te cyl cornel university

20
Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 1 5. RF Systems and Particle Acceleration 5.1 Waveguides 5.1.3 Cylindrical Waveguides 5.2 Accelerating RF Cavities 5.2.1 Introduction 5.2.2 Traveling wave cavity: disk loaded waveguide 5.2.3 Standing wave cavities 5.2.4 Higher-Order-Modes 5.2.5 The pillbox cavity 5.2.6 SRF primer Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 2

Upload: mandeep-singh

Post on 06-Sep-2015

226 views

Category:

Documents


2 download

DESCRIPTION

bm

TRANSCRIPT

  • Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 1

    5. RF Systems and Particle Acceleration5.1 Waveguides

    5.1.3 Cylindrical Waveguides5.2 Accelerating RF Cavities

    5.2.1 Introduction5.2.2 Traveling wave cavity: disk loaded

    waveguide5.2.3 Standing wave cavities5.2.4 Higher-Order-Modes5.2.5 The pillbox cavity5.2.6 SRF primer

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 2

  • Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 3

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 4

  • Mode for particle acceleration: TM01 )cos()()(00 tzkJExE zrrzz =

    )sin()(')(101 tzkJkrExE zrrzzr =

    0)( =xE 0)( =xBr

    )sin()(')(12 01 tzkJrExB zrrcz =

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 5

    inRS

    nzz erJBxBxE nm )()(,0)( 0==

    R)(

    )(

    2222

    222

    zczzki

    zzzki

    EBkB

    BEkE

    zc

    zc

    =

    +=

    ( )( )

    ( )( )

    )cos()()cos()(

    )sin()('0

    )sin()(')cos()(

    0

    10

    12

    10

    2

    10

    2

    10

    12

    2

    2

    tzknrJBBtzknrJRnkBBikB

    tzknrJRkBBikBE

    tzknrJRBBiE

    tzknrJRnBBiE

    zRS

    nz

    zRS

    nrR

    SzzrSR

    z

    zRS

    nSzzrSR

    zr

    z

    zRS

    nSzrSR

    zRS

    nrR

    SzrSR

    r

    nm

    nm

    nmnm

    nmnmnm

    nmnmnm

    nm

    nmnm

    +=

    +==

    +==

    =

    +==

    +==

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 6

  • 0 1 2 3 4 5 6-1

    -0.5

    0

    0.5

    1

    E

    B

    Bx

    z

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 7

    0)(,)()( 0 == xBerJExE zinRZnz nm

    R)(

    )(

    2222

    222

    zczzki

    zzzki

    EBkB

    BEkE

    zc

    zc

    =

    +=

    0)sin()('

    )cos()()cos()(

    )cos()()sin()('

    2

    2

    0

    10

    10

    10

    1

    0

    =

    +==

    +==

    +=

    +==

    +==

    z

    zRZ

    nczrZR

    zRZ

    nrR

    ZczrZR

    r

    zRZ

    nz

    zRZ

    nrR

    ZzzrZRk

    zRZ

    nzzrZRk

    r

    BtzknrJEEiB

    tzknrJnEEiBtzknrJEE

    tzknrJnkEEiEtzknrJkEEiE

    nmnm

    nmnmnm

    nm

    nmnmnm

    z

    nmnmz

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 8

  • 0 1 2 3 4 5 6

    -1

    -0.5

    0

    0.5

    1

    E

    B

    Bx

    z

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 9

    0 1 2 3 4 5 6-1

    -0.5

    0

    0.5

    1

    TES

    TMS

    TESx

    z

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 10

  • Energy density for TE mode 2,2

    -1-0.5

    00.5

    1 -1

    -0.5

    0

    0.5

    1

    01000200030004000

    -1-0.5

    00.5

    Energy density for TM mode 2,2

    -1-0.5

    00.5

    1 -1

    -0.5

    0

    0.5

    1

    02000400060008000

    -1-0.5

    00.5

    Energy density for TM mode 2,2

    -1-0.5

    00.5

    1 0

    2

    4

    6

    02000400060008000

    -1-0.5

    00.5

    TEU TMU TMU

    x x

    xy y z

    x

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 11

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 12

  • Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 13

    Use high DC voltage to accelerate particles

    No work done by magnetic fields

    Cockroft and Walton's electrostatic accelerator (1932)

    Protons were accelerated and slammed into lithium atoms

    producing helium and energy.

    DC Accelerators:

    Use time-varying fields!

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 14

  • Taiwan Light Source cryomodule

    RF Cavities

    The main purpose of using RF cavities in accelerators is to provide energy gain to charged-particle beams

    The highest achievable gradient, however, is not always optimal for an accelerator. There are other factors (both machine-dependent and technology-dependent) that determine operating gradient of RF cavities and influence the cavity design, such as accelerator cost optimization, maximum power through an input coupler, necessity to extract HOM power, etc.

    In many cases requirements are competing.

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 15

    NC or SC Relatively low

    gradient (19 MV/m)

    Strong HOM damping (Q ~ 102)

    High average RF power (hundreds of kW)

    CESR cavities

    KEK cavity

    PEP II Cavity

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 16

  • NC or SC High gradients Moderate HOM

    damping reqs. High peak RF power

    ILC: 21,000 cavities!ILC / XFEL cavities

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 17

    SRF cavities Moderate to low

    gradient (820 MV/m)

    Relaxed HOM damping requirements

    Low average RF power (513 kW)

    CEBAF cavities

    ELBE cryomodule

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 18

  • SRF cavities Moderate

    gradient (1520 MV/m)

    Strong HOM damping (Q = 102104)

    Low average RF power (few kW)

    Cornell ERL cavities

    BNL ERL cavity

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 19

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 20

    Standing wave cavity. Traveling wave cavity (wave guide).

  • Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 21

    Cylindrical Waveguide: TM01 has longitudinal electric field and could in principle be used for particle acceleration

    But: phase velocity of wave > c > speed of particle-> no average energy transfer to beam !

    Solution: Disc Loaded Waveguide Iris shaped plates at constant separation in waveguide lower phase

    velocity Iris size is chosen to make the phase velocity equal the particle

    velocity

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 22

    Vgroup = Vparticle

    operation

    koperation

  • Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 23

    Irises form periodic structure in waveguide-> Irises reflect part of wave-> Interference-> For loss free propagation: need disk spacing d

    p=integer

    d

    pdz=

    pdkz2

    =

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 24

    Selection of integer p:

    Long initial settling or filling time,not good for pulsed operation with very short pulses.

    Small shunt impedance per length (shunt impedance determines how much acceleration a particle can get for a given power dissipation in a cavity).

    Common compromise.

    p=2

    p=3

    p=4

    ccsh PVR

    2=

  • Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 25

    Time dependent electromagnetic field inside metal box

    Energy oscillates between electric and magnetic field!

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 26

  • Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 27

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 28

  • Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 29

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 30

    500MHz Cavity of DORIS:GHz4967.01.23 )(010 == Mfcmr

    l The frequency is increased and tuned bya tuning plunger.

    l An inductive coupling loop excites themagnetic field at the equator of the cavity.

  • Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 31

    LC1

    =

    TE TM

    TM010

    0,0 == HE nn

    0122 =

    H

    Etc

    00010

    10

    00

    ,405.2

    405.2

    405.2

    ==

    =

    =

    Rc

    eRrJEiH

    eRrJEE

    ti

    tiz

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 32

  • Higher Frequency (Order) Standing Wave Modes

    TMmnp (TEmnp),m, n, p Ez (Hz) , r, z

    TM010

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 33

    T

    T = 2/ Eacc Eacc = Vc/d d = /2

    ( )

    == dzezEV czizc 0,0

    TdE

    cdcd

    dEdzeEVd

    czic =

    == 00

    0

    00

    0

    2

    2sin0

    dEVdTttT centerexittransit 00222 ====

    t

    E z

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 34

  • Surface currents ( H) result in dissipation proportional to the surfaceresistance (Rs):

    Dissipation in the cavity wall given bysurface integral:

    Energy density in electromagnetic field:

    Because of the sinusoidal time dependence and 90 phase shift, the energy oscillates back and forth between the electric and magnetic field. The stored energy in a cavity is given by

    == VV dvdvU2

    02

    0 21

    21 EH

    ( )2221 HE += u

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 35

    Quality factor

    2 ~104 ~1010

    ( )0

    0000

    00012losspower average

    energy stored

    ====

    cc PU

    TPUQ

    =

    Ss

    VdsR

    dvQ 2

    2000 H

    H

    -1000 -500 0 500 10000

    1

    cavit

    y fie

    ld [a

    rb. u

    nits

    ]

    Frequency 1.3 GHz [Hz]

    Bandwidth

    (1) The RF system has a resonant frequency

    (2) The resonance curve has a characteristic width

    0

    Q20 =

  • Geometry factor

    G

    G = 257Ohm

    sRGQ =0

    =

    S

    Vds

    dvG 2

    200

    H

    H

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 37

    Shunt impedance and R/Q

    Pc

    R/Q = 196 Ohm

    ccsh PVR 2

    2=

    ccsh PVR

    2=

    caccsh P

    Er4

    =2

    UV

    QR csh

    0

    2

    0 =

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 38

  • GR/Q

    )/()/)(()/( 02

    00

    2

    00

    22

    QRGRV

    RQRQRV

    QRQV

    RVP

    shsc

    sshsc

    shc

    shcc

    =

    =

    ==

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 39

    270 88 /cell

    2.552 Oe/(MV/m)

    Cornell SC 500 MHz

    Hpk Epk R/Q

    Pillbox vs. real life cavity

    Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 40