sulphur vapours

Upload: anvay-choudhary

Post on 03-Mar-2018

238 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 Sulphur Vapours

    1/12

    J. Chem . Thermodynamics1973, 5, 833-844

    h e r m o d y n a m i c s o f su lp h u r v a p o u r

    H A N S R A U , T . R . N . K U T T Y , a a n d

    J . R . F. G U E D E S D E C A R V A L H O b

    Philips Forschungslaboratorium Aachen GmbH, Aachen, Germany

    Receive d 1 Janua ry 1973; in revised for m 26 February 1973)

    Density measurements of sulphur vapour up to saturat ion in the temperature range

    between 823 and 1273 K were performed. F ro m the results, together with literature data ,

    a set o f equations was derived wh ich allows the partial pressures o f the different molecular

    species to be calculated as a function o f tota l pressure and tem perature. R eal gas corrections

    are included, so that these equations can b e used u p to 1273 K and the saturat ion pressure

    of 144 arm. A FO RT RA N p rogram for ca lculat ion of the vapou r density and the par t ia l

    pressures of 2, S~ . . . , Se from the total pressure and the temperature is avai lable from

    the first author.

    The standard enthalpy of form ation of S2(g) was found to be

    AH (S2, g, 298.15 K ) = (31200 4- 50) calth mo 1-1.

    1 Introduction

    S u l p h u r v a p o u r s a r e v er y c o m p l e x in c o m p o s i t io n ; m o l ec u le s f r o m 1 to S s a re k n o w n

    t o e x i st i n e q u i l i b r i u m . S i n c e t h e s t a b il i t y o f 2 i s h i g h , I m o l e c u l e s b e c o m e i m p o r t a n t

    o n l y a t v e r y h ig h t e m p e r a t u r e s a n d l o w p r e s s u r e s. T h e r e f o r e , e i th e r t h e e q u i l i b r iu m

    b e t w e e n I a n d 2 o r t h a t b e t w e e n 2 a n d a ll t h e o t h e r s p e c ie s f r o m S s t o 8 i s

    d o m i n a n t . T h e f i r s t o f t h e s e e q u i l i b r i a i s w e l l k n o w n c~) a n d w i ll n o t b e d e a l t w i t h i n

    t h i s s t u d y .

    F o r e v a l u a t i o n o f t h e c o m p l e x e q u i l ib r i a b e tw e e n 2 a n d S s t o 8 t w o d i f fe r e n t

    e x p e r i m e n t a l m e t h o d s w e r e u s e d : ( i) d e t e r m i n a t i o n s o f th e m e a n m o l a r m a s s a s a

    f u n c t i o n o f t o t a l p r e s s u r e a n d t e m p e r a t u r e a n d ( ii) m a s s s p e c t r o m e t r y . T h e f ir s t t y p e

    o f e x p e r i m e n t w a s p e r f o r m e d r e c e n t ly b y B r a u n e , P e t e r , a n d N e v e l i n g , ~2) w h o

    m e a s u r e d v a p o u r d e n s it ie s u p t o 1 2 73 K a n d a b o u t 1 a t m . ~ M a s s s p e c t r o m e t r y w a s

    d o n e b y B e r k o w i t z et aL 4-6~ a n d , w i t h a s p e c i al t e c h n i q u e , t h e e l e c t r o c h e m i c a l

    K n u d s e n c e l l , b y D e t r y

    e t aL c7~

    T h e s t u d y o f B e rk o w i t z

    e t a L

    i s m o r e q u a l i t a t i v e i n

    c h a r a c t e r , b e c a u s e d i st in g u i s h in g b e t w e e n p a r e n t i o n s a n d i o n s g e n e r a t e d b y f r a g m e n t -

    a t i o n i n t h e m a s s s p e c t r o m e t e r w a s d i f f ic u lt , a n d a l s o b e c a u s e t h e s e n s i t iv i t y o f t h e

    m a s s s p e c t r o m e t e r f o r t h e d i f fe r e n t s p ec ie s c o u l d o n l y b e e s t im a t e d .

    T h e e l e ct r o c h e m i c al K n u d s e n c el l o f D e t r y et al. 7~ a l lo w s p a r e n t i o n s a n d f r a g m e n t s

    t o b e m o r e o r l e s s d i s t i n g u i s h e d i n t h e s p e c t r o m e t e r . H e r e a n e l e c t r o c h e m i c a l c e l l

    a Present address: In dia n Institute o f Science, Bangalore, Ind ia.

    Present address: U niversi ty o f Porto, Facu lty of Engineering, Porto, P ortugal.

    t Throughou t this pape r arm = 101.325 kP a; cal th = 4.184 J.

  • 7/26/2019 Sulphur Vapours

    2/12

    834 H. RAU, T. R. N. KUTTY, AND J. R. F. GUEDES DE CARVALHO

    (Ag[AgIIAg2SIPt) is mounted in a Knudsen cell. With the help of the potential

    applied to the cell the chemical potential of the sulphur in the Knudsen cell can be

    changed within wide limits up to saturation. On the other hand, the current flowing

    through the cell is a direct measure of the amount of sulphur penetrating through the

    hole of the Knudsen

    c e l l .

    When the logarithm of the ion intensity in the mass spectrometer is plotted against

    the potential, the different species should have different slopes. When the slope

    observed for a certain species is in agreement with its theoretical value, this is thought

    to be the parent ion intensity, because fragment ions should show more or less the

    slope of the ions from which they were generated.

    The current through the cell allows the mass spectrometer sensitivity to be calibrated,

    because the total current must be the sum of the currents due to the different ions,

    parent and fragmentary. Some difficulties arise for the big molecules. Here the slope

    of the curve of the logarithm o f the ion intensity against potential will always show the

    theoretical value, because the intensity of these ions cannot be increased by frag-

    mentary ions (fragmentary ions will always be smaller). On the other hand, part of

    these big molecules will become broken up by the electron beam in the mass spectro-

    meter, and determinat ion of this part is not easy.

    Mass spectrometric studies connected with a Knudsen cell are restricted to pressures

    below about 10- 3 atm. This type of experiment was therefore done at low temperatures

    only (for vapour not far from saturation) or on diluted vapours

    e . g .

    vapours above

    CdS and ZnS), where only Sa and some $4, besides $2 as the main constituent, are

    present.

    Nothing is known of dense vapours not far from saturation at high temperatures,

    where pressures become high. Mass spectrometric studies are excluded here and it is

    only from p, V, T measurements that the equilibria in the vapour phase be derived.

    One of us (H. R.)recently designed an all-silica Bourdon gauge(s) which allows

    such density measurements to be made with the necessary accuracy. Such measure-

    ments, up to 1273 K for diluted and dense vapours (up to their saturation point), are

    presented in this paper. From the results and some data from the literature a set of

    equations has been derived which allows the partial pressures of all the species from

    S2 to $8 to be calculated from the total pressure and the temperature. Real gas

    corrections are included in these equations, which can therefore be used between

    473 and 1273 K and up to the respective saturation pressures.

    2 Experimental

    MATERIALS

    The sulphur used was high purity sulphur from Johnson, Mat they and Co., London

    and sulphur pur iss (i> 99.999 mass per cent) from Fluka AG, Switzerland. The first

    sample was used either as delivered or after it had been twice distilled in vacuum to

    remove some volatile impurities present (mainly H2S). No significant differences

    between the results obtained with the different samples could be detected.

  • 7/26/2019 Sulphur Vapours

    3/12

    THERMODYNAMICS OF SULPHUR VAPOUR 835

    APPARATUS AND MEASUREMENTS

    The apparatus consisted of an all-silica Bourdon gauge of known internal volume,

    which was mounted inside a furnace in an autoclave. The pointer o f the gauge extended

    from the furnace and could be observed visually through optical windows in the

    autoclave. The gauge was used as a null instrument: the internal pressure (sulphur

    vapour) which forces the pointer out of the null position is exactly compensated by

    external argon pressure. This argon pressure, maintained in the autoclave, is then

    measured with a precise gauge (__+0.1 per cent) connected to the pressure line. Details

    of the apparatus and its working principle are given elsewhere, t3, s) where the sensi-

    tivity, accuracy, and thermal aspects are also discussed.

    For a typical experiment a known quantity of sulphur was poured into the silica

    Bourdon gauge, the volume of which was exactly known. After evacuation the gauge

    was sealed off and mounted in the autoclave. The pressure exerted by the vapour

    was measured for a number of temperatures. When the pressure was less than the

    saturation pressure at that temperature, t3) the density of the vapour could be easily

    calculated from the mass of the sulphur taken and the volume of the gauge.

    3 Pr e v ious wor k

    In the vapour there exists a complicated equilibrium between the different molecular

    species from 2 to S8. A set of equilibrium constants is necessary in order to describe

    this equilibrium state. Some thermodynamic values were already known and were

    used for the calculations described below.

    HEAT CAPACITIES

    Values of Cp are known for 2, ~9) 6, ~1) and Sa, cx~) from spectroscopic studies. For

    the other species the values of Cp had to be estimated. For that purpose the vibrational

    heat capacity per degree of freedom of 2, 6, and Sa was drawn as a function of the

    number of atoms in the molecule with the temperature as a parameter (figure 1). It

    was assumed that the vibrational heat capacities of all the molecules lie on the same

    curves. Thus the heat capacities of 3, 4, 5, and 7 were estimated to be the sum of

    the vibrational heat capacities taken f rom figure 1 and the rotational and transitional

    increments. The heat capacities used for the calculations are shown in table 1.

    ENTROPIES

    Entropies for the gaseous molecules are given in the literature for 2, c9) 6, ta~ and

    Ss .c11'~2) These quantities are calculated from spectral data. Luft~12) and Guthrie

    et aL ~ used different assignments of the known frequencies of 8, resulting in two

    widely differing values for its s tandard entropy. Luft's value does not agree with the

    equilibrium data of Detry et aL (7) and is expected to be incorrect. We therefore took

    the value of Guthrie et aL c11

    The entropies of the other molecular species are not known exactly. Values are

    given by Detry et aL,(7) calculated from estimated vibrational frequencies. Better

    values of these entropies had to be calculated from an adjustment of the equilibrium

    constants to the measured vapour densities (see below).

  • 7/26/2019 Sulphur Vapours

    4/12

    8 3 6

    H. RAU, T . R . N . KUTTY, AND J . R . F . GUEDES DE CARVALHO

    [ J |

    L- 100 0 K -4

    , 2 . 0~ i - - .xx ~ ' ~ K7 0 0 K 1

    ~ 1.5

    0.5 r 1 I I [

    2 3 4 5 6 7 8

    i

    FIG U RE 1. Vibrational heat capacities C~(vib.) per degree of freedom o f gaseous sulphur mo le-

    cules S~. Expe rimental points are from spectroscopic investigation. 9-11)

    TAB LE 1. He at capacities Cp of gaseous sulphur m olecules. C~ is given by

    Cdcalth K -1 m o1-1 = A + I O - a B T / K ) + 1 0 5 C T / K ) 2

    (calth = 4.184 J)

    A B C

    $2 8.54 0.28 -- 0.79

    $3 12.854 1.04 -- 1.554

    $4 19.092 0.783 -- 2.820

    $5 25.558 0.253 -- 3.771

    $6 31.580 0.120 -- 4.400

    $7 37.038 0.613 -- 4.723

    Sa 42.670 0.860 -- 5.110

    E N T H A L P IE S O F F O R M A T I O N

    E n t h a l p i e s o f f o r m a t i o n c a n b e f o u n d i n t h e l i t e r a t u re f o r $ 2, ) a n d S s. (1 1) T h e v a l u e

    f o r $ 2 g i v e n b y K u b a s c h e w s k i e t a l . , 9) ( 3 1 . 0 + 1 . 0 ) k c a lt h m o 1 - 1 , h a s f a r t o o w i d e

    l im i t s o f e r r o r t o b e u s e d i n t h i s s tu d y . F r o m t h e p a r t i a l p r e s s u r e s o f S 2 i n t h e s a t u r a t e d

    v a p o u r g i ve n b y D e t r y

    e t a l . 7 )

    a v a l u e o f 3 0 .8 3 k c a lt h m o 1 - 1 c a n b e c a l c u l a t e d .

    T h e e n t h a l p y o f f o r m a t i o n o f $ 8 w a s c a l c u la t e d b y G u t h r i e e t a l . H ) t o b e 2 5 . 2 3

    k ca lt h m o l - 1 , u s i n g t h e i r o w n e n t r o p y v a l u e a n d v a p o u r p r e s s u r e s o f r h o m b i c s u l p h u r

    n e a r r o o m t e m p e r a t u r e t a k e n f r o m t h e l i t e ra t u r e. H e r e S s is t h e o n l y s p ec ie s i n t h e

    v a p o u r p h a se . U n f o r t u n a t e ly , G u t h d e e t a L a p p a r e n t l y m a d e a m i s t a k e i n t h e i r

    c a l c u l a t io n s . T a k i n g t h e p r e s s u r e s c i t e d b y t h e m a n d t h e h e a t c a p a c i t ie s o f $2 a n d

    r h o m b i c s u l p h u r , t h e c o r r e c t v a l u e o f t h e e n t h a l p y o f f o r m a t i o n o f $8 is f o u n d t o b e

    2 4 . 3 2 k ca l t h m o l - 2 .

    A p p r o x i m a t e v a l u e s f o r t h e e n t h a lp i e s o f f o r m a t i o n c a n b e d e r i v e d f r o m t h e

    c o m p o s i t i o n o f t h e s a t u r a t e d v a p o u r s b e t w e e n 4 7 3 a n d 6 7 3 K g i v e n b y D e t r y e t a L 7 )

  • 7/26/2019 Sulphur Vapours

    5/12

    THERMODYN AMICS OF SULPHUR VAPOUR 837

    4 Calcu lat ions

    R E A L G A S C O R R E C T I O N S

    F r o m t h e p r e c e d i n g s e c t io n i t f o l l o w s t h a t t h e t h e r m o d y n a m i c p r o p e r t i e s o f S 3 , S , , S s ,

    $ 6, a n d $ 7 a r e o n l y a p p r o x i m a t e l y k n o w n a n d t h a t th e s e q u a n t i fi e s h a v e t o b e f i tt e d

    t o t h e d e n s i ti es m e a s u r e d h e r e . F u g a c i t y c o e ff ic i en t s h a v e t o b e i n c l u d e d t o c o r r e c t t h e

    e q u i l i b r i u m c o n s t a n t s , w h i c h d e s c r i b e t h e e q u i l i b r i a b e t w e e n $ 2 a n d a l l t h e o t h e r

    s p e ci es f o r r e a l g a s b e h a v i o u r w h e n p r e s s u r e s a r e h i g h .

    T h e c r it ic a l p ro p e r t ie s o f s u l p h u r w e r e r e c e n t ly d e t e r m i n e d b y t h e a u t h o r s . O ) T h e r e

    i t w a s a l s o m e n t i o n e d t h a t s u l p h u r v a p o u r s c a n b e a s s u m e d t o b e h a v e l i k e i d e a l

    m i x t u r e s o f t h e d i f f e r e n t m o l e c u l a r s pe c ie s . I n o t h e r w o r d s , t h e p a r t i a l m o l a r v o l u m e s

    o f t h e s p e ci es a r e e q u a l t o t h e v o l u m e s t h e p u r e s p ec ie s w o u l d h a v e u n d e r t h e p r e s s u r e

    o f t he m i x t u re . H e nce t he f uga c i t y coe f fi c ien t s S s a r e equa l fo r a l l t he d i f f e r en t spec ie s

    a n d d e p e n d o n o n l y t h e t o t a l p r e s s u r e a n d t h e t e m p e r a t u r e : (13)

    ( S2 ) --- qS(S3) . . . . . q~(Ss) = qS(Ptota,). (1)

    A s i m i la r e q u a t i o n h o l d s f o r t h e p a r t i a l m o l a r c o m p r e s s i o n f a c t o r s Z s , w h e r e

    p V = Z R T ,

    (2)

    w h i ch a r e equa l fo r a l l t he spec i e s t oo :

    Z S 2 ) ---~ Z S 3 ) . . . . . Z S s ) = Z P t o ta l ). 3 )

    V a l u es o f ~b a n d Z w e r e t a k e n f r o m t h e t a b l e s o f t h e g e n e r a l iz e d p r o p e r t i e s o f

    pu r e ga se s an d l i qu i d s , (14) u s i ng a s pa r am e t e r s t he c r i ti c a l p rope r t i e s o f su l phu r . O )

    T he t o t a l p r e s su re p i s a su m o f t he pa r t i a l p r e s su re s o f t he spec i e s :

    8

    p = E p S , ) . 4 )

    S = 2

    T h e e q u i l ib r i a :

    s

    = i S 2 , 5 )

    a r e g i v e n b y t h e e q u i l ib r i u m c o n s t a n t s

    Ks:

    K f = p(S2)~/2qbf/2/p(S~)c~,

    (6)

    F r o m e q u a t i o n ( 6) :

    p(S~) = p ( 2 )~ / 2 ~ ( ' / 2 - a ) /K s , (7)

    h e n c e

    8 )

    p = F . p S 2 ) f / 2 4 ~ f / 2 - 1 ) / K ~ ,

    f =

    wh ere K 2 = 1 .

    T h e con t r i bu t i on P s o f t he i - t h spec ie s t o t he dens i t y i s

    Ps = P ( S 3 M d Z R T , ( 9)

    w h e r e t h e m o l a r m a s s M s is g i v e n b y

    Ms = 32 .064i g m o l - 1 . (10)

    T h e d e n s i t y p o f th e v a p o u r i s th e r e f o r e g i v e n b y t h e s u m o f t h e c o n t r i b u t i o n s P s:

    8

    p = Z p s .

    f = 2

  • 7/26/2019 Sulphur Vapours

    6/12

    838 H. RAU, T. R. N. KUTTY, AND J. R. F. GUEDES DE CARVALHO

    A computer program was written which (1) interpolates the fugacity and the

    compression factors from the tables of the generalized properties of pure gases and

    liquids '(14) by parabolic functions, (2) calculates the equilibrium constants K~ from

    a given set of enthalpies of formation, standard entropies, and heat capacities of all

    the species, (3) calculates the partial pressures

    p S i )

    in such a way that the sum of

    these is equal to the measured total pressure p according to equations (7) and (8), and

    (4) computes the density p from these partial pressures according to equation (I 1).

    As already mentioned, exact thermodynamic properties were not known for $3, $4,

    $5, $6, and S7. We therefore started with the approximate values derived from the

    work of Detry

    e t

    aL(7) The final set of thermodynamic properties should fulfil the

    following conditions: in the temperature range of the investigations of Detry

    e t

    a/.(7)

    the measured partial pressures of the different species should be represented by the

    calculated pressures within the limits of error; and the calculated densities of the

    vapours should be in agreement with the experiments over the whole range of tempera-

    ture and pressure.

    Detry

    e t

    aL(v) accurately measured the equilibria o f Ss with S 7 and of $8 with $6,

    respectively. Error limits were small in these cases. Since the thermodynamic properties

    of $8 are exactly known, the results of Detry

    e t a l .

    allow the thermodynamic properties

    of $6 (enthalpy of formation) and o f $7 (enthalpy of formation and standard entropy)

    to be calculated. At not too high temperatures $6, $7, and $8 are the main constituents

    in the vapour phase when the total pressure approaches the saturation point. There-

    fore, even if the partial pressures of $2 to S5 were known only approximately from

    the data o f Detry

    e t a L ,

    the densities calculated on the basis o f their data should be in

    reasonable agreement with the experiments. A first check in tha t direct ion showed

    this not to be the case. Even variations of the equilibrium constants for the formation

    of Sa, $4, and $5 f~m S2 could not bring experimental and calculated values into

    agreement.

    Two possible reasons for this behaviour were considered: either tautomers of the

    bigger molecules are present at higher temperatures, or the enthalpy of formation of

    $2 derived from the data of Detry

    e t

    al. (7) is not completely correct.

    The possible presence of tautomers of $8 in high temperature vapours was discussed

    by Guthrie

    e t a l . a a)

    on the basis of machined models of the $8 molecule. They found

    that besides the normal molecule of D d symmetry ( crown modification) two other

    molecules o f D2a and of Ca symmetry should be taken into account. Estimates of the

    difference in internal energy of these molecules compared with the crown modification

    were made by Guthrie

    e t a L a l )

    from the energy of bond rotations of molecules like

    S2C12, and by Pauling(aS) from the difference in the enthalpies of formation of $6

    and Ss, with quite different results. These lie in the range between 4.9 kcalth tool -a

    (Pauling) and 9 to 15 kcalta tool -a (Guthrie

    e t a L ) .

    The symmetry numbers o f the tautomeric molecules are 2 (D2a) and 8 (C0 , (ta)

    where the second number must be doubled because of d- and 1-isomers. For the

    simplest case, where only the symmetry number of the molecules contributes to the

    entropy, one has for Ks, the equilibrium constant of the reaction:

    S8 -- 4S2, 1 2 )

  • 7/26/2019 Sulphur Vapours

    7/12

    THERMODYNAMICS OF SULPHUR VAPOUR 839

    the expression:

    K~ = Ks/{1 + 18 e x p - E / k T ) } , (13)

    where/(8 is the constant of reaction (12) formulated for the crown modification only

    and E is the difference in internal energy between the crown form and the 18 tauto-

    meric molecules. Differences in moments of inertia and vibrational frequencies from

    those of the crown modification will alter the entropy contribution somewhat from

    Rln 18.

    Similar tautomeric molecules could be thought of for the other molecules, and a

    set of equations similar to equations (13) can be expected in this case. When the energy

    differences lie below about 8 kcalth mo1-1, as estimated by Pauling,(15) these tauto-

    meric molecules will contribute appreciably to the vapour composition.

    We have attempted to fit the experimental results to equilibrium constants based on

    the thermodynamic properties given by Detry

    et

    aL, (7) especially the enthalpy of

    formation of 2 derived from their results, taking into account the possible presence

    of tautomeric molecules in the way discussed here. The result was negative: (i) syste-

    matic deviations of the calculated densities from the measured ones at medium

    temperatures were found, and (ii) the partial pressures of 6, S7, and S s showed, at

    lower temperatures, a completely different variation with temperature to that found

    experimentally by Detry et al. 7) Consequently, the presence of significant amounts of

    tantomeric molecules even at the highest temperatures under consideration was ruled

    out. This means that the energy difference between the tautomeric and the normal

    molecules is higher than about 10 kcalth tool-1.

    The second possibility, tha t the enthalpy of formation of Sz(g) is incorrect, implies

    that the partial pressures of Sz in the saturated vapours given by Detry

    et aL 7)

    are

    not correct. This is not easy to understand from the type o f measurements (electro-

    chemical Knudsen cell) performed. The calibration of the Knudsen cell is then easy,

    because 2 is the main or even only constituent in diluted vapours, and the extra-

    polation to the saturation point was done with the theoretical slope of the curve:

    logarithm of the current connected with the Sz molecule against the potential of the

    cell. This seems to be a sound procedure. On the other hand, it will now be shown that

    the enthalpy of formation of 2 is higher by some 100 calth mo1-1 than that derived

    from the data of Detry

    et

    a/. (7) Perhaps there was an overpotential or an electrical

    leakage in the cell used by these authors.

    When the enthalpy of formation of S2 is varied, then, the bigger the molecules

    involved, the greater is the variation of the equilibrium constants of the reactions

    S ~ = i S 2 . 5 )

    Thus, with a value of

    AH~(S2, g, 298.15 K) = 31.20 kcalth mol- ~,

    the measured densities at all temperatures and the partial pressures of S 6 to S a found

    by Detry

    et al. 7)

    at temperatures between 473 and 673 K are represented well by the

    values calculated from the equilibrium constants (see equations (4) to (11)). Some

    smaller corrections of the thermodynamic properties of Sa, 4, and Ss were necessary

    in order to bring the values calculated as near as possible to those measured. These

  • 7/26/2019 Sulphur Vapours

    8/12

    84 H . R A U , T . R . N . K U T T Y , A N D J . R . F . G U E D E S D E C A R V A L H O

    c o r r e c t io n s a r e w i t h i n t h e e r r o r l i m i t s g i v e n b y D e t r y et a f o r t h e i r r e s u l t s . T h e

    t h e r m o d y n a m i c p r o p e r t i e s o f th e d i ff e re n t m o l e c u l a r s p e c i es f i t t ed t o t h e e x p e r im e n t a l

    r e s u l t s a re g i v e n i n t a b l e 2 . T a b l e 3 c o m p a r e s t h e m e a s u r e d v a p o u r d e n s i t i es (p r e s e n t

    v a l u e s ) w i t h t h e d e n s i t i e s c a l c u l a t e d f r o m t h e e q u a t i o n s f o r t h e e q u i l i b r i u m c o n s t a n t s

    u s i n g t h e d a t a i n t a b l e s 1 a n d 2 . T a b l e 4 c o m p a r e s t h e p a r t i a l p r e s s u r e s d e r i v e d f r o m

    t h e s e e q u a t io n s w i t h t h o s e f o u n d e x p e r i m e n t a l l y b y D e t r y

    et

    a l . (7 ) A s c a n b e s e e n ,

    t h e d e n s i t ie s a g r e e m o s t l y w i t h i n _+ 4 p e r c e n t w i t h t h o s e c a l c u l a t e d ; a n d t h e p a r t i a l

    p r e s s u r e s , e x c e p t t h o s e o f S 2 w h i c h a r e d e a r l y s m a l l e r , a r e i n a c c e p t a b l e a g r e e m e n t

    w i t h t h e e x p e r i m e n t a l v a l u e s .

    T h e d e n s i t i e s m e a s u r e d b y B r a u n e , P e t e r , a n d N e v e l i n g (2) a r e a l s o i n c l o s e a g r e e m e n t

    w i t h t h o s e c a l c u l a t e d f r o m t h e d a t a g i v e n i n t a b l e s 1 a n d 2 .

    F i g u r e 2 i s a s u r v e y o f t h e m o l e f r a c t i o n s o f t h e d i f f e r e n t s p ec i e s i n t h e s a t u r a t e d

    v a p o u r s b e t w e e n 7 7 3 a n d 1 27 3 K . A t l o w t e m p e r a t u r e s t h e b i g m o l e c u l e s , S 6 t o S s ,

    p r e d o m i n a t e , b u t t h e i r a m o u n t s d e c r e as e w i th t e m p e r a t u r e , a n d s o o n 2 a n d S a

    p r e d o m i n a t e .

    TA B LE 2 . The r m od yna m ic da t a o f t he ga se ous su lphur m o le c u le s S~ ( i = 2 t o 8 ). The s t a nda r d s t a t e

    is the idea l gas a t 1 a tm p ressure and 298.15 K

    (caltn = 4.184 J)

    i AHt /kca lt~ to ol - 1 S /ca l~hK - x m o l - 1

    2 31.20 54.40 ()

    3 33.81 64.39

    4 34.84 74.22

    5 26.14 73.74

    6 24.36 84.60 el)

    7 27.17 97.41

    8 24.32 102 .76 (11)

    TA B LE 3 . C om p a r i son o f c a l cu l a t e d a nd m e a su r e d va p our de ns i t i e s p a s a f unc t ion o f p r e s su re p .

    The c a l c u l a t i ons a r e pe r f o r m e d wi th t he t he r m odyna m ic da t a i n t a b l e s 1 a nd 2 a c c o r d ing to

    equa t ions (8) and (11) . Exp er imen ta l resul ts f rom th is wo rk only .

    (a tm - - 101.325 kPa)

    p(expt) p(ca lc ) p(expt) p(ca lc )

    p / a t m p / a t m

    m g c m - a m g c m - a m g c m - 8 m g e m - a

    T = 823 K

    0.689 1.721 1.755 1.864 5.409 5.454

    0.762 1.852 1.974 2.295 7.005 6.863

    1.157 3.059 3.191 3.150 9.695 9.723

    1.757 5.076 5.104 3.559 11.28 11.18

    T - - 873 K

    0.905 1.721 1.797 2.783 7.005 7.043

    0.966 1.852 1.952 3.695 9.695 9.786

    1.442 3.059 3.215 4.164 11.28 11.23

    2.109 5.076 5.084 4.008 10.64 10.75

    2.218 5.409 5.397 4.722 13.09 12.98

  • 7/26/2019 Sulphur Vapours

    9/12

    p / a t m

    T H E R M O D Y N A M I C S O F S U L P H U R V A P O U R

    T A B L E 3 continued

    p exp t ) p c a lc ) p exp t )

    p / a t m

    m g c m 3 m g c m - z n ag c m - 3

    841

    p cale)

    m g c m - 3

    T = 923 K

    1.204 1 .721 1 .802 5 .049 11.28 11.39

    1.273 .852 1 .941 5 .661 13.09 13.10

    1.817 3 .059 3 .12 0 7 .213 7 .46 17.58

    2 .651 5 .076 5 .094 7 .445 18 .51 18 .27

    2 .770 5 .409 5 .387 8 .316 20 .87 20 .90

    3 .414 7 .005 7 .017 8 .486 21 .55 21 .42

    4 .471 9 .695 9 .808 9 .030 22 .95 23 .11

    4 .845 10 .64 10 .82

    T = 973 K

    1.551 1 .721 1 .770 6 .893 13.09 12.98

    1 .620 1 .852 1 .874 8 .764 17 .46 17 .73

    2.313 3 .059 3 .021 8 .982 18.51 18.30

    3 .396 5 .076 5 .078 10 .04 20 .87 21 .11

    3 .518 5 .409 5 .326 10 .76 22 .95 23 .06

    4 .301 7 .005 6 .972 12 .13 27 .31 26 .84

    5.531 9 .695 9 .73 2 13.93 31.88 3 .96

    6 .022 10 .64 10 .88 15 .45 37 .55 36 .44

    6.246 11.28 11.41

    T = 1023 K

    T = 1173 K

    12 .83 10 .64 10 .67 55 .66 79 .82 78 .86

    21 .94 20 .87 21 .02 63 .21 100 .0 95 .90

    35 .25 40 .08 40 .22 71 .31 121 .2 115 .9

    46 .54 59 .45 60 .21

    T----- 1273 K

    15 .32 10 .64 10 .69 100 .7 120 .4 122 .5

    27 .92 20 .87 21 .17 102.3 121 .2 125 .8

    46 .82 40 .08 40 .19 109 .4 142 .6 140 .9

    62 .88 59 .45 59 .89 120 .4 168.1 168 .9

    77 .30 79 .82 80 .79 130 .8 211 .7 202 .1

    89 .96 100 .0 102 .1 143 .6 254 .1 259 .7

    1.858 1 .721 1 .724 10.74 17.46 17.55

    1.980 1 .852 1 .861 11.04 18.51 18.21

    2 .886 3 .059 2 .979 12 .32 20 .87 21 .12

    4 .293 5 .076 5 .031 13 .12 22 .95 22 .99

    4 .430 5 .409 5 .248 14 .72 27 .31 26 .82

    5 .417 7 .005 6 .894 16 .92 31 .88 32 .30

    6 .893 9 .695 9 .586 18 .54 37 ,55 36 .49

    7 .778 11 .28 11 .31 22 .35 47 .52 46 .84

    8 .574 13 .09 12 .92 22 .63 47 .67 47 .62

    T---- 1073 K

    2 .109 1 .721 1 .723 15 .16 20 .87 21 .02

    2 .266 1 .852 1 .865 15 .25 20 .87 21 .19

    3 .429 3 .059 2 .998 16 .04 22 .95 22 .74

    5 .233 5 .076 5 .024 17 .98 27 .31 26 .64

    5 .437 5 .409 5 .274 20 .65 31 .88 32 .32

    6 .655 7 .005 6 .849 22 .52 37 .55 36 .47

    8 .520 9 .695 9 .516 23 .86 39 .13 39 .52

    9 .316 10 .64 10 .74 24 .29 40 .08 40 .52

    9 .642 11 .28 11 .26 27 .03 47 .52 47 .03

    10 .58 13 .09 12 .77 27 .44 47 .67 48 .04

    13.20

    7 .46 17.35 29.97 55.63 54.35

    13 .56 18.51 17 .99

  • 7/26/2019 Sulphur Vapours

    10/12

    84

    r I . R A U , T . R . N . K U T T Y , A N D J . R . F . G U E D E S D E C A R V A L H O

    T A B L E 4 . C o m p a r i s o n o f t h e p a r ti a l p r e s su r e s p , i n s a t u r a te d s u l p h u r v a p o u r s g i v e n b y D e t r y

    et al. cv~

    f o u n d b y m e a s u r e m e n t s w i t h t h e e l e c t r o c h e m i c a l K n u d s e n c e ll , w i t h t h o s e c a l c u l a te d f r o m

    e q u a t i o n s ( 8 ) a n d ( 11 ) u s i n g t h e t h e r m o d y n a m i c d a t a i n t a b le s 1 a n d 2

    (a tm = 101.325 kPa )

    S p e c ie s p d a t m S p e c ie s p , / a t m

    D e t r y

    e t a l .

    T h i s s t u d y D e t r y

    e t a L

    T h i s s t u d y

    T = 4 7 3 K T = 5 2 3 K

    2 1 . 40 x 10 -6 8 .92 10 -7 2 2 .60 X 10 -8 1 .69 10 -5

    Sa 1.70 x 10 -7 1.47 x 10 -7 Sa 3.38 10 -6 3.23 10 -6

    4 1 .65 x 10 -T 1 .26 X 10 -7 4 3 . 04 X 10 -8 2 .81 10-n

    S~ 1 .56 x 10 -5 1 .93 10 -n 5 1 .72 10 -4 1 .63 x 10 -4

    Se 5 .50 x 10 -4 5 .63 X 10 -4 6 3 .60 X 10 -a 3 .65 10 -3

    ST 3 .28 X 10 -4 3 .30 X 10 -4 ST 2 .63 10 -a 2 . 61 X 10 -3

    8 1.89

    x 1 0 8 1 . 8 8 1 0 3

    8 1 . 02 10 - z 1 .02 x 10 -2

    T = 5 7 3 K T = 6 2 3 K

    2 2 .68 10 -4 1 .85 x 10 -4 2 1 .90 x 10 -a 1 .34 x 10 -z

    Sa 3 .66 x 10 -8 3 .93 X 10 -8 Sa 2 .68 10 -4 3 .08 10 -4

    4 3 .25 x 10 -5 3 .42 10 -8 4 2 .15 10 -a 2 .65 x 10 -4

    5 9 . 64 1 0 - 4 8 . 8 1 X 1 0 - 4 8 4 . 2 0 1 0 - a 3 .4 3 X 1 0 - 3

    5 1 .60 X 10 -2 1 .56 X 10 -2 8 5 .25 10 -z 4 .96 10 -2

    ST 1 .27 10 -2 1 .30 X 10 -2 7 4 .55 10 -2 4 .64 10 -2

    8 3 .64 10 -2 3 .65 10 -2 5 9 .70 10 -z 9 .87 10 -2

    T = 6 7 3 K

    Sa 9 .40 x 10 -a 7 .11 10 -a 6 1 .37 x 10 -1 1 .28 x 10 -1

    Sa 1.34 x 10 -a 1.73 x 10 -a 7 1.26 x 10 -1 1.31 x 10 -1

    4 1.04 10 -a 1.47 x 1 0 a S o 2 . 1 4 x 10 -1 2 .19 x 10 -1

    So 1 .43 x 10 -2 1 .05 x 10 -a

    T h e a c c u r a c y o f t h e t h e r m o d y n a m i c p r o p e r t i e s i n t a b l e s 1 a n d 2 c a n h a r d l y b e

    e s t i m a t e d . T h e e n t h a l p y o f f o r m a t i o n o f 2 m a y b e q u i te c o rr e c t , p e r h a p s t o w i t h i n

    ___ 5 0 c a lt a m o l - 1 , b e c a u s e a v a r i a t i o n o f th i s o r d e r o f m a g n i t u d e a l r e a d y r e s u l t s i n a

    s y s t e m a t i c d e v i a t i o n o f t h e c a l c u l a t e d f r o m t h e m e a s u r e d d e n s i t ie s . T h e o t h e r v a lu e s

    m a y b e s l i g h t l y l es s a c c u r a t e , b e c a u s e s o m e o f t h e m c a n b e v a r i e d a p p r e c i a b l y

    ( a l t h o u g h n o t i n d e p e n d e n t l y ) w i t h o u t m u c h e f fe c t. T h i s is e s p e c ia l l y t r u e f o r t h e

    m i n o r c o n s t i t u e n ts , 4 a n d S s , t h e p r o p e r t i e s o f w h i c h a r e c e r ta i n l y n o t v e r y c l o se l y

    d e f in e d . T h e e n t r o p y o f 6 ( l o) i s p e r h a p s n o t c o m p l e t e l y c o r r e c t , a s c a n b e s e e n f r o m

    t a b l e 4 . H e r e t h e p a r t i a l p r e s s u r e o f 6 d e v i a t e s i n a s y s t e m a t i c m a n n e r f r o m t h e v a l u e s

    d e t e r m i n e d b y D e t r y

    e t a l .

    O n t h e o t h e r h a n d t h e t h e r m o d y n a m i c p r o p e r t i e s i n t a b l e s 1 a n d 2 r e p r e s e n t a

    s y s t e m w h i c h i s o n t h e w h o l e c o n s i s t e n t w i t h t h e e x p e r i m e n t a l r e su l ts . I f m o r e d e t a i le d

    i n f o r m a t i o n o n t h e p r o p e r t i e s o f o n e o f t h e c o n s t i t u e n t s b e c o m e s a v a i l a b l e , it w i l l

    p e r h a p s b e n e c e s s a r y t o r e - e v a l u a t e t h e o t h e r v a l u e s t o o .

    T h e e q u i l i b r i u m c o n s t a n t K 3 f o r t h e r e a c t i o n

    3 = g2S2, (14 )

    i s i n c l o s e a g r e e m e n t w i t h t h e v a l u e f o u n d b y B e r k o w i t z a n d M a r q u a r d t (4) f r o m m a s s

    s p e c t r o m e t r i c w o r k o n v a p o u r s a b o v e C d S a n d Z n S . O n t h e o t h e r h a n d , t h e p ar t i a l

    p r e s s u r e s o f 4 a t h i g h t e m p e r a t u r e s a r e fa r le s s t i t a n e x p e c t e d f r o m t h e e x p e r im e n t s

  • 7/26/2019 Sulphur Vapours

    11/12

    T H E R M O D Y N A M I C S O F S U L P H U R V A P O U R 8 4

    1.0

    $2

    0.5

    0.2 S3

    $4

    0 . 1 -

    0.05

    0.02

    7 I t

    .01 ~ F I

    800 900 1000 1100 1200 1300

    T / K

    FIG UR E 2. M ole fractions x of the different molecular species in saturated sulphur vapours as

    calculated from the data in table 1 and 2 according to equation (8).

    o f t h e s a m e a u t h o r s . A l l t h e o t h e r c o n s t a n t s d o n o t d i f fe r m u c h f r o m t h o s e e x p e c t e d

    f r o m t h e s t u d y o f D e t r y e t a L c7~

    T h e c a l c u la t io n s p r e s e n t e d h e r e a r e b a s e d o n t w o a s s u m p t i o n s : ( i) t h e h e a t c a p a c i -

    t i e s c a n b e i n t e r p o l a t e d i n t h e w a y d e s c r i b e d a b o v e a n d ( i i ) t h e f u g a c i t y a n d c o m -

    p r e s s i o n c o e ff ic i e n ts o f a ll t h e s p e c i es i n t h e g a s p h a s e a r e f u n c t i o n s o f t e m p e r a t u r e a n d

    t o t a l p re s s u re o n l y a n d c a n b e t a k e n f r o m t h e t a b l e o f g e n e ra l iz e d p r o p e r t ie s o f p u r e

    gases an d l iqu ids . (~4)

    T h e i n t e r p o l a t i o n o f t h e h e a t c a p a c it ie s m a y b e d o u b t f u l f o r S 3, S4 , a n d S 5 a n d m a y

    i n t r o d u c e s o m e e r r o r i n th e t h e r m o d y n a m i c p r o p e r ti e s d e r i v e d f r o m t h e f it ti n g o f th e

    e q u i l i b r i u m c o n s t a n t s s o a s t o r e p r o d u c e t h e m e a s u r e d d e n s i t i e s a s c l o s e a s p o s s i b l e .

    T h e s p e c ie s S~ a n d S 4 a r e o f i m p o r t a n c e o n l y a t h i g h t e m p e r a t u r e s ( s e e f i g u r e 2 ) . A t

    l o w t e m p e r a t u r e s t h e i r m o l e fr a c t io n s w e r e a s s u m e d t o b e n e a r t h o s e f o u n d b y D e t r y

    e t a l . 7 ) T h u s , i f th e h e a t c a p a c i t ie s o f t h e s e s p e c ie s w e r e n o t q u i t e c o r r e c t , t h i s w o u l d

    r e s u l t i n a c e r ta i n , b u t s m a l l, i n a c c u r a c y o f t h e i r e n th a l p i e s o f f o r m a t i o n a n d e n t r o p i e s ,

    w h i c h w e r e d e r i v e d f r o m t h e e q u i l i b r i u m c o n s t a n t s b y a s e c o n d - l a w t r e a t m e n t . S i m i l a r

    a r g u m e n t s h o l d f o r S s t o a h i g h e r d e g r e e , b e c a u s e S 5 i s a l w a y s p r e s e n t a t l o w m o l e

    f r a c t io n s o n l y . T h e h e a t c a p a c i t y o f t h e b i g S 7 m o l e c u l e is e x p e c t e d t o f i t w e l l t o t h e

    cu r v es o f f i g u r e 1 .

    T h e a s s u m p t i o n c o n c e r n i n g t h e f u g a c i t y a n d c o m p r e s s io n c o e f fi ci e nt s h a s b e e n

    d i s c u ss e d i n c o n n e x i o n w i t h t h e e s t i m a t i o n o f t h e c r i ti c a l q u a n t i t i e s o f s u l p h u r . (3 ) I f

    t hi s a s su m p t i o n w e r e n o t c o m p l e t e l y t r u e , t h is w o u l d h a v e n o g r e a t i n fl u e n c e o n t h e

    t h e r m o d y n a m i c d a t a p r e s e n t e d i n t a b l e 2 . T h e s e v a lu e s a r e o n l y p a r t i a ll y b a s e d o n t h e

    d e n s i t y m e a s u r e m e n t s a t h i g h p r e ss u r e s . I n m o s t c a se s , w h e n p r e s s u r e s a r e n o t t o o

    h i g h , t h e fu g a c i t y a n d c o m p r e s s i o n c o e f f i c ie n t s a r e c l o s e t o u n i t y . O n t h e o t h e r h a n d ,

    t h e f a c t t h a t t h e t r e a t m e n t a p p l i e d h e r e d e s c ri b e s th e e x p e r i m e n t a l r e s u l ts b o t h a t

    l o w a n d a t h i g h p r e ss u r e s s u p p o r t s s t r o n g l y t h e a s s u m p t i o n s m a d e .

  • 7/26/2019 Sulphur Vapours

    12/12

    844 H . R A U , T . R . N . K U T T Y , A N D J . R . F : G U E D E S D E C A R V A L H O

    5 Com puter program

    A c o m p u t e r p r o g r a m w r i tt e n in F O R T R A N a c c o r d in g t o t h e s p e c if ic a ti o ns o n th e

    p rev ious page i s ava i l ab le f rom H. R . The da t a fo r c a l cu l a t i on o f t he fugac it y and

    com pres s ion coe f f ic i en t s a r e a l so p rov ided . Th i s p ro g ram a l lows t he p a r t ia l p r e s su re s

    o f 2 t o 8 and t he dens i t y o f t he vapo ur t o be ca l cu l a t ed f rom the t o t a l p re s su re and

    the t empe ra tu r e .

    R E F E R E N C E S

    1 . B ud in inka s , P . ; Edw a r ds , R . K . ; W a h lbe c k , P . G . J . Chem. Phys . 1968, 48, 2859.

    2 . Braune , H. ; Pe te r , S . ; Neve l ing , V. Z. Naturforsch. 195 , 6a, 32.

    3 . R a n , H . ; K u t ty , T . R . N . ; G ue de s de C a r va lho , J . R . F . J . Chem. Thermodynamics 1973, 5, 291.

    4 . B e r kow i t z , J . ; M a r qua r d t , J. R . J . Chem. Phys. 1963 , 39, 275.

    5 . B e r kow i t z , J . ; C hup ka , W . A . J . Chem. Phys . 1964, 40, 287.

    6 . Berkow itz , J . ; L i f sh i tz , C . J . Chem. Phys. 1968 , 48, 4346.

    7 . D e t r y , D . ; D r o w a r t , J . ; G o ld f inge r, P . ; K e l l e r , H . ; R ic ke r t , H . Z . Phys . Chem. N .F. 1967, 5 5, 314.

    8 . R a n , H . Rev . Sc i . Ins trum. 1972 , 43, 831.

    9 . Kubaschewski , O. ; Evans , E . L1. ; Alcock, C . B . Metallurgical Thermochemistry 4th edi t ion ,

    P e r ga m o n P r e s s : O xf o r d . 1967.

    10 . B e r kow i t z , J . ; C hnpk a , W . A . ; B r om e l s , E . ; B e l f o r d , R . L . J . Chem. Phys. 1967 , 47, 4320.

    11. G u th r i e J r . , G . B . ; S c o t t , D . W . ; W a dd ing ton , G . J . Amer. Chem. Soc . 1954 , 76, 1488.

    12 . Lu f t , N . W . Monatsh . Chem. 1955, 86, 474.

    13. K or t i im , G . Einfiihrung in die Chemisehe Thermodynamik 3r d e d i t i on , V e r l a g V a nde nhoe c k a nd

    R u pr e c h t : G 6 t t i nge n . 1963 , p . 202 .

    1 4. H o u g a n , O . A . ; W a t s o n , K . M . ; R a g a t z , R . A . ChemicalProcess Principles pa rt I I second edi t ion ,

    John W i le y S ons , I nc . : N e w Y o r k , Lon don , S idne y . 1966 .

    15 . Paul ing , L . Proc . Nat . Acad. ScL U.S . 1949, 35, 495.