synthetic high range resolution radar

Upload: anonymous-emcmib95

Post on 26-Feb-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Synthetic high range resolution radar

    1/32

    Synthetic high range resolution

    radar achieved by using pulse to

    pulse stepped frequency signals.

    Radar target range profile

    Course 3

    4 hours

  • 7/25/2019 Synthetic high range resolution radar

    2/32

    Synthetic high range resolution

    radar. Radar target range profile

    Frequency-Doain !arget Signatures

    "ulse to pulse stepped frequency signals

    Synthetic Range "rofile #eneration

    $ffect of !arget %elocity

    Range- "rofile Distortion "roduced byFrequency $rror

    $&aples 'on synthetic data and realdata(

  • 7/25/2019 Synthetic high range resolution radar

    3/32

    Frequency-Doain !arget Signatures

    )ny signal can be described as either a function of time

    or a function of frequency. !he echo signal fro a range-e&tended target

    illuinated by a short RF pulse usually is observed in the

    tie doain. *ts aplitude and phase versus frequency

    is the echo signal spectru+ ,hich is a frequency-

    doain description of the signal.

    easureents of a targets echo signal in the tie and

    frequency doains provide equivalent data for

    deterining target reflectivity.

    !he targets reflectivity profile in range delay can be

    defined as its echo signal aplitude and phase versus

    delay easured ,ith respect to the carrier signal of the

    transitted pulse.

  • 7/25/2019 Synthetic high range resolution radar

    4/32

    Frequency-Doain !arget Signatures

    ) continuous series of short RF pulses transitted at a

    fi&ed pulse repetition frequency can be defined as aFourier series of steady-state frequency coponents,ith a frequency spacing equal to the radars "RF.

    Reflectivity equivalent to that easured fro the train ofshort pulses could be obtained fro easureents of

    the aplitude and phase of the received Fourier seriesfrequency coponents relative to the respectivetransitted coponent.

    !his set of frequency-doain easureents ofreflectivity is the spectru of the tie-doain echo pulse

    train. *n practice+ ,hat ,e ,ant is the /RR reflectivity profile of

    a target+ not the periodic echo response. Frequency spacing can be the reciprocal of the target0s

    range-delay e&tent+ instead of the reciprocal of the

    radar0s "R*.

  • 7/25/2019 Synthetic high range resolution radar

    5/32

    !he tie duration of each transitted frequencycoponent need only be sufficient to produce anappro&iation to the steady-state echo response.

    !he pulse duration have to be greater than the target

    range-delay e&tent. *f a series of RF pulses ,ere transitted stepped in

    frequency fro pulse to pulse over a band,idth 1+ theset of echo aplitude and phase easureents ade

    relative to each transitted pulse can be transfored byusing the DF! into the range-profile equivalent of echoaplitude and phase easureents obtained relative toa short RF pulse of band,idth 1.

    Frequency-Doain !arget Signatures

  • 7/25/2019 Synthetic high range resolution radar

    6/32

    "ulse to pulse stepped frequency

    signals1

    0 0

    0

    ( ) ( . ).cos[2 .( . ).( . )]Ne

    r r

    k

    x t X t k T f k f t k T

    =

    = + [ ]0 0( ) , ( ) otherwiser r iX t A if t kT kT t and X t A= + =

    '3.2(

    Fig. 3.1 Signal SFS

    0

  • 7/25/2019 Synthetic high range resolution radar

    7/32

    "ulse to pulse stepped frequency signals

    ( ) ( ) ( ){ }1

    0 0

    0

    sin c exp2

    Ni

    i r

    k

    tX At k j k k T

    =

    = + + +

    ( ) ( ){ }1

    0 0

    0

    sin c exp +2

    N ii r

    k

    tAt k j k kT

    =

    + + + '3.(

    Fig. 3.2 SFS Spectrum.

  • 7/25/2019 Synthetic high range resolution radar

    8/32

    "ulse to pulse stepped frequency signals

    !he abiguity function odule of the signal SFS is given by

    sin[ . .( . . )]1( , ) 1 .sin [ . .( ].

    sin[ .( . . )]

    rc i

    i r

    N F T fF F t

    N t F T f

    + = +

    '3.3(

    Fig.3.3 The SFS signal ambiguity function

  • 7/25/2019 Synthetic high range resolution radar

    9/32

    "ulse to pulse stepped frequency signals !he section of the abiguity function are

    1 sin[ . . . ]( ,0) 1sin[ . . ]i

    N fN t f

    = '3.4(

    Fig. 3.4 Section of the SFS signal ambiguity function for F=

    1

    N f =

    ( ) ( ) ( )( )

    0 1, sin

    sin

    sinF

    Nc Ft

    NFT

    FTi r

    r=

    1

    r

    FNT

    =

    '3.5(

    '3.6(

    '3.7(

  • 7/25/2019 Synthetic high range resolution radar

    10/32

    "ulse to pulse stepped frequency signals

    Fig. 3.! SFS "atche# filter

    ii

    tQ t B N

    = = =

    '3.8(

  • 7/25/2019 Synthetic high range resolution radar

    11/32

    Synthetic Range "rofile #eneration

    - !ransit a series of 9 e&ploring pulses ,ith carrier frequencyfors

    fk = f0 + kf, k=0, 1, , N-1

    - Set a range-delayed sapling gate to collect Iand Qsaples of

    the targets base band echo response for each transitted pulse.

    - Store the quadrate coponents for each of the 9 pulses.

    - )pply frequency ,eighting to each data and corrections for target

    velocity+ phase and aplitude ripple of echo signals+ etc.

    - !a:e a inverse discrete Fourier transfor 'DFT-1( of each record

    to obtain the synthetic range-profile ,ith Neleents.

    S th ti R P fi! " ti

  • 7/25/2019 Synthetic high range resolution radar

    12/32

    Synthetic Range Prfi!e "eneratin

    STORAGE

    DFT-1PROCESSOR

    RECEIVED

    SIGNAL

    yk(t)

    REFERENCE

    SIGNAL

    GENERATOR

    RANGESELECTION

    CIRCUIT

    SAMPLINGCIRCUIT 1

    ADC 1

    MIXER 1

    ADC 2

    SAMPLINGCIRCUIT 2

    MIXER 2

    H(k)

    h(t)

    Fig.3.6 Functional block diagram of signal processor

    ( )

    ( )cos 2 ,

    for

    0 , otherwise

    k k k

    k r r i

    f t

    x t kT t kT t

    +

    = +

    ( )

    { } ( ) ( )cos 2 [ ( )] , for

    0 , otherwise

    k r k k r r i

    k

    f t t kT t t kT t t

    ! t

    + + + +

    =

    ( ) 2 t" # tt c =

    ( ) [ ]0 cos 2k k k$ t f t = +

    The ree!"e# $!%&' r*+ '& !#e' $'tter!&% ,*!&t t'r%et '$$+e# 't r'&%e R. /!th r'#!'

    "e*!ty t*/'r# r'#'r "r. !$0

    A ,$e r*+ '& N

    ,$e$ $er!e$ !$ #e$r!e# y the

    **/!&% re't!*&0

    The reere&e $!%&' k(t) !$0

    +k(t) +

    k(t)

    /here

    '3.;(

    '3.2

  • 7/25/2019 Synthetic high range resolution radar

    13/32

    !he difference bet,een the phases of the transitted signal and the received one is

    ( ) 222 tk k # t"t fc c

    =

    !he signal at i&ers output is sapled at

    where k = 0, 1, ..., N-

    1

    2

    2

    ik r

    t "% kT

    c= + +

    Replacing tie ,ith S:results the e&pression for total sapled difference of phases

    22 22

    2

    t ik k r

    # t" "f kT

    c c c

    = + +

    !herefore+ after sapling the signal at i&ers output is

    ( ) 0 cosk k k k m % =

    )fter i&ing the quadrature coponents results

    ( ) ( )0 0cos sin exp( )k k k k k & k j j = + =

    *f applying inverse discrete Fourier transfor for all 9 cople& saples it ,ill be obtained

    the target synthetic range-profile ,hich appro&iates the target ,eighting function h'n(

    ( ) ( )1

    0

    1 2exp , for 0 1N

    k

    ' n & k j kn n N N N

    = =

    Synthetic Range Prfi!e "eneratin

    '3.23(

    '3.24(

    '3.25(

    '3.26(

    '3.27(

    '3.28(

    ( )

    ( ) ( ) ( )0 cos 2 , for

    0 , otherwise

    k k r r i

    k

    f t kT t t kT t t

    m t

    + + + =

    '3.2(

    !he signal at the

    i&ers output is

    S th ti R P fi! " ti

  • 7/25/2019 Synthetic high range resolution radar

    14/32

    Since f:= f

    ?f results0

    ( )1

    00

    1 2R 2 2exp(-j2 f ) exp[ ( )], for 0 1

    c

    N

    k

    N" f' n j k n n N

    N N c

    =

    =

    @sing substitution2N" f

    ! nc

    =

    results1

    0

    0

    1 2 2( ) exp( 2 ) exp( )

    N

    k

    "' n j f j !k

    N c N

    =

    =

    *n the above relation it is recogniAed the su of a geoetric progression eleents+

    therefore this relation can be re,ritten as

    ( ) ( )01 exp 21 2

    exp 22

    1 exp

    j !' n j f

    !N cj

    N

    =

    0

    1 sin 1 2( ) exp exp 2

    sin

    ! N "' n j ! j f

    !N N c

    N

    = or

    !he agnitude of the synthetic range-profile is

    ( )

    sin

    sin

    !

    ' n !N

    N

    =

    Synthetic Range Prfi!e "eneratin

    '3.

  • 7/25/2019 Synthetic high range resolution radar

    15/32

    Responses fro a point target ,ill be a&iiAed ,hen y=

  • 7/25/2019 Synthetic high range resolution radar

    16/32

    f [ MHz] "max [m] N = 16r

    s[m]

    B [ MHz] N=32

    rs[m]

    B [ MHz] N =256

    rs[m]

    B [ MHz]

    0,5 1500 9,!5 1," #",$! ,2 5,$5 25,"

    0,2 !50 #",$! ,2 2,#$ ",# 2,92 51,2

    0, 500 1,25 #,$ 15,"2 9," 1,95 !",$

    0,# !5 2,# ",# 11,!1 12,$ 1,#" 102,#

    0,5 00 1$,!5 $ 9,! 1" 1,1! 12$

    0," 250 15,"2 9," !,$1 19,2 0,9! 15,"

    0,! 21#,2$ 1,9 11,2 ","9 22,# 0,$ 1!9,2

    0,$ 1$!,50 11,!1 12,$ 5,$5 25," 0,! 20#,$

    0,9 1"","" 10,#1 1#,# 5,20 2$,$ 0,"5 20,#

    1 150 9,! 1" #,"$ 2 0,5$ 25"2 !5 #,"$ 2 2,# "# 0,29 512

    50 ,125 #$ 1,5" 9" 0,19 !"$

    # !,5 2,# "# 1,1 12$ 0,1# 102#

    5 0 1,$! $0 0,9 1"0 0,11 12$0

    " 25 1,5" 9" 0,!$ 192 0,09! 15"

    Synthetic Range Prfi!e "eneratin

    Synthetic Range Prfi!e "eneratin

  • 7/25/2019 Synthetic high range resolution radar

    17/32

    Synthetic Range Prfi!e "eneratin

    f [ %&'] Rmax [m] 1"

    rs[m]

    * [ %&'] 2

    rs[m]*[ %&']

    25"

    rs[m]

    * [ %&']

    ! 21,#2 1, 112 0,"" 22# 0,0$ 1!92

    $ 1$,!5 1,1! 12$ 0,5$ 25" 0,0! 20#$

    9 1","" 1,0# 1## 0,5 22$ 0,0"5 20#

    10 15 0,9 1"0 0,#" 20 0,05$ 25"0

    11 1," 0,$5 1!" 0,#2 52 0,05 2$1"

    12 12,5 0,!$ 19$ 0,9 $# 0,0#$ 0!2

    1 11,5 0,!2 20$ 0," #1" 0,0#5 2$

    1# 10,!1 0,"" 22# 0, ##$ 0,0#1 5$#

    15 10 0,"2 2#0 0,1 #$0 0,09 $#0

    1" 9,! 0,5$ 25" 0,29 512 0,0" #09"

    1! $,$2 0,55 2!2 0,2! 5## 0,0# #52

    1$ $, 0,52 2$$ 0,2" 5!" 0,02 #"0$

    19 !,$9 0,#9 0# 0,2# "0$ 0,00 #$"#

    20 !,5 0,#" 20 0,2 "#0 0,029 5120

    Synthetic Range Prfi!e "eneratin

  • 7/25/2019 Synthetic high range resolution radar

    18/32

    y analyAing the previous table+ one can see that the ,ider the

    signal band is+ respectively the larger stepped frequency and pulses nuberare+ the better range resolution is.

    /o,ever by increasing the frequency step value the unabiguous

    range length becoes saller.

    ic

    a

    tm N

    T= =

    !his ratio has the sae value as if obtained by analogical

    processing. !herefore ,e can deduce that the synthetic range-profile

    generation diagra is a digital atched filter for stepped frequency fro

    pulse to pulse signal.

    Fro general e&pression of range resolution one can deduce that

    signal duration at signal procesor output is !a=2E9?f. *f input signal duration

    is tiit results that the copression ratio for one pulse inside the pac:age is

    given by

    Synthetic Range Prfi!e "eneratin

    '3.7(

  • 7/25/2019 Synthetic high range resolution radar

    19/32

    Synthetic Range Prfi!e# $ffect %f Target &e!city

    !he synthetic range-profile of the oving target is given by

    ( )1

    0

    21 2 2 2exp 2

    2

    Nt i

    k r

    k

    # t" "' n j kn f kT

    N N c c c

    =

    = + +

    Fig. 3.& The synthetic range'profile #epen#ing on t(o variables vtan# n.

    !he Doppler frequency for a oving target is

    02 2t t# # fF

    c= =

    '3.8(

    '3.;(

    Synthetic Range Prfi!e "eneratin

  • 7/25/2019 Synthetic high range resolution radar

    20/32

    Synthetic Range Prfi!e "eneratin

    !he a&iu response shifts as the ratio signalEnoise decreases and

    distortions of the response eerge+ for velocities higher than 3

  • 7/25/2019 Synthetic high range resolution radar

    21/32

    Synthetic Range Prfi!e "eneratin Fre'(ency F!(ct(atin)

    Inf!(ence#

    ( )& k ej k= k kf " c= 2 2

    !he cople& saples+ in frequency doain+ for a ideal target are

    ,here '3.3

  • 7/25/2019 Synthetic high range resolution radar

    22/32

    Synthetic Range Prfi!e "eneratin Fre'(ency F!(ct(atin)

    Inf!(ence#

    !he position of the detected scattering point corresponds ,ell to the delay associated to the target. !he average value of the aplitude of the principal

    pea: is given by

    ( )[ ]( ' n x e, = 2 2 2 '3.35(

    '3.36(

    *f ,e consider that the only source of error is the frequency

    synthesiAer results

    = 22

    "

    c

    ne can consider as acceptable value for .G2 H ,hat is equivalent toan pea: attenuation of the pea: of less than 4 d. !hen for the detection

    to 3

  • 7/25/2019 Synthetic high range resolution radar

    23/32

    Synthetic Range Prfi!e "eneratin Fre'(ency F!(ct(atin)

    Inf!(ence#

    Fig. 3.11 A scattering point rangeprofile for 1+,

    Fig. 3.1 A scattering point rangeprofile for +,

    Fig. 3.12 A scattering point rangeprofile for 4+,

    Fig.3.13 for #ifferent values of the - 2+, 4 +, an# & +,

    ( ),( ' n x

    S th ti R P fi! $ t T t

  • 7/25/2019 Synthetic high range resolution radar

    24/32

    Synthetic Range Prfi!e# $*tene Target)

    !he range-profile of ulti scattering points target is

    ( )1 1

    0 0

    21 2exp 2 exp , for 0 1

    ( Ni

    k

    i k

    "' n j f j kn n N

    N c N

    = =

    =

    Fig. 3.14 /0ample of a synthetic range profile in high resolution

    '3.37(

    S th ti R P fi! $ t T t

  • 7/25/2019 Synthetic high range resolution radar

    25/32

    Synthetic Range Prfi!e# $*tene Target)

    Fig.3.1! Synthetic range profile for arelative ban# of 3!

    Fig.3.1 Synthetic range profile for arelative ban# of !

    Fig.3.1$ Synthetic range profile for arelative ban# of &

    Fig.3.1& Synthetic range profile for arelative ban# of 1

    S th ti R P fi! $*tene Target)

  • 7/25/2019 Synthetic high range resolution radar

    26/32

    Synthetic Range Prfi!e# $*tene Target)

    Fig.3.1& Synthetic range profile

    for an e0ten#e# target four

    scattering points at #ifferent

    ban#(i#th of the signal

    S nthetic Range Prfi!e $*tene Target)

  • 7/25/2019 Synthetic high range resolution radar

    27/32

    Sy&thet! r'&%e re$*t!*& e0 3456 +

    Re' r'&%e re$*t!*& e0 153 +

    Ste,,e#

    re7e&y

    r'#'r

    Synthetic Range Prfi!e# $*tene Target)

    Fig.3.1& Synthetic range profile

    for an e0ten#e# target four

    scattering points at #ifferentban#(i#th of the signal

    ) stepped-frequency radar is sho,n e&ploring a target using a pulse

    ,idth of 2 Is+ equivalent to 25< eters in range delay. Radar resolution ,hen56 frequency steps of 2/A are used is

  • 7/25/2019 Synthetic high range resolution radar

    28/32

    Synthetic Range Prfi!e# $*tene Target)

    Fig.3.1) A'&5 +A%%6/% aircraft. The high resolution range profilefor #ifferent sight angle- o

    3o

    o

    an# )o

    .

  • 7/25/2019 Synthetic high range resolution radar

    29/32

    Synthetic Range Prfi!e# $*erienta! Re)(!t)

    Fig. 3.2 7onfiguration of

    measurement system-

    2.Frequency synthesiAer

    .9et vectorial analyAer

    3.)ngle reote coand

    4.Jo, noise aplifier

    5.!arget

    !he atri& has 28 lines and

  • 7/25/2019 Synthetic high range resolution radar

    30/32

    Synthetic Range Prfi!e# $*erienta! Re)(!t)

    Fig. 3.22 7omparison of range profile of a F11$ a "6%A8/ 2 an# a 973 face

    Synthetic Range Prfi!e $*erienta! Re)(!t)

  • 7/25/2019 Synthetic high range resolution radar

    31/32

    Synthetic Range Prfi!e# $*erienta! Re)(!t)

    Fig.3.24 ariation of the

    correlation coefficient for

    a "6%A8/ 2

    Fig.3.23 7omparison of

    range profile of a

    "6%A8/ 2 seen to

    face continuous curve

    an# un#er an angle of

    : pointillist curve

  • 7/25/2019 Synthetic high range resolution radar

    32/32

    Concluding rear:s