tcfe9: tcs steel and fe -alloys database extended information · 2021. 1. 11. · tcfe9 . . 1 of 38...

38
TCFE9 www.thermocalc.com 1 of 38 TCFE9: TCS Steel and Fe-alloys Database Extended Information TCFE9 is a thermodynamic database for different kinds of steels and Fe-based alloys, such as stainless steels, high-speed steels, tool steels, high-strength low alloy (HSLA) steels, cast irons, corrosion-resistant high strength steels, low-density steels, and also cemented carbides. It can be used together with Thermo-Calc and its add-on modules (the Diffusion Module (DICTRA) and the Precipitation Module (TC- PRISMA) as well as the Software Development Kits (SDK). The database is developed and validated for simulation of the solidification process, the relative stability of matrix phases (austenite and ferrite), precipitation of secondary phases such as sulfides, borides, oxides, phosphides, carbides, nitrides, carbonitrides, and also intermetallic phases such as the sigma and laves phases. Contents Scope of the database ....................................................................................................................... 2 Major updates from TCFE8 to TCFE9 .................................................................................................. 3 A new element: Cerium (Ce) .................................................................................................................... 3 Sulfides ..................................................................................................................................................... 4 Phosphates ............................................................................................................................................... 5 Borides ...................................................................................................................................................... 5 Laves phase............................................................................................................................................... 6 Cu containing systems .............................................................................................................................. 6 Nb and V systems ..................................................................................................................................... 7 Peritectic reaction and continuous casting .............................................................................................. 7 Low-density steels .................................................................................................................................... 8 Ordered phases ........................................................................................................................................ 8 Martensitic transformation ...................................................................................................................... 9 Notes on some specific applications .................................................................................................10 Para-equilibrium ..................................................................................................................................... 10 Oxides ..................................................................................................................................................... 10 Molar volumes ........................................................................................................................................ 12 Galvanization .......................................................................................................................................... 12 Tool steels and high-speed steels (HSS) ................................................................................................. 13 High-strength low-alloy steels (HSLA) .................................................................................................... 13 Liquidus and solidus................................................................................................................................ 14 Cemented carbides ................................................................................................................................. 15 Assessed Binary Systems ..................................................................................................................16 Assessed Ternary Systems ................................................................................................................17

Upload: others

Post on 29-Jun-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 1 of 38

TCFE9: TCS Steel and Fe-alloys Database Extended Information TCFE9 is a thermodynamic database for different kinds of steels and Fe-based alloys, such as stainless steels, high-speed steels, tool steels, high-strength low alloy (HSLA) steels, cast irons, corrosion-resistant high strength steels, low-density steels, and also cemented carbides. It can be used together with Thermo-Calc and its add-on modules (the Diffusion Module (DICTRA) and the Precipitation Module (TC-PRISMA) as well as the Software Development Kits (SDK).

The database is developed and validated for simulation of the solidification process, the relative stability of matrix phases (austenite and ferrite), precipitation of secondary phases such as sulfides, borides, oxides, phosphides, carbides, nitrides, carbonitrides, and also intermetallic phases such as the sigma and laves phases.

Contents Scope of the database ....................................................................................................................... 2

Major updates from TCFE8 to TCFE9 .................................................................................................. 3

A new element: Cerium (Ce) .................................................................................................................... 3

Sulfides ..................................................................................................................................................... 4

Phosphates ............................................................................................................................................... 5

Borides ...................................................................................................................................................... 5

Laves phase ............................................................................................................................................... 6

Cu containing systems .............................................................................................................................. 6

Nb and V systems ..................................................................................................................................... 7

Peritectic reaction and continuous casting .............................................................................................. 7

Low-density steels .................................................................................................................................... 8

Ordered phases ........................................................................................................................................ 8

Martensitic transformation ...................................................................................................................... 9

Notes on some specific applications ................................................................................................. 10

Para-equilibrium ..................................................................................................................................... 10

Oxides ..................................................................................................................................................... 10

Molar volumes ........................................................................................................................................ 12

Galvanization .......................................................................................................................................... 12

Tool steels and high-speed steels (HSS) ................................................................................................. 13

High-strength low-alloy steels (HSLA) .................................................................................................... 13

Liquidus and solidus................................................................................................................................ 14

Cemented carbides ................................................................................................................................. 15

Assessed Binary Systems .................................................................................................................. 16

Assessed Ternary Systems ................................................................................................................ 17

Page 2: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 2 of 38

Assessed Quaternary Systems .......................................................................................................... 18

Included Phases ............................................................................................................................... 18

Acknowledgement ........................................................................................................................... 35

References ....................................................................................................................................... 36

Scope of the Database The TCFE9 database contains the thermodynamic descriptions for 28 elements (Table 1) and more than 255 binary, 255 ternary, and 76 quaternary systems. It also includes several quinary systems.

Table 1. The elements included in the TCFE9 database.

Ar Al B C Ca Ce Co Cr Cu Fe H Mg Mn Mo

N Nb Ni O P S Si Ta Ti V W Y Zn Zr

The TCFE9 database is applicable for various types of steels/Fe-alloys with an Fe-minimum of 50 wt.%. For alloying elements, the recommended composition limits are given in Table 2:

Table 2. The recommended composition limits (wt.%) in the TCFE9 database.

Element Max Element Max Element Max Element Max

Al 10 Cu 5 O Trace W 15

B Trace Mg trace P Trace Y *

C 7 Mn 30 S Trace Zn **

Ca Trace Mo 10 Si 5 Zr 10

Ce Trace N 5 Ta 10.0

Co 20 Nb 5 Ti 3.0

Cr 30 Ni 20 V 15.0

*Y systems are included mainly for the purpose of oxide dispersion strengthened (ODS) steels with many assessedoxygen containing binary and ternary systems within the Al-Cr-Cu-Fe-Mn-Ni-O-Si-Y-Zr frame of elements.

** The element Zn has been further treated with the focus on the Zn corner of Al-Cr-Fe-Zn system for galvanization process, but several other binaries and ternaries are also included.

Ar and H are only considered in the gas phase and no modelling of solubility in the solid solution phases or liquid is taken into account.

Page 3: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 3 of 38

It is worth mentioning that a sensible calculation cannot be expected if all alloying elements are at their highest limits. Some combinations of elements at high values do not give reasonable results. However, some alloying elements can exceed their limits considerably and the calculations still give good results.

The critical calculations must always be verified by equilibrium experimental data; it is your responsibility to verify the calculations but Thermo-Calc Software AB is interested in knowing about any significant deviations in order to improve future versions of the database.

The database is developed on the basis of complete assessments of binary, ternary, and some higher order systems. However, many intermediate compounds that usually do not occur in steels/Fe-alloys are ignored in the database. Therefore, the database may not be suitable to calculate complete binary and ternary systems, but only rather in the Fe-rich corner.

Sometimes, for some special steels/Fe-alloys, you may prefer to append some other stoichiometric or solution phases (usually intermediate compound phases that have been ignored in the TCFE9 database) from another compatible database (e.g. SSOL6 and/or SSUB5). But you must be very careful about appropriately appending such data in the combination.

The TCFE9 database contains an extensive GAS mixture phase (Ar and different species in the C-H-N-O-S system) for the main purpose of considering oxygen/nitrogen-gas controls in steel-making processes and different gas atmospheres under, for example, heat treatments. However, it can be replaced by an even more comprehensive description of the GAS phase appended from a compatible database (e.g. SSUB5 or SLAG4).

Similarly, an IONIC_LIQ solution phase can be appended from the TCOX7 database, when it is really necessary to consider a more comprehensive ionic liquid phase for calculations of e.g. formations of complex oxides on steel-surfaces. However, for the purposes of investigating various steel-making metallurgical processes, it is highly recommended to append the so-called SLAG solution phase from e.g. SLAG4 database. In the meantime, keep in mind that the SLAG and IONIC_LIQ phases should never be simultaneously considered in the same defined system/calculation, as they both represent the slag mixture but are modeled in different ways.

Major updates from TCFE8 to TCFE9 The TCFE9 database is significantly improved compared to TCFE8: 32 new binary and 35 new ternary systems are included in the database. In addition, more than 50 binary and 39 ternary, and many quaternary, systems are either completely updated or partially modified to improve the robustness and predictability of the database. The included systems are listed in Table 6, Table 7, and Table 8.

The major improvements to the TCFE9 database are as follows:

A New Element: Cerium (Ce) Cerium (Ce) is added with 19 Ce-X binary systems (X=Al, B, C, Ca, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, O, S, Si, V, Y, Zn, Zr). Two examples are shown in Figure 1.

Page 4: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 4 of 38

Figure 1. Phase diagram of a) Ce-Fe [1] and b) C-Ce [2] systems.

Sulfides The formation of sulfides in steels can be detrimental or beneficial. In either case it is important to understand and control the formation of sulfides. In the TCFE9 database the thermodynamics of Ca-Fe-Mn-Mg-S and its lower order systems are updated after the work by Dilner [3] (Figure 2). The Cr solubility in MnS is estimated based on the experimental data. Cu-sulfides are also added for some applications such as electrical steels.

Figure 2. a) The solubility lines in the FeS-MnS-MgS system in the temperature interval 873-1273 K. b) The CaS-MgS-MnS isothermal sections plotted at 1073-1273 K together with experimental information as cited in [3] .

Page 5: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 5 of 38

Phosphates Recently a series of new experimental data and thermodynamic assessments regarding the phosphorus containing systems became available[4]–[6]. Thereafter, several phosphorus containing ternary iron-based systems, Fe-X-P (X=Al, Cr, Mn, Mo, Nb, Ni, Ti, Si) are included in the TCFE9 database.

Figure 3. a) The vertical section of the Fe-Ni-P system at 5 wt.% Ni, together with experimental data as cited in [5]. b) Calculated vertical section of the Fe-Mn-P system at mass ratio W(Fe):W(Mn)=9:1, together with experimental data as cited in [6].

Borides Thermodynamic description of many boron containing systems are revised including iron containing ternary systems, Fe-X-B (X=C, Cr, Co, Mo, Mn, Nb, Ni, Si, Ti, V, W, Zr), and also some other ternary systems such as B-Cr-Mo, B-Cr-Ni, B-Ni-Si and the quaternary B-Cr-Fe-Mo system.

Figure 4. a) A calculated isothermal section diagram of the Fe–Nb–B system at 1073 K, compared with the experimental phase fields [7]. B) Calculated Fe-Si-B isopleth at X(B)=0.10 with DSC data [8].

Page 6: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 6 of 38

Laves Phase In the TCFE9 database, vanadium (V) is added in the Laves phase and the solubility of many elements are revised. The Laves phase is modified in Fe-Nb, Cu-Mo, Cu-Nb, Cu-W, Mo-Si, Nb-Si, Cu-Fe-Mo, Cr-Fe-Mo, Cr-Si-Nb, Fe-Mn-Mo, and Fe-Mo-Si systems. This description shows satisfying accuracy of the predictions compared to experimental information [11-12].

Figure 5. Amount of different phases as a function of temperature in two commercial steels a) 316L [9] b) P91 [10].

Cu Containing Systems The thermodynamic properties of Cu contacting systems is improved by adding several new descriptions including Ca-Cu, Cu-Nb, Cu-W, Al-Cu-Fe, Al-Cu-Mn, Al-Cu-Ni, Cr-Cu-Mo, Cr-Cu-W, Cu-Fe-Mn (Figure 6a), Cu-Fe-Mo (Figure 6b) and Cu-Mn-Ni systems.

Figure 6. a) Calculated vertical sections of the a) Cu-Fe-Mn system at 20 wt.% Cu [11]. b) Cu-Fe-Mo system at 5 wt.% Mo along with the experimental data [12].

Page 7: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 7 of 38

Nb and V systems Niobium (Nb) and vanadium (V) are common alloying elements in different types of steels with high affinity to form carbides and nitrides. In the TCFE9 database several Nb and V systems are either newly added (such as Mn-Nb and Fe-Mn-Nb (Figure 7a) systems) or updated (including C-Nb, Fe-Nb, Fe-V, Nb-V, C-Cr-Nb, and Fe-Nb-V (Figure 7b)).

Figure 7. Isothermal sections of a) Fe-Mn-Nb [13] and b) Fe-Nb-V [14] systems at 1573 K.

Peritectic Reaction and Continuous Casting High temperature equilibria, and specifically the peritectic reaction, is of significant importance in continuous casting practice. The TCFE9 database is improved by using data from recent thermodynamic assessments [15] and systematic DSC measurements in C-Fe-Mn-Si and Al-C-Fe-Mn-Si systems.

Figure 8. a) Calculated isoplethal section of a) Fe-2.12Mn-0.77Al-0.54Si-xC b) Fe-2.75Mn-1.11Si-0.097Al-0.014Ti-0.02Nb-xC

Page 8: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 8 of 38

Low-Density Steels Reducing the weight of engineering structures saves both material and energy, and also leads to greater fuel efficiency and reduces emissions in automobiles.

The Al-C-Cr-Fe-Mn-Ni systems is the core of low density steels and allows studies to replace costly Ni and Cr in stainless steels by cheaper Mn and Al. In the TCFE9 database the Al-C-Cr-Fe-Mn-Ni and its subsystems are updated with the latest assessments and experimental info. The Kappa phase is described with a regular CEF model and extended with Mn. Manganese phases CBCC_A12 and CUB_A13 are also added.

Figure 9. a) The volume fraction change of each phase with the temperature for Fe-10Mn-10Al-0.7C low-density steel [16]. b) The calculated vertical section of C-Fe-Mn involving the liquid phase at 20 wt.% Mn [17].

Ordered Phases The ordered phases B2_BCC and L12_FCC are described based on the order/disorder partitioning model as described by Lukas et al. [18]. In the TCFE9 database the ordered phases B2_BCC and L12_FCC are extended to contain the same elements as the corresponding disordered parts (BCC_A2 and FCC_A1). However, the ordering parameters are only assessed in the systems where the ordering is of significant importance. These phases are rejected by default and can be restored manually if required.

In the TCFE9 database the B2_BCC phase is revised in Al-Co, Al-Cr, Al-Ni, Co-Fe, Cr-Ni and Al-Cr-Ni, Al-Fe-Mn (Figure 10a), Al-Fe-Ni (Figure 10b), Al-Mn-Ni, Al-Co-Ni, and Co-Cr-Ni systems.

In addition to the B2_BCC phase, the L12_FCC phase is revised in Al-Cu, Cu-Fe, Cu-Ni, Cr-Ni, Cr-Fe, and Al-Cr-Ni, Al-Fe-Ni (Figure 10b), Al-Mn-Ni, Cr-Fe-Ni, Al-Co-Ni, and Co-Cr-Ni systems.

Page 9: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 9 of 38

Figure 10. Isothermal section of a) Al-Fe-Mn and b) Al-Fe-Ni at 900 °C compared with the experimental data.

Recently Kim et al. [19] showed that a B2-type brittle but hard intermetallic compound can be effectively used as a strengthening second phase in high-aluminum low-density steel. Table 3 shows the result of a calculation with the TCFE9 database compared with the experimental observations of Kim et al. [19].

Table 3. Partitioning of alloying elements between B2 precipitate and austenite matrix in during annealing of cold rolled Fe-10Al-15Mn-0.8C-5Ni (at.%). Calculation with the TCFE9 database vs. experimental data [19].

FCC_A1 composition (at.%) B2_BCC composition (at.%)

Element Calculated Experiment [19] Calculated Experiment [19]

Fe 65.6 68 53.7 57 Al 15.1 13 25.5 22.6 Mn 16.8 16.6 10.2 9.4 Ni 1.9 2.4 10.1 11.0

Martensitic Transformation The TCFE9 database has been successfully used for thermodynamically-based prediction of the lath and plate martensite start temperature [20]. The Ms temperature prediction depends on the available driving force which should be equal to the barrier for Martensite formation. In the TCFE9 database particular attention is paid to the epsilon (ε) martensite transformation, and the thermodynamic descriptions of the Fe-C and Fe-Mn-C systems are modified to give a reasonable driving force for the γ→ε diffusionless transformation. As a result, the database can be used with a user defined model, similar to [20], to predict the (ε) martensite Ms temperature (Figure 11).

Page 10: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 10 of 38

Figure 11. Epsilon martensite start temperature a) Fe-Mn, b) Fe-17at.% Mn-xC

Notes on Some Specific Applications Validation of the TCFE9 database against experimental data shows accurate predictions for various applications. Below are a few notes about some specific applications.

Para-equilibrium In the TCFE9 database (and with previous versions) Al and Si are modelled to dissolve into the CEMENTITE phase. This is necessary to be able to calculate para-equilibrium between, for example, BCC_A2 and CEMENTITE for alloys containing Al and Si [21]. The CEMENTITE phase is described with two sublattices with the ratio 3:1, with the following constituents: (AL CO CR FE MN MO NB NI SI V W)3(B C N)1.

Oxides The present description of the SPINEL, HALITE and CORUNDUM phases and more, for the Fe-Al-Ca-Cr-Mg-Mn-Ni-Si-Ti-C-O system [22], in the TCFE9 database allows for accurate predictions in different fields, e.g. oxide scale formation on various steels. See Figure 12 and Figure 13. In Figure 12 the oxide scale formed on a steel is predicted and the agreement with experimental information [23]–[26] is very good. You can see that below the outer scale (rich in corundum) an Fe-Mn spinel is formed and closest to the substrate a layer with halite and a Cr-Mn rich spinel, which also is verified in the work by Douglas et al.[23].

The model used for the spinel and corundum phases makes it possible to simulate diffusion inside these phases using the Diffusion Module (DICTRA) (also possible for other oxides such as halite) provided that a suitable mobility database is available.

Page 11: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 11 of 38

Figure 12. a) Oxidation of a steel (Fe-17.8Mn-9.5Cr-1.0Ni-0.27C wt.%) at 900 °C. b) Calculated composition of the spinel phase in the oxide scale at 900 °C.

Figure 13. a) Calculated oxide scale formed on a low-Cr boiler steel (Fe-1.44Cr-0.06C wt.%) at 550 °C. b) Calculated composition in different oxides versus oxygen partial pressure for the same steel as in (a). These results agree very well compared with experimental information [27]. A small amount of graphite is present for the whole oxygen partial pressure interval.

The element Y was added to TCFE8 and is further improved in the TCFE9 database mainly for the purpose of the development of oxide dispersion strengthened (ODS) steels (Figure 14).

Page 12: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 12 of 38

Figure 14. Isothermal section of Fe-Y-O calculated at 1000 °C.

Molar Volumes The TCFE9 database continues to contain molar volume data for all phases in the database, allowing for the calculation of volume fraction of phases, as well as density and coefficient of thermal expansion using Thermo-Calc. Molar volumes are also needed when utilizing the Precipitation Module (TC-PRISMA) to simulate precipitations. Validation of predicted densities in different alloys is shown in Figure 15a. The relative length change of a commercial steel is shown in Figure 15b.

Figure 15. a) Calculated density of several steels at room temperature compared to experimental data provided by Sandvik [28] and Uddeholm Tooling [29]. b) Relative length change [30] of steel Fe-0.11C-0.5Mn-0.03Si-0.01Cr-0.02Ni (wt.%) compared with predictions using TCFE9.

Galvanization The element Zn was added in TCFE8 and further improved in TCFE9 owing to its importance for hot-dip galvanization processes with the focus on the Zn corner of Al-Cr-Fe-Zn system.

Page 13: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 13 of 38

Figure 16. Zn corner of a) Al-Cr-Zn b) Al-Fe-Zn and c) Cr-Fe-Zn systems at 460 °C compared with experimental information [31], [32].

Tool Steels and High-speed Steels (HSS) TCFE9 can be used for tool steels and high-speed steels (HSS), especially to predict correct phases and phase compositions. Figure 17 demonstrates the latter for a number of different tool steels and high-speed steels.

Figure 17. Calculated vs. experimental equilibrium composition for: a) MC, b) M7C3 and c) M6C carbides in different tool steels and high-speed steels. The experimental data has been taken from references [33]–[35].

High-strength Low-alloy Steels (HSLA) Another application of the TCFE9 database is for high-strength low alloy (HSLA) steels, especially to predict correct phases and phase compositions in all possible precipitates (see Figure 18 and Table 4).

Page 14: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 14 of 38

Figure 18. Predicted mass fraction of Nb, Ti, V and Al in precipitates compared with experimental information [36] for a microalloyed steel with 0.09C-1.51Mn-0.035Al-0.010Ti-0.030Nb-0.08V-0.0105N (wt.%).

Table 4. Predicted compositions for (TixNb1-x)NyC1-y and (NbtTi1-t)CuN1-u carbonitrides (site fractions) in two microalloyed steels compared with measurements from Craven et al. [37]. All calculations were made at 1000 °C. Both steels contain the following alloy contents: 0.036Al- 1.4Mn-0.50Ni-0.015P-0.002S-0.4Si (wt.%) in addition to the composition provided in the table .

Steel 1 0.07C wt.% 0.0079N wt.% 0.025Nb wt.% 0.009Ti wt.%

x y t u

Experiment 0.86 ± 0.04 ≈ 1 1 ≈ 0.7

Calculation 0.94 0.94 0.98 0.71

Steel 2 0.097%C 0.0049%N 0.017%Nb 0.010%Ti

x y t u

Experiment 0.91 ± 0.03 0.84 ± 0.05 1 or ≈ 0.8 ≈ 1

Calculation 0.97 0.92 0.97 0.78

Liquidus and Solidus TCFE9 can satisfactorily predict the liquidus and solidus temperatures in various commercial steels and model alloys. In addition, the accuracy to predict the correct primary phase to form from the liquid is very high. In Figure 19 some measured liquidus temperatures are compared with the calculated ones for various steels.

Page 15: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 15 of 38

Figure 19. Experimental liquidus temperatures [38]–[40] for various steels (stainless steels, carbon and low alloy steels, high-speed steels with high Nb content and chromium steels) compared with calculations performed using the TCFE9 databases.

Cemented Carbides Although the TCFE9 database is mainly designed for steels and iron alloys, it can also be used for cemented carbides, especially in predicting correct phases and fractions, phase compositions and invariant solid/liquid equilibrium temperatures, see Table 5.

Table 5. Predicted temperatures of invariant solid/liquid equilibria including WC, MC (cubic carbide), and graphite or M6C compared with experimental data [41], [42].

System Invariant temperature graphite, °C Invariant temperature M6C, °C

Experimental Calculated Experimental Calculated

Co-W-C 1298 1298 1368 1368

+Nb 1282 1287 1345 1349

+Ta 1289 1289 1352 1348

+Ti 1289 1292 1361 1364

+Zr 1283 1291 1358 1362

Page 16: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 16 of 38

Assessed Binary Systems

Table 6. The 255 binary systems including 32 newly added (⬛ ) and 50 updated (⬛ ) in TCFE9 database.

Al B C Ca Ce Co Cr Cu Fe Mg Mn Mo N Nb Ni O P S Si Ta Ti V W Y Zn Zr

Al Al

B B

C C

Ca Ca

Ce Ce

Co Co

Cr Cr

Cu Cu

Fe Fe

Mg Mg

Mn Mn

Mo Mo

N N

Nb Nb

Ni Ni

O O

P P

S S

Si Si

Ta Ta

Ti Ti

V V

W W

Y Y

Zn Zn

Zr Zr

Page 17: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 17 of 38

Assessed Ternary Systems

Table 7. The 255 ternary systems including 35 newly added (⬛) and 39 updated (⬛) in the TCFE9 database.

Al-C-Fe Al-Ni-Zr C-Co-Zn C-Mo-Zr Co-Fe-N Cr-Mo-Ni Fe-Mn-Ni Fe-Si-Ti

Al-C-Mn Al-O-Si C-Cr-Fe C-N-Nb Co-Fe-W Cr-Mo-Si Fe-Mn-O Fe-Si-W

Al-Ca-Fe Al-O-Ti C-Cr-Mn C-N-Ti Co-Nb-Si Cr-N-Nb Fe-Mn-P Fe-Si-Zr

Al-Ca-O Al-O-Y C-Cr-Mo C-N-Zr Co-Ni-W Cr-N-Ni Fe-Mn-S Fe-Ti-Zr

Al-Ca-Si Al-Ti-V C-Cr-N C-Nb-Ti Co-Si-Ti Cr-N-Ti Fe-Mn-Si Mg-Mn-O

Al-Co-Fe B-C-Fe C-Cr-Nb C-Nb-V Co-Si-W Cr-N-V Fe-Mn-V Mg-Mn-S

Al-Co-Ni B-Co-Fe C-Cr-Ni C-Nb-W Co-Ti-Zr Cr-N-W Fe-Mo-N Mg-Ni-O

Al-Co-Zr B-Cr-Fe C-Cr-Si C-Ni-W Co-W-Zr Cr-Nb-Ni Fe-Mo-Ni Mg-O-Si

Al-Cr-Fe B-Cr-Mn C-Cr-Ta C-Si-Ti Cr-Cu-Fe Cr-Nb-Si Fe-Mo-P Mn-Mo-Ni

Al-Cr-Ni B-Cr-Mo C-Cr-V C-Ta-W Cr-Cu-Mo Cr-Ni-O Fe-Mo-Si Mn-Mo-Si

Al-Cr-O B-Cr-Ni C-Cr-W C-Ti-V Cr-Cu-Ni Cr-Ni-Si Fe-Mo-V Mn-Ni-O

Al-Cr-Zn B-Fe-Mn C-Cr-Zr C-Ti-W Cr-Cu-W Cr-Ni-W Fe-Mo-W Mn-Ni-Si

Al-Cu-Fe B-Fe-Mo C-Cu-Fe C-Ti-Zr Cr-Fe-Mn Cr-Ni-Zr Fe-N-Nb Mn-O-S

Al-Cu-Mn B-Fe-Nb C-Fe-Mn C-V-W Cr-Fe-Mo Cr-O-Ti Fe-N-Ni Mn-O-Si

Al-Cu-Ni B-Fe-Ni C-Fe-Mo C-V-Zr Cr-Fe-N Cr-O-Y Fe-N-Ti Mn-O-Y

Al-Fe-Mn B-Fe-Si C-Fe-N C-W-Zr Cr-Fe-Nb Cr-Si-Ti Fe-N-V Mn-Si-Zn

Al-Fe-N B-Fe-Ti C-Fe-Nb Ca-Cr-O Cr-Fe-Ni Cr-Si-W Fe-N-W Mo-N-Ni

Al-Fe-Ni B-Fe-V C-Fe-Ni Ca-Cr-S Cr-Fe-O Cu-Fe-Mn Fe-Nb-O Mo-N-V

Al-Fe-O B-Fe-W C-Fe-O Ca-Fe-O Cr-Fe-P Cu-Fe-Mo Fe-Nb-P Mo-Ni-Si

Al-Fe-P B-Fe-Zr C-Fe-P Ca-Fe-S Cr-Fe-S Cu-FeN Fe-Nb-Si N-Nb-Ti

Al-Fe-Si B-Mo-Ni C-Fe-Si Ca-Mg-O Cr-Fe-Si Cu-Fe-Ni Fe-Nb-V N-Nb-V

Al-Fe-Ti B-Mo-Ti C-Fe-Ti Ca-Mg-S Cr-Fe-V Cu-Fe-P Fe-Nb-Zr N-Ti-V

Al-Fe-Zn B-Ni-Si C-Fe-V Ca-Mn-O Cr-Fe-W Cu-Fe-S Fe-Ni-O N-V-W

Page 18: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 18 of 38

Al-Mg-O B-Ni-Ti C-Fe-W Ca-Mn-S Cr-Fe-Zn Cu-Fe-Si Fe-Ni-P Ni-O-Si

Al-Mg-Si B-Ni-Zr C-Mn-Si Ca-Ni-O Cr-Mg-O Cu-Mn-Ni Fe-Ni-Si Ni-O-Ti

Al-Mg-Zn B-Ti-Zr C-Mn-V Ca-O-Si Cr-Mn-Mo Cu-Mn-S Fe-Ni-W Ni-O-Y

Al-Mn-Ni C-Co-Cr C-Mo-N Ce-O-S Cr-Mn-N Cu-O-Y Fe-O-S Ni-Si-Ti

Al-Mn-O C-Co-Fe C-Mo-Nb Co-Cr-Fe Cr-Mn-Ni Fe-Mg-O Fe-O-Si Ni-Si-W

Al-Nb-Ni C-Co-Nb C-Mo-Ta Co-Cr-Ni Cr-Mn-O Fe-Mg-S Fe-O-Y Ni-Si-Zr

Al-Nb-Ti C-Co-Ni C-Mo-Ti Co-Cr-W Cr-Mn-S Fe-Mn-Mo Fe-P-Si O-Si-Y

Al-Ni-O C-Co-Ti C-Mo-V Co-Cu-Fe Cr-Mn-Si Fe-Mn-N Fe-P-Ti O-Y-Zr

Al-Ni-Ti C-Co-W C-Mo-W Co-Fe-Mo Cr-Mo-N Fe-Mn-Nb Fe-S-Ti

Assessed Quaternary Systems

Table 8. The 77 quaternary systems including 2 newly added (⬛) and 9 updated (⬛) in the TCFE9 database.

Al-C-Fe-Mn Al-Fe-Mn-O C-Co-Fe-Ni C-Cr-Mo-V C-Fe-N-Ni Ca-Fe-O-Si Cr-Mg-Ni-O

Al-Ca-Mg-O Al-Fe-Ni-O C-Co-Fe-W C-Cr-Mn-V C-Fe-Nb-W Ca-Mg-O-Si Cr-Mn-Ni-O

Al-Ca-O-Si Al-Fe-O-Y C-Co-Nb-W C-Cr-Mn-W C-Fe-Ni-W Cr-Fe-Mg-O Cr-Mo-N-Nb

Al-Cr-Fe-Ni Al-Mg-Mn-O C-Co-Ni-W C-Cr-Mo-V C-Fe-Si-W Cr-Fe-Mn-N Fe-Mg-Mn-O

Al-Cr-Fe-O Al-Mg-Ni-O C-Co-V-W C-Cr-V-W C-Fe-V-W Cr-Fe-Mn-O Fe-Mg-Ni-O

Al-Cr-Fe-Zn Al-Mg-O-Si C-Cr-Fe-Mn C-Fe-Mn-Nb C-Mo-N-Ni Cr-Fe-Mo-N Fe-Mg-O-Si

Al-Cr-Mg-O Al-Mn-Ni-O C-Cr-Fe-Mo C-Fe-Mn-Si C-N-Nb-Ti Cr-Fe-N-Nb Fe-Mn-Nb-N

Al-Cr-Mn-O Al-Mn-O-S C-Cr-Fe-N C-Fe-Mo-Nb C-N-Nb-V Cr-Fe-N-V Fe-Mn-Ni-O

Al-Cr-Ni-O Al-O-Si-Y C-Cr-Fe-Ni C-Fe-Mo-Si C-N-Ti-V Cr-Fe-Ni-O Mg-Mn-Ni-O

Al-Cr-O-Y C-Co-Cr-W C-Cr-Fe-V C-Fe-Mo-V Ca-Fe-Mg-S Cr-Fe-O-Y Mn-O-Y-Zr

Al-Fe-Mg-O C-Co-Fe-Mo C-Cr-Fe-W C-Fe-Mo-W Ca-Fe-Mn-S Cr-Mg-Mn-O B-Cr-Fe-Mo

Included Phases

The L12_FCC, B2_BCC, and the DICTRA_FCC_A1 phases are always rejected by default. These can be restored in the TDB Module (in Console Mode) if it is necessary for your system.

Page 19: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 19 of 38

Table 9. List of all phases in TCFE9.

Phase Name Formula Comments

A_CE2O3 (CE+3 CE+2)2(O-2)2(O-2 VA)1 prototype A_La2O3 (P-32/m1)

A_YZN2 (Y)0.33(ZN)0.67

AF (AL2O3)1(FE2O3)1 This is Al2O3.Fe2O3 (AF)

AL12MG17_A12 (MG)10(AL MG ZN)24(AL MG ZN)24

AL13FE4 (AL)0.63(FE MN ZN)0.23(AL VA ZN)0.14

AL1CE3 (AL)0.79(CE)0.21

AL2CE (AL)0.67(CE)0.33

AL2CR3 (AL)0.4(CR)0.5(CR ZN)0.1

AL2FE1 (AL)2(FE MN)1(VA ZN)0.04

AL2S3 (AL2S3)

AL2TIO5 (AL+3)2(TI+4)1(O-2)5

AL2Y_C15 (AL Y)2(AL Y)1

AL2Y3 (AL)2(Y)3

AL3CE_ALPHA (AL)0.75(CE)0.25

AL3CE_BETA (AL)0.75(CE)0.25

AL3Y_HT (AL)0.75(Y)0.25

AL3Y_LT (AL)0.75(Y)0.25

AL4C3 (AL SI)4(C)3

AL4CE (AL)0.8(CE)0.2

AL5FE2 (AL)5(FE MN)2(VA ZN)3

AL5FE4 (AL FE)

AL7CR (AL)6(CR)1(AL ZN)1

AL8MN5_D810 (AL)12(MN)5(AL FE MN)9 prototype Al8Cr5 (hR26, R3m)

Page 20: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 20 of 38

Phase Name Formula Comments

ALCE (AL)0.5(CE)0.5

ALCE2 (AL)0.33(CE)0.67

ALCE3_ALPHA (AL)0.25(CE)0.75

ALCE3_BETA (AL)0.25(CE)0.75

ALMG_BETA (AL ZN)140(MG)89

ALMG_EPSILON (AL ZN)30(MG)23

ALMGZN_PHI (MG)21(AL ZN)17

ALMGZN_Q (AL)0.15(MG)0.44(ZN)0.41

ALMGZN_T1 (MG)26(MG AL)6(AL MG ZN)48(AL)1

ALMGZN_T2 (AL)0.15(MG)0.43(ZN)0.42

ALN (AL)1(N)1

ALP (AL)1(P)1

ALPHA_CHALCOCITE (CU)2(S)1

ALPHA_SPINEL (MG+2 MN+2 MN+3 NI+2)1(AL+3 CR+3 FE+3 MN+2 MN+3 VA)2(MN+2 VA)2(O-2)4

ALY (AL)1(Y)1

ALY2 (AL)1(Y)2

ANDALUSITE (AL+3)1(AL+3)1(SI+4)1(O-2)5 This is a high-pressure phase (Al2O3.SiO2)

ANLITE (CU)1.75(S)1

ANORTHITE (CA+2)1(AL+3)2(SI+4)2(O-2)8 This is CaO.Al2O3.2SiO2

B_YZN2 (Y)0.33(ZN)0.67

B2_BCC

(AL CA CE CO CR CU FE MG MN MO NB NI P S SI TA TI V W Y ZN ZR)0.5(AL CA CE CO CR CU FE MG MN MO NB NI P S SI TA TI V W Y ZN ZR)0.5(B C N O VA)3

B3SI_D1G (B)6(SI)2(B SI)6 prototype B4C (hR15, R3m)

Page 21: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 21 of 38

Phase Name Formula Comments

B4C (B11C B12)1(B2 C2B CB2)1

B4CE (B)0.8(CE)0.2

B6CE (B)0.86(CE)0.14

BCC_A2 (AL CA CE CO CR CU FE MG MN MO NB NI P S SI TA TI V W Y ZN ZR)1(B C N O VA)3

BETA_CHALCOCITE (CU)2(S)1

BETA_RHOMBO_B (B)93(B C SI)12

BETA1 (NI ZN)1(VA)3

BN_HP4 (B)1(N)1

C_CE2O3 (CE+3 CE+4)2(O-2 VA)3(O-2 VA)1 prototype Mn2O3 (Ia-3)

C1A1 (CA+2)1(AL+3)2(O-2)4 This is CaO.Al2O3 (CA)

C1A2 (CA+2)1(AL+3)4(O-2)7 This is CaO.2Al2O3 (CA2)

C1A6 (CA+2)1(AL+3)12(O-2)19 This is CaO.6Al2O3 (C1A6)

C1A8M2 (CAO)1(AL2O3)8(MGO)2 This is CaO.8Al2O3.2MgO (C1A8M2)

C2A14M2 (CAO)2(AL2O3)14(MGO)2

C2F (CA+2)2(FE+3)2(O-2)5 This is 2CaO.Fe2O3 (C2F)

C3A1 (CA+2)3(AL+3)2(O-2)6

C3A2M1 (CAO)3(AL2O3)2(MGO)1 This is 3CaO.2Al2O3.MgO (C3A2M1)

C4WF4 (CA+2)4(FE+2)1(FE+3)8(O-2)17 This is 4CaO.FeO.4Fe2O3 (C4WF4)

C4WF8 (CA+2)4(FE+2)1(FE+3)16(O-2)29 This is 4CaO.FeO.8Fe2O3 (C4WF8)

CA1CR2O4_A (CA1CR2O4)

CA1CR2O4_B (CA1CR2O4)

CA2SIO4_ALPHA (CA+2 MG+2)2(SI+4)1(O-2)4

CA2SIO4_ALPHA_PRIME (CA+2 FE+2 MG+2)2(SI+4)1(O-2)4

CA3ZN (CA)3(ZN)1

Page 22: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 22 of 38

Phase Name Formula Comments

CA5ZN3 (CA)5(ZN)3

CAMN2O4 (CA+2)1(MN+3)2(O-2)4

CAMNO3 (CA+2)1(MN+4)1(O-2)3

CAZN11 (CA)1(ZN)11

CAZN13 (CA)1(ZN)13

CAZN3 (CA)1(ZN)3

CAZN5 (CA)1(ZN)5

CBCC_A12 (AL CO CR CU FE MG MN MO NB NI P SI TA TI V ZN ZR)1(B C N VA)1

CE13ZN58 (CE)0.18(ZN)0.82

CE1N1 (CE)1(N)1

CE1S1 (CE)1(S)1

CE1S2 (CE)1(S)2

CE2C3 (CE)0.4(C)0.6

CE2FE17 (CE)2(FE)17

CE2NI7 (CE)0.22(NI)0.78

CE2O12S3 (CE)2(O)12(S)3

CE2O2S1 (CE)2(O)2(S)1

CE2S3 (CE)2(S)3

CE2ZN17 (CE)0.1(ZN)0.9

CE3S4 (CE)3(S)4

CE3ZN11 (CE)0.21(ZN)0.79

CE3ZN22 (CE)0.12(ZN)0.88

CE7NI3 (CE)0.7(NI)0.3

CE7O12 (CE)7(O)12 prototype UY6O12 (R-3)

Page 23: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 23 of 38

Phase Name Formula Comments

CEC2_ALPHA (CE)0.33(C)0.67

CEC2_BETA (CE)0.33(C)0.67

CEFE2 (FE)2(CE)1

CEMENTITE (AL CO CR FE MN MO NB NI SI V W)3(B C N)1

CENI (CE)0.5(NI)0.5

CENI2 (CE NI)0.33(CE NI)0.67

CENI3 (CE)0.25(NI)0.75

CENI5 (CE NI)1(CE NI)5

CESI2 (CE)0.33(SI)0.67

CEZN (CE)0.5(ZN)0.5

CEZN11 (CE)0.08(ZN)0.92

CEZN2 (CE)0.33(ZN)0.67

CEZN3 (CE)0.25(ZN)0.75

CEZN5 (CE)0.17(ZN)0.83

CF (CA+2)1(FE+3)2(O-2)4 This is CaO.Fe2O3 (CF)

CF2 (CA+2)1(FE+3)4(O-2)7 This is CaO.2Fe2O3 (CF2)

CHI_A12 (CR FE NI)24(CR MO W ZR)10(CR FE MO NI W)24

CLINO_PYROXENE (CA+2 FE+2 MG+2)1(FE+2 MG+2)1(SI+4)2(O-2)6

clinoenstatite, diopside, pigeonite, hedenbergite and clinoferrosilite

CO11CE24 (CO)11(CE)24

CO17Y2 (CO2 Y)1(CO2 Y)2(CO)15

CO19CE5 (CO)19(CE)5

CO2CE (CO)2(CE)1

CO3CE (CO)3(CE)1

CO3VV (CO V)3(CO V)1

Page 24: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 24 of 38

Phase Name Formula Comments

CO3Y (CO)3(Y)1

CO3Y2 (CO)3(Y)2

CO3Y4 (CO)3(Y)4

CO5CE (CO)5(CE)1

CO5Y_D2D (CO2 Y)1(CO)4(CO VA)1

CO5Y8 (CO)5(Y)8

CO7CE2 (CO)7(CE)2

CO7Y6 (CO)7(Y)6

CORDIERITE (AL4MG2O18SI5)

CORUNDUM (AL+3 CR+2 CR+3 FE+2 FE+3 MN+3 TI+3)2(CR+3 FE+3 NI+2 VA)1(O-2)3

COVELLITE (CU)1(S)1

COY_BF (CO)1(Y)1

COZN_BETA1 (CO ZN)1(CO ZN)1

COZN_GAMMA1 (CO)0.12(ZN)0.88

COZN_GAMMA2 (CO)0.07(ZN)0.93

COZN4_GAMMA (CO ZN)4(CO ZN)1

CR3SI (CO CR FE MO NB SI V)3(AL CO CR NB SI V)1

CR5B3_D8L (CR MO)0.62(B)0.38 prototype CR5B3 (tI32, I4/mcm)

CRISTOBALITE (SIO2)

CRZN17 (AL CR)1(FE ZN)17

CU2CE (CU)0.67(CE)0.33

CU2Y_H (CU)2(Y)1

CU2Y_L (CU)2(Y)1

CU3P_D021 (CU FE)3(P)1 prototype Cu3P (P3c1, hp24)

Page 25: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 25 of 38

Phase Name Formula Comments

CU4CE (CU)0.8(CE)0.2

CU4Y (CU)4(Y)1

CU5CE (CU)0.83(CE)0.17

CU5ZN8_GAMMA_D83 (ZN)4(CU ZN)1(CU ZN)8

CU6CE (CU)0.86(CE)0.14

CU6Y (CU2 Y)1(CU)5

CU7Y2 (CU)7(Y)2

CUB_A13 (AL CE CO CR CU FE MG MN MO NB NI P SI TA TI V Y ZN ZR)1(B C N VA)1

CUCE (CU)0.5(CE)0.5

CUO (CU+2)1(O-2)1

CUPRITE_C3 (CU+1)2(O-2)1

CUZN_EPSILON (CU MN ZN)1(VA)0.5

CUZR_B2 (CU)1(Y)1

CW3F (CA+2)1(FE+2)3(FE+3)2(O-2)7 This is CaO.3FeO.Fe2O3 (CW3F)

CWF (CA+2)1(FE+2)1(FE+3)2(O-2)5 This is CaO.FeO.Fe2O3 (CWF)

D019_CO3MO (CO)3(MO)1

D022_AL3NB (AL)3(NB)1

DELTA_FEZN (CR FE)0.06(AL FE ZN)0.18(ZN)0.53(ZN)0.24

DIAMOND_FCC_A4 (AL B C MN O P SI ZN)

DICTRA_FCC_A1 (AL CA CE CO CR CU FE MG MN MO NB NI P S SI TA TI V W Y ZN ZR)1(B C N O VA)1

A copy of FCC_A1 phase which is treated as DIFUSION-NON phase by DICTRA.

DIGENITE (CU FE VA)2(CU VA)1(S)1

DJURLEITE (CU)1.93(S)1

F_CEO2 (CE+3 CE+4)2(O-2 VA)4 prototype CaF2 (Fm-3m)

FC_ORTHORHOMBIC (S)

Page 26: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 26 of 38

Phase Name Formula Comments

FCC_A1 (AL CA CE CO CR CU FE MG MN MO NB NI P S SI TA TI V W Y ZN ZR)1(B C N O VA)1

FE10SI2B3 (FE)2(SI)0.4(B)0.6

FE1NB1B1_C22 (FE)0.33(NB)0.33(B)0.33 prototype Fe2P (hP9, P26m)

FE2S3O12 (FE)2(S)3(O)12

FE2SI (FE)0.67(SI)0.33

FE2SITI_L21 (FE)0.5(SI)0.25(TI)0.25

FE3NB3B4 (FE)0.3(NB)0.3(B)0.4

FE4N_LP1 (CO CR FE MN NI)4(C N)1

FE4NB2O9 (FE+3)4(NB+2)1(NB+4)1(O-2)9

FE5SI2B (FE)4.7(SI)2(B)1

FE5SIB2 (FE)5(SI)1(B)2

FE8SI2C (FE MN)8(SI)2(C)1

FECN_CHI (FE)2.2(C N)1

FENB2P (FE)1(NB)2(P)1 prototype Cu3Au (cP4, Pm-3m)

FENB4P (FE)1(NB)4(P)1 prototype Nb4CoSi (tP12, P4/mcc)

FENBP (FE NB)2(P)1 prototype TiNiSi (oP12, Pnma)

FESI4P4 (FE)1(SI)4(P)4

FESO4 (FE)1(S)1(O)4

FETI_B2 (FE)1(TI)1

FETIP (FE)1(TI)1(P)1

FEWB_C37 (FE)1(W)1(B)1 prototype NiTiSi (oP12, Pnma)

FLUORITE_C1 (MN+2 MN+3 NI+2 Y+3 ZR ZR+4)2(O-2 VA)4

G_PHASE (AL CO FE NI TI)16(MN NB TI Y ZR)6(CO FE NI SI)7 Th6Mn23 prototype

GAMMA (NI ZN)1(VA)1

Page 27: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 27 of 38

Phase Name Formula Comments

GAMMA_D82 (FE ZN)0.15(FE ZN)0.15(AL FE ZN)0.23(ZN)0.46

GAMMA1_FEZN (FE)0.14(AL FE ZN)0.12(ZN)0.74

GAMMA2_ALFEZN (AL FE ZN)0.26(ZN)0.74

GAS

AR C C1H1 C1H1N1O1 C1H1N1_HCN C1H1N1_HNC C1H1O1 C1H1O2 C1H2 C1H2O1 C1H2O2_CIS C1H2O2_DIOXIRANE C1H2O2_TRANS C1H3 C1H3O1_CH2OH C1H3O1_CH3O C1H4 C1H4O1 C1N1 C1N1O1 C1N1O1_NCO C1N2_CNN C1N2_NCN C1O1 C1O1S1 C1O2 C1S1 C1S2 C2 C2H1 C2H1N1 C2H2 C2H2O1 C2H3 C2H4 C2H4O1_ACETALDEHYDE C2H4O1_OXIRANE C2H4O2_ACETICACID C2H4O2_DIOXETANE C2H4O3_123TRIOXOLANE C2H4O3_124TRIOXOLANE C2H5 C2H6 C2H6O1 C2H6O2 C2N1_CCN C2N1_CNC C2N2 C2O1 C3 C3H1 C3H1N1 C3H4_1 C3H4_2 C3H6 C3H6O1 C3H6_2 C3H8 C3N1 C3O2 C4 C4H1 C4H10_1 C4H10_2 C4H2 C4H4 C4H4_1_3 C4H6_1 C4H6_2 C4H6_3 C4H6_4 C4H6_5 C4H8 C4H8_1 C4H8_2 C4H8_3 C4H8_4 C4H8_5 C4N1 C4N2 C5 C5H1N1 C5N1 C60 C6H6 C6H6O1 C6N1 C6N2 C9N1 H H1N1 H1N1O1 H1N1O2_CIS H1N1O2_TRANS H1N1O3 H1N3 H1O1 H1O1S1_HSO H1O1S1_SOH H1O2 H1S1 H2 H2N1 H2N2O2 H2N2_1_1N2H2 H2N2_CIS H2N2_TRANS H2O1 H2O1S1_H2SO H2O1S1_HSOH H2O2 H2O4S1 H2S1 H2S2 H3N1 H3N1O1 H4N2 N N1O1 N1O2 N1O3 N1S1 N2 N2O1 N2O3 N2O4 N2O5 N3 O O1S1 O1S2 O1Y1 O1Y2 O2 O2S1 O2Y1 O2Y2 O3 O3S1 S S2 S3 S4 S5 S6 S7 S8 V Y ZN ZR ZR2

GRAPHITE (B C)

H_CE2O3 (CE+2 CE+3)2(O-2)2(O-2 VA)1 (P63/mmc)

HALITE (AL+3 CA+2 CR+3 FE+2 FE+3 MG+2 MN+2 MN+3 NI+2 NI+3 SI+4 VA)1(O-2)1

HATRURITE (CA+2)3(SI+4)1(O-2)5 This is 3CaO.SiO2

HCP_A3 (AL CA CE CO CR CU FE MG MN MO NB NI P S SI TA TI V W Y ZN ZR)1(B C N O VA)0.5

HIGH_SIGMA (MN)8(CR)4(CR MN)18

K_PHASE (C CO ZN)51(ZN)32(C)17

KAPPA_E21 (AL)1(FE MN)3(C VA)1 prototype CaTiO3 (cP5, Pm-3m)

KSI_CARBIDE (CR FE MO W)3(C)1

KYANITE (AL+3)1(AL+3)1(SI+4)1(O-2)5

L12_FCC

(AL CA CE CO CR CU FE MG MN MO NB NI P S SI TA TI V W Y ZN ZR)0.75(AL CA CE CO CR CU FE MG MN MO NB NI P S SI TA TI V W Y ZN ZR)0.25(B C N O VA)1

LARNITE (CA+2)2(SI+4)1(O-2)4 This is 2CaO.SiO2 (metastable at 1 atm)

Page 28: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 28 of 38

Phase Name Formula Comments

LAVES_PHASE_C14 (AL CO CR CU FE MG MN MO NB NI SI TA TI V W Y ZN ZR)2(AL CO CR CU FE MG MN MO NB NI SI TA TI V W Y ZN ZR)1

LIQUID

(AL ALN ALO3/2 B C CA CAS CE CEO2 CEO3/2 CO CR CRO3/2 CRS CU CU2O CUO CU2S FE FEO FEO3/2 FES MG MGS MN MNO MNO3/2 MNS MO N NB NBO NBO2 NI NIO NIS P S S2ZR S3ZR2 SI SIO2 SZN TA TI TIO TIO3/2 TIO2 V W Y Y2/3O ZN ZR ZR1/2O)

LOWCLINO_PYROXENE (CA+2 MG+2)1(MG+2)1(SI+4)2(O-2)6 This is low-clinoenstatite and low-clinodiopside

M12C (CO)6(W)6(C)1

M23C6 (CO CR FE MN NI V)20(CO CR FE MN MO NI V W)3(B C)6

M2B_C16 (CO CR FE MN MO NI V W)0.67(B)0.33 prototype Al2Cu (tI12, I4/mcm)

M2B_CB (CR FE MO MN NI)0.67(B)0.33 prototype Mg2Cu (oF48, Fddd)

M2B3 (NB V)0.4(B)0.6 prototype V2B3 (oS20, Cmcm)

M2O3C (AL+3 CR+3 FE+3 MN+3 NI+2 Y Y+3 ZR+4)2(O-2 VA)3(O-2 VA)1 Mn2O3 and cubic Y2O3

M2O3H (MN+3 Y Y+3 ZR+4)2(O-2 VA)3(O-2 VA)1 hexagonal Y2O3

M2P_C22 (AL CR FE MN MO NB NI TI)2(P SI)1 prototype Fe2P (P26m, hP9)

M3B2_D5A (CR FE MO NI W)0.4(CR FE NI)0.2(B)0.4 prototype Mo2FeB2 (tP10, P4/mbm)

M3B4_D7B (CR FE NB V)0.43(B)0.57 prototype Ta3B4 (oI14, Immm)

M3C2 (CO CR MO V W)3(C)2

M3P_D0E (AL CR CU FE MN MO NI TI)3(P)1 prototype Ni3P (tI32, I-4)

M3SI (FE MN)3(SI)1

M5B6 (V NB)0.46(B)0.55 prototype V5B6 (oS22, Cmmm)

M5C2 (FE MN NB V)5(C)2

M5SI3 (CR FE MN Y)0.62(SI)0.38

M6C (CO FE NI)2(MO NB W)2(CO CR FE MO NB NI SI V W)2(C)1

M7C3 (AL CO CR FE MN MO NB NI SI V W)7(B C)3

Page 29: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 29 of 38

Phase Name Formula Comments

MB_B27 (B)1(CO CR FE MN MO NI TI V ZR)1 prototype FeB (oP8, Pbnm)

MB_B33 (CR FE MN MO NB NI TA TI V)1(B)1 prototype CrB (oC8, Cmcm)

MB2_C32 (B)2(AL CR TI Y ZR)1 prototype AlB2 (hp3, P6/mmm)

MC_ETA (MO TI V W)1(C VA)1 prototype MoC (hP12, P63/mmc)

MC_SHP (MO W)1(C N)1 prototype WC (hP2, P-6m2)

MELILITE (CA+2)2(AL+3 MG+2)1(AL+3 SI+4)1(SI+4)1(O-2)7

This is 2CaO.Al2O3.SiO2, akermanite[2CaO.MgO.2SiO2] and gehlenite

MERWINITE (CA+2)3(MG+2)1(SI+4)2(O-2)8 This is 3CaO.MgO.2SiO2

MG12CE (MG)12(CE)1

MG17CE2 (MG)17(CE)2

MG2CE (MG)2(CE)1

MG2NI (MG)2(NI)1

MG2SI (MG)2(SI)1

MG2ZN11 (MG)2(AL ZN)11

MG2ZN3 (MG)2(AL ZN)3

MG3CE (MG)3(CE MG)1

MG41CE5 (MG)41(CE)5

MG51ZN20 (MG)51(ZN)20

MGC2 (MG)1(C)2

MGZN (MG)12(AL ZN)13

MN11SI19 (MN)0.37(SI)0.63

MN1O2 (MN+4)1(O-2)2

MN2YO5 (Y+3)1(MN+3)1(MN+4)1(O-2)5

MN3P_D0E (MN FE)3(P)1 prototype Ni3P (tI32, I-4)

MN5SIC (MN)0.71(SI)0.14(C)0.14

Page 30: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 30 of 38

Phase Name Formula Comments

MN6N4 (MN)6(N)4

MN6N5 (MN)6(N)5

MN6SI (MN)0.86(SI)0.14

MN9SI2 (MN)0.82(SI)0.18

MNS (CA CR CU FE MG MN)1(S)1

MNTA (MN)1(TA)1

MNYO3_HEX (Y+3)1(MN+3)1(O-2)3

MNZN9 (MN)0.1(ZN)0.9

MO2B5_D8I (MO)0.32(B)0.68 prototype MO2B5 (hR7, R3m)

MO3P_D0E (MO)3(P)1 prototype V3S (tI32, I-42m)

MO5SI3_D8M (MO)5(SI)3

MOB_BG (CR FE MO)0.5(B)0.5 prototype MoB (tI16, I4/amd)

MOB2 (MO)0.38(B)0.62

MOP_BH (MO)1(P)1 prototype WC (hP2, P-6m2)

MOSI2_C11B (MO)1(SI)2

MOZN22 (MO)1(ZN)22

MOZN7 (MO)1(ZN)7

MP_B31 (CR FE MN)1(P SI)1 prototype MnP (oP8, Pnma)

MSI (CR FE MN)0.5(AL SI)0.5

MSI_B27 (Y)1(SI)1

MU_PHASE (CO CR FE MN NB NI TA)7(MO NB TA W)2(CO CR FE MO NB NI TA W)4

MULLITE (AL+3)1(AL+3)1(AL+3 SI+4)1(O-2 VA)5

MZR3_E1A (CO NI)1(Y)3 NiY3, COY3

NB3B2_D5A (FE NB V)0.6(B)0.4 prototype U3Si2 (tP10, P4/mbm)

Page 31: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 31 of 38

Phase Name Formula Comments

NB7P4 (NB)7(P)4 prototype Nb7P4 (mS44, C12/m1)

NBNI3 (NB NI)1(NB NI)3

NBO (NB+2)1(O-2)1

NBP (NB)1(P)1 prototype NbAs (tI8, I41md)

NI17Y2 (FE NI)1(Y)0.12 also Fe17Y2

NI2Y (NI)2(Y)1

NI2Y3 (NI)2(Y)3

NI3S2 (NI)0.6(S)0.4

NI3TI (NI TI)0.75(NI TI)0.25

NI3Y (FE NI)3(Y)1 also Fe3Y

NI4Y (NI)4(Y)1

NI5Y (NI)5(Y)1

NI6MNO8_TYPE (MG+2 NI+2)6(MN+4)1(O-2)8

NI7ZR2 (CO NI)7(Y)2 also NI7Y2 and CO7Y2

NIMNO3 (MN+3 MN+4 NI+2)2(O-2)3

NITI2 (NI)0.33(TI)0.67

NIY (NI)1(Y)1

NIZN8_DELTA (NI)1(ZN)8

OLIVINE (CA+2 FE+2 MG+2 MN+2 NI+2)1(CA+2 FE+2 MG+2 MN+2 NI+2)1(SI+4)1(O-2)4

This is 2CaO.SiO2, forsterite, monticellite[CaO.MgO.SiO2], fayalite, Ni2SiO4 and tephroite[Mn2SiO4]

ORTHO_PYROXENE (CA+2 MG+2)1(MG+2)1(SI+4)2(O-2)6 This is enstatite and orthodiopside

P_PHASE (CR FE NI)24(CR FE MO NI)20(MO)12

PI (CR)12.8(FE NI)7.2(N)4

PROTO_PYROXENE (CA+2 MG+2)1(SI+4)1(O-2)3 This is protodiopside

PSEUDO_WOLLASTONITE (CA+2)1(SI+4)1(O-2)3 This is CaO.SiO2

Page 32: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 32 of 38

Phase Name Formula Comments

PYRITE (FE MN)1(S)2

PYRRHOTITE (CR CU FE MN NI TI VA)1(S)1

QUARTZ (SIO2)

R_PHASE (CO CR FE MN NI)27(MO W)14(CO CR FE MN MO NI W)12

RANKINITE (CA+2)3(SI+4)2(O-2)7 This is 3CaO.2SiO2

RED_P (P)

RHODONITE (MN+2)1(SI+4)1(O-2)3 This is MnO.SiO2

RUTILE_MO2 (MN+4 NB+4 TI+4)1(O-2)2

S2ZR1 (S2ZR)

SAPPHIRINE (AL18MG7O40SI3)

SI3N4 (SI)3(N)4

SIC (SI)1(C)1

SIGMA (AL CO CR FE MN NI TA V)10(CR MO NB TA TI V W)4(AL CO CR FE MN MO NB NI SI TA TI V W)16

SILLIMANITE (AL+3)1(AL+3)1(SI+4)1(O-2)5 This is a high-pressure phase (Al2O3.SiO2)

SIP (P)1(SI)1

SIP2 (P)2(SI)1

SIS2 (SIS2)

SPINEL

(AL+3 CR+2 CR+3 FE+2 FE+3 MG+2 MN+2 NI+2)1(AL+3 CR+3 FE+2 FE+3 MG+2 MN+2 MN+3 MN+4 NI+2 VA)2(CR+2 FE+2 MG+2 MN+2 VA)2(O-2)4

TAN_EPS (TA)1(N)1

TAU4_ALCRZN (AL ZN)0.48(CR)0.12(ZN)0.4

TI2N (TI)2(C N)1

TI2ZN (TI)2(ZN)1

TI3O2 (TI+2)2(TI)1(O-2)2

Page 33: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 33 of 38

Phase Name Formula Comments

TI3P (TI)3(P)1

TI4C2S2 (TI)4(C)2(S)2

TIO (TI+2 TI+3 VA)1(TI VA)1(O-2)1

TIO_ALPHA (TI+2)1(O-2)1

TIZN1 (TI)1(ZN)1

TIZN10 (TI)1(ZN)10

TIZN15 (TI)1(ZN)15

TIZN2 (TI)1(ZN)2

TIZN3 (TI)1(ZN)3

TIZN5 (TI)1(ZN)5

TRIDYMITE (SIO2)

V4ZN5 (V)4(ZN)5

VZN3 (V)0.25(ZN)0.75

WHITE_P (P)

WOLLASTONITE (CA+2 FE+2 MG+2)1(SI+4)1(O-2)3 This is CaO.SiO2

X_CE2O3 (CE+3 CE+2)2(O-2 VA)3 (Im-3m)

Y13ZN58 (Y)0.18(ZN)0.82

Y15C19_H (C)19(Y)15

Y15C19_R (C)19(Y)15

Y2C3_H (Y)2(C)2(C VA)1

Y2C3_R (Y)2(C)2(C VA)1

Y2CU2O5 (Y+3)2(CU+2)2(O-2)5

Y2S2A_Y2SI2O7 (Y+3)1(Y+3)1(SI2O7-6)1

Y2S2B_Y2SI2O7 (Y+3)1(Y+3)1(SI2O7-6)1

Page 34: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 34 of 38

Phase Name Formula Comments

Y2S2D_Y2SI2O7 (Y+3)1(Y+3)1(SI2O7-6)1

Y2S2G_Y2SI2O7 (Y+3)1(Y+3)1(SI2O7-6)1

Y2SIO5 (Y+3)1(Y+3)1(SIO4-4)1(O-2)1

Y2ZN17 (Y)0.11(ZN)0.89

Y3SI5_HT (Y)3(SI)5

Y3SI5_LT (Y)3(SI)5

Y3ZN11 (Y)0.21(ZN)0.79

Y5SI4 (Y)5(SI)4

YAG (AL+3 CR+3 FE+3)5(Y+3)3(O-2)12 This is Y3Al5O12 and Y3Fe5O12 (cI160, Ia-3d)

YAM (AL+3 SI+4)2(Y+3)4(O-2 VA)1(O-2)9 This is Y4Al2O9 (mP60, P121/c1)

YAP (AL+3 CR+3 FE+3)1(Y+3)1(O-2)3 This is YAlO3, YCrO3 and YFeO3 (oP20, Pnma)

YB12_D2F (B)12(Y)1 prototype UB12 (cF52, Fm3m)

YB4_D1E (Y)1(B)4 prototype UB4 (tP20, P4/mbm)

YB6_D21 (Y)1(B)6 prototype CaB6 (cP7, Pm3m)

YB66 (Y)1(B)66 prototype YB66 (cF1936, Fm-3c)

YC_GAMMA (Y)1(C C2 VA)1

YC2_C11A (C2Y1)

YCUO2 (Y+3)1(CU+1)1(O-2)2

YFE2O4 (FE+2 FE+3)2(Y+3)1(O-2)4

YSI2_HT (Y)1(SI)2

YSI2_LT (Y)1(SI)2

YZN (Y)0.5(ZN)0.5

YZN12 (Y)0.08(ZN)0.92

YZN3 (Y)0.25(ZN)0.75

Page 35: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 35 of 38

Phase Name Formula Comments

YZN5 (Y)0.17(ZN)0.83

Z_PHASE (CR FE)1(MO NB V)1(N VA)1

ZETA_FEZN (CR FE VA)0.07(AL ZN VA)0.07(AL ZN)0.86

ZN1ZR1 (ZN)0.5(ZR)0.5

ZN1ZR2 (ZN)0.33(ZR)0.67

ZN22ZR1 (ZN)0.96(ZR)0.04

ZN2CA (ZN)2(CA)1

ZN2ZR1 (ZN)0.67(ZR)0.33

ZN2ZR3 (ZN)0.4(ZR)0.6

ZN39ZR5 (ZN)0.89(ZR)0.11

ZN3P2 (ZN)3(P)2

ZN3ZR1H (ZN)0.75(ZR)0.25

ZN3ZR1L (ZN)0.75(ZR)0.25

ZNCA (ZN)1(CA)1

ZNP2 (ZN)1(P)2

ZNS_ALPHA_B3 (ZN)1(S)1

ZNS_BETA_B4 (ZN)1(S)1

ZR2S3 (S3ZR2)

ZR3Y4O12 (ZR+4)3(Y+3)4(O-2)12

ZRO2_MONO (Y+3 ZR+4)2(O-2 VA)4

ZRO2_TETR (MN+2 MN+3 NI+2 Y+3 ZR+4)2(O-2 VA)4

Acknowledgement Dr. Bengt Hallstedt is acknowledged for many valuable discussions and important contributions.

Page 36: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 36 of 38

References [1] X. Su and J. C. Tedenac, “Thermodynamic modeling of the ternary Ce-Fe-Sb system: Assessment

of the Ce-Sb and Ce-Fe systems,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 30, no. 4, pp. 455–460, 2006.

[2] Y. Peng, Y. Du, L. Zhang, C. Sha, S. Liu, F. Zheng, D. Zhao, X. Yuan, and L. Chen, “Thermodynamic modeling of the C-RE (RE=La, Ce and Pr) systems,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 35, no. 4, pp. 533–541, 2011.

[3] D. Dilner, “Thermodynamic description of the Fe-Mn-Ca-Mg-S system,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 53, pp. 55–61, 2016.

[4] J. Miettinen and G. Vassilev, “Thermodynamic Description of Ternary Fe-XP Systems. Part 1: Fe-Cr-P,” J. phase equilibria Diffus., vol. 35, no. 4, pp. 458–468, 2014.

[5] J. Miettinen and G. Vassilev, “Thermodynamic Description of Ternary Fe-XP Systems. Part 6: Fe-Ni-P,” J. Phase Equilibria Diffus., vol. 36, no. 1, pp. 78–87, 2015.

[6] J. Miettinen and G. Vassilev, “Thermodynamic Description of Ternary Fe-X-P Systems. Part 3: Fe-Mn-P,” J. Phase Equilibria Diffus., vol. 35, no. 5, pp. 587–594, Oct. 2014.

[7] K. Yoshitomi, Y. Nakama, H. Ohtani, and M. Hasebe, “Thermodynamic Analysis of the Fe–Nb–B Ternary System,” ISIJ Int., vol. 48, no. 6, pp. 835–844, 2008.

[8] M. G. Poletti and L. Battezzati, “Assessment of the ternary Fe-Si-B phase diagram,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 43, pp. 40–47, 2013.

[9] H. Sahlaoui, K. Makhlouf, H. Sidhom, and J. Philibert, “Effects of ageing conditions on the precipitates evolution, chromium depletion and intergranular corrosion susceptibility of AISI 316L: Experimental and modeling results,” Mater. Sci. Eng. A, vol. 372, no. 1–2, pp. 98–108, 2004.

[10] C. G. Panait, W. Bendick, A. Fuchsmann, A. F. Gourgues-Lorenzon, and J. Besson, “Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep exposure at 600 °C,” Int. J. Press. Vessel. Pip., vol. 87, no. 6, pp. 326–335, 2010.

[11] L. Zhang, Y. Du, Q. Chen, H. Xu, F. Zheng, C. Tang, and H. Chen, “Thermodynamic description of the Cu-Fe-Mn system with key experiments and its practical applications,” Int. J. Mater. Res., vol. 99, no. 12, pp. 1306–1318, 2008.

[12] C. P. Wang, X. J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, and S. M. Hao, “Phase equilibria in the Cu-Fe-Mo and Cu-Fe-Nb systems,” J. Phase Equilibria, vol. 21, no. 1, pp. 54–62, 2000.

[13] A. V. Khvan and B. Hallstedt, “Thermodynamic assessment of FeMnNbN and NbCN systems,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 40, pp. 10–15, 2013.

[14] A. V. Khvan, K. Chang, and B. Hallstedt, “Thermodynamic assessment of the Fe-Nb-V system,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 43, pp. 143–148, 2013.

[15] Wei-sen Zheng Xiao-gang Lu,,*,Yan-lin He,,Lin Li, “Thermodynamic modeling of Fe-C-Mn-Si alloys,” J. Iron Steel Res., vol. 24, no. 2, pp. 190–197.

[16] C. Zhao, R. Song, L. Zhang, F. Yang, and T. Kang, “Effect of annealing temperature on the microstructure and tensile properties of Fe–10Mn–10Al–0.7C low-density steel,” Mater. Des., vol. 91, pp. 348–360, 2016.

Page 37: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 37 of 38

[17] D. Djurovic, B. Hallstedt, J. Von Appen, and R. Dronskowski, “Thermodynamic assessment of the Fe-Mn-C system,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 35, no. 4, pp. 479–491, 2011.

[18] H. L. Lukas, S. G. Fries, and B. Sundman, Computational thermodynamics: the Calphad method, vol. 131. Cambridge university press Cambridge, 2007.

[19] S.-H. Kim, H. Kim, and N. J. Kim, “Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.,” Nature, vol. 518, no. 7537, pp. 77–9, 2015.

[20] A. Stormvinter, A. Borgenstam, and J. Ågren, “Thermodynamically based prediction of the martensite start temperature for commercial steels,” Metall. Mater. Trans. A, vol. 43, no. 10, pp. 3870–3879, 2012.

[21] G. MIYAMOTO, J. OH, K. HONO, T. FURUHARA, and T. MAKI, “Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass{%} C martensite,” Acta Mater., vol. 55, no. 15, pp. 5027–5038, Sep. 2007.

[22] L. Kjellqvist, “Thermodynamic description of the Fe-C-Cr-Mn-Ni-O system,” KTH Royal Institute of Technology, Stockholm, Sweden, 2009.

[23] D. L. Douglass, F. Gesmundo, and C. de Asmundis, “The air oxidation of an austenitic Fe-Mn-Cr stainless steel for fusion-reactor applications,” Oxid. Met., vol. 25, no. 3–4, pp. 235–268, 1986.

[24] P. Nanni, V. Buscaglia, G. Battilana, and E. Ruedl, “Air oxidation of a Mn-Cr austenitic steel of potential use for fusion reactor structural applications between 1073 and 1473 K at 105 Pa,” J. Nucl. Mater., vol. 182, pp. 118–127, May 1991.

[25] H. Kurokawa, K. Kawamura, and T. Maruyama, “Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient,” Solid State Ionics, vol. 168, no. 1–2, pp. 13–21, Mar. 2004.

[26] R. Wang, M. J. Straszheim, and R. A. Rapp, “A high-temperature oxidation-resistant Fe-Mn-Al-Si alloy,” Oxid. Met., vol. 21, no. 1–2, pp. 71–79, Feb. 1984.

[27] V. B. Trindade, U. Krupp, H. J. Christ, M. J. Monteiro, and F. C. Rizzo, “Experimental characterization and computer-based simulation of thermodynamics and kinetics of corrosion of steels at high temperatures,” Materwiss. Werksttech., vol. 36, no. 10, pp. 471–476, 2005.

[28] “Personal Communication with Sandvik.”

[29] “Personal Communication with Uddeholm.” .

[30] C. García de Andrés, F. G. Caballero, C. Capdevila, and L. F. Álvarez, “Application of dilatometric analysis to the study of solid–solid phase transformations in steels,” Mater. Charact., vol. 48, no. 1, pp. 101–111, Feb. 2002.

[31] R. Fourmentin, M.-N. Avettand-Fènoël, G. Reumont, and P. Perrot, “Optimization of the Al–Cr–Zn system at 460 °C,” J. Mater. Sci., vol. 42, no. 18, pp. 7934–7938, Jun. 2007.

[32] J. Nakano, D. V Malakhov, S. Yamaguchi, and G. R. Purdy, “A full thermodynamic optimization of the Zn–Fe–Al system within the 420–500 ∘C temperature range,” Calphad, vol. 31, no. 1, pp. 125–140, 2007.

[33] J. Bratberg and K. Frisk, “An Experimental Investigation of Carbide/Austenite Equilibria in Commercial Tool Steels and High Speed Steels compared against Thermodynamic Calculations,” in Proceeding of the Powder Metallurgy World Congress and EURO-PM2004 - Volume 5, 2004, p. 6.

Page 38: TCFE9: TCS Steel and Fe -alloys Database Extended Information · 2021. 1. 11. · TCFE9 . . 1 of 38 . TCFE9: TCS Steel and Fe -alloys Database Extended Information . TCFE9 is a thermodynamic

TCFE9

www.thermocalc.com 38 of 38

[34] J. Bratberg and K. Frisk, “An experimental and theoretical analysis of the phase equilibria in the Fe-Cr-V-C system,” Metall. Mater. Trans. A, vol. 35, no. 12, pp. 3649–3663, Dec. 2004.

[35] J. Bratberg, “Investigation and modification of carbide sub-systems in the multicomponent Fe–C–Co–Cr–Mo–Si–V–W system,” Zeitschrift fur Met., vol. 96, no. 4, pp. 335–344, 2005.

[36] S. Zajac and R. Lagneborg, “Thermodynamic model for the precipitation of carbonitrides in microalloyed steels - Internal report IM-3566,” Swedish Institute for Metals Research, Stockholm, Sweden, 1998.

[37] A. Craven, “Complex heterogeneous precipitation in titanium–niobium microalloyed Al-killed HSLA steels—I. (Ti,Nb)(C,N) particles,” Acta Mater., vol. 48, no. 15, pp. 3857–3868, Sep. 2000.

[38] Jernkontoret, Guide to Solidification of Steels. Stockholm, Sweden: Ljungberg Tryckeri AB, 1977.

[39] G. Allan, “Castability, solidification mode and residual ferrite distribution in highly alloyed stainless steels,” European Commission, 1997.

[40] G. C. Coelho, J. A. Golczewski, and H. F. Fischmeister, “Thermodynamic calculations for Nb-containing high-speed steels and white-cast-iron alloys,” Metall. Mater. Trans. A, vol. 34, no. 9, pp. 1749–1758, Sep. 2003.

[41] O. Kruse, B. Jansson, and K. Frisk, “Experimental Study of Invariant Equilibria in the Co-W-C and Co-W-C-Me (Me = Ti, Ta, Nb) Systems,” J. Phase Equilibria, vol. 22, no. 5, pp. 552–555, Oct. 2001.

[42] J. Bratberg and B. Jansson, “Thermodynamic evaluation of the C−Co−W−Hf−Zr system for cemented carbides applications,” J. Phase Equilibria Diffus., vol. 27, no. 3, pp. 213–219, Jun. 2006.