supported by office of science culham sci ctr u st. andrews york u chubu u fukui u hiroshima u hyogo...

9
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAERI Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin CHI during ohmic discharges in spherical tori D. Mueller, M.G. Bell, Princeton Univ. W.T. Hamp, A.J. Redd, B.A. Nelson, T.R. Jarboe, R. Raman, Univ. of Wash. S.A. Sabbagh, Columbia Univ. 47 th APS – DPP Meeting Oct 24-28, 2005 Denver, Co.

Upload: maximilian-robbins

Post on 03-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U

Supported byOffice ofScience

Culham Sci CtrU St. Andrews

York UChubu UFukui U

Hiroshima UHyogo UKyoto U

Kyushu UKyushu Tokai U

NIFSNiigata UU Tokyo

JAERIHebrew UIoffe Inst

RRC Kurchatov InstTRINITI

KBSIKAIST

ENEA, FrascatiCEA, Cadarache

IPP, JülichIPP, Garching

ASCR, Czech RepU Quebec

College W&MColorado Sch MinesColumbia UComp-XGeneral AtomicsINELJohns Hopkins ULANLLLNLLodestarMITNova PhotonicsNew York UOld Dominion UORNLPPPLPSIPrinceton USNLThink Tank, Inc.UC DavisUC IrvineUCLAUCSDU ColoradoU MarylandU RochesterU WashingtonU Wisconsin

CHI during ohmic discharges in spherical tori

D. Mueller, M.G. Bell, Princeton Univ.W.T. Hamp, A.J. Redd, B.A. Nelson,

T.R. Jarboe, R. Raman, Univ. of Wash.

S.A. Sabbagh, Columbia Univ. 47th APS – DPP Meeting

Oct 24-28, 2005Denver, Co.

Page 2: Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U

Mueller, D. APS’05 2

Coaxial helicity injection (CHI)

• Used to provide solenoid-free plasma startup– transient CHI (Raman et al.)

• Steady-state CHI– Relaxation current drive

• Edge current drive– Control edge SOL flows– Improve stability limits– Induce edge rotation– Provide means to study current penetration mechanisms

• Persistent current• Well-characterized plasma

Page 3: Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U

Mueller, D. APS’05 3

Experimental setup

Direction of toroidal and poloidal fields and the applied electric field are chosen so that

1) ExB direction is into the vessel

2) Current following the field lines connecting the the electrodes will have Ip in the desired directionVinj

Page 4: Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U

Mueller, D. APS’05 4

Target shapes

• SN plasma shape• ExB is up• Strike points bridge

insulator • Different insulator

configurations

• Vinj

– HIT-II IGBT supplies

– NSTX Capacitor plus crowbar circuit

HIT-II NSTX

Page 5: Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U

Mueller, D. APS’05 5

HIT-II results indicate persistent Ip after CHI

• Successful in demonstrating persistent plasma current– When inj > tok , where inj = Iinj / inj , tok = Ip/ tok

tok

inj

Ip(kA)

Vinj(kV)

Iinj(kA)

0

0.8

0

2

1

2

0

4

80

120

inj > tokinj < tok

TIME(ms)14 16 18 16 1814

0

0.8

0

2

1

2

0

4

80

120

Page 6: Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U

Mueller, D. APS’05 6

HIT-II results indicate broader current profileafter CHI

• EFIT analysis indicates that li is lower after Iinj = 0• li is leading term in current distribution and indicates a

broader current profile

Page 7: Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U

Mueller, D. APS’05 7

NSTX progress towards edge current drive

• Modifying shape avoids arcs and increases toroidal current

Page 8: Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U

Mueller, D. APS’05 8

Early NSTX experiments clarify path forward

• inj > tok, feedback on Ip lowers Vloop (and Ip)

- persistent Ip not readily discernable

• n=1 tearing mode starts before CHI is applied

Page 9: Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U

Mueller, D. APS’05 9

Identified needed improvements in the approach used on NSTX

• Need to apply constant Vloop, using feedback on Ip

– confuses determination of CHI driven current

• Faster turn-off of Iinj would be helpful

• Need to avoid tearing mode in target plasma– observation of coherent n=1 activity

• Dynamo probe tip on fast reciprocating probe will measure

ne,Te, s at 2 poloidal and radial positions

B, Br, Bat one location

- This can provide crucial information regarding models of the CHI mechanism by directly measuring the candidate fluctuations

~ ~ ~~ ~ ~