tdi inner space sytsems megalodon closed circuit rebreather course

89
TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Upload: myah-pilgram

Post on 15-Jan-2016

242 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

TDI Inner Space SytsemsMegalodon

Closed Circuit Rebreather Course

Page 2: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Overview of Course Structure• 1 - Introduction and Welcome• 2 - The History and Development of Rebreathers• 3 - Mechanics of the Megalodon• 4 - Electronics • 5 - Physiology - A Reflection for the CCR Diver

TDI Megalodon Closed Circuit Rebreather Diver Course

Page 3: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

• 6 - Let’s Go Diving the Rebreather - Preparation

• 7 - Let’s Go Diving the Rebreather - In the Water

• 8 - Avoiding Rebreather Incidents - Safe Diving

• 9 - Mod 2 Extension (Optional extra course)

• 10 - Mod 3 Extension (Optional extra course)

Overview of Course Structure continued

TDI Megalodon Closed Circuit Rebreather Diver Course

Page 4: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

TDI ISC Megalodon Rebreathers Diver Course

Section 1:

Introduction and Welcome

Page 5: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Introduction and Welcome

• Welcome to a new way of thinking about diving• Understand that you are ALL novices again • You will develop new skills for CCR diving

including:– Attitudes– Disciplines– Awareness

Page 6: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Introduction and Welcome

Who the course is for and what you can expect to get out of it.

• COURSE PREREQUISITES– 18 years of age– Logged 100+ dives– Nitrox and Advanced Nitrox training

• COURSE CREDENTIALS– To become qualified to dive the Inner Space Systems

Megalodon on Air Diluent up to 40m/132ft with safety stops and 5 minutes max deco at 6m/ 20ft

Page 7: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Introduction and Welcome

• Why CCR Diving– Longer dive durations possible with very

little equipment– Almost silent and bubble free unless

ascending– Extremely efficient use of breathing gas– Optional Nitrox mix for all depths according

to user-selectable PPO2 setpoint– Warm and moist comfortable breathing gas

reducing risk of hypothermic tendencies

Page 8: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Introduction and Welcome

• What else can you expect to experience on this course?– Many new terms for CCR not used in OC or SCR diving

– Change from a constant percentage Nitrox mix in OC to a variable percentage Nitrox mix with constant partial pressure in CCR mode

– Computer controlled gas injection system on ascent causes accelerating bouyancy characteristics• We need to think differently

– Jump a billion years of evolutionary development• An opportunity to almost evolve into a sea-going mammal

with hours of sub-surface capability, and be back on land again for another fun filled experience

Page 9: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

TDI ISC Megalodon Rebreather Divers Course

Section 2:

The History and

Development of Rebreathers

Page 10: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

The History and Development of Rebreathers

• Rebreathers in basic form have been around for over a century underwater, and longer for mine rescue work

• The earliest makes were pure oxygen devices

• The Englishman Henry Fleuss achieves a major milestone covering over 300 meters (1000 feet) underwater in the construction of the Severn railway tunnel a century ago

• Military rebreathers developed and used-Stealth

Page 11: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

The History and Development of Rebreathers

• The advent of readily available Nitrox to the recreational market fuelled the development of recreational nitrox SCR rebreathers

• Progress and need in the military theater saw the development of a number of electronic controlled CCR machines over the last two decades

• Some cave divers opted for passive mechanical SCR with no electronics

• Makes include the Electrolung; Cis Lunar; Drager Atlantis, Dolphin and Ray and Inspiration/Evolution.

• We see the advent of recreational CCR’s with the Inspiration in 1997, followed by Prism, Megalodon,Ouroboros, Optima and Kiss, and in 2005 the Evolution

Page 12: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

The History and Development of Rebreathers

CONCEPTUAL REBREATHER DESIGN

• All need a scrubber for CO2 removal

• Pure Oxygen rebreather – no need for electronics in basic form just keep manually adding gas when loop volume falls

• Semi Closed SCR uses a known nitrox for loop addition

• Mechanical rebreathers use a fractional volume technique to refresh gas

• Either Passive by sucking in fresh gas when oxygen in the loop volume is depleted and a diaphragm regulator re-injects to bring loop volume back up, or

• Active – Constant flow rate of Nitrox to loop-vent excess

Page 13: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

The History and Development of Rebreathers

Megalodon Rebreather

• Closed Circuit rebreathers (CCR)

• State of the art electronic controls

• Onboard sources of air and oxygen, scrubber, computer controlled variable Nitrox mixing

• Everything the recreational and technical diver

needs

Page 14: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

TDI ISC MegalodonRebreather Diver Course

Section 3:

Mechanics and basic functioning

of the Megalodon rebreather

Page 15: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

• Diver’s Lungs• DSV and Hoses• Exhalation

Counterlung• Manual Inject Buttons• Over Pressure

Release Valve• The Scrubber• The Scrubber

Cartridge• The Head and

handsets

• Three Independent Oxygen Sensors

• The Handsets and Gas Control

• Battery Compartments

• Cell Connectors

• The Oxygen Supply

• Inhalation Counterlung

• Diluent Gas Supply

• Heads Up Display

Page 16: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

• Including Optional System Components– Auto-Diluent Additional Valve (ADV) and inline

LP Flow Stop control device– Tiger Gear Mounting System– Mixed Gas Bypass– Radial scrubber– Neoprene Counter Lungs– Choice of Different Back plates and wing

Sytems

Page 17: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

DIVERS LUNGS

• The motor that powers the gas around the rebreather gas loop

• The point of exchange for O2 rich gas to the body and CO2 rich gas from the body

• When we inhale, “clean” O2 rich gas comes in from the Right.

• The flow is from the divers lungs through the mouthpiece to the Left

Page 18: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

MOUTHPIECE and HOSES

• Mouthpiece and one-way mushroom valves control direction of gas flow

• Timing of gas flow is in sympathy with diver’s breathing pattern.

• Hoses are large bore. This reduces the work of breathing (WOB)

• (Always close the mouthpiece to prevent fluding)

Page 19: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

EXHALATION COUNTERLUNG• Counterlungs come from the factory as standard

5.5 ltr lungs made from highly durable cordura. (Neoprene Counter lungs can be order from ISC)

• Flexible breathing bag to contain gas from body

• Contains both the ADV, Mixed Gas By-pass (Additional Extra) and the Gas Loop Over Pressure Release Valve

Page 20: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

THE CO2 SCRUBBER (or Stack)

• Gas path is from the exhalation counterlung, through the T-piece down to the bottom of the CO2 scrubber

• It fans out to a large bore axial flow through the scrubber to reduce gas velocity and increase “Dwell Time” for CO2 removal

• The scrubber can is clear allowing the diver to see the Internal Dive Sorb.

Page 21: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

THE SCRUBBER CARTRIDGE• Designed to remove CO2 from the gas loop.

• Situated on a spacer fitted with moisture pads to maintain air gap at bottom and soak up an moisture from the canister

Page 22: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

The Scrubber Cartridge – continued

• Different scrubber makes can give different duration times due to different granule sizes

• Only designed to remove CO2, not any other toxic compounds or contaminants in the breathing gas

Page 23: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

SCRUBBER MATERIALS• Have a defined shelf life time and in use up to 3 hours

• Effectiveness altered by time, temperature and moisture

• Sofnolime 797 grade recommended ( Other makes include Dragersorb and Sodasorb)

• Sofnolime is primarily a Sodium Hydroxide compound

• Needs proper packing to prevent CO2 channeling

• Efficiency is reduced by high gas flow rates (fast or skip breathing) or focused “channeling” characteristics

• In a properly assembled and properly functioning CCR system the CO2 scrubber is the “Achilles Heel”

Page 24: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

SCRUBBER MANAGEMENT

• No partial filling of the scrubber. New full canister every time

• Do not empty scrubber into a bag and re-pack the scrubber later- new and used granules are then mixed

• Do not store partly used scrubber for more than a few days. The material absorbs CO2 and grows mold

Page 25: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

CONTROLLERS GENERAL• Power On

– Primary and Secondary Electronics– Switch on manually– Self testing electronics. – (hear solenoid firing, HUD Flashing)– 2 control buttons.– Sleep mode to conserve power

ELECTRONIC WORKSHOP

Page 26: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

HANDSET CONTROLLER GENERALITIES• Handset controllers are electronic – handle carefully

• There are two independent handset “controllers” on the ISC Megalodon and a HUD

• The main function of the primary controller is to control oxygen injections and display real time information to the diver

• The main function of the secondary controller is to provide the diver with a totally independant PO2 reading.

• Can be switched on and off separately

Page 27: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

CONTROLLER FEATURES• User Selectable Setpoints

• Built in System Monitor (Mv, Battery output, Temperature)

• Back light feature

• User Selectable Oxygen Injection Time

• Metric - Imperial / Fresh - Salt water

• User selectable O2 % for Calibration.

Mechanics and basic functioning of the ISC Megalodon

Page 28: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

THE PRIMARY HANDSET • Redundant controller PPO2 readings displayed to the diver

• Responsible for driving the Solinoid• Requires independant Calibration.

• Primary Handset has a SSI (System Status Indicator +&- )

• Must be switched on to have a chance to drive the oxygen solenoid• Will give indications of battery health (load / no load), Cell health,

Loop Temp, Outside Temp.• Redundancy so that 1 controller can fail while the other allows you

to safely exit the water

• Need to constantly be checking PPO2 on the handset No Audio Alarm.

Page 29: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

THE SECONDARY HANDSET • Redundant controller PPO2 readings displayed to the diver

• Passive Heads UP Display (All HUD functions are controlled by the secondary Handset)

• Requires independant Calibration.

• Will give indications of Battery health, Cell health, Loop Temp, Outside Temp.

• Need to constantly be checking PPO2 on the handset No Audio Alarm.

Page 30: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

HEADS UP DISPLAY (HUD)• Three Colour Indicator powered by the secondary handset

• Can be disabled by the diver

• Adjustable Brightness control

• The HUD works by benchmarking setpoint 1.0 in ORANGE

• Cell Readings Higher than 1.0 are indicated by blinking GREEN

• Cell Readings Lower than 1.0 are indicated by blinking RED

• Each Cell will blink seperately with a short pause between each announcement.

Mechanics and basic functioning of the ISC Megalodon

Page 31: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

THE CANNISTER “ LID”• The electronic “brains” of the device

• Consisting of two indipendant Battery packs, wiring for the handsets and HUD, Oxygen Sensor Pod & Solinoid

• Great care should be taken when handling them

• For transport fully assemble rebreather or carry lid and handsets separately in a padded bag

• Treat it with the same care as a laptop

Mechanics and basic functioning of the ISC Megalodon

Page 32: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

3 INDEPENDENT OXYGEN SENSORS• 3 galvanic fuel cells each with a milli-volt output

proportional to the oxygen exposure across their outer faces (breathing gas)

• The computers oxygen control averages all three Cells togethor to provide the PPO2

• This information is displayed to the diver both handsets

• Delicate pin connections

• Should never smell of “toxic” or other vapors

Mechanics and basic functioning of the ISC Megalodon

Page 33: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

• CONSTANT PPO2 GAS CONTROL

• Remember Dalton’s Law from Advanced Nitrox Pressure gas = FO2 x Pressure

• At different depths (gas pressures) for a constant PPO2 controller setting we will have a Nitrox mix that changes proportionally to pressure

• At any given depth we can calculate the Nitrox mix for any given PPO2 setting

Mechanics and basic functioning of the ISC Megalodon

Page 34: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Mechanics and basic functioning of the ISC Megalodon

Page 35: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

BATTERY COMPARTMENT• Two independant battery compartments

• Sealed to atmospheric pressure

• Battery packs consist of either 2 x 3.6v Lithium cells or 5 Alkaline batterys supplied by ISC

Mechanics and basic functioning of the ISC Megalodon

WARNING! YOUR ELECTRONICS REQUIRE BATTERY POWER FOR OPERATION, ENSURE YOU HAVE ENOUGH POWER PRIOR TO EACH DIVE. CELLS READING 5.0V OR LESS SHOULD BE REPLACED

Page 36: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

CELL CONNECTORS• These are delicate and covered with red or blue

moisture caps with holes for pressure equalization

• Take great care not to damage wires or connectors if changing cells

• Check Mv output from cells before each dive

• Repalce your cells when Mv output falls below 9mv

Mechanics and basic functioning of the ISC Megalodon

Your Instructor will run through the correct procedure for calibrating the handsets and conducting the required linearity checks

Page 37: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

THE OXYGEN SUPPLY• Dive tank switched on

• HP to SPG on front of Inhilation lung gives O2 pressure

• LP hose feeds O2 to the LID for the solenoid from the first stage regulator

• First stage regulator I/P is usually 10 bar with a range of between 9.0 - 10.4 bar being acceptable

• You can choose dive tank size to suit your requirements

• Remember:- Rich mix Right, Lean mix Left

Mechanics and basic functioning of the ISC Megalodon

Page 38: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

DILUENT GAS SUPPLY• Need to use diluent below 6msw (20fsw)

• Manually add diluent on descent depressing the ADV “to equalize” the loop volume with pressure changes

• LP feeds to both the wing BCD and ADV

• Tank pressure is displayed on the SPG via HP hose over left shoulder

• Do not use for Drysuit inflation – use off board gas

• IP normally set to 10 Bar

Mechanics and basic functioning of the ISC Megalodon

WARNING The Megalodon CCR does not have on-board bailout, surficient bail out gas must be carried at all times.

Page 39: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

TDI ISC Megalodn Rebreather Divers Course

Section 6: Physiology – A Reflection for the CCR Diver

Page 40: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Physiology – A Reflection for the CCR Diver

BASIC PREMISE• We need to breathe clean (CO2 and toxic gas free),

appropriately oxygenated gas at all depths at all times to sustain life and to minimise DCS risk

• Appropriate nitrox mixes are delivered to the diver under software control according to the PPO2 selected by the diver

Page 41: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

ADDITIONAL CONCEPTS• Ascent must be controlled at less than 9m per minute

as per normal diving practice. DSC and DCI risks still apply

• Dangers of hypoxia, hyperoxia, asphyxia and the insidious CCR carbon dioxide poisoning (hypercapnia) need examination

• Lets review sources of contamination of breathing loop• NOAA toxicity guidelines apply for Whole Body and

Pulmonary Toxicity

Physiology – A Reflection for the CCR Diver

Page 42: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

CO2 and HYPERCAPNIA• Humans consume O2 at a cellular level and

generate CO2 as a waste product

• Blood transports O2 to the cells and removes CO2

• Blood exchanges CO2 for O2 at the lung Alveoli

• The urge to breathe is driven by the level of CO2 retained in the body (blood and cells)

• With hypercapnia and elevated CO2 levels, the breathing rate is increased (panting – dypsnea) to try to vent the lungs and alveoli

Physiology – A Reflection for the CCR Diver

Page 43: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

HYPERCANPNIA SYMPTOMS• Mild Symptoms

– Headache– Anxiety and dizziness– Shortness of breath

• Severe Symptoms– Strong anxiety bordering on panic– Muscular difficulty and loss of dexterity in closing

mouthpiece to bail out to OC– Diluent flush doesn’t seem to have any effect at first so

divers often stop flushing when in fact they should continue flushing non-stop

Physiology – A Reflection for the CCR Diver

Page 44: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

RE-INHALATION OF CO2

• CO2 normally removed by Sofnolime scrubber

• Conditions when this doesn’t occur properly– Scrubber expired or ignoring 3 hour duration rule– Strenuous activity on rebreather– Incorrect assembly of rebreather – Wet or flooded scrubber– Damaged mushroom valves – gas goes backwards– Skip breathing or breath holding – creates pockets of

very high CO2 content in the breathing loop– Incorrect scrubber packing

Physiology – A Reflection for the CCR Diver

Page 45: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

DEPTH VERSUS CO2• As depth increases, work of breathing increases to

push more gas molecules around the breathing loop. More CO2 is generated as a result.

• As gas density of molecules increases the efficacy of the scrubber granules to absorb CO2 across its surface decreases

Physiology – A Reflection for the CCR Diver

Page 46: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

HYPEROXIA• Too much oxygen results in O2 toxicity risk

• Track O2 toxicity per NOAA tables (see manual)

• At a default setpoint of 1.3, NOAA limit = 180 minutes - But 80% of that is 144 minutes

• Do not exceed 80% of CNS and OTU tables

• Need to monitor CNS% and OTU’s carefully on multi-dive days or multiple repeat dive days

Physiology – A Reflection for the CCR Diver

Page 47: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

SYMPTOMS OF HYPEROXIA• CONVENTID

– CON Convulsions– V Visual disturbances/Tunnel vision– E Ears ringing (Tinnitus)– N Nausea– T Tingling or twitching (facial)– I Irritability– D Dizziness or vertigo

Physiology – A Reflection for the CCR Diver

Page 48: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

PULMONARY TOXICITY• O2 causes the alveoli surfaces in the lung to dry

out thus slowly reducing lung efficiency

• OTUs – 1 minute of 100% oxygen breathing at the surface

• Happens above a PPO2 of 0.5 thus very real danger for CCR Divers

Physiology – A Reflection for the CCR Diver

Page 49: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

HYPOXIA• Occurs if the PPO2 drops below 0.16 at any time

• Real danger on ascent if solenoid fails

• Real danger if Oxygen tank is off or empty

• Symptoms can typically be breathlessness and panting, and lack of co-ordination

• Unconsciousness resulting in drowning can be sudden and without warning

Physiology – A Reflection for the CCR Diver

Page 50: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

CNS TOXICITY AND OTU’s• Real danger of convulsing and drowning if your

CNS is not monitored properly

• Always know the PPO2 in the loop and do a diluent flush to check any odd readings

• Track your CNS % and OTU’s on the NOAA tables in your manuals

Physiology – A Reflection for the CCR Diver

Page 51: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

ASPHYXIA• Like strangulation it is caused by a shortage of

oxygen and buildup of CO2

• Restrictions in the breathing loop like a kinked mouthpiece hose can cause it

• Easily noticed early in a dive

• Ineffective or exhausted scrubber also can cause asphyxia

• Eventually results in unconsciousness

Physiology – A Reflection for the CCR Diver

Page 52: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

TDI ISC Megalodon Rebreather Divers Course

Section 7:

Let’s Go Dive the Rebreather - Preparation

Page 53: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Let’s Go Diving the Rebreather - Preparation

EQUIPMENT ASSEMBLY and INSPECTION

• Preparation– Assemble the rebreather according to a checklist (refer to

manual), initially under Instructor guidance

– Be meticulous and do not get distracted

Page 54: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Pay particular attention to the following during assembly and inspection;

• Positive & negative pressure tests

• Cylinder contents analysis

• Cylinder pressure on SPGs

• HUD LEDs functioning (if HUD used)

• Listen for solenoid firing when handsets

switched on

• Switches on handsets working normally

• Mushroom valve checks on the mouthpiece assembly

Let’s Go Diving the Rebreather - Preparation

• Wing and Auto-Air checks

• Scrubber packing

• Hose O-ring lubrication

• Battery power levels

Page 55: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

WEIGHTING AND TRIM• Ensure the unit is well weighted at the top.

• Add to the sides on the waistband to trim

• More weight needed if diving in a drysuit

Let’s Go Diving the Rebreather - Preparation

Page 56: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

MACHINE CALIBRATION• Absolutely critical part of the preparation process

• Always put in % of oxygen in the lid at 98% - all the air cannot be displaced from the lid

• Is the Mbar reading on the Megalodn handset are Automatically sensed

• Mbar readings are critical for altitude diving

• Watch the cell readings rise during calibration and check for any “slow” or “limited” cells

Let’s Go Diving the Rebreather - Preparation

Your Instructor will demonstrate correct calibration procedures

Page 57: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

GETTING THE FEEL OF THE MACHINE ON LAND

• Putting on the machine for a “dry dive”– Adjust straps to fit body correctly and tuck away

loose ends– Power up and sequence handset control through

to dive mode under guidance of Instructor– Select your Setpoint – Put on mask to prevent breathing through nose– Breathe on the machine while watching PPO2

readings on handsets listen for solenoid firing

Let’s Go Diving the Rebreather - Preparation

Page 58: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

• Dry dive simulations (approx 30 minutes)

• These provide useful simulations in a safe environment for learning and troubleshooting

Let’s Go Diving the Rebreather - Preparation

Page 59: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

OVERFILLED BREATHING LOOP• Allow loop volume to increase by injecting a

little diluent.

• Get the feel of “over pressurized loop” inhibiting the exhale cycle

• Release excess gas – repeat again

Let’s Go Diving the Rebreather - Preparation

Page 60: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

UNDERFILLED BREATHING LOOP• Exhale fully through the nose, twice

• Feel the effect of too little pressure in the loop, difficulty inhaling properly

• Add gas using the ADV, for volume adjustment

Let’s Go Diving the Rebreather - Preparation

Page 61: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

NORMAL LOOP VOLUME• Continue normal breathing mode while seated or

stationary

• Observe PPO2 readings and how closely they follow the setpoint

• Listen to solenoid firing and ensure you are feeling fine on machine

Let’s Go Diving the Rebreather - Preparation

Page 62: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

GENTLE EXERCISE• Walk about with the rebreather on

• Simulate moderate exercise

• Notice breathing, rate increases, and solenoid firing more often than when at rest.

Let’s Go Diving the Rebreather - Preparation

Page 63: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

INCREASED WORK LEVEL

• Jog in place for a couple of minutes, or do a few squats with the machine on to raise heart and respiratory rates

• Observe PPO2 tracking, hear solenoid firing and notice little or no change in loop volume

• The student should still feel fine and have no CO2 problems

Let’s Go Diving the Rebreather - Preparation

Page 64: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

SETPOINT CHANGES• Switch Setpoint when the PPO2 rises observe

PPO2 on handset to ensure fuctionality

• Test how long it takes to breathe the loop back down to a PPO2 of 0.4 at rest

Let’s Go Diving the Rebreather - Preparation

REMEMBER! There or no audio alarms for High or Low Oxygen on the Megalodon the diver should be monitoring the handsets at all times.

Page 65: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

OPEN CIRCUIT BAIL-OUT• Close mouthpiece and come off the loop

• Switch to OC bailout – take 3 breaths, return to the loop and open mouthpiece

• Observe loop volume increase as O2 is injected to bring PPO2 back up to setpoint because of the air you introduce to the loop

Let’s Go Diving the Rebreather - Preparation

Page 66: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

DILUENT FLUSH• Inject diluent using the ADV

• Vent gas through by exhaling

• Repeat three times and observe reduction in PPO2. Listen to solenoid firing.

Let’s Go Diving the Rebreather - Preparation

Page 67: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

MANUAL GAS ADDITION• Give a small squirt of O2 with the manual addition

button and observe the PPO2 reading

• Repeat the exercise with diluent

• Repeat to get a “feel” for the addition buttons

Let’s Go Diving the Rebreather - Preparation

Page 68: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

TDI ISC Megalodon Rebreather Divers Course

Section 8: Let’s Go Dive the Rebreather – In the Water

Page 69: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Let’s Go Diving the Rebreather – In the Water

Rule No 1 • If in doubt – bail out!

Rule no 2• If something feels wrong – it is!

Page 70: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

DIVE PLANNING• Select depth and time for a safe no-deco time

• Scrubber monitoring and planning (2.5 – 3 hour rule)

• Gas volume planning – enough for a bail-out

• Oxygen planning – CNS% and OTUs

• Is this a repetitive dive?

• Thermal protection appropriate for conditions and duration of dive

• Brief team, do ABCs and enter the water under guidance of your Instructor

Let’s Go Diving the Rebreather – In the Water

Page 71: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

FIRST IMPRESSIONS IN THE WATER• Silence

• Bubble-free

• Listen for the solenoid firing

• Check PPO2 on the handsets every minute

• Dynamic bouyancy change caused by computer-controlled oxygen

• Unit is bouyant at shoulder level due to air volume in counterlungs and hoses

• Add weight at the top for trim

• Remember – no matter how experienced you are on OC, you are now a beginner again

Let’s Go Diving the Rebreather – In the Water

Page 72: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

EARLY TECHNIQUE POINTERS• Do not expect to get it right first time

• Try to keep the loop volume at a minimum for comfort

• Keep a steady depth level

• Try to maintain a horizontal, neutral bouyancy, attitude while swimming

• Use vertical attitude only when testing skills under instructor guidance

• Be generous with weighting (1 or 2kg over)

Let’s Go Diving the Rebreather – In the Water

Page 73: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

BASIC WATER SKILLS DEVELOPMENT• Mouthpiece opening and closing techniques

• Open Circuit bail-out

• Diluent flushes and checking PPO2 drop

• Check diluent flush predictions

• Bouyancy normalisation while swimming

• Constant checking of PPO2 on handsets

• Understanding and reacting to alarm conditions (mostly simulated while on course)

• Loop volume control

Let’s Go Diving the Rebreather – In the Water

Page 74: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

BAD – DAS DRILLS• In the event of in-water problems, rely on

BAD-DAS drills– B Bail-out to open circuit– A Anxiety breaths (3)– D Decide what to do

• If returning to the loop, then:– D Diluent flush – breathe fresh gas– A Always know your PPO2 – check handsets– S Skills. Apply appropriate skills gained

during training to overcome the problem

Let’s Go Diving the Rebreather – In the Water

Page 75: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

LOW O2 DRILLS• Manual flight

– 1 Using O2 inflator– 2 Adding oxygen using O2 tank valve– 3 Using machine in semi-closed circuit mode

• Low oxygen danger– 1 Solenoid stuck closed– 2 O2 tank empty or switched off

• Handset failure or switched off– If both are blank, go open circuit or if gas

volumes dictate, switch to semi-closed circuit mode

Let’s Go Diving the Rebreather – In the Water

Page 76: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

HIGH OXYGEN DRILLS• Open circuit bailout

• Use of diluent flush to drop PPO2

• Closing oxygen tank if solenoid fails open

Let’s Go Diving the Rebreather – In the Water

Page 77: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

MENU MODE DRILLS• Sequencing through menu commands in water to

become familiar with functionality

• Changing Setpoints

• Observe System Monitor

• Observe SSI indicator

Let’s Go Diving the Rebreather – In the Water

Page 78: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

HYPERCAPNIA DRILLS• Open Circuit Bailout

• Diluent flushes

• Practice/Practice/Practice

Let’s Go Diving the Rebreather – In the Water

Page 79: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

ELECTRONICS MALFUNCTIONS• Handset and controller problems

• Cell errors or missing cells

• Poor PPO2 tracking to setpoint

• Possible Loop Floods

Let’s Go Diving the Rebreather – In the Water

Page 80: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

TDI ISC Megalodon Rebreather Divers Course

Section 9: Avoiding Rebreather Incidents – Safe Diving

Page 81: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Avoiding Rebreather incidents – Safe Diving

All the training in the world is useless if you do not adopt the following as your personal mantra for CCR Diving:

– Safe Attitude

– Safe and enhanced Awareness

– Safe and structured Discipline

Page 82: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Avoiding Rebreather incidents – Safe Diving

OPERATIONAL MAINTENANCE• Check battery connections are clean and dry

• Ensure handsets are cleaned in fresh water,

• Keep O-rings well cleaned and lubricated to prevent abrasion and other damage

Page 83: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Avoiding Rebreather incidents – Safe Diving

• Properly assemble and check according to a check list

• Do not get distracted during calibration

• Do all the pre-dive checks and then “go live” for a short “dry-dive” to pre-breathe prior to entering water in order to ensure dynamic functionality of the machine

REMEMBER DURING PRE-DIVE PREPARATION

Page 84: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Avoiding Rebreather incidents – Safe Diving

DIVE PLANNING• Break dive into logical “waypoints” to do

checks and flushes for safety

• Usual waypoints _ 6msw (20fsw) bubble leak check– On descent - switch to high setpoints– On reaching bottom - diluent flush and

check guages and handsets– After pre-set time or leaving bottom -

diluent flush– On ascent (10msw or less) - gas venting to

control bouyancy

Page 85: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Avoiding Rebreather incidents – Safe Diving

REMEMBER ON THE DESCENT• Do a shallow (6msw/20fsw) bubble check

• Descend slowly to control breathing loop volume

• Watch the PPO2

• Switch to high setpoint according to plan

Page 86: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Avoiding Rebreather incidents – Safe Diving

REMEMBER ON THE ASCENT• PPO2 will drop, solenoid should fire, and oxygen

should come into the loop quickly – rapid bouyancy increase

• Check PPO2 closely on ascent to reduce Hypoxic risk if there is insufficient O2 in the loop

• Carefully control ascent rate

• 3 potential bouyancy devices – drysuit, wing and loop counterlungs

Page 87: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Avoiding Rebreather incidents – Safe Diving

REMEMBER AT THE SURFACE• NEVER switch off the handsets or tanks at the surface

above deep water

• Only shut down after equipment has been taken off

• You still need to watch your PPO2 if you breathe on the loop at the surface

• It’s the best snorkel you ever bought!!!

Page 88: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Avoiding Rebreather incidents – Safe Diving

REMEMBER AFTER THE DIVE• Gas up again for the following dive

• Check and replace batteries/scrubber as necessary

• Disinfect and clean as necessary

• Conduct all other system checks to ensure correct functionality of cells and handsets

• Log your dives

Page 89: TDI Inner Space Sytsems Megalodon Closed Circuit Rebreather Course

Avoiding Rebreather incidents – Safe Diving

TDI Training and Manufacturers Manuals– Errors and troubleshooting are well documented

for reference

– Maintain your own service log for batteries/scrubber and other service needs

– Document your rebreather experiences