sub-pixel characterization for

28
sub-pixel characterization for μas Astrometry with LUVOIR M. Shao, And application to precision RV measurements. Pixel Position to 10-5 pix Centroiding to 10-4 pixels Nyquist sampling 12m telescope Sampling (2.5pix/(l/D)) Single shot 0.41 uas # dither 120 Single epoch 0.07 uas Jet Prop Lab, Pasadena, California © 2017 California Institute of Technology. Government sponsorship acknowledged

Upload: others

Post on 28-Nov-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: sub-pixel characterization for

sub-pixelcharacterizationforµasAstrometrywithLUVOIR

M.Shao,AndapplicationtoprecisionRVmeasurements.

PixelPositionto10-5pixCentroidingto10-4pixelsNyquistsampling12mtelescopeSampling(2.5pix/(l/D))Singleshot0.41uas#dither120Singleepoch0.07uas

JetPropLab,Pasadena,California©2017CaliforniaInstituteofTechnology.Governmentsponsorshipacknowledged

Page 2: sub-pixel characterization for

Outline

• Sciencecases– Exoplanets– Cosmology(darkmatter,directdistanceto10’sofmegaparsec?)

• Random(photnoise)andsystematicerrorsinastrometry• Calibrationofsystematicerrors– Detectorerrors(manytypesofdetectorerrors)– Opticaldistortion,(intheopticaldesignvsbeamwalkonimperfectoptics)

2

Page 3: sub-pixel characterization for

ExoplanetScience• WhataccuracyisneededtodetectanExoplanet?

– SNR=6isneededforafalsealarmprob<1%– SNR=signal/noisewheresignalisamplitudeofthereflexmotion.Noise=

0.07uas/sqrt(#hrsobserved)– Assumingtotal#obs>>10,spreadover>(1orbitperiodor1year)

• Iftherearemultipleplanetsorbitingthestarthe#ofobservationshastobe>5+N_plan*6.

• HowmanyExo-Earthscanbefound?– HowmanyhoursofLUVOIRtime(notincludingslew)wouldittaketo

surveytheeasiest(nearby)100starsforanEXO-Earth(1Mearth,1AUscaledtoStar’sluminosity)?Answer150hrsnotincludingslewtime.

– WesortedtheHipparcoscatalogforallFGKstars<30pc.(doublestarswhereaHZorbitwasnotstablewereremoved)Wefound384stars.Itwouldtake~1500hrs orLUVOIRintegrationtimetosearchallofthem.

• Howcanastrometryhelpadirectimagingprogram?– Directdetectionneedstoimagethestarmultipletimesbeforeitseesthe

exo-EarthoutsidetheIWA.Thenmultipledetectionstoknowtheplanethasa~1yrorbit(HZ).

– Astrometrycaninformthedirectdetectionprogramwhich90%ofstarsdonothaveanEarth-likeplanet.

3

Page 4: sub-pixel characterization for

Extra-galacticParallaxes• Atechniqueusedinradio

VLBIastrometrycanbeusedintheoptical

• AnumberofOstarscanbemonitored,bothwithpropermotionandradialvelocitytomeasurethedistancetothegalaxy.– PropermotionofalltheOstarsaredoneatonce.

Motion~100km/[email protected]/year~2uasover5years

DirectdistancemeasurementtoVirgo

4

Darkmatter,exoplanets(inthatorder)isthesciencerationaleforTHEIA(ESA)astrometrymissionconcept,usingupixeldetectorcalibration.Multipleground/labsearchesfordarkmatterhave“null”results.Colddarkmatterhasbeenverysuccessfulatexplainingthe“soapbubble”geometryofgalaxyclusters,butnotverysuccessfulongalacticscaledistances.µasastrometryisemergingasaleadingcandidatetoexploredarkmatter.

Page 5: sub-pixel characterization for

SolarSystemScience• DoesplanetX(9)exist?(AseveralEarthmassobjectat

200AUexertsasignificantperturbationontheplanetsintheoutersolarsystem>>1uas.(35uasin1year)– Theproblemwithastrometryofplanetsisthecenteroflightvscenterofmassoffset.Thecenterofmassmovesinahighlypredictableway.Thecenteroflightnotsomuch.

– Thesolutionistolookat0.1~1.0km(orsmaller)moonsoftheseplanets.Theyorbitthecenterofmassoftheplanet.• Theseobjectsarefaint,hencetheneedforhighsensitivityalongwithhighastrometricaccuracy.

5

Page 6: sub-pixel characterization for

GettingtoSubuasAstrometry

• Theeasypartcomeswithalarge~12maperture.– (Notea10mapertureonlylooses20%fromthesystematicerrorpointofview,8mis1.5Xlessaccurate)

• Withlargeapertures,photonnoiseisnotanissue(photonnoiseofrefstarsdominatesoverthetargetstar)

• Twomajorsourcesofinstrumental/systematicerror– Detector– Optics– (everythingthatcomesbetweenphotonsfromthestarsandbitsinthecomputer)

6

Page 7: sub-pixel characterization for

Random/SystematicErrors• Randomerrors,primarilyphotonnoise(anddetectorreadnoise)For

exoplanetscience,primarilyfromrefstars.• Systematic(instrumental)errors

– Detectorimperfections• Photometricerrors(non-lin,ghosts,non-unisubpixQE)• Geometricerrors(pixelsarenotregularlyspaced)

– Opticsimperfections(calledopticaldistortion)• Mostfamiliarwithpin-cushiondistortion.ButaTMAtelescopeevenifmanufacturedperfectlytopicometerlevelswillhavedistortion,(butpredictable).

• Beamwalk.(thestarlightfootprintonopticsotherthantheprimaryisdifferentfordifferentstars,thisbeamwalkcoupledtoimperfectlyfiguredopticsproducesopticsdistortionerrors.

• Weattempttocalibrateallinstrumentalbiases.Thecalibrationwillnotbeperfect,butweassumethecalibrationerrorsare“random”anddecreaseassqrt(N)fordifferentmeasurements(atleastforsmallN<1000).Ifwechangethepointingofthetelescopebyafewarcsec,wewillsampleadifferentinstrumentalerror(bothopticalanddetector)

7

Page 8: sub-pixel characterization for

ExoPlanetAstrometryErrBudget

Targetstar7magRefstars13~18magDia12mSampling2.4pix/(l/D)120dithersin1hr

DetectorErr1e-4pixOpticaldistortion1e-4pixFOV~0.06degAveragesky(forrefstars)~20stars<18mag

8

Page 9: sub-pixel characterization for

LightSourceforDetectorCalibration

• Whataretheimportantpropertiesofthelightsourceforcalibratingdetectors?

• Dimensionalprecision(x,y)• Photometricprecision

• Whatsourceisclosesttoperfection?• Singlemodeopticalfiber.

WavefrontfromfiberGaussianamplitudesphericalwavefrontfrom2fibersformfringes

Page 10: sub-pixel characterization for

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WavefrontfromaSingleModeFiber• Thewavefrontfromasinglemodefiberis

theclosestthingtoaperfectspheremadebyHumans.

• Anyerrorisintheflatnessoftheglass.• Take2inchopticlambda/20p-vsurface.

Andpowerspectrum– ~1/f2.5– Ona4umscalethesurfacecan

potentiallybeflatto~10-5l• Interferencebetweentwospherical

wavefrontsproducehyperbolicfringes(thatvisuallylooklikestraightfringes)

• TheintensitydistributionisideallyaGaussian.InrealityalsoveryclosetoaGaussian.DeviationsfromaGaussianareduetophasetoamplitudeconversion.

4

4umcore

Detectorundertest

4um4cm()

1.25

Page 11: sub-pixel characterization for

FringesfromTwoFibers• Therearemultiplewaysto“movethefringesacrossthedetector”• OnecommontechniqueistouseAOMfrequencyshifters.

– ThesedevicesshiftthefreqofthelaserlightbyanamountbyXhz,theRFsignaldrivingtheAOM

– TheaccuracyofthefreqshiftofthelaserlightisthefreqaccuracyoftheRFsource.

AOM’sAsfreqshifters

AOMdrivenby2RFSources40.000,000MHz

40.000,003MHz

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

RFGen

RFGen

Df=3.000,000+/- 1uHz

Page 12: sub-pixel characterization for

Fringesfrom2Fibers• Thedimensionalaccuracyofthe

fringes(acrossthewholedetector)isdirectlyrelatedtothewavefrontqualityfromthefibers.

• Thefringesarecausedto“move”eitherwithanAOMorstretchingthefiber.WithanAOMthemotionisaslinearasthepurityoftheRFsourcedrivingtheAOM.

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Laserlightin1fiberisfreqshiftedwithrespecttotheothertoprovide“movingfringes”~afewhzthedetectorisreadoutwith~10reads/lmotionofthefringes0 100 200 300 400 500 600 700 800 900 1000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Temporalsignalfrom2pixels

Page 13: sub-pixel characterization for

WhatareWeMeasuring?

• Thefringeisanearperfectsinusoidinspace(x,y)andintime(t)

• Flux(I,j,t)=A*Vis*sin(kx*X+ky*Y+w*t+f)– Kx,ky spatialfreqoffringe– w istemporalfreqoffringe– f isthepixelpositioninthedirection

offringemotion.

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500 600 700 800 900 1000-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

ThedetectoronlyoccupiesasmallpartoftheGaussianbeamfromthefiber

A(I,j)isthesumofthetwoGaussiansVis(I,j)=2*sqrt(G1*G2)/(G1+G2)

Page 14: sub-pixel characterization for

ProjectingPointSourcePSFs• Apointsourcediffractsoffthefocusingoptictoproducean

airyspotonthedetector.

Fiberbundle(smf)

Limiting(diffracting)aperture(actuallyamirror)

Thewavefrontfromthefiberisnearperfect.(geometricpoint)Thereisonly1optic thatreimagesthefibertothedetector

Thatopticisnotperfectl/100,theairyspotisnotexactlytheBesselfunction(squared).Butsincealltheimagesusethesamepartofthesamefocusingoptic,allthePSFsareidentical.

Page 15: sub-pixel characterization for

GhostImagesWenoticedghostimagesinoursetup.Atfirstwelookedforstraylightreflections(eggwindowonthedetector)

Butwhenwelookedathowtheghostimagesmovedrelativetotherealimages,werealizedthattheseghostsweretheresultofelectricalxtalkbetweenthe4readampsonthechip.

OursetupatJPLandourcolleague’ssetupinGrenobleusedthesameE2Vchipbuttotallydifferentreadoutelectronics.Butsawsimilarghosts.

ChipRotated90degWrtmovie

Page 16: sub-pixel characterization for

PhotometricLinearityCalibration

• Foreachpixel’soutput,thelaserfringesareanearperfectsinusoidintime.ThephaseofthesinusoidisasgoodastheRFgeneratordrivingtheAOM.

• Adeviationofaperfectsinewaveisameasureofthenon-linearityofthedetector.

0 100 200 300 400 500 600 700 800 900 10000

0.5

1

1.5

2

2.5

3

3.5

4x 104

Time

DN

0 10 20 30 40 50 60 70 80 90

10-6

10-5

10-4

10-3

10-2

10-1

100Aquicktestofphotometricnonlinearityistheappearanceofa2nd harmonic.WhentakingAtemporalFFT.

CCDsdon’thave(much)persistence.Butwithfiberilluminationwecanchangethetemporalfreqwithoutaffectingthefringeamplitude.Achangeinamplitudewithfreqisasignofpersistence.

Page 17: sub-pixel characterization for

InternalFringesfromLaserIllumination• WithCCDs,atlong

wavelengths,thedetectorsaresemi-transparent.

• Aflatfieldmeasurementinlaserlight(especiallyatlongl)willexhibit“fringing”thatisabsentinawhitelightflatfieldatthesamewavelength.

• Thesolutionistouseatunablelaser,andrepeatthedetectorcalibrationmeasurementsacrossenoughdifferentwavelengthstoaveragethiseffectaway.

780nm6%bw

ImagefoundviaGooglesearch

Page 18: sub-pixel characterization for

PhotometricErrorsfromGhosts• Imageswerelowpassfiltered,andupsampled(to16pix/(l/D)

– Imageistaken~4pixels/(l/D)– Sourceiswhitelight~5%bandwidth– Ghostimages~10-3 fromelectricalXtalkonchip

• Veryhighwavefrontqualityintestsetup.(visuallysee8th diffractionring)

• Parametersfitted• X,Ycenterofimage• Asemi-majoraxis• Bsemi-minoraxis• q angleofsemi-majoraxis• DC

Log 1

0scale

18

Page 19: sub-pixel characterization for

ImageShape

• Thefocusingopticwasanoffaxisparabola.Thecircularaperturewasslightlyoffaxis,resultinginaslightlyellipticalPSF.

• Butbothfiberimageshadexactlythesamepupilaperture,andthetwoPSFs,andshouldthereforehavealmostthesameellipticity.

Multifiberbundle

FibersreimagedonCCD

Thisexercisedidnotusethemeasuredpixeloffseterrors.Theimagesweremovedacross3pixels,thesigmarepresentthepixelationerrorinmeasuringellipticity. 19

Page 20: sub-pixel characterization for

PixelsGeometryErrors

• Thefringeisanearperfectsinusoidinspace(x,y)andintime(t)

• Flux(i,j,t)=A(1+*Vis*sin(kx*X+ky*Y+w*t+f))– Kx,ky spatialfreqoffringe– w istemporalfreqoffringe– f isthepixelpositioninthedirectionof

fringemotion.

0 100 200 300 400 500 600 700 800 900 1000-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

A(i,j)isthesumofthetwoGaussiansVis(i,j)=2*sqrt(G1*G2)/(G1+G2)

Dynm

Thecolorscaleisinnanometersthebiggestoffsetisthe700nmslipbetweentheleft½andright½ofthechip.

Dxnm

Randomx,yerr40~50nm

20

Page 21: sub-pixel characterization for

TheSystematicPixelShiftinE2V39

• ThereisaanabruptYpixelshiftasonemovesacrossXinthedetector

• Sizeofshiftis~700nm• Ontopofthatthereare

30~50nmrandompixelpositionerrorsateverypixel

21

Page 22: sub-pixel characterization for

ProjectingPointSourcePSFs• Apointsourcediffractsoffthefocusingoptictoproducean

airyspotonthedetector.

Fiberbundle(smf)

Limiting(diffracting)aperture(actuallyamirror)

Thewavefrontfromthefiberisnearperfect.(geometricpoint)Thereisonly1optic thatreimagesthefibertothedetector

Thatopticisnotperfectl/100,theairyspotisnotexactlytheBesselfunction(squared).Butsincealltheimagesusethesamepartofthesamefocusingoptic,allthePSFsarenearlyidentical.

22

Page 23: sub-pixel characterization for

(0.5,0)

(0,0.5) (0.5,0.5)

Offset 0 0

Pixelation 2 pix/(lam/D)

120 122 124 126 128 130 132 134 136

120

122

124

126

128

130

132

134

136

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(0.5,0)

AccurateAstrometryNeedsanAccurateOpticalPSF

OriginalPSF(specifiedathighresolution)Bothimageshavethesameinformationcontent

PixelatedPSF(Nyquistsampled)>2pixelsperl/D

ForaNyquistsampledimages,onecanshiftthepixelatedimageby3.1416pixelswithoutanycomputationalerror.onecangeneratetheoriginalhighresolutionPSFfromthepixelatedPSFwithouterror.

Possiblewithaperfectdetectororaperfectlycalibrateddetector.

23

Page 24: sub-pixel characterization for

Centroidingat10-5 l/D• OneoftheerrorsintraditionalCCDastrometryisalackof

knowledgeofthetrueopticalPSF.– ButthetrueopticalPSFcanbemeasuredwithNyquistsampled

images(applyingcorrectionswithsubpixelcalibration).

Achievedaverageerrorof9e-6l/D

Wetookthe3airyspotsandmovethemacross3pixelsofaCCD. Totalof30positions.TheseparationbetweenA,Bwasconstantto1.2e-4pixelsateachofthe10positions.Afteraveraging10positions,theseparationagreedto~10-5 l/D,4e-5pixels.

PSFoversampled4pix/(l/D)

24

Page 25: sub-pixel characterization for

OpticalDistortion• Alltelescopeshavedistortion,fromthe

design.(pincushionshown)– Butthedistortionfromthedesignis

“known”• Butdistortioncanalsoarisefromoptics

misalignmentandbeamwalk.• Lightfromallstarshittheprimarymirror.

Butdifferentstarsusedifferentpartsofthesecondary(tertiaryetc.)optics.

• Imperfectionsinthefabricationoralignmentoftheopticswillchangedistortionfromthe“design”.

• SimulationsofaTMA(1.5m)telescopewithstateoftheartoptics,showedthatdistortionatthe1uaslevelimpliedneedtocalibrateevery~15arcsec.Distortioncanbemodeledto~1uasovera4arcminFOVwith~200terms.ForLUVOIR,ahighernumberoftermsmaybeneeded.

25

Page 26: sub-pixel characterization for

OpticalDistortionStabilityandCalibration

• Opticaldistortionexistsevenforatelescopewhosesurfacesareperfect.• HSTisinahostilethermalenvironment(Sunlight,nighttime)future

observatorieswillbeGEO/L2orbitsmanyordersofmagnitudemorethermallystable.

• Calibratedistortionbyditheringonadensestarfield(globularother)– What’simportantisthedistortiondoesn’tchangebetweenmorethan

errorsfromdetectorimperfections.• Comparisonwithcoronagraph.

– Astrometryto1e-4pixels=>stabilityat~5x10-5 l– Coronagraphy(1e-10)=>correctionto~3x10-6 l

• Goodthermaldesign,ChoosecalibrationfieldandtargetfieldtoonlyrequiresrotationalongtheSunvector.(sosolarilluminationofthespacecraftisconstant)

26

Page 27: sub-pixel characterization for

MaintainingStability

• Stableopticalsystemforastrometry

• Keypoints– Alignmentstability– Opticalfigureof

secondary/tertiaryoptics– (paradoxicallystabilityofthe

primaryisnotcritical,changeinfigureappearsacrossthewholeFOV)

• OperateopticsneartheirZeroCTEtemperature.

• Opticalmetrologytomeasure/maintainalignmentatnmlevels.

Opticsstableto10-4 l,~60pmCTE~10-8/Ka2mopticisstable60pmwhenthetempisstableto3mK.(butuniformexpansionof60pmisnotaproblem)Thermalgradientsstable~10mK.

ThislevelofstabilityisNOTSufficientforcoronagraphy

27

Page 28: sub-pixel characterization for

Summary• Therearetwo(andonly2)typesofinstrumentalerrors.

– Detectorerrors(almostreadyat~1e-4pixels)– Opticaldistortionerrors.(notdemonstratedinthelabyet,but

simplecalculationsonthermalstabilityimplythisisdoablewhenthetelescopeisinHEO/GEO/L2)

• Majorimpactonexoplanetscienceandcosmologyandsolarsystemdynamics(planetX)

• Onorbitmetrology ispartofthebaselinedesignoftheLUVOIRHighdefinitioncamera.(alongwithNyquistsamplingofthePSFto~400nm.)

• DetectorcalibrationisalsoimportantforprecisionRVspectrometersthatareaimingtogetbelow10~20cm/sec.

28