the ability of the relay system to operate with low value of actuating quantity.

Sensitivity of relay is a function of the volt –amperes input to the coil of the relay necessary

to cause its operation. The smaller value of the volt –amperes input is the more sensitive

relay.

Page 28: Study on protective devices of a distribution substation

Reliability:

It is the ability of the relay system to operate under the pre-determine conditions. Without

reliability the protection would be simple rendered largely ineffective and could even become

a liability.

Simplicity:

The relay system should be simple so that it can be easily maintained. The simpler the

protection system, the greater will be its reliability.

Economy. The most important factor in the choice of a particular protection scheme is the

economic aspect.

Speed:

The high speed relay system decreases the possibility of development of one type of fault into

the other more sever type.

3.2.1 BASIC PRINCIPLE OF RELAY

Figure 3.6: construction of relay

This diagram shown one phase of 3-phase system for simplicity. The relay circuit

connections can be divided into three parts.

1. First part is the primary wiring of a current transformer. Which is connected in

series with the line to be protected.

2. Second part consists of secondary winding of C.T. and the relay operating coil.

3. The third part is tripping circuit which may be either ac or dc.

C.B.

C.T. Relay

trip coil

Bus bar

Fault

Page 29: Study on protective devices of a distribution substation

When a short circuit occurs of on the transmission line, the current flowing in the line

increasing to an enormous value this results in a heavy current flow through the relay coil

causing the relay to operate by closing its contacts. This in turn closes the trip circuit of the

breaker, making the circuit breaker open and isolating the faulty section from the rest of the

system.

3.2.2 IMPORTANT TERMS OF THE RELAY

Pick up current:

It is the minimum current in the relay coil at which the starts to operate.

Pick up current =Rated secondary current of CT ×Current setting

Current setting:

It is often desirable to adjust the pick – up current to any required value. This is known as

current setting and is usually achieved by the use of taping on the relay operating coil.

Plug – setting multiplier (P.S.M) :

Fault current in relay coil

Pick –up current

Fault current in relay coil

Rated secondary current CT ×Current setting

Time –setting multiplier:

A relay is generally provided with control to adjust the time of operation. This adjustment is

known as time – setting multiplier.

3.2.3 TYPES OF RELAY

According to the measurement the relay may be classified as follows

1. Over current relay 2. Over voltage relay.

3. Under current relay 4. Under voltage relay.

According to the structure the relay can be classified as follows:

1. Induction type relay

2. Attracted armature type relay

3. Balance beam relay

4. Salient and plunger type relay [Impedance].

P.S.M =

=

Page 30: Study on protective devices of a distribution substation

5. Gas operated relay [Buchholz] .

6. Induction disk relay [Electromagnetic]

7. Rectifiers relay

8. Moving coil and moving iron relay [Electromagnetic].

9. Electro dynamic relay.

10. Static electronic circuit measurement relay.

11. Microprocessor Based digital static relay

12. Directional and reverse power relay.

Functional relay types:

1. Induction type reverse power relay.

2. Induction type over current relay.

3. Differential relay

4. Distance relay

5. Tran slay scheme

3.2.4 DESCRIPTION OF DIFFERENT TYPES OF RELAY

Attracted armature type relay:

The schematic arrangement of an attracted armature type relay. It consists of a laminated

electromagnetic M, cussing a coil C and a pivoted laminated armature . The armature is

balanced by a counter weight and consist a pair of spring contract fig at the end. It is basically

a single actuating quantity relay.

Fig 3.7: Attracted armature type relay

Under normal operating condition the current through the relay coil C is such that counter

weight holds the armature in the position shown. However when a short circuit occur, the

current through the relay coil increases sufficiently and the relay armature is attracted

Page 31: Study on protective devices of a distribution substation

upward. The contacted on the relay armature bridge a pair of stationary contact attached to

the relay frame. This complete the trip circuit which results in the opening of the circuit

breaker and therefore in the disconnection of the faulty circuit.

Distance or impedance Relay:

The operation of this relays discussed so far dependent upon the magnitude of current of

power in the protective circuit. However there is another group of relays in which the

operation is govern by the ratio of applied voltage to current in the protective circuit such

relays are called distance relays. The relay will operate when the ratio V/I are less than a

predetermined value.

Fig 3.8: Distance or Impedance RelayTypes of distance relay:

1. Definite distance relay which operates instantaneously for fault up to a predetermined

distance from the relay.

2. Time distance relay in which the time of operation is proportional to the distance of fault

from the relay point. A fault nearer to the distance relays are produced by modifying either

than a fault farther away from the relay.

Definite distance relay:

Figure shows the schematic arrangement of a definite distance relay. The relay is designed

that the torques produced by the electromagnets are in the opposite direction. Under normal

operating conditions, the pull due to the voltage element is greater than of the current

element. Therefore, the relay contacts remain open. However, when a fault occurs in the

protected zone, the applied voltage to the relay decreases whereas the current increases. The

ratio of voltage to current falls below the predetermined value. Therefore, the pull of the

current element will exceed that due to

Page 32: Study on protective devices of a distribution substation

Figure 3.9: Definite distance type impedance relay

The voltage element and this causes the beam to till in a direction to close the trip contacts.

The pull of the current element is proportional to I2 and that of voltage element to V2

consequently the relay will operate when,

Induction disc relay:

Electromagnetic induction relays operate on the principle of induction motor and are widely

used for protecting relaying purpose involving a.c. quantities. They are not used in d.c.

quantities owing to the principle of operation. An induction relay essentially consists of

pivoted aluminum is placed in two alternating magnetic fields of the same frequency but

displaced in time and space. The torque is produced in the

Fig 3.10: Shaded pole construction

Page 33: Study on protective devices of a distribution substation

Disc by the interaction one of the magnetic fields with the currents inducted in the disc by the

other.

Induction type relay:

This relay has two four or more electromagnetic in stator .This is energized by the relay coils.

The rotor consists of a hollow metallic cylindrical cup. The rotor is free to rotate in the gap

between the stationary iron and the electromagnets. In this type of relay, the eddy currents are

produced in the metallic cup. This current interacts with the flux produced by the other

electromagnetic and torque is produced. The theory is similar to that of the disc type

induction relay.

Balance beam relay:

The schematic arrangement of a balance relay. It consists of an iron armature fastened to a

balance beam. Under normal operating conditions, the current through the relay coil in such

that the beam is healed in the horizontal position by the spring. When the fault condition the

current through the relay coil becomes greater than the pickup value and the beam is attracted

to close the trip circuit. This causes the opening of the circuit breaker.

Fig 3.11: Balance beam relay

Page 34: Study on protective devices of a distribution substation

Gas operated (buchholz) relay:

Figure 3.12: Gas operated (buchholz) relay

Buchholz relay is a gas – actuated relay installed in oil immersed transformer for protection

against all kinds of fault .It used to give an alarm in case incipient. When fault is disconnect

the transformer from this supply in this system .It is usually installed in the pipe connecting

the conservator to the main tank. It is use for excess of 750KVA.

Rectifier relay: The moving coil relays are used with rectifier relays in such relays the quantities to be

measured are rectified and then feed to the moving coil unit. The rectifier relay is not possible

to against the high measuring speed but faster then the mechanical relays. Since moving coil

has a very small mass.

Page 35: Study on protective devices of a distribution substation

Figure 3.13: Rectifier relay for one and two quantity

Permanent magnet moving coil type relay:

In this type relay the coil is free to rotate in the magnetic field of a permanent. The actuating

current flows through the coil. The torque is produced by the interaction between the field of

the permanent and field of the coil.

Directional over current relay:

The Directional power relay is unsuitable for use as a directional protective relay under short

circuit conditions. When a short circuit occurs the system voltage for to a low value and there

may be insufficient torque developed in the relay to cause it

Operation. This difficulty is overcome in the directional over current relay, which is designed

to be almost independent of system voltage and power factor.

Page 36: Study on protective devices of a distribution substation

Figure 3.14: Induction directional over current relay

Under normal operating condition, power flows in the normal direction in the circuit

protected by the relay. Therefore, directional power relay does not operate, thereby keeping

the over current element unenergized. However, when a short circuit occurs, thereby keeping

the over current element rotates to bridge the reverse direction. Should this element rotate and

the moving contact attached to it closes the trip circuit. This operates the circuit breaker

which isolates the faulty section.

Static Relay

Figure 3.15: Block diagram of a static relay-simplified

Static relay is an electrical relay in which the response is developed by

electronic/magnetic/optical or other components, without mechanical motion of components.

However additional electromechanical relay units may be used in output

Page 37: Study on protective devices of a distribution substation

Stage as auxiliary relays. A protective system is formed by static relays and

electromechanical auxiliary relays. Figure illustrates the essential components in a static

relays. The output of CT’s of PT’s or transducers is rectified in rectified in rectifier. The

rectified output is fed to the measuring unit. the measuring unit compromises comparators,

level detectors, filters logic circuits. The output is initiated

When input reaches the threshold value. The output of measuring unit is amplified by an

Amplifier.

3.3 CIRCUIT BREAKER

During the operation of power system, it is often desirable and necessary to switch on or off

the various circuits under both normal and abnormal conditions. In earlier days this function

used to be performed by a switch and a fuse placed in series with the circuit. However such a

means of control presents two disadvantages. Firstly when a fuse blows out, it takes quite

some time to replace it and restore supply to the customers. Secondly a fuse cannot

successfully interrupt heavily fault currents that result from faults on modern high voltage

and large capacity circuits. With this disadvantage of power system the lines and other

equipment operate at very high voltage and carry large currents. The arrangement of switches

along with fuse cannot serve the desired function of switchgears in such high –capacity

circuits. This necessitates employing a more dependable means of control such as is obtained

by the use of circuit breakers.

Figure 3.16: Circuit breaker

Page 38: Study on protective devices of a distribution substation

A circuit breaker is a piece of equipment, which can

1. Make or break a circuit either manually or by remote control under normal

condition.

2. Brake a circuit automatically under fault condition.

3. Make a circuit either manually or remote control under fault conditions.

Circuit breaker are mechanically designed to close or open contact members, thus closing or

opening an electrical circuit under normal and abnormal condition.

3.3.1 BASIC PRINCIPLES OF OPERATION OF CIRCUIT BREAKER

Figure 3.17: Basic operations of circuit breaker

The figure represents an elementary schematic diagram of CB. It consists of fixed contact and

a sliding contact in to which mores a moving contact. The end of the moving contact is

attached to a handle which can be manually or it can be operate automatically with the help

of a mechanism which has trip coil energized by the secondary of the current Transformer

generally called current transformer. The power supply is brought to the terminals the e.m.f

induced of the C.B. Under normal working condition the e.m.f induced in the secondary

winding of CT is not sufficient to energize the trip coil fully for the operation. But under fault

condition the abnormally high value of current on the primary circuit of CT induced a

sufficient e.m.f in the secondary circuit to energized the trip coil so as to recluse the handle

mechanism which open the C.B.

3.3.2 REQUIREMENTS OF A CIRCUIT BREAKER

C.T. Trip coil

Handle automatic mechanism for opening and closing the C.B.

OpenClose

Fixed contact

Moving

Page 39: Study on protective devices of a distribution substation

The power dealt by the circuit breaker is quite rage and sere as an important link between the

consumers and supplies. The following are the necessary requirements for a circuit breaker

1. It must be safely interrupt the normal working current as well as the short circuit

current.

2. After occurrence of fault the switchgear must isolate the faulty circuit as quickly as

possible i.e. keeping the daily to minimum.

3. It must have been sense of discrimination. i.e. in systems where an alternate

arrangements have been made for continuity of supply it should isolate the only faulty

circuit without effecting the healthy one.

4. It should not operate when the over current flows under healthy condition.

3.3.3 SOME IMPORTANT TERMS OF CIRCUIT BREAKER

Arc voltage:

It is the voltage that papers across the contacts of circuit breaker during the arcing period.

Restriking voltage :

It is the transient voltage that appears across the contact of on near current zero during arcing

period.

Opening time:

The time internal lapsed from the energization of the trip coil to the instant of contact

separating is called opening time; it depends on the magnitude of fault current.

Arching time:

Page 40: Study on protective devices of a distribution substation

The time from separation of contact to the extinction of the are is called the arching time; it

depends on the magnitude of fault current as well as the voltage available to maintain the arc

and upon the mechanism used for extinguishing the arc.

Total Break time:

The sum of the opening time and arching time called the total break time.

3.3.4 RATING OF C.B.

A circuit breaker may be called upon to operation under all conditions. However major duties

are imposed on the circuit breaker when there is a fault on the system in which is connected

under fault condition a circuit breaker is required to perform the following three duties.

1. It must be capable of opening the faulty circuit and breaking the fault condition.

2. It must be capable of carrying fault current for a short time while another circuit

breaker is clearing the fault.

3. It must be capable of being closed on to a fault.

According to the duties mentioned above, the circuit breakers have three ratings.

1. Breaking capacity.

2. Making capacity

3. Short –time rating.

Breaking capacity:

It is the current (r.m.s.) that a circuit breaker is capable of braking at given recovery voltage

and under specified conditions. Breaking capacity is expressed as the breaking current.

Which are determined from following method.

Let at the instant of separation of contacts.

A.C. component of short circuit current wave = x

D.C. component of short circuit current wave = y

Now symmetrical breaking current = r.m.s. value of a.c. component of short circuit current

= x/2

A symmetrical breaking current = r.m.s. value of the total current (A.C & D.C).

=

Page 41: Study on protective devices of a distribution substation

The breaking capacity is generally expressed in terms of MVA and is equal to the product of

rated breaking current in kA amp, rated voltage in and a factors which depends upon the

number of phase (1-for single phase and √ 3 for three phase)

Hence the breaking capacity for a 3 phase CB whether

Symmetrical or Asymmetrical =

Where I am the rated breaking current in amperes and V is the rated service line voltage in

volts.

Making capacity:

The peak value of current during the first cycle of current wave after the closure of circuit

breaker is known as making capacity.

In other words the making current is equal to the maximum value of asymmetrical current.

By √2 to convert this value we must multiplication factor becomes

√2 ×1.8=2.55

Making capacity =2.55×Symmetrical breaking capacity.

Short –time ratting:

It is the period for which the circuit breaker is able to carry fault current while remaining

closed with the CB in its normal condition for three seconds. If the ratio of symmetrical

breaking current to normal current is less then 40 for 1second otherwise.

Normal current rating:

It is the r.m.s. value of current, which the circuit breaker is capable of carrying continuously

of its rated frequency under specified condition .The only limitation in this case is the

temperature rise of current carrying parts.

3.3.5 TYPES OF C.B.

The Circuit breakers can classify that’s follows.

1. Interrupting Medium 2. Operation

3. Service 4. Action

5. Contacts 6. Tank construction

7. Method of Control 8. Mountings.

Interrupting Medium:

1. Air circuit breaker 2. Oil circuit breaker

Page 42: Study on protective devices of a distribution substation

3. Air blast circuit breaker 4. Magnetic circuit breaker

Service:

a. Indoor circuit breaker.

b. Outdoor circuit breaker.

Contact

1. Wedge circuit breaker 2. Butt circuit breaker

3. Bayonet circuit breaker 4. Laminated circuit breaker

5. Deon grid circuit breaker

Operation

1. Gravity close circuit breaker

2. Gravity control circuit breaker

3. Horizontal break circuit breaker

Action

1. Non automatic circuit breaker 2. Automatic circuit breaker

Method of control

1. Remote control 4. Electrical

2. Pneumatic circuit breaker a. Motor circuit breaker

3. Manual circuit breaker b. Solenoid circuit breaker

Mountings

a. panel mounting circuit breaker b. Remote for panel circuit breaker

c. Rear of panel circuit breaker.

3.3.6. DISCRIPTION OF DIFFERENT TYPES CIRCUIT BREAKER AND THERE RATING:

Air –break Circuit Breaker:

Air break circuit breaker is used dc circuit’s ac circuit up to 12 KV.

Air breaker circuit breaker are generally indoors type and installed on vertical panels or

indoor draw-out type switchgear.

Ac air breaker Circuit Breaker are widely used indoor medium voltage and low voltage

switchgear.

Page 43: Study on protective devices of a distribution substation

Typical reference values of rating of air –breaker Circuit Breaker are

460V 400A-3500A 40KA-75KA

3.3KV 400A-3500A 13.1KA-31.5KA

6.6KV 400A-2400A 13.1KA-20KA

Typical rating of dc Air –break C.B.

1500V, 10KA continuous, 80KA breaking.

Typical rating of low voltage air –breaker ac circuit breakers

Normal current rating 640A r.m.s.

Rated voltage 460V r.m.s.

Breaking current 75A r.m.s.

p.f.=0.15

Miniature C.B.

These are used extensively in low voltage domestic, commercial and industrial applications.

They replace conventional fuse and combine the features of a good HRC fuse and a good

switch for normal operation it is used on a switch during over load or faults it automatically

trip off.

Typical rating of MCB

Current rating:

5,10,15,20,30,40,50,60Amp also 0.5,1,2,2.5,3,3.5,6,7,7.5,8,10,12,25,35,45,55Amp

Voltage rating

240V/415V AC, 50V/11V DC

Rupturing capacity

AC : 3Ka at 415V

DC : 3Ka at 50V (non inductive)

1KA at 110 V (non inductive)

Air blast circuit breaker:

Air blast CB are used in high voltage from 11KV for to1100KV various application.

They offer several advantages such as faster operation, suitability for repeated operation,

auto-reclosure, unit type multi –break construction, modest maintenance, etc. air blast circuit

breakers are especially suitable for railways and are furnaces,

Page 44: Study on protective devices of a distribution substation

Where the breaker operates repeatedly . Air blast circuit breakers are used for interconnected

lines and important lines where rapid operation is desired.

In air blast circuit- breaker high pressure air is forced on the arc through a nozzle at the

instant of contact separation. The ionized medium between the contacts is blown away by the

blast of the air. After the arc extinction the chamber is filled with high pressure air, which

prevents restrike.

Page 45: Study on protective devices of a distribution substation

Figure3.18: Flow of air around contacts, in air-blast circuit breakers

Typical rating of Air blast circuit breaker is:

Table-3.2

Voltage Current Frequency12KV 40KA22KV 40KA145KV 40KA 3 cycle245KV 40KA, 50KA 2.5 cycle420KV 40KA, 50KA, 63.5KA 2 cycle

Plain break oil circuit breaker:

A Plan break oil circuit breaker involves simple process of separating contacts under the

whole of the oil in the tank. There is no special system for arc control other than the

increasing length cause by the separation of contact the arc extinction occurs when a certain

critical gap between the contacts is reached.

Page 46: Study on protective devices of a distribution substation

Fig 3.19: Plain break oil circuit breaker

Sulphur Hexafluoride (SF6 ) C.B :

Sulphur Hexafluoride CB is used in high voltage up to 245 KV.Figure shows the parts of a

typical SF6 circuit breaker. In the closed position of the breaker , the contact remain

surrounded by SF6 gas at a pressure of about 2.8 kg/cm2.When the breaker operates, the

moving contact is pulled apart and an arc is struck between the contacts. The movement of

the moving contact is synchronized with the opening of a valve which permits SF6 gas at

14kg/cm2 pressure from the reservoir to the arc interruption chamber. The high pressure flow

of SF6 rapidly absorbs the free electrons in the arc path to form immobile negative as charge

carriers. The result is that the medium between the contacts quickly builds up high dielectric

Strength and causes the extinction of the arc .After the breaker operation, the valve is closed

by the action of a set of springs.

Page 47: Study on protective devices of a distribution substation

Fig 3.20: Sulphur Hexafluoride (SF6) C.B.

Minimum oil C.B.:

In minimum oil CB, dielectric oil is used as an arc quenching medium and dielectric medium.

For voltage up to 36kv, minimum OCB are generally enclosed in draw out type Mattel clad

switch. For 36kv, 7.2kv, 12kv36kv,72.5kv,145kv,245kv,420kv.

Page 48: Study on protective devices of a distribution substation

Figure 3.21: Minimum oil Circuit Breaker

Minimum oil circuit breakers have the following demerits:

1. Short contact life.

2. Larger arcing time for small currents.

3. Frequent arching time for small currents..

4. Possibility of Explosion

5. Prone to restricts

Vacuum circuit breaker:

Vacuum CB are used in medium voltage. Voltage 11KV to 36KV

The range of vacuum switching device includes vacuum interrupted 3.6/7.2/12/36KV for

indoor metal clad. Vacuum conductors rated 1.2/3.6/7.2KV for outdoor porcelain housed.

Page 49: Study on protective devices of a distribution substation

Fig shows the parts of a typical vacuum circuit breaker. It consists of fixed contact, moving

contact and arc shield mounted inside a vacuum chamber. When the breaker operates, the

moving contacts separates from the fixed contacts and the arc is contact

The production of arc is due to the ionization of metal ions and depends very much upon the

material of contacts. The arc is quickly extinguished because the metallic vapour, electrons

and ions produced during arc are diffused in a short time and seized by the surfaces of

moving and fixed members and shields.

3.3.7 SELECTION OF CIRCUIT BREAKER

Two of the circuit breaker rating which require the computation of SC circuit are rated

momentary current and rated symmetrical interrupting current. Symmetrical SC current is

obtained by using sub transient reactance for synchronous machines. Momentary

Current (r.m.s.) is then calculated by a multiplying the symmetrical momentary current by a

factor of 1.6 to account for the present of dc offset current. Symmetrical to be interrupted is

computed by using sub transient reactance for synchronous generators and transient reactance

for synchronous motor –induction motors are neglected. The dc off-set value to be added to

obtain the current to be interrupted is accounted for multiplying the symmetrical SC current

by factors as tabulated below:

Table -3.3

Circuit Breaker Speed Multiplying factor

8 Cycles or slower 1.0

Figure 3.22: Cut away view of vacuum circuit breaker

Page 50: Study on protective devices of a distribution substation

5 Cycles 1.1

3 Cycles 1.2

2 Cycles 1.4

If SC MVA (explained below) is more than 500, the above multiplying factors are increased

by 0.1 each. The multiplying factor for air breakers rated 600 lower is 1.25. The current that a

circuit breaker can proper at to the operating voltage over a certain range. i.e.

Amperes at operating voltage =Ampere at rated voltage ×

Of course operating voltage cannot the maximum design value. Also no matter low the

voltage is the rated interrupting current. Over this range of voltage .the product of operating

voltage and interrupting current is constant. It is therefore logical as well as convenient to

express the circuit breaker rating in terms of....MVA that can be interrupted defined as

Rated interrupted MVA(3-phase)capacity = √ 3 × Vline(rated) × Iline(rated)

Where V (line is in KV and I (line) is in KA. Thus instead of computing the SC current to be

interrupted. We compute three phase SC MVA to be interrupted

Where, SC MVA (3 phase) = √ 3× per unit values on a three –phase basis.

SC MVA (3phase) =V per fault x Isc x (MVA) base

Obviously, rated MVA interrupting capacity of a circuit breaker is to be more than (or equal)

the SC MVA required to be interrupted for the selection of circuit breaker for a particular

location. We must find the maximum possible sc MA to be interrupted with respect to type

and location of fault through rate is generally the one exception is an L-G (line to ground)

fault close to synchronous generator. In a simple the fault location which gives the highest sc

MVA may be obvious but in larger system various problem location bust be tried to obtain

the highest sc MVA requiring.

3.4 LIGHTNING ARRESTER:

Rated Voltage Operating Voltage

Page 51: Study on protective devices of a distribution substation

In order to protect the over voltage are surge voltage a protecting device is used which is

called a lighting arrester. It is a most important protecting device of power system. Lighting

arrester consists by a spark gape in series with non-linear resistor. Its upper terminal connects

the power circuit and lower terminal are grounded.

Types of lightning arrester

1. Road gap lightning arrester. 5. Valve type lightning arrester.

2. Horn gap lightning arrester. 6. Oxide film lightning arrester.

3. Multi gap lightning arrester. 7. Electrolyte lightning arrester.

4. Expulsion type lightning arrester. 8. Burke lightning arrester.

Describe different type of lightning arrester:

3.4.1 ROD GAP LIGHTNING ARRESTER

This is the simplest form of surge divider consisting of two of road with ends facing- other.

One connected to line and the second connected to earth. These are usually connected across

the bushing of various equipment .A typical rod gaps across a transformer bushing.

To avoid cascading across the insulator surface of very step fronted waves, the rod gap

should be set to break down of about 20% below the impulse spark over voltage of the

insulation of the pint where it is insulated.

To protect the insulator from the arc, the distance between the rod gap and insulator should

be more than one third of rod gap length.

The spark over take place at very high voltage due to lightning surges but it cannot flash over

at usual power supply voltage .The difficulty with the gap arrester is that once the spark

having taken place may continue for some time even at low supply voltage .To avoid if a

current resistance is used in series with the or which limit the current to such an extent that it

is sufficient to maintain the arc. Another difficulty is that the rod gaps are liable to be

damaged due to high temperature of the arc, which may cause the rods to melt .The

performance of rod gap is badly affected due to climate and also the polarity of the surge.

Page 52: Study on protective devices of a distribution substation

Figure 3.23: Rod gap lightning arrester

3.4.2 HORN GAP LIGHTNING ARRESTER

This was one of the earliest type of surge diverts to be developed and is still used to certain a

low voltage lines an low voltage lines an account of its great simplicity. It consists two horn

shaped pieces of metal separated by small air gap, and connected in shunt between each

conductor and earth. The distance between two electrodes is such that the normal voltage

between the line and earth is insufficient to jump the gap, but abnormally high voltage will

break down the gap and so find a path to earth. The arc thus formed by reason of heated air

an electromagnetic action will rise up arc. Usually a choking coil consisting of several turns

of bare copper wire is connected in the line

Figure 3.24: Horn gap Lightning arrester

Page 53: Study on protective devices of a distribution substation

Between the arrester and the apparatus to be protect to reflect travailing waves back an to the

horns.

3.4.3 EXPULSION TYPE LIGHTNING ARRESTER

It consists of

1. A tube made of fiber, which is a very effective gas evolving material.

2. An isolating spark gap and

3. An interrupting spark gap inside the fiber tube.

During operation arc due to the impulse spark over inside fiber tube case some fibrous

materials of the tube volatized in the form of gas, which is expelled through a event form the

bottom of the tube, thus extinguishing the arc just link in the circuit breakers. Since the gases

generated have to be expelled. One of the electrodes is hollow and the diverted is open of its

lower end.

Figure 3.25: Expulsion type lightning arrester

3.4.4 THYRITE LIGHTNING ARRESTER

Thyrite arrester is most common and is mostly used for the protection against high dangerous

voltages. If operates on the fact that thirties ,a dense inorganic compound of ceramic nature

has high resistance decreasing rapidly from high value to low value for current of low value

to the of high value. The current increase 12.6 times a doubling the voltage. It consists of

discs of 15 cm diameter and 19mm thickness both the sides are metal sprayed so as to give

Page 54: Study on protective devices of a distribution substation

electrical contact between consecutive discs. These discs assembled inside the gal-aged

porcelain container.

When lighting takes places, voltage is raised and break down of the gap occurs .The

resistance falls to very low value and wave is discharged to earth, after the surge has passed

the thirties again comes back to its original position.

Figure 3.26: Thyrite lightning arrester

3.4.5 OXIDE FILM LIGHTNING ARRESTER

It operates and the fact certain chemicals have the property to change rapidly from a good

conductor to almost perfect insulator when slightly heated. For example lead per oxide that

has a specific resistance of 25 ohm per mm cub of normal temperature, become red lead of

about 1500c and has specific resistance of the order of 600 mega- ohm per mm cub.

It consists of 2.4 mm plants of lead per oxide with a thin porous coating of lethargies

arranged in column and enclosed in tube of diameter of about 6 cm and height of 5 cm per kv

of rating. Out of the two leads of the arrester upper is connected to the line, where the lower

is connected not the earth. The tube contains a series spark gap. When an over –voltage

occurs an arc passed through the series spark gap and additional voltage is applied to the

pellet column and a discharge takes places.

Page 55: Study on protective devices of a distribution substation

3.4.6 ELECTROLYTE ARRESTER

It operate an the fact that a thin film of aluminum hydroxide deposit on the aluminum plates

immersed in electrolyte acts as a high resistance to low voltage but a low resistance to voltage

above a critical value. Voltage more than 400V a puncture and flow of current earth.

3.4.7 VALUE TYPE LIGHTNING ARRESTER

This type of lightning arrester is very cheap effective and robots an its therefore extensively

used now a day for high voltage systems. This consists of a number of flat discs of a porous

material stacked are above the other and separated by thin mica ring. As the materials of the

discs is not homogeneous and conducting materials has also been added, therefore the glow

discharge occurs between the discs of the of over voltage. This discs are arranged in such a

way that normal voltage may not caused the discharge to occur. The mica ring provides

insulation during normal operation.

3.4.8 MULTIGAP ARRESTER

Multigap Arrester consist of a series of metallic (generally alloy of zinc) a cylinders insulated

from one another and separated by small intervals of air gaps the first cylinder in the series is

connected to the line and the other to the ground through a series resistance. The series

resistance limits the power arc.

Figure 3.27: Multigap Lightning arrester

Under normal condition the point be is at earth potential and the normal supply voltage is

unable to break down the series gap on the occurrence of an over voltage the break down of

series A to B occurs. The heavy current after breakdown will choose the state through path to

Page 56: Study on protective devices of a distribution substation

Fault occurs

Breaker Recloses

Trips open

If fault persist If fault is cleared

Remain Closed

earth via the shunted gap B and C. Instead of the alternative path through the shunt resistance

when the surge is over the arc B to C go out and any power current flowing the surge is

limited to resistance which are now in series.

3.5 AUTO RECLOSUR

Many fault an overhead transmission lines are transient in nature. Statically evidence shows

that about 90% of faults an overhead transmission lines are caused by lightning or by passing

of object near or through lines. These condition results in arcing faults and the arc in the fault

can be extinguished by the simultaneous opening of circuit breakers on both ends of the lines

or a one end of the line. Since the cause of transient faults mentioned above disappears after a

short time the circuit breaker can be recluse as soon as the arc in fault has been extinguished.

The auto reclosure trips open three times when circuit has any fault.

Operating sequence of auto Reclosure

Breaker Trips

Fig 3.28: Sequence of auto reclosure 3.6 ISOLATOR

Isolator is a disconnecting switch which operates under no load conditions; it has no specified

current breaking capacity. Isolator is not even used for breaking current. In some case

isolator are used for breaking charging current of transmission lines. Isolator is used in

addition to circuit breaker is opened first then isolator. While closing a circuit the isolator is

Page 57: Study on protective devices of a distribution substation

necessary on the supply side of circuit breakers in order to ensure isolation of the circuit

breaker from live parts of the purpose of maintenance .The operating mechanism manual plus

one of the following.

a. Electrical motor mechanism

b. Pneumatic mechanism.

Types of construction of Isolators

1. Vertical break type

2. Horizontal break type, either center-break or double –break

3. Vertical pantograph type.

The vertical pantograph type design is preferred for rated voltage of 4200 KV and above .The

other types of designs are used from 12 to 420 KV.

Isolator does not have breaking and making capacity .Rating of the isolator is similar to the

corresponding terms of high voltage A.C circuit breakers.

Figure 3.29: Isolator

3.7 EARTHING

Earthling or Grounding is most important and simple protection of electrical system earthling

is mainly two types.

1. Alternator and Transformer neutral earthling.

2. Non current carrying / metallic body.

3.7.1 ALTERNATOR AND X-FORMER NEUTRAL EARTHLING

Page 58: Study on protective devices of a distribution substation

Alternator and X-former neutral is earthling directly or body by resistance or inductance.

These earthing reduced or minimize traveling wave, any surge voltage and unbalanced

voltage.

3.7.2 NON CURRENT CARRYING / METALLIC BODY

Metallic body means the body of motor , generator , x-former, metal tank tower and pole

earthling .This earthling protects any abnormal current as a result protective relay and fuse

operate easy .

Earthling Electrode

The earthling electrodes are two types.

1. Pipe electrode

2. plate electrode

1. Pipe electrode

It is steel pipe which diameter 1.5 inch to 4 inch and length 9 inches.

2. Plate electrode

It is steel or cost iron which size 3’×2’×1/2’.This plate is placed in the earth at 10’ from the

earth surface.

3.8 CURRENT LIMITING REACTOR

In order to limit the short circuit current to a value which the circuit breakers can handle

additional reactance known as reactors .Which is connected in contain with the system at

suitable points .A reactor is coil of number of turns designed to have a large inductance as

compared to its ohmic resistance .It may be added that due to small resistance of reactors

there is very little change the efficiency of the system.

Location of Reactors

Short circuit limiting reactor may be connected as

Page 59: Study on protective devices of a distribution substation

1. In series with each generator

2. In series with each feeder and

3. In bus-bar.

3.8.1GENERATOR REACTOR

When the reactors are connected in series with each generator they are known as generator

reactors .Which is shown in below.

Figure 3.30: Generator reactor

3.8.2 FEEDER REACTOR

When the reactors are connected in series with each feeder they are known as feeder

reactors .which is shown in below. Since most of the short circuit occur on feeders a large no

of reactor are used for such circuits.

Figure 3.31: Feeder Reactor

Figure: Feeder reactor

Page 60: Study on protective devices of a distribution substation

3.8.3 Bus-bar Reactor

When the reactors are connected in the bus bar they are known as bus bar reactors. Which is

shown in below .The two above methods of locating reactors suffer from the advantage that

there is considerable voltage drop and power loss in the reactor even

during normal operation? This disadvantage can be overcome by locating the reactors in the

bus-bars

Fig 3.32: Bus-reactor

3.8.4 TIE BAR REACTOR:

Fig shows the tie-bar reactor system.

Comparing the ring system with tie bar

system, its clear that in the tie bar system,

there are effectively two reactors in series

between sections so that reactors must have

approximately half the reactors of those used

in a comparable ring system. Another

advantage of tie-bar system is that additional

generators may be connected to the

system without requiring changes

in the existing reactors.

Figure 3.33: Tie bar-reactor

3.9 INSULATOR

Page 61: Study on protective devices of a distribution substation

The insulator provides necessary insulation between line conductors and supports and

prevents any leakage from conductors to earth. This is achieved by securing line conductors

to supports with the help of insulators.

Safety factor of insulator = Puncture strength ÷Flash over voltage

It is desirable that the value of safety factor is high.

The properties of the insulator are following:

1. High mechanical strength.

2. High electrical resistance of insulator material.

3. High relative permittivity of insulator material.

4. High ratio of puncture strength to flash over.

5. The insulator material should be non-porous; free from impurities and cracks otherwise

the permittivity will be lowered.

Type of insulators:

1. Pin type insulator 3. Strain insulator

2. Suspension type insulator 4. Shackle insulator

Describe different type insulator

3.9.1 PIN TYPE INSULATOR

The pin type insulator are used for transmission and distribution of electrical power at voltage

up to 33 KV .Beyond operating voltage of 33 KV ,the pin type insulators become too bulky

and hence uneconomical .For pin type insulator the value of safety factor is about 10.

Page 62: Study on protective devices of a distribution substation

Figure 3.34: Pin type Insulator

3.9.2 SUSPENSION TYPE INSULATOR

This type of insulator is not economical beyond 33KV. For high voltage it is a usual practice

to use of suspension type insulator .They consist of number of porcelain disc connected in

series by metal link in the form of string .The conductor is suspended at the bottom end of

this string while the other end of the string is secured to the cross arm of the tower .Each disc

is design for low voltage, say 11 KV.

Figure 3.35: Suspension type insulator

3.9.3 STRAIN INSULATOR

When there is a dead end of the line or there is corner or sharp curve ,the line is subjected to

great tension .in order to relive the line of excessive tension , strain insulators are used .the

disc of strain insulator are used in vertical plane .

Page 63: Study on protective devices of a distribution substation

Figure 3.36: Strain insulator

3.9.4 SHACKLE INSULATOR

In early day, the shackle insulators were used as strain insulators but now days they are

frequently used for low voltage distribution lines .Such insulator used either horizontal

position or vertical position.

Figure 3.38: Shackle type insulator

Chapter-4

Study of protective devices used in khagrachari 33kv/11kv distribution

Substation

4.1 INTRODUCTION:

We have visited 33/11KV Khagrachari distribution substation. Here we study the single line

diagram and different protective devices. There is one 33KV incoming line come from

Hathazari Grid Substation.

Here used:

01) Two (02) Power Transformers.

02) Three (03) Lightning Arresters

03) Four (04) Isolators

04) Three (03) C.Ts

05) Two (02) SF6.C.Bs, One (01) O.C.Bs., six (06) 630 V.C.Bs.

06) One (01) Buscupler

Page 64: Study on protective devices of a distribution substation

07) Two (02) Station Transformers.

08) One (01) Potential Transformers.

09) Two (02) A.C.Rs,

There are two transformers T1, T2 of 33/11KV, 10MVA with four main feeders.

1. Feeder number one go to PANKHAIYA PARA.

2. Feeder number two go to STADIUM.

3. Feeder number three go to POLICE LINE.

4. Feeder number four go to CANTONMENT.

4.2 RATING OF THE KHAGRACHARI SUB-STATION

Power 10 MVA

Current Voltage Weight

Primary current 175 A Primary voltage 33 KV Weight of oil 5300 Kg

Secondary current 575A Secondary voltage 11KV Weight of core12102 Kg

P.F 0.9 lagging

Table A: Station Transformer

Power 125 KVA

Current Voltage Weight

Primary current 3.78 A Primary voltage 33 KV Weight of oil 2600 Kg

Secondary current 312.5A Secondary voltage 0.4KV Weight of core 6000 Kg

Table B: Oil circuit breaker:

Current Voltage Time

Normal Current=630 A Making time=5 s

Table 4.1: Transformer Rating (T1, T2)

Page 65: Study on protective devices of a distribution substation

Breaking Current=25 KA

Making Current=62.5 KA

Capacity Voltage=36 KV Opening time=0.045 s

Table C: The table of the rating of Khagrachari Sub-station:

SL.

NOName of CB Rating

C.T Ratio Relay setting

O/C E/F

01 SF6(33KV) 1250Amp 400:5 3.75 Amps 2.5 Amps

02 O.C.B(33KV) 880Amp 300/5 3.75 Amps 2.5 Amps

03 A.C.R(33KV) 630 Amp 200/5 190 Amps 40 Amps

04 A.C.R(11KV) 630 Amp 250 Amps 50 Amps

05 V.C.B(11KV) 630Amp 400/5 200Amps 120 Amps

06 Isolator (33KV) 1250 Amps

07 Isolator (11KV) 1250 Amps

08 T1,T2 10MVA,33/11KV

09 Lightning Arrester 36KV

10 Station Transformer 125KVA,33/0.4KV

4.3 SINGLE LINE DIAGRAM OF KHAGRACHARI SUB-STATION

Page 66: Study on protective devices of a distribution substation

Figure 4.1: Single line diagram of Khagrachari Sub-station

Page 67: Study on protective devices of a distribution substation

Fig: Office of the Executive Engineer of BPDB, Khagrachari.

Fig: Khagrachari 33/11KV Sub-station.

Page 68: Study on protective devices of a distribution substation

Fig: Khagrachari 33/11KV Sub-station.

Fig: Khagrachari 33/11KV Sub-station.

Page 69: Study on protective devices of a distribution substation

Chapter-5 Suggestions for better protection

5.1 INTRODUCTION:

Much attention has been given to the use of PLCs in substation and distribution automation

applications in recent years. Innovative engineers and technicians have been actively seeking

new applications for PLCs in substations. PLCs have an important place in substation

automation and their use in substation application will grow.

As the use of PLCs in substation automation application increases, and the demand for

substation and distribution automation increases, utility engineers are seeking ways to

implement application. With deregulation, utilities are decreasing engineering staff levels.

Utility engineers are required to field more projects with fewer available resources.

5.2 APPLICATION FOR PLCS IN SUBSTATION AUTOMATION:

There are many applications for PLCs in substation automation, distribution automation. As

utility engineers become more familiar with the capability of PLCs and PLC manufactures

develop new substation specific products, the number and type of potential applications

continues to increase.

1. Protection and control

a) Circuit breaker Lockout

b) Protective relay interface

c) Dynamic protective relay setting for dynamic station topology

2. Automatic Switching

a) Emergency Load Shedding

b) Station maintenance

C) Automatic transfer schemes

d) Load sectionalizing

e) Automatic reclosing schemes

f) Automatic service restoration

g) Circuit breaker control interlocking

h) Feeder automation and fault recovery

Page 70: Study on protective devices of a distribution substation

3. Voltage regulation Management

a) LTC (Load Tap Changer) Control

b) Voltage regulator control

c) Capacitor control

4. Transformer management

a) Parameter monitoring and alarming

b) Real Time modeling

c) Interface to existing transformer monitors

5. Automation system diagnostics

a) Power apparatus health monitoring

b) PLC and communications self monitoring

6. Maintanence and safety

a) Maintenance lock-out management

b) Automatic circuit isolation control

7. Remote control

8. Demand control

9. Generator synchronization

5.3 BENEFITS OF USING PLCS IN SUBSTATION AUTOMATION:

Reliability a large installed base, extensive support resources and low costs are some of the

benefits of using PLCs as a basis for substation automation.

PLCs are extremely reliable. They have been developed for application in harsh industrial

environments. They are designed to operate correctly over wide temperature ranges and in

very high electromagnetic noise and high vibrations environments. They can operate in dusty

or humid environments as well.

The large installed base of PLCs offers the advantages of reduced costs, readily available and

low cost spare parts and trained personnel to work on PLCs. The large installed base also

allows the manufactures more opportunity to improve design and offer new products for

more varied applications.

In many, if not all, applications PLCs offers lower cost solutions than traditional RTUs. They

offer lower cost solutions than traditional electromechanical control relay systems for

Page 71: Study on protective devices of a distribution substation

automated substation applications. With the lower cost solutions PLCs based systems offer in

substation and distribution automation application along with

the other benefits, it is no surprise that there is so much interest in the application of PLCs in

substation.

5.4 CONCLUSION:

The use of PLCs (Programmable Logic Controller) in substation and distribution automation

application has grown in recent years. The economics of PLCs based solultions mean that

substation automation can be applied even more widely. This will help the utilities respond to

the challenges presented by deregulation.

As the use of PLCs in substation increases, the criteria for selection of control system will

become an extremely important factor in the success of PLCs substations automation.

Chapter 6

Discussion and conclusion

6.1 DISCUSSION:

Electricity is the basic necessity for the economic of a country. The industrial development

and the increase of living standard of people are directly related to the more use of electricity.

Without it is not possible to drive industrial machine, pump for irrigation and possible to

develop living slandered of people.

It is quit impossible for us to study on protective devices in a distribution substation. So in

short we have tried to discuss the main components of the power protection system of the

distribution substation.

It has seen that fuses, circuit breakers, relays, lightning arresters, isolators, ear-thing and

current limiting reactors are used as protective devices of distribution substation system

protection.

6.2 CONCLUSION:

Page 72: Study on protective devices of a distribution substation

We visited Khagrachari distribution sub-station then studied very carefully the single line

diagram and got an idea about the different element of the protective devices. We have study

the power protection scheme, protection zone, primary and back up protection and different

type of protective devices used in the distribution sub-station.

Also our target was to collect information about protective devices and develop suggestions

for better protection of distribution substation. The use of PLCs (Programmable Logic

Controller) in substation and distribution automation application has grown in recent years.

The economics of PLCs based solutions mean that substation automation can be applied even

more widely. This will help the utilities respond to the challenges presented by deregulation.

Though, we think this thesis will be very helpful for better protection in a distribution sub-

station.

BIBLIOGRAPHY

1. SUNIL S. RAO “SWITCHGEAR PROTECTION AND POWER SYSTEM”

Published by – KHANNA PUBLISHERS Delhi, Eleventh Edition – 1999.

2. V.K. MEHTHA “PRINCIPLE OF POWER SYSTEM” Published by –

S. CHAND & COMPANY LTD New Delhi, Third Edition – 1998.

3. WILLIAM D STEVENTION “ELEMENTS OF POWER SYSTEM”

Published by – Mc GRAW – HILL Third Edition – 1998.

4. I.J NAGRATH AND D.P KOTHARI “ MODERN OF POWER SYSTEM” Published

by – TATA Mc GRAW- HILL, Second Edition – 1995.

5. M.V. DESHPANDE “ELEMENTS OF ELEMENT OF ELECTRICAL POWER

STATION DESIGN” Y.P. CHORPA, Allahabad, Third Reprint-1983

6. www.pcsutilidata.com

www.udl.com