symmetries of hives, generalized littlewood-richardson fillings, and invariants of matrix pairs over...

44
Symmetries of Hives, Generalized Littlewood-Richardson Fillings, and Invariants of Matrix Pairs over Valuation Rings. (preliminary report) Glenn D. Appleby * and Tamsen Whitehead Santa Clara University October 24, 2009

Upload: berniece-ellis

Post on 18-Dec-2015

229 views

Category:

Documents


0 download

TRANSCRIPT

Symmetries of Hives, Generalized Littlewood-Richardson Fillings,

and Invariants of Matrix Pairs over Valuation Rings.

(preliminary report)

Glenn D. Appleby* and Tamsen WhiteheadSanta Clara University

October 24, 2009

Three Big Ideas: h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

Hives

k14 k24 k34

k13

¹ 4

¹ 3

¹ 2

¹ 1 k11

k12 k22

k44

k23 k33

Littlewood-Richardson Fillings

inv

0

BB@

2

664

t9 0 0 00 t5 0 00 0 t2 00 0 0 t

3

775

2

664

1 0 0 02t2 + t 1 0 0

t4 + t3 + t2 t2 + t 1 0t3 t2 t 1

3

775

1

CCA

Invariants of Matrices over Valuation Rings

…with rectangles whose length corresponds to the multiplicity of the entry. Let kij denote the number of i’s in row j.

• Weakly increasing along rows • Strictly increasing in columns• “Word Condition”:

Given an LR filling of type (¹, º ; ¸), we can replace the numbers in boxes (“content º ”)…

# i’s in rows i to i+k ¸ # (i+1)’s in rows (i+1) to i+ k + 1

We say the above is a Littlewood-Richardson Filling (an “LR” filling) of type ( ¹, º ; ¸).

Littlewood-Richardson Fillings

Empty Boxes: ¹.

Entire shape: ¸

º = ( #1’,s, #2’s, #3’s,…)

Set: LR(¹, º ; ¸) =

1 2

1

3

1

4

2

4

2

1

3

1

3

2 2 2

1 1 1 1 11

k14 k24 k34

k13

¹ 4

¹ 3

¹ 2

¹ 1 k11

k12 k22

k44

k23 k33

nfki j g: fki j g de nes a LR ¯lling of type (¹ ;º;¸)

o

1. (LR1) (Sums) For all 1 · j · r, and 1· i · r,

¹ j +jX

s=1

ksj = ¸ j ; andrX

s=i

ki s = º i :

2. (LR2) (Column Strictness) For each j , for 2 · j · r and 1 · i · jwe require

¹ j + k1j + ¢¢¢ki j · ¹ (j ¡ 1) + k1;(j ¡ 1) + ¢¢¢+ k(i ¡ 1);(j ¡ 1):

3. (LR3) (Word Condition) For all 1 · i · r ¡ 1, i · j · r ¡ 1,

j +1X

s=i+1

k(i+1);s ·jX

s=i

ki s:

Thus, Littlewood-Richardson fillings can alternately be defined by inequalities among the {kij}:

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

A triangular array of real numbers satisfying the “rhombus inequalities”.

Sum of Obtuse Entries ¸ Sum of Acute Entries.

Hives:

(Hives appear in the proof of the Saturation Conjecture, eigenvalue problems for Hermitian matrices, representation theory, etc…)

¹ 1 ¸ ¹ 2 ¸ ¹ 3 ¸ ¹ 4 ¸ ¹ 5

Such a hive is of type (¹ º ; ¸).

We shall let Hive(¹ , º ; ¸) denote the set of all hives of this type.

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

By the Rhombus Inequalities, differences of consecutive edge entries yield a decreasing Partition of Real Numbers:

¹ 1

¹ 2

¹ 3

Hives:

(¹ 1;¹ 2; ¹ 3; ¹ 4;¹ 5) = ¹

º1 º2 º3 º4 º5

º

¸1

¸2

¸3

¸4

¸5

¸¹ 4

¹ 1 = h10 ¡ h00

¹ 5Note: the type of a hive may be defined with real-valued “partitions”!

(though hives over the non-negative integers are often of particular interest.)

Invariants of Matrix Pairs

If M 2 Mr(R), then there are invertible P,Q so that:

a diagonal matrix, where 1 ¸ 2 ¸ L r ¸ 0.

=

2

6664

t¹ 1

t¹ 2

...t¹ r

3

7775

:PMQ-1 = D Uniquely determined by the orbit of M

We’ll write inv(M) = ¹ = ( ¹1 , …, ¹r ) = The Invariant Partition of M.

Let Mr(R) denote the (r £ r) matrices over R, of full rank.

Let R denote a discrete valuation ring, with uniformisant t 2 R,so for all a 2 R, a=utk for some unit u and a non-negative integer k.

We will set kak = k and call this the order of a 2 R.

e.g., R = Q[[t]].

Suppose M, N 2 Mr (R) such that

inv(M) = ¹ , inv(N) = º, and inv(MN) = ¸.

We shall let << (M,N) >> denote the orbit of the pair (M,N) under the action of a triple of invertible matrices (P,Q,T) 2 GLr(R), acting as:

(P;Q;T) ¢(M ;N ) = (P M Q¡ 1;QN T ¡ 1):

This action preserves the invariant partition of both members of the pair, and their product.

Let MR( ¹,º ; ¸) denote the set of orbits of matrix pairs (M,N) such that inv(M) = ¹ , inv(N) = º, and inv(MN) = ¸.

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

Hives

k14 k24 k34

k13

¹ 4

¹ 3

¹ 2

¹ 1 k11

k12 k22

k44

k23 k33

Littlewood-Richardson Fillings

inv

0

BB@

2

664

t9 0 0 00 t5 0 00 0 t2 00 0 0 t

3

775

2

664

1 0 0 02t2 + t 1 0 0

t4 + t3 + t2 t2 + t 1 0t3 t2 t 1

3

775

1

CCA

Invariants of Matrix Pairs over Discrete Valuation Rings

Hive(¹ , º ; ¸)

LR(¹ , º ; ¸) MR(¹ , º ; ¸)

©-1 ({ hpq }) = {kij} where kij = (hj,(i-1)+h(j+1)(i)) – (hji+h(j+1)(i-1)), for i < j. This is just the rhombus difference for right-slanted rhombi. Thus, ©-1 could be applied to hives of arbitrary type.

determined an injective map:Pak and Vallejo (2005)

©: LR(¹ ;º;¸) ! Hive(¹ ;º;¸):

©(fki j g) = fhi j g

hpq =qX

i=1

pX

j =1

ki j +qX

s=1

¹ s:

where

is given by:

Hence, © ( { kij } ) is a hive over the non-negative integers.In fact, © is onto the set of all such hives.

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

To prove the image ©( {kij} ) of some LR filling is a hive, we must check the Rhombus Inequalities hold.

For “vertical” rhombi, the inequality reduces to one of the Column Strictness inequalities in LR2.

For “left-slanted” rhombi, the inequality reduces to one of the Word Condition inequalities of LR3.

However, the Rhombus Inequality for “right-slanted” rhombi reduces to the condition kij ¸ 0, but only in the case i < j.

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

k14 k24 k34

k13

¹ 4

¹ 3

¹ 2

¹ 1 k11

k12 k22

k44

k23 k33inv

0

BB@

2

664

t9 0 0 00 t5 0 00 0 t2 00 0 0 t

3

775

2

664

1 0 0 02t2 + t 1 0 0

t4 + t3 + t2 t2 + t 1 0t3 t2 t 1

3

775

1

CCA

Hive (¹ , º ; ¸)

LR(¹, º ; ¸) MR( ¹,º ; ¸)

©The direction (() has been known, in the case of R-modules, for some time, but we are interested in the inverse direction as well, and also more constructive methods.

Theorem (A., 1999):Let k11,k12, , k1r

k22, , k2r

krr

be a filling in LR(¹, º ; ¸).

Then set,

k22, , k2r

¢¢¢

2

66666664

1 0 ¢¢¢ ¢¢¢ 0

0 1...

......

......

......

...... 1 0

0 ¢¢¢ ¢¢¢ 0 tkr r

3

77777775

= N

2

666664

tk11 1 0 0

0 tk12...

...

0...

... 1... 0 0 tk1r

3

777775

¢

2

66666664

1 0 0 ¢¢¢ 0

0 tk22 1...

......

......

... 0...

...... 1

0 ¢¢¢ ¢¢¢ 0 tk2r

3

77777775

LR (¹, º ; ¸) ) MR(¹, º ; ¸)

The i-th factor:

2

66666666664

1...

1

0

0

tki i 1...

...tki ; r ¡ 1 1

tki r

3

77777777775

With N defined as above, and

inv(M) = = (1, 2, , r), inv(N) = = ( 1, 2, , r ),

And inv(MN) = = (1, 2, , r).

then,

M =

2

66664

t¹ 1 0 ¢¢¢ 0

0 t¹ 2...

......

...... 0

0 ¢¢¢ 0 t¹ r

3

77775

;

The fact that {kij}2 LR( ¹ , º ; ¸ ) implies the matrices have the correct invariants.

Note: Matrix Realizations of LR fillings of conjugate type were first obtained by Sa and Azenhas in 1990.

This Construction gives us an injective map:

ª : LR(¹ ;º;¸) ! MR (¹ ;º;¸)

Recent work (A., Whitehead, 2009) has led to a left inverse to the above, that is, a surjective map:

eª : MR (¹ ;º;¸) ! LR(¹ ;º;¸)

However, there are inequivalent orbits in MR(¹, º ; ¸) giving rise to the same filling in LR(¹, º ; ¸). The associated LR filling is only a discrete invariant of the orbit.

such that eª ±ª = I d:

Our method is to ¯nd in theorbit << (M ;N ) >> a distinguishedpair

(D¹ ;LDbº ) 2 << (M ;N ) >>;

where

D¹ =

2

66664

t¹ 1 0 ¢¢¢ 0

0 t¹ 2...

......

...... 0

0 ¢¢¢ 0 t¹ r

3

77775

; Dbº =

2

66664

tº r 0 ¢¢¢ 0

0 tº r ¡ 1...

......

...... 0

0 ¢¢¢ 0 tº1

3

77775

;

and L is a special, invertible, lower-triangular matrix(called ¹ -bº-generic) satisfying a class of inequalitiesamong the orders of thedeterminants of its minors.

°°°°L

³ (j ¡ i)^; : : : ; (j ¡ 1)^

1 ::: (r ¡ i)

´°°°°¡

°°°°L

³ (j ¡ i + 1)^; : : : ; (j )^

1 :: : (r ¡ i)

´°°°°

Theorem (A., Whitehead, 2009): Given a -generic matrix L, in the orbit of a pair (M,N), then for i < j:

where {kij} 2 LR( ¹, º ; ¸), and (j-i)^ denotes removing the indicated row from the minor.

= k1j + k2j + ¢¢¢+ ki j ;

The filling is an invariant of the orbit.

¹ -bº

A variation of the above formula can be used to compute the corresponding hive entry in Hive(¹ , º ; ¸).

Denotes the order of the minor of L with the given rows and columns.

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

k14 k24 k34

k13

¹ 4

¹ 3

¹ 2

¹ 1 k11

k12 k22

k44

k23 k33inv

0

BB@

2

664

t9 0 0 00 t5 0 00 0 t2 00 0 0 t

3

775

2

664

1 0 0 02t2 + t 1 0 0

t4 + t3 + t2 t2 + t 1 0t3 t2 t 1

3

775

1

CCA

Now, we can connect Hives to LR fillings, and LR fillings to Matrix Pair Invariants.

…Provided everything is defined over the non-negative integers.

Hive (¹, º ; ¸)

LR(¹, º ; ¸) MR( ¹,º ; ¸)

so, theimage©¡ 1(Hive(¹ ;º;¸))can becomputed for hivesof arbitrary, real valuedtype.Hives arede ned over R,

If ©¡ 1(fhpqg) = fki j g, by the Rhombus In-equalities, the parts ki j of the\ ¯lling" de nedby this inversewill satisfy:

ki j ¸ 0; whenever i < j .

However, it ispossiblethat apart ki i mightbenegative, for somei......and,all parts ki j as well as the parts of thepartitions ¹ , º, and ¸ will be real valued.

Are these “fillings” ©-1 (Hive(¹, º ; ¸)) realized as an invariants of an actual objects of study?

Call these “interior parts”

Call these“edge parts”

Our original matrix results were over discrete valuation rings, leading to LR fillings over the non-negative integers.

We have extended these results to a class of rings with a real-valued valuation.

There are many such examples. For one, let denote a field of formal power series:

F

a =1X

i=0

ci t®i 2 F

with real-valued exponents ®i. We’ll suppose the set of exponents for any a 2 has no limit points, so multiplication in is well-defined.

FF

With each element a =1X

i=0

ci t®i 2 F we may define the order of a as:

kak = ®0 2 R:

We shall define R µ as the valuation ring:

R = fa 2 F : kak ¸ 0g;

Whose units are the set: R£ = fa 2 R : kak = 0g:

T heor em1 Let M 2 M r (F ). Then there exist P;Q 2GL r (R) such that

P M Q¡ 1 = diag(t¹ 1 ; t¹ 2 ; : : : ;t¹ r );

where ¹ 1 ¸ ¹ 2 ¸ ¢¢¢¸ ¹ r . The real-valued exponentsinv(M ) = ¹ = (¹ 1;¹ 2; : : :;¹ r ) are uniquely determined byM and are an invariant of the orbit under the action ofmatrix equivalence.

Over R,Not

F

F

We now work with full-rank matrix pairs (M,N) 2 Mr( ),F

And, as before, will study the orbits of the action

(P;Q;T) ¢(M ;N ) = (P M Q¡ 1;QN T ¡ 1):

Where pairs (M,N) 2 Mr( ), but (P,Q,T) 2 GLr(R).

F

Essentially, everything goes over to the -valued case. All our constructions extend to this setting, including the determinantal formulas for fillings.

R

In this sense, we can form the set of orbits, denoted by: M (¹,º ;¸), where ¹, º, and ¸ are now partitions of real numbers.

F

That is, given an orbit of a matrix pair (M,N) in M (¹, º ; ¸) , we can find GLr (R) invariants that allow us to define real numbers {kij} that formally satisfy:

1. (LR1) (R-Sums) For all 1 · j · r, and 1· i · r,

¹ j +jX

s=1

ksj = ¸ j ; andrX

s=i

ki s = ºi :

2. (LR2) (R-Column Strictness) For each j , for 2 · j · r and 1· i · jwe require

¹ j + k1j + ¢¢¢ki j · ¹ (j ¡ 1) + k1;(j ¡ 1) + ¢¢¢+ k(i ¡ 1);(j ¡ 1):

3. (LR3) (R-Word Condition) For all 1 · i · r ¡ 1, i · j · r ¡ 1,

j +1X

s=i+1

k(i+1);s ·jX

s=i

ki s:

F

4. (LR4) (R-Non-negativity) For all interior parts,where i < j , we have ki j ¸ 0. There is no condi-tion on the edge parts ki i except ki i 2 R.

However, using these formulas, we find there is an additional property our “ ” fillings satisfy:

That is, fillings {kij} from matrix pairs over yield the same fillings

as ©-1(Hive(¹, º; ¸)) under the Pak-Vallejo map:

LR

F

This appears to be the “right” generalization to real-valued LR fillings.

eª³MF (¹ ;º;¸)

´= ©¡ 1

³Hive(¹ ;º;¸)

´

¹ 1

¹ 2

¹ 3

¹ 4

¹ 1

¹ 2

¹ 3

¹ 4

¹ 1

¹ 2

¹ 3

¹ 4

¹ 1

¹ 2

¹ 3

¹ 4

k12

k13 k23

k14 k24 k34

So, we can determine a “filling” {kij}. Can we draw the diagram?

¸1

¹ 1

¹ 2

¹ 3

¹ 4

k12

k13 k23

k14 k24 k34

k11

k22

k33

k44

¸2

¸3¸4

We shall call the above a diagram of a real-valued Littlewood-Richardson filling, or

an “ “ filling.LR

Insert an “origin”, measured horizontally

Begin by drawing the “base”, ¹.

We measure to the right for positive parts, and to the left for negative parts.

Interior parts (always non-negative) are added, moving to the right:

Edge parts, when negative, move the end of the row to the left.

The partition ¸ is measured from the origin to the end of the row (here, positive, though a negative row is possible).

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

Hive(¹, º ; ¸)

inv

0

BB@

2

664

t9 0 0 00 t5 0 00 0 t2 00 0 0 t

3

775

2

664

1 0 0 02t2 + t 1 0 0

t4 + t3 + t2 t2 + t 1 0t3 t2 t 1

3

775

1

CCA

So now, over , we can connect:

¹ 1

¹ 2

¹ 3

¹ 4

k12

k13 k23

k14 k24 k34

k11

k22

k33

k44

LR(¹ ;º;¸)

R

MF (¹ ;º;¸)

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

¹

º

¸

I. From Hives, to Matrices and LR Fillings

Hive(¹, º ; ¸)

h50

h51 h40

h52 h41 h30

h53 h42 h31 h20

h54 h43 h32 h21 h10

h55 h44 h33 h22 h11 h00

º

e

h00

h10 h11

h20 h21 h22

h30 h31 h32 h33

h40 h41 h42 h43 h44

h50 h51 h52 h53 h54 h55

º

¸¹

¸

º ¹e¹ = (¡ ¹ r ;¡ ¹ r ¡ 1; : : : ; ¡ ¹ 1)

e= (¡ ¸r ; ¡ ¸r ¡ 1; : : :; ¡ ¸1)

Note that, if inv(M) = ¹, then inv(M ¡ 1) = e¹ :

We will depict a hive of this type by:

¹

º

¸ º

e

e¹ e

¹

¸

¹ eº

e e¹

¸

º

13clock-wise

23clock-wise

Vert. Re°ection +13clock-wise

Vert. Re°ection Vert. Re°ection+2

3clock-wise

Inv(M) Inv(¤)

Inv(N)MN= ¤ N¤-1 = M-1

¹

º

¸ ¹

º

¸

¹

º

¸

¤-1 M = N-1

¹

º

¸¸

¹ eº

e

¤ N-1 = M N-1 M-1 = ¤-1 M-1 ¤ = N

Set ¤ = MN, so that

¹

º

¸

º

e

e

¹

¸

¹

e

¸

º

So, with six different orientations of hives… come six different, but related LR Diagrams.

The fillings in these six diagrams are linearly related by the S3 symmetries of the (linearly related) entries of the corresponding hives.

In classical LR fillings, proving c¹ º¸ = cº, ¹

¸ is established by constructing a bijection

LR(¹, º ; ¸) , LR(º, ¹ ; ¸)

as found in Kerber and James, and generalized by the row-switching algorithms of Benkhart, Sottile, and Stroomer (1996).

What does this relationship among LR fillings suggest about matrix invariants and hives?

II. From LR Fillings to Matrices and Hives

Recall we calculate an LR filling from matrices by using the order of a minor of the L:

2

66666666666664

1 0 ::: : : : : : : : : : 0

a21...

......

......

......

......

......

......

......

......

......

... 0ar 1 : : : ar;r ¡ 2 1

3

77777777777775

°°°°L

³ (j ¡ i)^; : : : ; (j ¡ 1)^

1 ::: (r ¡ i)

´°°°°

Omitted rows

{kij} 2 LR (¹ , º ; ¸)

{mij} 2 LR (º ,¹ ; ¸)

L =

That is, we may use a -generic matrix L, to get two LR fillings, the first in LR( ¹ , º ; ¸) as before, and a second in LR( º , ¹ ; ¸):

(M,N)

{ kij } 2 LR( ¹ , º ; ¸ ){ mij } 2 LR( º , ¹ ; ¸ )(“left filling”) (“right filling”)

Theorem (A., Whitehead, 2009): Given any matrix pair (M,N) , and any right filling associated to the orbit of the pair, there is a unique left filling also associated to the pair that is independent of the matrix realization of the filling.

2 M r (F )

Further, if ¹, º, and ¸, along with the filling, are realized by non-negative integers, this algebraic bijection of fillings is the same as the combinatorial bijection described by Kerber and James for classical LR fillings.

¹ -bº

“content º ”“content ¹ ”

Theorem (A., Whitehead, 2009) : In terms of hives, this bijection on fillings and matrix pairs:

¹

º

¸ into one of the form:

º

¹

¸

Note that, in particular, this new hive is not obtainable by any of the S3 symmetries found earlier.

LR

yields a new involution on hives, (which we can describe independently of the filling) taking each hive of the form:

³D¹ ; L ¢Dbº ¢diag(t¡ 4;t¡ 4;: : : ; t¡ 4)

´=

0

BB@

2

664

t8 0 0 00 t5 0 00 0 t2 00 0 0 t

3

775 ;

2

664

1 0 0 02t2 + t 1 0 0

t4 + t3 + t2 t2 + t 1 0t3 t2 t 1

3

775

2

664

t2¡ 4 0 0 00 t3¡ 4 0 00 0 t6¡ 4 00 0 0 t11¡ 4

3

775

1

CCA

(D¹ ; L ¢Dbº ) =0

BB@

2

664

t8 0 0 00 t5 0 00 0 t2 00 0 0 t

3

775 ;

2

664

1 0 0 02t2 + t 1 0 0

t4 + t3 + t2 t2 + t 1 0t3 t2 t 1

3

775

2

664

t2 0 0 00 t3 0 00 0 t6 00 0 0 t11

3

775

1

CCA

4

III. From Matrix Pairs to LR Fillings and Hives

There’s a nice description of the scalar shift of a hive, too!

(Left) LR Filling: (Right) LR Filling:

Scalar shift on the right only shifts the edge parts of the Right Filling

The Left Filling is unchanged, though the origin is shifted.

For scalar shifts of the left member, these phenomena are reversed.

– Interior parts are invariant under scalar shifts.

Content º

“Base” º

(M,N)

LR Filling of ¸ / ¹ with content ºLR Filling of ¸ / º with content ¹

(“left filling”) (“right filling”)

³D¹ ;LDbº

´

¹

º

¸º

¹

¸

º

e

e

¹

¸

¹

e

¸

º

e

º

¹

e

¸

¹

e

¸

º

…where both sides are related by the “left-right” LR bijections.Then, by the hive symmetries, we obtain the related fillings:

Our interest is not so much in counting fillings of a given type, but to understand the interconnections between seemingly different fillings, and the objects that relate them.

¹

º

¸

º

e

e

¹

¸

¹

e

¸

º

(M,N)

³D¹ ;LDbº

´

º

¹

¸

e

º

¹

e

¸

¹

e

¸

º

¹

º

¸

º

e

e

¹

¸

¹

e

¸

º

¹

º

¸

º

e

e

¹

¸

¹

e

¸

º

¹

º

¸

º

e

e

¹

¸

¹

e

¸

º

And, for each family of fillings, we obtain a new family (with the same interior parts) by various scalar shifts:

And, for each family of fillings,

³D(®)D¹ ;LDbºD(¯

´³D(°)D¹ ;LDbºD(´

´

³D(· )D¹ ;LDbºD(!

´

Etc….

These results imply, among other things, that huge families of scalar-shifted, “left-right”-related, or hive-symmetry-related triples of partitions have equal LR coefficients, in that they all share the same “combinatorial core”...

…and there’s more...

…but time’s up! Thank you!

¹

º

¸

º

e

e

¹

¸

¹

e

¸

º

What is the Hive corresponding to the scalar shift ³D¹ ;LDbº

´7!

³D¹ ;L(Dbº ¢D(¡ 4)

´?

0

8 14

13 21 24

15 25 30 32

16 27 33 36 38

0

8 14¡ 4

13 21¡ 4 24¡ 8

15 25¡ 4 30¡ 8 32¡ 12

16 27¡ 4 33¡ 8 36¡ 12 38¡ 16

0

8 10

13 17 16

15 21 22 20

16 23 25 24 22

8

5

2

1

11; 6; 3; 2

¹ = (8;5;2;1)

º = ( )

10

8

6

14¸ = (14;10;8;6)

10

6

4

2

¸ + (¡ 4) = (10;6;4;2)

7; 2; ¡ 1; ¡ 2º + (¡ 4) = (

1

2 1

0

8¡ 7 14¡ 7

13 21 24

15 25 30 32

16 27 33 36 38

0

8¡ 7 14¡ 7

13¡ 14 21¡ 14 24¡ 14

15¡ 21 25¡ 21 30¡ 21 32¡ 21

16¡ 28 27¡ 28 33¡ 28 36¡ 28 38¡ 28

0

1 7

¡ 1 7 10

¡ 6 4 9 11

¡ 12 ¡ 1 5 8 10

0

8 14

13 21 24

15 25 30 32

16 27 33 36 38

0

8¡ 7 14¡ 7

13¡ 14 21¡ 14 24¡ 14

15¡ 21 25¡ 21 30¡ 21 32¡ 21

16 27 33 36 38

0

8¡ 7 14¡ 7

13¡ 14 21¡ 14 24¡ 14

15 25 30 32

16 27 33 36 38

6;11;

8

5

2

1

3; 2

¹ = (8;5;2;1)

º = ( )

10

8

6

14¸ = (14;10;8;6)

³D¹ ;LDbº

´7!

³D(¡ 7) ¢D¹ ;L(Dbº )

´

¸ + (¡ 7) = (7;3;1;¡ 1)¹ + (¡ 7)

= (1;¡ 2;¡ 5;¡ 6)

A shift of the left member corresponds to a adding a “staircase” down the hive :

Pleasant Exercise: Calculate the hive and diagram for:

³D(¡ 7) ¢D¹ ;L(DbºD(+7))

´

º

e

e¹Given the Hive:

We first depict the (non-negative) partition º :

Where: ¹ = (8;5;2;1),º= (11;6;3;2), and

¸= (14;10;8;6).

We then extend the diagram by the non-negative interior parts kij, of the filling where i < j…

…followed by the (negative) edge parts kii:

Which results in the shape .

e

e

¹

¸

¹

e