t. hirai, m. batilliot, j. linke, g. pintsuk forschungszentrum jülich, euratom association, jülich

20
Member of the Helmholtz Association Takeshi Hirai | Institute of Energy Research | Association EURATOM FZJ Cracking of a tungsten material exposed to single pulse thermal shock loads at elevated temperatures T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich Outline (1) Motivation (2) Thermal shock tests in electron beam facility JUDITH (3) Results: Cracking of tungsten (4) Summary

Upload: megara

Post on 25-Jan-2016

30 views

Category:

Documents


5 download

DESCRIPTION

Cracking of a tungsten material exposed to single pulse thermal shock loads at elevated temperatures. T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich. Outline (1) Motivation (2) Thermal shock tests in electron beam facility JUDITH - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Mem

ber

of

the H

elm

holt

z A

ssoci

ati

on

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ

Cracking of a tungsten material exposed to single pulse thermal shock loads at elevated temperaturesT. Hirai, M. Batilliot, J. Linke, G. PintsukForschungszentrum Jülich, Euratom Association, Jülich

Outline(1) Motivation(2) Thermal shock tests in electron beam facility JUDITH(3) Results: Cracking of tungsten(4) Summary

Page 2: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 2

1 mm1 mm

T0 = RT weight loss = 0.5 mg T0 = 650 - 700°C weight loss = 4.0 mg

Einc = 2.3  MJm-2, t = 1.8 ms, (Pins = 1.3 GW/m2) 10 shots at JEBIS

J. Linke et al., presented in ICFRM-10, Baden Baden Germany 2001.

Cracking and melting of W under thermal shock loads

Thermal shock response of W

Page 3: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 3

Cracking

Power density

Melting boiling

Thermal load

Cra

ckin

g th

resh

old

Mel

ting

thre

shol

d

Safe operation Crack propagationRe-crystallization

Melting, re-solidification, Irregular shape, Melt-layer loss,boiling

• Melting threshold: related to thermal properties (e.g. Dthermal), melting point (Tm)• Cracking threshold: related to thermal properties (e.g. Dthermal, ), mechanical properties, loading conditions (strain rate ~ T./t)

Dthermal: thermal diffusivity,: thermal expansion, t: pulse duration

Thermal shock loads on metals

Page 4: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 4

Cracking

Power density

Melting

Thermal load(120 keV e-beam)

W: c

a. 5

um

Cra

ckin

g th

resh

old

Mel

ting

thre

shol

d

Safe operation Crack propagationThermal fatigue

Melting, re-solidification

T_(thermal/yield>1)

normalized stress (thermal stress/yield stress) >

1bulk temp. Max surface temp.

Tsurf in thermal shock loadsTm= 3400 oC

DBTT (300 ~ 600 oC depending on strain rate)

bulk temp. Max surface temp.

bulk temp. Max surface temp.bulk temp. Max surface temp.

Thermal shock loads on W materials

Recrystallization

Page 5: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 5

Aims:• Examine W cracking failure under single pulse by using (i) power density (T) and (ii) bulk temperature (T0) as the parameters• Find safe operation range of the W grade under this condition

Cracking of W materials is important • Cracking threshold is lower than melting threshold• Cracking may cause fatal destruction of brittle materials

Single pulse is advantageous for understanding • Single shot tests: simple to model by original & heat treated material parameters • Multiple shot tests: need to consider dynamic material modification, hardening

W has 4 characteristic temperatures• DBTT; 300 - 600 oC, depending on strain rate• At temperature, thermal stress/yield stress > 1 • Recrystallization temperature ~ 1300 oC• Melting point; 3400 oC

Aims of the work

Page 6: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 6

Outline

(1) Introduction/Motivation

(2) Thermal shock tests in electron beam facility

(3) Results: Cracking of tungsten

(4) Summary

Page 7: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 7

Activated samples, Be samplesT <100 GBq as gas, <250 GBq in bulk

HV (<150 kV)

diagnostics:infrared camerapyrometervideo

cathodeElectron gun

x-y deflectioncoils

clampingholder

actively cooled sample

vacuum system:TMP, 2200 l/s

HV (<150 kV)

diagnostics:infrared camerapyrometervideo

cathodeElectron gun

x-y deflectioncoils

clampingholder

actively cooled sample

vacuum system:TMP, 2200 l/s

Electron beam facility, JUDITH, FZJ

Page 8: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 8

200 8006004000.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 100 300 500 700 900

Bulk temperature (°C)

Po

wer

den

sity

(G

W.m

-2)

DBTT

T=1697 oC

T= 1131 oC

T= 606 oC

T = 2P.t0.5/(..c.)0.5

A

B

C

Materials and Loading conditions

Loading conditions: Pulse duration 5 ms, single shot, loading area 16 mm2

Materials: ITER-reference W grade, deformed tungsten from PlanseeФ12 mm, 5 mm thickGrain diameter: ~20 µm

ΔT

T0

200 um Hea

t flu

xcross section

Page 9: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 9

A 0.43 GW/m2, 5ms at 200 oC

W cracking; major cracks, micro-crack network

Page 10: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 10

B 0.7 GW/m2, 5 ms at 200 oC

W cracking: major cracks, discontinuing cracks

Page 11: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 11

C 0.43 GW/m2, 5 ms at 600 oC

W cracking: No major cracks, micro-crack network

Page 12: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 12

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 200 400 600 800 1000

Starting temperature (°C)

Ab

sorb

ed p

ow

er d

ensi

ty (

GW

.m-2

)

400 µm400 µm400 µm

400 µm400 µm400 µm

400 µm400 µm400 µm400 µm400 µm400 µm

400 µm400 µm400 µm

400 µm400 µm400 µm

200 µm200 µm200 µm

200 µm200 µm200 µm

200 µm200 µm200 µm

200 µm200 µm200 µm

200 µm200 µm200 µm 200 µm200 µm200 µm

200 µm200 µm200 µm

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine) Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px

sqrt

(t) (

MW

.m-2

.s1/

2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px

sqrt

(t) (

MW

.m-2

.s1/

2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px

sqrt

(t) (

MW

.m-2

.s1/

2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px

sqrt

(t) (

MW

.m-2

.s1/

2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t) (M

W.m

-2.s

1/2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t) (M

W.m

-2.s

1/2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

T= 606 oC

T= 1131 oC

T=1697 oC

Bulk temperature (oC)

Major cracks, microcracks and surface modification

ΔT

T0

Page 13: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 13

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 200 400 600 800 1000

Starting temperature (°C)

Ab

sorb

ed p

ow

er d

ensi

ty (

GW

.m-2

)

400 µm400 µm400 µm

400 µm400 µm400 µm

400 µm400 µm400 µm400 µm400 µm400 µm

400 µm400 µm400 µm

400 µm400 µm400 µm

200 µm200 µm200 µm

200 µm200 µm200 µm

200 µm200 µm200 µm

200 µm200 µm200 µm

200 µm200 µm200 µm 200 µm200 µm200 µm

200 µm200 µm200 µm

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine) Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px

sqrt

(t) (

MW

.m-2

.s1/

2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px

sqrt

(t) (

MW

.m-2

.s1/

2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px

sqrt

(t) (

MW

.m-2

.s1/

2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px

sqrt

(t) (

MW

.m-2

.s1/

2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t) (M

W.m

-2.s

1/2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t) (M

W.m

-2.s

1/2)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

Discontinuing cracks

Low density

High density

Cracks network

No microcracks

Cracks network (wide and fine)

Microcracks

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

Temperature (°C)

Px sq

rt(t)

(MW

.m-2

.s1/2

)

Random microcracks

Low density

High density

Grain bondary cracks

No microcracks

Grain boundary cracks(wide and fine)

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

T= 606 oC

T= 1131 oC

T=1697 oC

Bulk temperature (oC)

Major cracks, microcracks and surface modification

No cracks, surface modification

Majo

r cracks

Microcracks

ΔT

T0

Page 14: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 14

2. Microcracks

1. Major cracks

3. Surface modification

W cracking under single pulse

0.8

0.4

0.6

0.2

0

P [

GW

/m2 ]

T0 [oC]0 200 400 600 800

No cracks, Surface modification

Majo

r cracks

Microcracks

Threshold temperature brittleness of the material below DBTT

Threshold power density thermal stress > yield strength

Only at high temperature recrystallization of surface layer

4. Surface elevation

Safe operation of the W grade

5 ms

Page 15: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 15

No clear dependence on power density related material constant such as grain size

Crack distance

Mean crack distance

0

50

100

150

200

250

300

0.0 0.2 0.4 0.6 0.8 1.0Absorbed power density (GW.m-2)

Mea

n cr

ack

dist

ance

[µm

]

Power density [MW/m2]

Microcracks at 200 oCMicrocracks at 400 oCMicrocracks at 600 oC

Microcrack networks

No cracks

Discontinuing networks

Thermal expansionCompressive stresses Plastic deformation

ShrinkageGrain boundary opening

heating Cooling

Thermal expansionCompressive stresses Plastic deformation

ShrinkageGrain boundary opening

heating Cooling

No cracksThermal expansionCompressive stresses Plastic deformation

ShrinkageGrain boundary opening

heating Cooling

Thermal expansionCompressive stresses Plastic deformation

ShrinkageGrain boundary opening

heating Cooling

Tensile stresses rupture at G.B.

Microcrack formation1. Plastic deformation at heating phase2. Generation of tensile stress in cooling phase3. Rupture at grain boundary due to the tensile stress

Page 16: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 16

Mean microcrack width ~ 1 um

Maximum major crack width at 0.4 GW/m2 at 200 oC

Crack width

Mean crack width

0

1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0

Absorbed power density (GW.m-2)

Cra

ck w

idth

[µm

]

Power density [MW/m2]

Major cracks at 200 °C Microcracks at 200 °CMicrocracks at 400 °CMicrocracks at 600 °C

0.4 GW/m2 5 ms 200oC

Major cracks

Microcracks

Page 17: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 17

Maximum elevation at 0.4 GW/m2 at 200 oC; same tendency as the crack widthContribution plastic deformation, extending to the free surface

Maximum at 200oC and decease at higher temperatures Contribution from thermal vacancies is not dominant

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.00 0.20 0.40 0.60 0.80 1.00Absorbed power density (GW.m-2)

Hei

gh

t (µ

m)

200 °C 400 °C 600 °C 800 °C

Height

Surface elevation height

0.4 GW/m2 5 ms 200oC

Page 18: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 18

Outline

(1) Motivation

(2) Thermal shock tests in electron beam facility JUDITH

(3) Results: Cracking of tungsten

(4) Summary

Page 19: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 19

By using deformed W grade, crack appearance under single pulse thermal shock tests were studied in the electron beam facility JUDITH.

Two kinds of cracks: (i) major cracks, i.e. large macroscopic cracks running over the loaded area with a low crack density; (ii) microcracks, i.e. cracks appearing between major cracks and often creating a network

Major cracks were caused by brittleness of the material at the temperature

Microcracks were formed by: (1) Plastic deformation at heating phase; (2) Generation of tensile stress in cooling phase; (3) Rupture at grain boundary due to the tensile stress. The less developed micro-crack at high power density due to reduction of elastic modulus at the peak temperature.

Safe operation condition of the grade under 5 ms loads: >200oC, < 0.28 GW/m2

as far as crack initiation is concered

Crack growth rates of those cracks are important and need to be studied (multiple shot thermal shock loads).

Summary

Page 20: T. Hirai, M. Batilliot, J. Linke, G. Pintsuk Forschungszentrum Jülich, Euratom Association, Jülich

Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ26 May 2008 No 20

Thank you for your attention