technical note 3823

29
. TECHNICAL NOTE 3823 IIWZESTIGATIONOF ROTATING STALL IN A SINGLE-STAGE AXi21L COMPRESSOR - By S. R. Montgomery and J. J. Braun MassachusettsInstitute of Technology Washhwton January 1957

Upload: others

Post on 06-Apr-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TECHNICAL NOTE 3823

.

TECHNICAL NOTE 3823

IIWZESTIGATIONOF ROTATING STALL IN A

SINGLE-STAGE AXi21LCOMPRESSOR -

By S. R. Montgomery andJ. J. Braun

MassachusettsInstitute of Technology

WashhwtonJanuary1957

Page 2: TECHNICAL NOTE 3823

.

.

TECHLIBRARYKAFB,NM

NATIONALADVISORYCOMMITTEEFORAERONAU I:lllllllllllllllllull!llTECHNICALNOTE3823

INVESTIGATIONOFRO!13%TINGSWULIN

SINGLE-STAGEAXIALCompressor

OClbb715

A

By S.R.Montgomeryand

SUMMARY

J.J.Braun

Therotating-stallcharacteristicsofa single-stageaxial-flowcompressorwereinvestigated.Thenumberof stallcelJ.sandtheirpropa-gationvelocitieswerefoundwithandwithoutstatorblades.Themeas-uredvelocitieswerecomparedwiththosepredictedby Stenning’stheory(seeNACATN 358o), assumingthedownstreampressurefluctuationstobenegligible,andcorrelationwithin10percentwasobtainedat theonsetof stall.Itwasfoundthatthepressurefluctuationscausedby rotatingstallwerelessdownstreamoftherotorthanupstream;theminimumreduc-tionacrosstherotorwas40 percentwithwithoutstatorblades.Itwasalsofoundthestatorbladesdecreasedthenumberofrotatingstallat largermassflowrates.

statorbladesand75 percentthat,forthecompressortested,stallcellsandtendedto induce

INTRODUCTION

Rotatingstallmaybe definedasa regionof separatedflowmovingalonga bladerow. Ithasbeena continuingprobleminaxial-compressordevelopmentbecausetheresultingvibrationscauseseverebladestressestobe imposedat low-mass-flowoperation.If stallfrequencieswerepredictable,bladescouldbe designedhavingcriticalfrequenciesdif-ferentfromthestallfrequency.

Severaltheorieshavebeenputforwardforpredictingthepropa-gationvelocityofa stallcell(refs.1 to 3). Thesearealllinearizedanalyses,withSearsandMarbleconsideringthecascadeasan actuatordiskandStenning,asa cascadeoffinitewidth.A furtherdifferenceinthetheoriesoccursinconnectionwiththeassumptionofthedownstreamflowfield;SearsandMarbleconsideredthewakestomixin zerolength,sothattheflowfieldisa continuum,whileStenningalsoconsideredthealternativeassumptionofa seriesoffreejetsdischargingintoa regionof constantpressure.

Page 3: TECHNICAL NOTE 3823

2 NACATN 3823 Z—

Experimentalworkhasalreadybeenconductedoncompressors,in.

particularbyHarvardUniversity,theCaliforniaInstituteofTechnology, —andtheNationalAdvisoryCommitteeforAeronautics(refs.h’to6). How- a–ever,ineachinstancetheworkhasbeencarriedoutonmultirowmachines,anditappears:thatconsiderableinterferenceresultsfromthedownstreambladerows. ,—

Sincethetheoriesareinvarianceandtheinterferencedueto otherbladerowshasanunknowneffect,thepresentinvestigationhasbeencon-ductedona single-stagemachine,withandtithoutdownstreamstatorblades,inan efforttoverifythepredictedresultswitha minimumofinterference;however,Itwasnotfoundpossibletoremovetheinletguidevanes.Thedataobtainedpermita readycomparisonbetweenpre-dictedandactualstall-propagationvelocitiesand,inaddition,allow”thetheoreticalmodelsforthedownstreamflowfieldtobe checkedbymeasurementofthepressurefluctuations.

—..—

——

ThisinvestigationwasconductedattheMassachusettsInstituteof —TechnologyunderthesponsorshipandwiththefinancialassistanceoftheNACA.

.

A

b

c

CP

Cx

Cy

f

F

L

N

SYMBOLS

effectivebladepassagearea

totalbladepassagearea

halfwavelengthof stallcell _.

resultantvelocity

pressurecoefficient

axialvelocity

tsmgentialvelocity

stall-propagationfrequency

frequencyoftimingpulseonphotographs

bladechordlength

numberof stallcells

.

—— . ....

.

——---

*

.

Page 4: TECHNICAL NOTE 3823

NACATN3823.

.

P

Ps

r

rt

u

v

T?

X>Y

a

al

Cf4

P~

132

?

@

separationbetweeninletguidevanesandrotor

staticpressure

radiu,s

rotortipradius

rotorvelocityatmeanradius

stall-propagationvelocityatmeanradiusrelativetorotor

inletvelocityrelativeto rotor

coordinatedirections

blockagecoefficient

absoluteairangleenteringrotor

absoluteairangleleavingrotor

airinletanglerelativeto rotor

airoutletanglerelativeto rotor

density

perturbationvelocitypotential

U angularfrequencyof stallpropagation‘

Page 5: TECHNICAL NOTE 3823

4 NACATN3823

EQUIPMENTANDPROCEDURE

Equipment

Thesingle-stagecompressorusedinthepresentinvestigationisshowninfigure1. Ithasthre~bladerows,theinlet-guidevanes,rotorblades,andstatorblades,eachbeingof“free-vofiex”design.me char-acteristicsofthiscompressorarepresentedinreference7.

Thecompressordimensionsare:

Outsideradius,in.. . . . . . . . . . . . . . . . . . ● ● ● c 11.625Hub-tipratio~. . . . . . . . . . . . . . . . ● s ● ● ● ● c ●

Bladechordlen@h,in.. . . . . . . ● . . 0 . ● . . . . . . .Bladeaspectratio. . . . . . . . . . . . . . . .* ● ● c ● ●

Pitch-chordratioatmeanradius. . . . . . . . . . . . . . .Approximateblade-tipclearance,in. . . . . . . . . ● ● s ● ●

Bladeanglesmeasuredfromtheaxialdirectionare:

0.751.51.9

o.~0.035

I Bladeangles,deg,for-

Radius Inletguideratio, Rotor ,Statorvanesr/rt

Inlet Outlet Inlet Outlet Inlet Outlet

0.75 0 28.5 34.8 -2.9 48.9 23.3.80 0 27.1 38.0 47.2 22.0.85 0 2597 42.9 1;:; 46.2 20.6●90 0 24.4 47.5 23.4 45.1 19.4● 95 0 23.3 51.6 29.7 44.3 18.3

1.00 0 22.2 54.6 34.4 43.3 17.2

ThebladeprofileswereNACAfour-digitseries10percentthick.Figure2 isa sectionalviewofthebladeregionwherevelocityandpres-suremeasurementsweremade. An adjustablethrottlingvalvedownstreamofthebladespermittedvariationofmassflow.

Qualitativemeasurementsofvelocityfluctuationsusedto indicatethestalledregionwereobtainedbytheuseofa constant-currenthot-wireanemometer(modelHWBmanufacturedby theF1OWCorp.). Thewire ontheprobeswastungstenof0.00035-inchdismeterand0.044inchlong.An additionalhot-wireset,locallyconstructed,wasalsousedwhensimultaneousindicationsat differenttangentialpositionswererequired.Theoperationofeachsetisidenticalandthesamesizeprobeswereusedforeach.

,

.

.

.

Page 6: TECHNICAL NOTE 3823

NACATN 3823 5

Theoutputofthehot-wireanemometerswasfedintoa dual-beamcathode-rayoscilloscope(type322manufacturedbytheAllenB. DumontLaboratories,Inc.),whichpermittedvisualobservationorphotographicrecordingof thevelocityfluctuations.Photographswereobtainedwithbotha stillanda strip-filmcamera,thestrip-filmcamerabeingemployedto includea greaternumberof stallcellsona singlephotograph.Repre-sentativephotographsofeachtypeappearasfigures3 and4. Thetimetraceincludedoneachvelocity-fluctuationphotographwasobtainedbyfeedingtheoutputofanaudiooscillatorintothebean-intensitycontroloftheoscilloscope.Thephotographicandhot-wireequipmentisseeninfigure1.

Pressurefluctuationsweremeasuredwitha bariumtitanatecrystal,theoutputofwhichwasfedthroughanamplifierandthencetotheoscil-loscope.Thepressuretapswerelocatedintheoutercasingofthecom-pressorbeforeandaftereachbladerowandrepresentativephotographsofthepressurefluctuationsatvariousaxialpositionsareshowninfig-ure5.

A five-holeprobeanda sphereprobe(manufaeturedbytheFlowCorp.)wereusedtodetermineairanglesandmean-radiusstaticpressure,respec-tively.Thedescriptionoftheseprobesisgiveninreference8. Themassflowcorrespondingto eachthrottlepositionwasobtainedbymeas-uring,withaninclinedmanometer,thetotalandstaticpressureinacalibratednozzle.

Procedure

Runswereconductedat 1,500rpmbothwithandwithoutstatorblades.Thisrotationalspeedwaschosenbecause.itgavea msximumaxialvelocityof 90feetpersecond,whichsatisfiedtherequirementforincompressibleflow.A fewrunsconducted.ata speed60percenthigherindicatedsimilarstallcharacteristics,sothattheresultsobtainedarerepresentativeforthemachineovera rangeofrotationalspeeds.Thevariousstallregionswereobtainedby varyingthepositionofthethrottleandtherebythemassflow. Thechangeoverfromonestallregionto anotherwasquitesharpandeasilydetectableby soundandchangeinthevelocity-fluctuationpattern.

Thedatarecordedineachrunwerestaticandtotalpres,sureinthecalibratednozzle,photographsofthevelocity-fluctuationpattern,andphotographsofthepressurefluctuationsbeforeandaftertherotorandstator.Thevelocityfluctuationswerenormallymeasuredat themeanradius,butradialtraversesweremadeto detectanychangefromroottotip. Thesedatapermittedtheevaluationofthefrequencyoftherotatingstall,massflow,andrelativemagnitudeofpressurefluctuationsat thevariousaxialpositions.

Page 7: TECHNICAL NOTE 3823

6 NACATN 3823.

Thenumberofstalledregionswasdeterminedby theuseoftwohot-wireprobes,onestationaryandonefreetotraversetangentially.Thewireswereinitiallyalinedsothattheoutputsignalswereinphaseand *onewirewasthentraversedthrougha knownarc. Therelativephasedis-placementofthestalledregionwasthencorrelatedwiththetangentialdistancetraversedto determinethenumbero-fstalledregions. —.

Therotorperformancewasobtainedbymeasuringthestaticpressureandairanglesat,themeanradiusbothbeforeandsfterthebladerow,

.

usingthesphereandfive-holeprobes.Thepressuresweremeasuredwithan inclinedmanometeranddatawereobtainedformass-flowratesvaryingfromthemaximumdowntothepointwhereth_eprobereadingsbecamemean-inglessbecauseoflargevelocityfluctuations. — .

Iw3J-Ers

Thedatawereobtainedintheformofthesteady-statecharacter-isticsofthecompressorandphotographicrecords,frmnthehot-wireequip-ment,andtheresultsarepresentedinfigures.6to 8. Frommeasuredvaluesofaxialvelocityandinletandoutletanglesfromtherotorat”themeanradius,theanglesP1 ~d ~2 oftheflowwiththerotorwerecalculated‘(seefig.6(a))usingtherel.atigns

..

tan~2 =&- tana2

0

Hence,knowingthestaticpressurerise APs measuredatthemeanradius,thepressurecoefficients .-

APsCP=

(1/2)PW12

werecalculatedandplottedversusj31(fig.6(b)).=

Finally,theblockagecoefficientu,asusedby Stenningandmonsto analyzethestabilityofa propagatingwave(refs.3 and6), wascal-culatedandplottedversusthecotangentof j31(fig.7) where

A. Cospl

aulvCos?2F_=p

.

.

.

.

Page 8: TECHNICAL NOTE 3823

NACATN 3823 7

.Fromthephotographofthehot-wiretraces,thefrequencyof stall

propagationwasfoundby usingthefrequencyofthething pulseorthe“ velocityofthefilmstrip.Thenumberofcellswasfoundfromthecom-

parisonofphasechangewiththeactualangulardisplacementofthetwoprobesused,andhencetheabsolutefrequencyofa singlecellwas’cal-

culated. Takingthemeanradialpositionasthepointofreference,thevelocityV ofa singlecellrelativetothatoftherotorcanbe calcu-latedandisplottednondimensionallyas v/cx versusPI infigure8.

Inaddition,thetheoreticalpropagationvelocitiescanbe calculatedusingthetheoriesofSears(ref.1)andMarble(ref.2),whichshould-applyto stallcellsoflargewavelen@hwhenthepressureriseacrossthebladerowissmall,andalsousingStenninglstheory(ref.3),whichshouldbe usefulforstallcellsof smallwavelength.SinceSears’“airfoil”theorygivesunrealisticvaluesofpropagationvelocityforcellswitha wavelengthverylargecomparedwiththebladechord(forwhichthephaselagmusttendto zero),his“channel”theorywasemployedusingthelimitingcaseof zerophaselag. Forthiscase,SearstandMarblefstheoriesgivean identicalresult:

. Ifa phaselagotherthanzeroisemployedinSeam’ channeltheory,pre-dictedvaluesof V/cx arelessthan csc2pl.

. Thethirdtheoryincludesan effectdueto thenumberof stallcellsN andgivestheresult

v—Cx

where b isthehalfwavelengbhofonecell(Circumference/2N),L isthechordlength,and ‘p istheseparationbetweentherotorandinletguidevanes;theexpressionintheparenthesesinthedenominatorisacorrectiondesignedto allowfortheeffectoftheinletguidevanesonthestall-propagationvelocity.Thesetheoreticalvelocitieswerecal-culatedfromthesteady-statecharacteristicsofthecompressorandareplottedinfigure8.

Page 9: TECHNICAL NOTE 3823

a NACATN3823

DISCUSSIONOFRESULTS●

.

Steady-StateCharacteristics .——

Thesteady-statecharacteristicswereobtainedbothwithandWith-outthestatorbladesinposition,andexcellentagreementwasobtainedbetweentheobserveddata.Inaddition,it-wasfoundthatwithoutthestatorbladesitwaspossibleto obtainreasonabledatawhenstallcellsof shortwavelengthwerepresent,sothatmeandataareavailableforpartof

Inversusforthecussion

theregionofrotatingstall.

figures6(b)and6(c)wherethepressurecoefficientisplotted@l,therangesinwhichrotatingstalloccursaremarkedbothstagewithstatorbladesandforthatwithout;a detaileddis-oftheseregionsisgivenbelow.Itwillbenotedthatthereis

a riseinpressure~oefficientat pl= 660-0‘lhis wu due to the onsetofrotatingstall,whichcausedtheflowthroughthestalledbladepas- :sagesto decrease,whiletheflowthroughtheunstalledbladepassages —increased.Thenetlossesacrossthebladerowareapparentlyreduced,

~

givingan increaseinthepressureriseandhencea localriseinpres-surecoefficient.Withstatorbladesinplacenoreliablemeasurement””ofanglesorstaticpressuresispossiblewhenstallbegins,sincethe

velocityfluctuationsarelarge. .-

Fromstability”considerationsfora wavepropagatingina cascade(refs. 3 and6)thestartofrotatingstallis predictedto coincide@th “~thepointwherea linefromtheoriginistangenttothecurveoftheblockagecoefficientu versuscotangentP1. Infigure7 it is Seen

-

thatstallpropagationdoesnotstartuntilthereis”asomewhatlarger Z—

valueof 91 thanthatpredicted.Thisisprobablyduetothefactthatfinitefluctuationsareinvolvedratherthanthesmallfluctuationsassunedinthetheoreticalmodel.

StallCharacteristicsWithStatorBlades

Thefirsttestswereconductedwiththestatorbladesinposition,andthefollowingcharacteristicswereobservedastherelativeinlet

anglewasincreasedby decreasingthemassrateofflow. “ —

Fourseparateregimesofrotatingstallwerefound,thefirstcon-sistingofonecellatthetipsofthebladesandtheothershavingone}two,andthreecells,respectively,coveringtheentireblade.&etweeneachregime,a transitionstateoccurredinwhichthenumberofcellsvariedbetweenthosefoundintheadjacentregimes(seefig.6(b)).The _*

velocityfluctuationsweremeasuredata numberofaxialpositions,and.

Page 10: TECHNICAL NOTE 3823

.

.

NACATN 3823

itwasfoundthatthemagnitudewithdistancebothupstreamand

Thefirstsignof stallas

9

ofthevelocityfluctuationsdecreaseddownstreamoftherotor.

~1 wasincreasedabovethedesignvaluewastheappearanceofrandmnvelocityfluctuations,whichappearedwithincreasingregularityuntiltheregimeofpropagatingtipstallwasentered.Thestalledregionextendedfromtherotortipforabout3/4inchdowntheblade,a distanceapproximatelyequalto thethicknessoftheboundarylayerenteringtherotor(ref.7). Thenumberofbladesoverwhichtheregionextendedwasgreatestat thetipanddecreasedfurther-downtheblade,butnoactualmeasurementsweremadeofthenumberofbladescoveredby thecell.As ~1 wasfurtherincreased,a singlecellwasfoundextendingovertheentirebladelength,andthenumberofbladescoveredincreasedwith ~1 untilthenextregimewithtwostallcelJswasentered.Intheregimeswheretheentirebladewasstalled,neitherthevelocity-fluctuationpatternnorthenumberofbladescoveredvariedmark-edlyfromrootto tip. As ~1 wasincreased,thenumberof cellsincreasedprogressivelyfromoneto twoto three,a largernumberbeingunobtainablethan800,as

aspurelyrandomfluctuationsappearedwhen ~1 wasgreatershownatthebottomoffigure3.

StallCharacteristicsWithoutStatorBlades

Whenthestatorbladeswereremoved,therewasa verymarkedchange .intherotating-stallcharacteristics;theonsetof stallwasdelayeduntila greatervalueof B1 wasreached;and,followingtheinitialregimewithrandomvelocityfluctuations,tworegimeswerefoundcon-sistingofa muchlargernumber(eightandnine,respectively)of smallcellsthanwereobtainedwiththestatorbladesinplace.Onfurtherincreaseof PI,thestallcharacteristicsresembledthosewiththestatorbladesinplaceandreghescontainingone, three, andfourcellswerefoundbeforerandomstallreappesxedat 131= 85o. Theregtiewithtwocellsappearedasanunstableconditionina verynarrowrangeof inletangles(fig.6(c)).

Severalstrikingdifferenceswereobservedbetweencellsofshortandlongwavelen@h (highandlowfrequency).Withtheformer,itwasfoundthatthevelocityfluctuationswereverynearlydmped‘outintherootboundarylayer,whilethelattershowedfluctuationsofgreatersmplitudeinthessmeplace.Itwasalsofoundthat,forshortwavelengths,thevelocityfluctuationsmeasureddirectlydownstreamoftherotorat sectionF infigure2 wereconsiderablysmallerthsnthoseatsectionG. No satisfactoryexplanationforthishasbeensuggested. .-

Thelimitsofthevsriousregimeswerecomparativelywelldefinedwhentherewerea smallnumberofcells,sinceanychangeinnumbercaused

Page 11: TECHNICAL NOTE 3823

10 NACATN3823

anappreciablechangeinthefrequencyandinthephaseshiftbetweentwoprobes.Witheightorninecells,theproblemofdeterminingtheactualnumberbecomesmoredifficultandthereisa rangeofuncertaintybetdeenthesetworegions.Furtherdifficultiesarecausedby thenon-symnetryofthecellsaroundtheannulus(fig.4)andalsoby thefactthateachcelldoesnotcausethesamevelocityfluctuationsattheprobe.

Sincethebladepassagesareoffinitewidth,theprobemaybe atanypointacrossthepassageattheinstant.whentheadjacentbladestalls.Theprocessofstallingcausesseparationfromtheleadingedgeoftheblade,andthereisa reductionofvelocityinthisregionofseparatedflow(positionA insketch),whilethevelocityintheunseparatedpor-

tionofthepassagemayhavean instantaneousincreasebecauseofthereductionin-flow-area-(positionB).

/

n.———

Y——/

.

*

.l

.

B A

Iftheprobeisclose”tothetrailingedgeoftheblade,itmaythereforeshoweitheran increaseordecreaseinvelocitywhenstalloccurs.Furtherdownstream,mixinghasoccurredsothateachstallcellcausesa netdecreaseinvelocity,and,similarly,a probeupstreamof

thebladerowwillalwaysindicatea reductioninvelocityonaccountofthepartialblockageofthebladepassage._Thephenomenonwasnotedforstallcellsof shortwavelengthandwouldbe expectedwhenthereareonly

a smallnumberofblade

Finally,itshouldvelocityincreasesincemidpointofthecellis

passagescoveredby each-cell.

be notedthata flowreversalwilla hottireisnondirectional,and,sometimesdifficultto findonthe

be shownasahence,theOscillogram.

ComparisonofActualandPredictedPropagationVelocities _ _

As explainedaboveinthesectionentitled“Results”theexperimen-talpointsandtheoreticalcurvesofpropagationvelocitiesareplotted

.

infigure8. Theforminwhichthesefiguresarepresentedpermitsa.=

.

Page 12: TECHNICAL NOTE 3823

NACATN 3823 11

comparisonofthetheoreticalandexperimentalvaluesofthepropagationvelocitiesrelativetotherotor,andimportantconclusionscanbe drawnfromthem.

First,allthetheoriesarebasedontheassumptionof smallpertur-bationsona steadyvelocityfieldandsowouldbevalidonlyattheonsetofrotatingstall.GdodagreementisobtainedatthispointwithStenning’stheory,bothwithandwithoutstatorblades,whilethepropagationveloc-itiespredictedby theSearsandMarblelarge-wave-lengththeoriesliebelowthevaluesobservedwithstatorbladesandabovethoseobservedwith-outstatorblades.Athighvaluesoftheinletangle,thevelocityfluc-tuationscannotbe consideredas small,butalltheoriesgivethecorrectorderofmagnitude(withinabout25percent)forthepropagationveloc-itiesifthetheoreticalcurvesareextrapolated.Itwillbe notedthatthroughouttherangeofavailabledatathevelocitiespredictedby SearsandMarblecorrespondalmostexactlywiththosepredictedby StennhgforfourstalJcells.

Anotherstrikingfactorwhenno statorbladesareusedisthesuddenchangefromninecellsto a singlecell,witha verysmallchangeIn Pl(fig.8(b)).Thepropagationvelocityincreasesby 90percentwhenthishappens,whichwouldseemto confirmthepredictionof Stenninglstheorythatthepropagationvelocityisa functionofthenumberofcellsand

. increaseswithincreaseofwavelength.

A similarresultcouldbededucedfromSears’generaltheorywith. thephaselagincludedbecausethephaselagisproportionalto theratioofbladetimedelayto fieldtimedelay,andthisratiobecomessmallerasthewavelengthincreases.

PressureFluctuations

Inthetheoreticalanalysisofrotatingstall,twosimpleassumptionscanbemadeabouttheconditionsdownstreamofthebladerow. Eitherthebladepassagescanbe consideredasnozzlesdischargingintoa regionofconstantpressure,or itcanbe assumedthatmixingoccursimmediatelydownstreamoftherow,sothatthedownstreamflowfieldisa continuum.Theseassumptionscanreadilybe checkedbymeasuringtherelativemagni-tudeoftheupstresmanddownstreampressurefluctuationsandtheresultsof suchtests,takenattheoutercasingofthecompressor,wereasfollows:

Withstatorbladesinposition,itwasfoundthatpressurefluctua-tionswerenegligibledownstreamofthestatorbladesandupstreamofthe

. inletguidevanesas comparedwiththefluctuationsupstreamoftherotor.Thefluctuationsdownstreamoftherotorwerenotgreatlyaffectedby theonsetofrotatingstall,butintheextremeconditionan appreciable

Page 13: TECHNICAL NOTE 3823

12 NACATN3823 —

.

variationsseen(fig.5(c)).Theupstreamfluctuationsduetorotatingstallwereapproximatelydoublethosedownstreamoftherotor.Itwouldappearfromthisthattheconditionofa constantdownstreampressure *.field,asassumedby Stenning,wasnotsatisfiedandthereforethecloseagreementbetweentheoreticalandobservedpr@agationvelocitiesmustBe __ ._:consideredfortuitous. —

Withoutstatorblades,a greaterreductioninpressuiefluctuationsacrosstherotorwasfound,as seen”infigures5(d)and~(e),smdthe

maximumdownstreamfluctuationsduetorotatingstallwerelessthan25percentofthoseupstream.

—.—— --

Inorderto confirmthemostsuitableassumptionforthedownstreamflowfieldinthetheoreticalanalyses,anexpressionforthemagnitudeof ~thepress~efluctuationsbasedonStenning’smodelofthestallprocesswiththedownstreamflowfieldconsideredas--acontinuumiscalculatedin “- “-theappendix.Theexpressionobtainedis: —.,

Fromexperimentaldataonthepropagationvelocitiesof stallcel~s_ ‘.withoutstatorblades,thepredictedrelativemagnitudeofthepressurefluctuationscanbe calculatedassuningtha~.thedownstreamflowpattern

-

iscontinuous.Representativevaluesaregf~enInthefollowingtable”.

andcanbe comparedwiththeobservedvaluesinfigure6.——.-—

Nwnberofcells. . . . . . . . .P,deg. ... . . . . . . . . . . . 67.: 73.: 74.: 78.;

....

tan~l. . . . . . . . . . . . . . 2.36 3.40 3.63 4.92—

v/cx. . . . . . . . . . . . . . . 0.862 ~ 1.24 2.32 2.54 ..

1 -tip/b

1::-~plb ““”” ”’”” ””””0”825 ‘-0”8670.151 0d413

5p~/5p2. i.. i”....... . 1.99 1.88 0.56 0.96

Fromtheobservedvaluesofpressurefluctuationswithoutstatorbladesitcanbe seenthattheactualupstreampressurefluctuationsare ___alwaysgreaterthanfourtimesthedownstrefifluctuationssothattheassumptionofa constantpressurefield.downstreticorrespondsmorecloselytotheobservedresultsthantheasstimptionof.acontinuum. -—— ..

.

Page 14: TECHNICAL NOTE 3823

NACATN 3823

CONCLUDINGREMARKS

13

Fromtheresultsobtainedfromtheinvestigationofrotatingstallina single-stageaxialcompressor,itcanbe seenthatthepropagationvelocityhasbeenpredictedwithin10percentfora singlebladerowattheonsetofrotatingstallusingtheresultsof Stenningistheory.Sears’theorycouldbemadeto agreewiththeobservedpropagationvelocityatthebeginningofrotatingstallby usinga suitablevalueofphaselag,althoughthepressureriseacrossthebladerowisstillquitehigh,so.thattheneglectofthefactor(l+mere Cp isthepressurecoef-ficient,inSeartstheorywouldleadtoan erroneousvalueofphaselag.At highinletsinglesrelativetotherotor,wherethevelocityfluctuationsbecomelargeandthepressurecoefficientissmall,theactualandpredictedvelocitiesagreereasonablywellwithStenning’stheoryandwiththeresultsof Sears’andMarble’sanalysesforcellsoflargewavelength.

It isalsoseenthattherotating-stallcharacteristicsofthecom-pressorareinfluencedverystronglybystatorbladesdownstreamoftherotor,theeffectofthisinterferencebeingto dampoutthepropagationof stallcellsathighfrequenciesandto inducestallpropagationathighermass-flowrates.

Finally,measurementsofpressurefluctuationsupstreamanddown-streamoftherotorwhenthefollowingstatorwasremovedshowthatneitheroftheetiremeconditionsassumedinthetheoriesforthedownstreamflowfieldrepresentsthetruestateofaffairssatisfactorily,althoughforthisparticularmachinethe“freejet”assumptionseemscloserto,thetruththantheassumptionthatmixingoccursina shortdistance.

MassachusettsInstituteofTechnology,Cambridge,Mass.,June8, 1955.

Page 15: TECHNICAL NOTE 3823

14 NACATN 3823

APPENDIX.

.

PRESSUREFLUCTUATIONSINA DOWNSTREAMCONTINUUM

Thefollowinganalysisisdesignedto estimate,therelativemagni-tudeoftheupstreamanddownstreampressurefluctuationscausedbyrotatingstallwhenthedowmtresmflowfieldisconsideredasa continuum.

Theanalysisisbasedonthemodelusedby Stenning(ref.3) showninthesketch.

. —

m

Forincompressibleirrotationalflowupstream,a perturbationveloc-itypotential@ canbe defined,and,frcxncontinuity,

——

Iftherotatingskallisconsideredasa sine~ve propagatingalongthecascade,thesolutionis

.-— —.

()[@= Asin~-mt efix/b 1+e-fi(x+~)/b (1)

whichsatisfiestheconditiontht @X = o at x = -P. Thisconditionallowstheinterferenceeffectduetoupstreamguidevanestobe esti-mated,ontheassumptionthattheseguidevanesarecloselYsPacedand

>–

oflargechordlength..— .-

.

Page 16: TECHNICAL NOTE 3823

NACATN 3823

FromEuler’sequationsturbations,upstreamof“the

15

ofmotionforunsteadyflowwithsmallper-cascade(eq.(2)ofref.3)

#t+c5c+*=o -W<x<o (2)

Downstreama continuumisassumed(appendixIII,ref.3)and

5P2—=P (@t)1 (3)

By definition

C2= c# + c#

therefore

and

C5C= Cx ‘5Cx+ Cy ~cy

c15C1= (cx@x)l + (cY@Y)l

Evaluatingequation(2)atpoint1 intheprecedingsketchanddividingbyequation(3),

Substitutin~for @ fromequation(1),

Page 17: TECHNICAL NOTE 3823

16 NACATN 3823 .

.—

Comparingthemagnitudeofthesepressurefluctuations, ..

.-

Thisequationshowsthattheeffectof inletguidevanesisto reduce —.—theratioofupstresmto downstre~pressurefluctuations,anditcanbe– -..—usedto estimatethetheoreticalpressurefluctuationswiththedownstream -flowfieldconsideredasa continuum. ,:

.

Page 18: TECHNICAL NOTE 3823

RIIWRENCES

.

NACATN 3823 17

1.Sesxs,W. R.: A Theoryof “RotatingStall”inAxialFlowCompressors.ContractAF-33(038)21406,OfficeSci.Res.,U.S.AirForce,sndGraduateSchoolAero.Eng.,COrnelltbliv.,Jsn.1953.

2.Marble,FrankE.: PropagationofStallina CompressorBladeRow.Tech.Rep.4,ContractAF-18(@o)-178,U.S.AirForcesandGuggenheimJetPropulsionCentre,C.I.T.,Jan.19’34.

3. Stenning,AlanH.,ICciebel,AnthonyR.,andMontgomery,StephenR.:StallPropagationinAxial-FlowCompressors.NACATN35&),1956.

4. Emmons,H.W.,Pearson,C.E.,andGrant,H. P.: CompressorSurgeandStallPropagation.PaperNo.53-A-56,presentedat 1953annualmeeting(Nov.9-Dee.3,1953),A.S.M.E.,Dec.19.53.

5. Iura,T.,andRannie,W. D.: ExperimentalInvestigationofRotatingStallinAxial-FlowCompressors.Trans.A.S.M.E.,vol.76,no.3,Apr.1954,pp.463-471.

6. Huppert,MerlerC.,andBenser,WilliamA.: SomeStallandSurgePhenomenainAxial-FlowCompressors Jour.Aero.Sci.,vol.20,no.12,Dec.1973,pp.835-845.

7. Moore,R.W.,andSchneider,K.H.: MeasurementofFlowThroughaSingle-StageAxialCompressor.Rep.27-6,GasTurbineLab.,M.I.T.,Dec.1954.

8. Moore,‘RaymondW.,Nelson,WarrenG.,Prasad,Arun,Richardson,DavidL.,andTurner,JsmesR.: ExperimentalTechniquesforThree-DimensionalFlowResearch.Rep.27-8,GasTurbineIab.,M.I.T.,Dec.1954.

Page 19: TECHNICAL NOTE 3823

,.: ...- , W+#?”-

L-93573Figure1.-Apparatususedininvestigation.

● ✌

,! u,, ,1, ,, .

Page 20: TECHNICAL NOTE 3823

-..

>~

—-U-1

0)

Q

B

X..

I

Figure2.- Schematicdiagramofmeasurementstationsofcompressor.

3—..—Lettersrefertostationdesignatio~.

G

Page 21: TECHNICAL NOTE 3823

20

TIM E+-

NACATN 3823 —...

.

---1~1 =63.0°

F= 50 CPSN=lf = 7.85CPS

p , =67.9°

t

F= !Oocps

N=2f=15.5cps

-4~1 =73.8°

F= I()()cf)s

N=3

( f= 23.2 CPS

Figure3.- Velocityfluctuationswiths,tatorblades.Velocitiesdecreasetowardcenterofeachphotograph;probesaredoyzustreamofstatorand

.—●

1800apart..-

Page 22: TECHNICAL NOTE 3823

. . s , . ,

POSITIVE ;VELOC+TY

I(a) Eight mk; f.135 CPS; PI. IS7.O.

[b) MM c21b; f. 149 GP9; ~1, 73.6°

-t~

CcwCw

l-..cl,m+ mm(e) Fou CCI16; f.st.o CPS; B, .s4.9.

FYgure4.-Representativestripfilmrecordsofhot-wiretraceswithoutstatorblades.Rwbesarebeforerotorand450apart;clockwiseprobereceivessi@ first.CW,clockwiseprobe;CC!W,couutercloclwiseprobe. P

Page 23: TECHNICAL NOTE 3823

STATIOM ‘x ‘ALPOSITION

FSEI-IINDROTCi7

GBEHINDSTATOR

HOT-WIRETRACE

EBEFOREROTOR

(b)

NUMBER

OF CELLSo

8

,,

1

3

4

Figure5.-Staticpressure

(d)Withoutstator

s .!1 .Illl:’l

blades;beforerotor(station

fluctuations.

E).

(e)Withoutstatorblades;behindrotor(stationF).

Hot-wiretrace is added for comparison inparts(a)to (c),

. ‘

‘,

Page 24: TECHNICAL NOTE 3823

* or

60

50

40m$

.

G30

20

O WITH STATOR BLADES

A WITHOUT STATOR BLADES

Io45 50 55 60 65 70 75

fll , deg

(a) t3,2 against PI.

~gure6.-Rotorperforrmnce.

Page 25: TECHNICAL NOTE 3823

,5

,4

,3

Cp

.2

.1

a

P-

0 WITH STATOR BLADES

A WITHOUT STATOR BLADES

*Y

I CELL .2CELLS—

I CELL ALLTIP ONLY BLADE 3 CELLS

I I

50 55 60 65 70 75 80 ~

~l,degS’=

(b) ~ agdnst pl showingskillregionswithstatorblades. g

me G.-conttiu~.

. #1,

Page 26: TECHNICAL NOTE 3823

,50-1 I I I I

Cp

,20

r

L 0 WITH STATOR BLADES

A WITHOUT STATOR BLADES

,10

.LJJ50 55 60 65

T9C

~,, deg

(c) c-p againstPI Ehowing stallregions

Figure6.-Concluded.

n

s-

2 CELLSTRANSIENT)

-1 CELL +

I

75

.,

,

withoutstatorblades.

Page 27: TECHNICAL NOTE 3823

a

--

1.01 I I I I I / I I

.9

,8

.7

,6

.5

.4 [

/ 0

TIP STALL STAR-/ WITH STATOR

‘// ‘=ALL OVER

d

WHOLE BLADE

/WITH STATOR

/STALL STARTS

/WITHOUT STATOR

I /,31- /

1/,2

I

//

,1 /0 WITH STATOR BLADES

/ A WITHOUT STATOR BLAU/

oI I I I I I I

o 12 ,4 ,6 ,8 I 10cot#?l

= 7.-Blockagecoefficienta agairmtcOtPI.Cospl

as#@! = .COB$z~~

, ..I

Page 28: TECHNICAL NOTE 3823

, < , ,

5#c

4,0

3,0

v/cff

2!0

I ,0

0

, 1

X I S~ALL CELL’- TIP ONL+I lfJ

O ISTALL CELL - WHOLE BLADE❑ 2 STALL CELLSA 3STALL CELLS A

/

,//

/- /’B/

,+ ,Y

/,0,A

0’

/##!&?&l

<0

Go;/y SEARS’ AND MARBLE’S

THEORY

-$--

55 60 65 70 75 80 85

BI,*9

(a) Withstatorblades.

Figure8.-Stallpropagationvelocitiesv/~ agxblst131.

Page 29: TECHNICAL NOTE 3823

580

4,C

3!0

v/cx

2,0

I.c

(

. ,

o I STALL CELL

❑ 2 STALL CELLS

A 3 STALL CELLSx 4 STALL CELLS

P 8 STALL CELLS@ 9 STALL CELLS

/’A

I I I Ii 60 65 70 75 80

~,,deg

(b)Withoutstatorbides.

IIgure8.-concluded.

s ‘

5

, 1

r