taller de bioinformática

84
Taller de Bioinformática 16-19 de Octubre, Santiago, Chile Universidad de Chile Pontificia Universidad Católica de Chile CONICYT INSERM (Francia)

Upload: kioko

Post on 14-Jan-2016

43 views

Category:

Documents


0 download

DESCRIPTION

Taller de Bioinformática. 16-19 de Octubre, Santiago, Chile Universidad de Chile Pontificia Universidad Católica de Chile CONICYT INSERM (Francia). Laboratoire de Biométrie et Biologie Evolutive (CNRS, INRIA), Université de Lyon: Laurent Duret ([email protected]) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Taller de Bioinformática

Taller de Bioinformática

16-19 de Octubre, Santiago, Chile

Universidad de Chile

Pontificia Universidad Católica de Chile

CONICYT

INSERM (Francia)

Page 2: Taller de Bioinformática

• Laboratoire de Biométrie et Biologie Evolutive (CNRS, INRIA), Université de Lyon:– Laurent Duret ([email protected])

– Manolo Gouy ([email protected])

– Marie-France Sagot ([email protected])

• Laboratoire Biométrie et Intelligence Artificielle INRA de Toulouse:– Thomas Schiex ([email protected])

• Laboratoire de Mathématiques, Université de Rouen:– Dominique Cellier ([email protected])

Page 3: Taller de Bioinformática

Objectives of the course

• Introduction to the bioinformatic tools that are used to analyse genomic sequences

• Plenary lectures: presentation of these tools and the underlying theoretical concepts

• Practicals: experiment these tools on real cases

Page 4: Taller de Bioinformática

Genome Projects

• Identify genes and other functional elements (regulatory elements, etc.). Where are they?

• Predict the function of these genes. What do they do?

Page 5: Taller de Bioinformática

Identification and characterization of functional elements (genes, etc.)• Experimental approach

– Long and expensive

• Bioinformatics: provide predictions to guide the experiments – Rapid and cheap– Reliable ?

critical interpretation of the predictions of bioinformatic tools

Page 6: Taller de Bioinformática

Basics of sequence analyis

• Sequence databases

• Searching for similarity in sequence databases

• Sequence alignments

• Identification of common motifs in a sequence data set

Page 7: Taller de Bioinformática

Gene prediction (T. Schiex)

• Intrinsic (ab initio) methods:– Discrimination of coding and non-coding sequences

based on different statistical properties– Identification of relevant motifs (splice signals,

translation start, stop, promoters, polyA-sites, etc.)– Based on the analysis of experimentally characterized

genes (sequence databases)

• Extrinsic methods: comparison of genomic sequences to known mRNA or proteins– Searching for similarities in sequence databases– Sequence alignments

Page 8: Taller de Bioinformática

• Sequence databases

– Information retrieval

• Searching for sequence similarity & Sequence alignments

– Gene prediction

– Function prediction

– Structure prediction (RNA, protein)

– Phylogeny

– Design of PCR primers, sequence assembly

– Etc.

• Identification of common motifs in a sequence data set

– Identify regulatory elements (e.g. transcription factor binding sites) in DNA sequences

– Identify conserved motifs (e.g. catalytic sites) in protein sequences

– Etc.

Page 9: Taller de Bioinformática

"Nothing in Biology Makes Sense Except in the Light of Evolution" - Dobzhansky

• Evolution of species (taxonomy)• Evolution of genes:

– Speciation– Horizontal transfer (bacteria, archea)– Duplications (evolution of new functions)– Modular evolution (e.g. exon shuffling)– Etc.

• Molecular phylogeny: reconstruct the evolutionary history of homologous sequences

Page 10: Taller de Bioinformática

Taller de bioinformática

• Introduction: genomes, genome projects (Laurent)

• Databases for molecular biology (Laurent)

• Sequence alignments (Dominique/Laurent) • Searching for sequence similarities (Dominique)

• Gene prediction (Thomas)

• Identification of motifs in sequences (Marie-France)

• Molecular phylogeny (Manolo)

Page 11: Taller de Bioinformática

Bioinformatics is also ...

• Protein sequence analysis (e.g. prediction of signal peptides, transmembrane domains, post-translational modifications, etc.)

• Structure prediction (RNA, protein)• Analysis of gene expression data (DNA

chips, etc.)• Analysis of gene regulatory networks• Etc.

Page 12: Taller de Bioinformática

What is a genome ?• 1911 - gene:

– Elementary unit, responsible for the transmission of hereditary characters

• 1920 - genome:– Set of genes of an organism

• 1944 - Avery et al.– DNA is the molecule of heredity

• 1950-70 :– Double helix, Genetic code

– Genome = set of DNA molecules present in a cell and transmitted to the offspring

Page 13: Taller de Bioinformática

A genome is more than a set of genes• Genes (transcription unit):

– Protein-coding genes– RNA genes:

• rRNAs, tRNAs, snRNAs, etc.

• Untranslated RNA genes (e.g. Xist, H19)

• Regulatory elements (promoters, enhancers, etc.)

• Elements required for chromosome replication (replication origins, telomeres, centromeres, etc.)

• Non-functional sequences– Non-coding sequences– Repeated sequences– Pseudogenes

Page 14: Taller de Bioinformática

Genome sizeMycoplasma genitalium

0,6 MbE. coli 4,7 Mb

YeastS. cerevisiae

13,5 Mb

NematodeC. elegans

100 Mb

ProtozoaAmoeba

dubia700 000 Mb

PufferfishFugu

rubripes400 Mb

Man3400 Mb

Xenopuslaevis

3100 Mb

AmphibiaNewt

100 000 Mb

DipnoiLungfish

150 000 Mb

ProkaryotesEukaryotes

Page 15: Taller de Bioinformática

Number of protein genes

Number of protein genes x 103E. coliYeastDrosophilaNematodeA. thalianaM. genitaculumMammals60204080 Human vs E. coli:

Genome size: x 1000Number of genes: x 10

Page 16: Taller de Bioinformática

How many genes in the human genome ?Technique Gene estimate Comments/assumptions

Estimation 100,000 if average size = 30 kb

Estimation 300,000 if average size = 10 kb

RNA reassociation 20,000 - 92,000

Genomic sequencing (1994) 71,000 biased toward gene-rich region?

CpG islands 67,000 assumes 66% human genes have CpG islands

EST analysis (1994) 64,000 matching with GenBank; 50% EST redundancy

Chromosome 22 (1999) 45,000 correction for high gene density on chrom. 22

Chromosome 21 (2000) + 22 40,000

Exofish (2000) 28,000-34,000 Comparison human/fish

EST (2000) 35,000 Number of genes

EST (2000) 120,000 Number of transcripts

Complete genome (2001) 30,000-40,000 Known genes + predictions

Page 17: Taller de Bioinformática

Proportion of functional elements within genomes

17%0.5% Drosophila85%2%13%E. coli70%2%28% YeastS. cerevisiae

1.5%0.5%98%Human28%0.5%71%NematodeC. elegans

0.5%0.01%Lunfish (dipnoi)Coding (protein)RNANon-coding

82%99.5%

Page 18: Taller de Bioinformática

Functional elements in the human genome

Untranslated RNAs: Xist, H19, His-1, bic, etc.

Regulatory elements: promoters, enhancers, etc.

Repeated sequences (SINES, LINES, HERV, etc.) : 40% of the human genome

3.4 109 nt 30,000-40,000 protein-coding genes

86% no known function61%25%introns1.5%12%protein-coding regionscentromeres, telomeres,

replication origins,SAR

RNA0.5%intergenic

86% no (known) function

Page 19: Taller de Bioinformática

Typical eukaryotic protein-coding geneATG (Start)Stop polyadenylation

siteTranscriptionAAAAAMaturation primary transcript DNA mRNATranslation protein exons intronsprotein-coding region (CDS)untranslated region (UTR)promoter

AG GT AG GT splice signals donnor acceptor branch point

Page 20: Taller de Bioinformática

Structure of human protein genes

• 1396 complete human genes (exons + introns) from GenBank (1999)

• Average size (25%, 75%)

– Gene 15 kb ± 23 kb (4, 16) (10% > 35 kb)

– CDS 1300 nt ± 1200 (600, 1500)

– Exon (coding) 200 nt ± 180 (110, 200)

– Intron 1800 nt ± 3000 (500, 2000)

– 5'UTR 210 nt (Pesole et al. 1999)

– 3'UTR 740 nt (Pesole et al. 1999)

• Intron/exon

– Number of introns: 6 ±3 introns / kb CDS

– Introns / (introns + CDS): 80%

– 5' introns in 15% of genes (more ?), 3 ’introns very rare

Page 21: Taller de Bioinformática

One gene, several products• Alternative splicing in more than 30% of human genes (Hanke et al.

1999)

• Alternative promoter

• Alternative polyadenylation sites

ATGStoppolyATranscriptionAAAAAAAAAAMaturationprimary transcriptDNAmRNATranslationprotein

Page 22: Taller de Bioinformática

Overlapping genes

POL IIpromoter

polyadenylationsite

transcription maturation 5'pm7GpppAAAAAAAAAAsmall nucleolar RNA

mRNA

N-myc geneN-cym geneIA IB II IIIIII II I

Overlapping protein genes

Small nucleolar RNA genes within intronsof protein genes

Page 23: Taller de Bioinformática

Structure of human protein genes

• GenBank: bias towards short genes

• 2408 complete human genes (exons + introns)

≤949698Publication date48121620222000Gene size (coding exons+introns) kb

Page 24: Taller de Bioinformática

Repeated sequences

• Tandem repeats– Satellite– Minisatellite– Microsatellite

• Interspersed repeats– DNA transposons– Retroelements

Page 25: Taller de Bioinformática

Tandem repeats motif bloc size %

human

genome

satellite: 2-2000 nt up to 10 Mb 10%

minisatellite: 2-64 nt 100-20,000 bp ?

microsatellite: 1-6 nt 10-100 bp 2%

Slippage of the DNA polymerase: CACACACACACA

Unequal crossing-over:

Recombination

Page 26: Taller de Bioinformática

Centromeres, telomeres: Satellite DNA

CTTCGTTGGAAACGGGAsatellite α (171 )pb

(17 )site CenpB pb répétitions de satelliteα

répétitions d'ordre, supérieur spécifiques

de chaque chromosome( 10 )jusqu'à Mb

centromèrechromosome

Page 27: Taller de Bioinformática

Interspersed repeats

• Transposable elements (autonomous or non-autonomous) :

– DNA transposons (rare in mammals)– Retroelements

Page 28: Taller de Bioinformática

Retroelements

• LINEs (long interspersed elements): 6-8 kb retroposons

• SINEs (short interspersed elements):80-300 bp small-RNA-derived retrosequences (tRNA), pol III

• Endogenous Retroviruses: 1.5-10 kb

Reverse transcriptase:NucleusCellRNADNAtranscriptionreverse transcriptionintegrationLTR gag pol env LTRRetrovirusRetrotransposonRetroposonRetroséquenceRetrovirus

Page 29: Taller de Bioinformática

NucleusCellLINE reverse transcriptaseRetrosequences:opportunist retroelements

reverse transcriptionDNARNALINERNART protein

Page 30: Taller de Bioinformática

Frequency of transposable elements in the human genome

• Total = 42% (Smit 1999)

• Probably underestimated0%4%8%12%AluLINE1MIRLINE2LTR

elementsDNAtranposon

Page 31: Taller de Bioinformática

The frequency of transposable elements is not uniform along the human genome:

e.g. inter-chromosomic variations (Smit 1999)

0%5%10%15%20%25%30%AluLINE1AutosomesChromosome X

Page 32: Taller de Bioinformática

Pseudogenes• After a gene duplication:

– evolution of new function (sub-functionalization or neo -functionalization)

– or gene inactivation

generepeated elementunequal crossing-overmutation

Page 33: Taller de Bioinformática

Retropseudogenes

genepromoterAAAAAAtranscription + maturationmRNADNAretrotranscription + integrationAAAAAADNA

Page 34: Taller de Bioinformática

Retropseudogenes

• 23,000 to 33,000 retropseudogenes in the human genome

• Often derive from housekeeping genes

Page 35: Taller de Bioinformática

Vertebrate genome organization: variations of base composition

along chromosomes

Sequence of human MHC

Page 36: Taller de Bioinformática

Isochore organization of vertebrate genomes

• Insertion of repeated sequences (A. Smit 1996)

• Recombination frequency (Eyre-Walker 1993)

• Chromosome banding (Saccone, 1993)

• Replication timing (Bernardi, 1998)

• Gene density (Mouchiroud, 1991)

• Gene expression ?? -> No

• Gene structure (Duret, 1995)

isochore %C+G % total genomic DNA

L1+L2 : 33%-44% 62 %

H1+H2 : 44%-51% 31%

H3 : 51%-60% 3-5%

H1+H2L1+L2H3H1+H2L1+L2L1+L2>300 kbBernardi et al. 1985

Page 37: Taller de Bioinformática

Isochores and insertion of repeat sequences (Smit 1999)

4%8%12%16%20%AluLINE-1LTR-

elements

Density in repeat sequencesG+C content of genomic sequence:G+C < 39%G+C > 47%G+C 39%-47%

4419 human genomic sequences > 50 kb4419 human genomic sequences > 50 kb

Page 38: Taller de Bioinformática

Isochores and gene density

MHC locus (3.6 Mb) MHC locus (3.6 Mb) (The MHC sequencing consortium 1999)(The MHC sequencing consortium 1999)

Class I, class II (H1-H2 isochores): 20 genes/Mb, many pseudogenesClass I, class II (H1-H2 isochores): 20 genes/Mb, many pseudogenesClass III (H3 isochore): 84 genes/Mb, no pseudogeneClass III (H3 isochore): 84 genes/Mb, no pseudogene

Class II boundaries correlate with switching of replication timingClass II boundaries correlate with switching of replication timing

isochore % total genomic DNA %total genes

L1+L2 : 62 % 31%

H1+H2 : 31% 39%

H3 : 3-5% 30%

2060100140Number of genes / MbL1+L2H1+H2H3Mouchiroud et al. 1991

Page 39: Taller de Bioinformática

Isochores and introns length

• 760 complete human genes• L1L2: intron G+C content < 46%• H1H2: intron G+C content 46-54%• H3: intron G+C content >54%

Average intron length (bp)Gene compaction (intron length/coding region length)40080012001600200024681012L1L2H1H2H3L1L2H1H2H3

Duret, Mouchiroud and Gautier, 1995

Page 40: Taller de Bioinformática

Mammalian genomes: summary• Genes, regulatory elements: ~ 2%

• Non-coding sequences: ~ 98%– Satellite DNA (centromeres) ~ 10%– Microsatellites ~ 2%– Transposable elements ~ 42%– Pseudogenes ~ 1%– Other (ancient transposable elements?) ~ 43%

• Variations in gene and repeat density along chromosomes

Page 41: Taller de Bioinformática

Genome projects

• Make the inventory of all the genetic information necessary for the development and reproduction of an organism

• Understand genome organization (bag of genes or integrated information system ?)

• Understand genome evolution

• Applications in medicine, agronomy, industry

Page 42: Taller de Bioinformática

Sequencing Projects :Genome / Transcriptome

gene (DNA)messenger RNA (mRNA)proteinexonintrontranscription, maturationtranslationchromosome (DNA)AAAAAAAA50-250 106 nt5-50 103 nt1-10 103 ntGenomeprojectsTranscriptomeprojects (ESTs)

Page 43: Taller de Bioinformática

Shotgun sequencingAB C D E B C D E AGenomeContigsGenomic DNA libraryFragmentation (±2kb), cloningSequencing (500 to 1000 bp) Assembly

Page 44: Taller de Bioinformática

Shotgun sequencing: improvement (E. Myers)

AB C D E B C D E AGénomeContigsGenomic DNA library(short inserts, ± 2kb)

Fragmentation, cloningSequencing(500-1000 bp)Genomic DNA library(longs inserts, ± 10kb, ±50 kb)

Sequencing of the extremities of each clone (“read pair”, 500-1000 pb)

Assembly

Page 45: Taller de Bioinformática

Strategy for sequencing the human genome (Academic international consortium)

• Genome• Cloning of long inserts (e.g. BAC DNA library : 100-200 kb)• Genomic mapping • Selection of clones to sequence

• Sub-cloning of short inserts (e.g. M13 DNA library : 1-20 kb)

• Sequencing M13 clones

• Assembly: contigs

• Finishing: gap closure

Page 46: Taller de Bioinformática

large insert DNA library (BAC): 150-250 kbgenomesmall insert library (M13)sequencingcontig assemblyfinished sequencecloningsub-cloningfinishing (filling gaps)Phase 0 single-few pass reads of a single clone (not contigs).Phase 1 Unfinished, may be unordered, unoriented contigs, with gaps.Phase 2 Unfinished, ordered, oriented contigs, with or without gaps. Phase 3 Finished, no gaps (with or without annotations)

GenBank/EMBL divisionPhase 0

Phase 1

Phase 2

Phase 3

HTG PRI (nr)GenBank/EMBL HTG division : High Troughput Genome sequences

Genomic Sequences

(draft)(draft)

Page 47: Taller de Bioinformática

The human genome sequencing projectWhere are we today (March 2001) ?

• According to Philipp Bucher (SIB, Lausanne) statistics and genome coverage estimates (see also EBI's statistics: http://www.ebi.ac.uk/~sterk/ genome-MOT)

Estimated size of human genome 3400 MB 100.00%

EMBL sequences in HUM division: 1200 MB 35.30%(10,073 entries, ave. Size: 120 kb)

Human sequences in HTG division: 3813 MB 112.00%(24953 entries, ave. Size: 153 kb)

Total: 5013 MB 147.00%

Estimated redundancy (35%) -1755 MB -51.60%

Corrected total: 3258 MB 95.80%

Page 48: Taller de Bioinformática

Complete genome sequence ?• Contig: sequence without any gap

• 170,000 contigs, 16 kb in average (cover 95% of the genome). Longest contig: 2 Mb

• Scaffold: set of ordered and orientated contigs; gaps of known length

• 1935 long scaffolds (>100 kb), 1.4 Mb in average (cover 86% of the genome), 100,000 gaps (2kb in average) + 51,000 short scaffolds (5% of the génome)

• Mapped scaffold: set of scaffold localized along chromosomes (but not always ordered and orientated, gaps of unknown length)

• Scaffolds ordered and orientated: 70% of the genome

• Scaffold ordered: 84% of the genome

• CELERA: similar results

Chromosome map (STS) Scaffold Mapped scaffold Contig

http://genome.ucsc.edu/

Page 49: Taller de Bioinformática

Genome projects: complete sequencing

• Bacteria: 45 complete genomes (19 during the last 12 mounths !)

• Archea: 10 complete genomes• Eukaryotes: 5 (6) complete genomes

– G. theta (nucleomorph) 0.5 Mb 100%– yeast: 13 Mb 100%– C. elegans 100 Mb 95%– A. thaliana 120 Mb 95%– Drosophila 170 Mb 60% (100%)– human 3200 Mb 95%

• 2/3 « draft » sequence, finished in 2003

– mouse 3000 Mb 10% • 3 x « draft » sequence in 2001

Page 50: Taller de Bioinformática

Genome Survey Sequence (GSS) projects

• Random sampling of genomic sequences: give (at low cost) an overview of the content of a genome

• Genomic DNA library

• Sequencing of clones:– Short sequences (< 1kb)

– Single read => high rate of sequencing errors (1-3%)

– Accurate enough to identify genes (exons)

– Largely automated => low cost

Page 51: Taller de Bioinformática

Large scale GSS projects

From GenBank (September 2001)

Species

Mus musculus (mouse)

Homo sapiens

Tetraodon nigroviridis

Oryza sativa (rice)

Trypanosoma brucei

Strongylocentrotus purpuratus (sea urchin)

Arabidopsis thaliana (plant)

Takifugu rubripes (pufferfish)

Drosophila melanogaster

Nb. of GSS

937 975

870 073

188 963

93 164

91 319

76 019

61 266

47 111

45 323

Page 52: Taller de Bioinformática

Transcriptome projects: Expressed Sequence Tags (ESTs)

• Inventory of all mRNAs expressed by an organism, in different tissues, development stages, pathologies, …– Single pass sequences: high error rate (>1%), partial mRNA sequences (300-500

bp)– Redundancy (highly expressed genes)– Accurate enough to identify genes (exons)– Largely automated

• Very useful to identify genes in genomic sequences, + information on expression pattern– Usually derived from poly-dT-primed cDNA -> bad coverage of 5' regions of

long mRNAs– 60-80% of human genes represented in public EST database, but only 25-50% of

the total coding part of the genome

• Possibility to get cDNA clones from the IMAGE consortium (http://image.llnl.gov/)

Page 53: Taller de Bioinformática

Large scale EST projects

From GenBank (September 2001)

Species

Homo sapiens

Mus musculus (mouse)

Rattus sp.

Drosophila melanogaster

Caenorhabditis elegans (nematode)

Lycopersicon esculentum (tomato)

Danio rerio (zebrafish)

Arabidopsis thaliana (plant)

Zea mays

Oryza sativa (rice)

Nb. of ESTs

3 789 914

2 153 036

317 066

255 456

135 203

126 736

117 276

113 331

106 595

80 365

Page 54: Taller de Bioinformática

Exponential increase of sequence data

• Doubling time: 13 mounths

-500

0

500

1000

1500

2000

2500

3000

3500

82 86 90 94 98Date

0.1

1

10

100

1000

10000

82 86 90 94 98Date

Amount of publicly available sequences (Mb)

Page 55: Taller de Bioinformática

Genome annotation• Identification of repeats (RepeatMasker, Reputer, …)

• Prediction of protein-coding genes– Intrinsic methods (GenScan, Genmark, Glimmer, ...)

– Genomic/mRNA (EST) comparison (blastn, sim4, …)

– Genomic/protein comparison (blastx, GeneWise, …)

• Prediction of RNA genes– Intrinsic methods (tRNA: tRNAScanSE, snoRNA …)

– Genomic/RNA (EST) comparison (blastn, sim4, …)

• And more …– Replication origins (bacteria) (oriloc)

– Pseudogenes (by similarity) (blastn, blastx)

– Regulatory elements (CpG islands, promoters ??)

Page 56: Taller de Bioinformática

Prediction of gene function• Analysis of expression pattern (ESTs, …)

• Prediction of the subcellular location of the protein : nucleus, membrane, excreted, etc.– SignalPep : http://www.cbs.dtu.dk/services/SignalP/

– Psort: http://psort.nibb.ac.jp/

– etc. (see http://www.expasy.org/tools/)

• Search for functional motifs (e.g. DNA binding domains, catalytic sites, …)

http://hits.isb-sib.ch/cgi-bin/PFSCAN

• Prediction by homology

Page 57: Taller de Bioinformática

Function prediction by homology ?• Similarity between proteins homology

• Homology conserved structure

• Conserved structure conserved function

• Yes, but …– Function: fuzzy concept

• Identical biochemical activity ?• Identical expression pattern (tissu-specific isoforms) ?• Identical subcellular location (cytoplasm, mitochondria, etc.) ?

– Homologous proteins with different function • e.g. homologous proteins binding a same receptor but opposite activity (activator/repressor)• homologous proteins with totally different functions: -cristalline / α-énolase

– Orthology/paralogy– Modular evolution

Page 58: Taller de Bioinformática

Function prediction by homology ?

MZEORFG: 1 ILNSPDRACNLAKQAFDEAISELDSLGEESYKDSTLIMQLLXDNLTLWTSDTNEDGGDE 59 I N+P++AC LAKQAFD+AI+ELD+L E+SYKDSTLIMQLL DNLTLWTSD ++ EBOV1433P: 186 IQNAPEQACLLAKQAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDQQDEEAGE 244

Score = 87.4 bits (213), Expect = 1e-17 Identities = 41/59 (69%), Positives = 50/59 (84%)

LOCUS BOV1433P 1696 bp mRNA MAM 26-APR-1993DEFINITION Bovine brain-specific 14-3-3 protein eta chain mRNA, complete cdsACCESSION J03868

LOCUS MZEORFG 187 bp mRNA PLN 31-MAY-1994DEFINITION Zea mays putative brain specific 14-3-3 protein, tau protein homolog mRNA, partial cds.

Page 59: Taller de Bioinformática

Orthology/paralogy

INS1 speciation duplicationPrimatesRodents Human Rat Ancestralinsulin gene

Mouse Rat Mouse INS INS1INS1INS2 INS2 INS2Homology: two genes are homologous if they share a common ancestor

Orthologues: homologous genes that have diverged after a speciation

Paralogues: homologous genes that have diverged after a duplication

Orthology ≠ functional equivalence

!

Page 60: Taller de Bioinformática

Phylogenetic approach for function prediction

1) Identify homologues

2) Align sequences

3) Compute the phylogenetic tree

2A3A1A1B2B3B2A3A1A1B2B3B2A3A1A1B2B3B2A3A1A1B2B3B2Agene duplication 4) Place known functions on the tree 5) Infer the likely function of other genes

Page 61: Taller de Bioinformática

Modular evolution

ABC

Page 62: Taller de Bioinformática

Systematic annotation of the human genome

• ENSEMBL project– http://www.ensembl.org/

• Human Genome Project Working Draft at UCSC– http://genome.ucsc.edu/

• The genome channel– http://compbio.ornl.gov/channel/index.html

Page 63: Taller de Bioinformática

Databases for molecular biology• Sequences

– General databases (DNA, proteins)– Specialised databases

• Polymorphism • Proteins structure• Genomic mapping• Gene expression• Genetic diseases, phenotypes• Bibliography• …• Databases of databases (dbCAT)

Page 64: Taller de Bioinformática

General sequence databases

• DNA databases : – EMBL (Europe) (1980)– GenBank (USA) (1979)– DDBJ (Japan) (1984)– These 3 centres exchange their data daily

identical content

• Protein databases  :– SwissProt-TrEMBL (Switzerland, Europe) (1986 and 1996)– PIR (International)

Page 65: Taller de Bioinformática

GenBankEMBLDDBJ

mRNA, EST,genes, genomes...

PublicationsPatentsDirect submission FTP WWWData acquisitionAnnotationDistributionSwissProt

TrEMBLPIR

proteins FTP WWW

Page 66: Taller de Bioinformática

Size of GenBank/EMBL(October 2001)

• 14.2 109 nucleotides.

• 13.3 106 sequences.

• 764 000 genes (proteins and RNAs).

• 256 000 bibliographic references.

• 57 giga-bits on disk.

Page 67: Taller de Bioinformática

Different types of nucleotide sequences in current databases

StandardHigh throughput genome (HTG)

Genome survey sequence (GSS)

Expressed sequence tags (EST)

Contents

biologically characterized genes and RNAs, finished clones from genome projects

unfinished clones from genome projects

single pass sequences from random genomic clones

single pass sequences from random cDNA clones

Length variable >20,000 bp <1,000 bp <1,000 bp

Accuracy medium-high high low low

Annotation

medium to high, rich biological annotation

technically use- ful, biologically poor

technically use- ful, biologically poor

technically use- ful, biologically poor

Page 68: Taller de Bioinformática

GenBank release 125 (October 2, 2001)

Division Entries Nucleotides % nt

EST 9,014,899 4,104,167,129 29%

HTG 88,432 4,608,681,226 32%

GSS 2,706,132 1,480,201,675 10%

Other 1,459,835 4,036,209,322 28%

Total 13,269,298 14,229,259,352 100%

Human 5,006,832 7,942,037,394 56%

Page 69: Taller de Bioinformática

Content of DNA databases:taxonomic sampling

• 72,000 species for which there is at least one sequence

• 9 species (0.01%) totalize 85% of sequences– Homo sapiens 62.1%

– Mus musculus 7.7%

– Drosophila melanogaster 6.1%

– Caenorhabditis elegans 3.3%

– Arabidopsis thaliana 2.9%

– Oryza sativa 1.3%

– Rattus norvegicus 0.8%

– Danio rerio 0.6%

– Saccharomyces cerevisiae 0.6%

Page 70: Taller de Bioinformática

Structure of database entries

• The format of entries is different in EMBL and GenBank/DDBJ

• The content is the same

• Text with structured fields

Page 71: Taller de Bioinformática

Fields ID, AC, NI and DT

Identifiers (sequence name and accession number), date of creation and last modification of the entry.

ID BSAMYL standard; DNA; PRO; 2680 BP.XXAC V00101; J01547XXNI g39793XXDT 13-JUL-1983 (Rel. 03, Created)DT 12-NOV-1996 (Rel. 49, Last updated, Version 11)

Page 72: Taller de Bioinformática

Fields DE, KW, OS and OC

General information on sequences (definition, keywords, taxonomy).

DE Bacillus subtilis amylase gene.XXKW amyE gene; alpha-amylase; amylase; amylase-alpha;KW regulatory region; signal peptide.XXOS Bacillus subtilisOC Eubacteria; Firmicutes; Clostridium groupOS firmicutes; Bacillaceae; Bacillus.

Page 73: Taller de Bioinformática

Fields RN, RX, RA and RT

Bibliographic references.

RN [1]RP 1-2680RX MEDLINE; 83143299.RA Yang M., Galizzi, A., Henner, D.J.;RT "Nucleotide sequence of the amylase gene fromRT Bacillus subtilis";RL Nucleic Acids Res. 11:237-249(1983).…

Page 74: Taller de Bioinformática

Fiels FT: FEATURE TABLE

Description of functional regions.

FT promoter 369..374FT /note="promoter sequence P2 [3] (amyR1)"FT mutation 381..381FT /note="g is a gra-5 and gra-10 mutation [3]"FT RBS 414..419FT /note="rRNA-binding site rbs-1 [3]"FT CDS 498..2480FT /gene="amyE"FT /db_xref="SWISS-PROT:P00691"FT /product="alpha-amylase precursor"FT /EC_number="3.2.1.1"FT /translation="MFAKRFKTSLLPLFAGFLLLFHLVLAGPAAFT ASAETANKSNELTAPSIKSGTILHAWNWSFNTLKHNMKDIHDAG...

Cross-references

Page 75: Taller de Bioinformática

Field FT

"join" operator

FT CDS join(242..610,3397..3542,5100..5351)FT /codon_start=1FT /db_xref="SWISS-PROT:P01308"FT /note="precursor"FT /gene="INS"FT /product="insulin"...

SequenceSub-sequence

Page 76: Taller de Bioinformática

Field SQ

SQ Sequence 2680 BP; 825 A; 520 C; 642 G; 693 T; 0 other; gctcatgccg agaatagaca ccaaagaaga actgtaaaaa cgggtgaagc agcagcgaat 60 agaatcaatt gcttgcgcct ttgcggtagt ggtgcttacg atgtacgaca gggggattcc 120 ccatacattc ttcgcttggc tgaaaatgat tcttcttttt atcgtctgcg gcggcgttct 180 gtttctgctt cggtatgtga ttgtgaagct ggcttacaga agagcggtaa aagaagaaat 240 (...) gatggtttct tttttgttca taaatcagac aaaacttttc tcttgcaaaa gtttgtgaag 2580 tgttgcacaa tataaatgtg aaatacttca caaacaaaaa gacatcaaag agaaacatac 2640 cctgcaagga tgctgatatt gtctgcattt gcgccggagc 2680//

Page 77: Taller de Bioinformática

Errors in sequence databases

• There are many errors in general sequence databases (notably for DNA databases) :

– Annotations errors.

– Sequence errors :

• Sequencing errors (compression, etc.)

• Contamination with cloning vector

• Contamination with foreign DNA

• Etc.

Page 78: Taller de Bioinformática

Redundance

• Major problem for DNA sequence databases.

{ {

{

Page 79: Taller de Bioinformática

Variations in sequences

• Redundant sequences are often not totally identical.

• It is impossible to determine whether the observed differences between two nearly-identical sequences are due to :

– Polymorphism.

– Sequencing errors.

– Gene duplication

• GenBank: 20% of redundance among vertebrate protein-coding genes; 35-40% of redundance among human genomic sequences

Page 80: Taller de Bioinformática

SWISS-PROT and its complement TrEMBL

• Collaboration between the Swiss Institute of Bioinformatics (SIB) and the European Bioinformatics Institute (EBI).

• SwissProt:– Manual expertise of protein sequences: very rich annotations (protein

function, subcellular localization, post-translational modification, structure, …)

– Minimal redundance– Incomplete

• TrEMBL: translation of protein-coding sequences described in EMBL and not in SwissProt– Automatic annotation: annotations moins riches

• SwissProt+TrEMBL: complete data set, minimal redundance

Page 81: Taller de Bioinformática

Specialized sequence databases ...

• PROSITE, PFAM, PRODOM, PRINTS, INTERPRO : databases of protein motifs

• Protein Data Bank (PDB) 3D structures of sequences (proteins, DNA, RNA)

• Ribosomal Database Project (RDP) : data on rRNAs• Species-specific databases:

– Human: OMIM: phenotypes, genetic diseases, mutations– Bacteria (ECD, NRSub, MycDB, EMGLib).– Yest (LISTA, SGD, YPD).– Nematode (ACeDB).– Drosophila (FlyBase).– …

• And many others … see dbCAT: • http://www.infobiogen.fr/services/dbcat/

Page 82: Taller de Bioinformática

Sequence retrieval in databases

• Selection of database entries according to :

– Name or accession numbers of sequences.

– Bibliographic references (author, article, …).

– Keyword.

– Taxonomy (species, gender, order, …).

– Publication date

– Organelle (mitochodria, chloroplaste, nucleus), host ...

– …

• Access to functional regions described in the feature table:

– Coding regions (CDS), tRNA, rRNA, ...

Page 83: Taller de Bioinformática

Database query software• ACNUC/Query : http://pbil.univ-lyon1.fr/

– Access to databases in GenBank, EMBL, SWISS-PROT or PIR formats.

– Complex queries

– Easy selection and extraction of subsequences (e.g. CDS, tRNAs, rRNAs, …)

• SRS (sequence retrieval system) http://srs.ebi.ac.uk/

– 90 databases available through SRS.

– multi-database queries.• Entrez http://ncbi.nlm.nih.gov/

– Access to NCBI databases: GenBank, GenPept, NRL_3D, MEDLINE.

– Search by neighboring: sequences, bibliographic references

Page 84: Taller de Bioinformática