technologies and applications of solar process heat · database for applications of solar heat...

38
Technologies and Applications of Solar Process Heat Potential in Mexico Theda Zoschke 14.11.2017 CDMX, Mexico

Upload: voliem

Post on 31-Mar-2018

232 views

Category:

Documents


3 download

TRANSCRIPT

Technologies and Applications of

Solar Process Heat Potential in Mexico

Theda Zoschke

14.11.2017

CDMX,

Mexico

Motivation

14.11.2017 | Seite 2

• Thermally driven processes present largest share of final energy use

• Worldwide, 45% of heat is used in industry [1]

[1] Energy Technology Perspectives 2012 - Pathways to a Clean Energy System, Int. Energy Agency (2012)

Technologies and Applications of Solar Process Heat

14.11.2017 | Seite 3

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

Technologies and Applications of Solar Process Heat

14.11.2017 | Seite 4

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

Solar Thermal TechnologiesStationary Collectors: Flat-plate

• Lower O&M and system costs

• Limited to low temperature applications (T < 150 °C) (range: 30 °C – 100 °C)

• Usual heat transfer fluid: Water/Glycol

• Little maintenance

[2] gef, UNEP, ome; Technical Study report on SHIP, State of the art in the Mediterranean region

[3] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).

[2]

GAMESA-QUAKER PEPSICO MEXICO

Mexico

© Modulo Solar

[3]

14.11.2017 | Seite 5

Solar Thermal TechnologiesStationary Collectors: Evacuated Tube

• Lower O&M and system costs

• Limited to low temperature applications (T < 150 °C) (range: 50 °C – 130 °C)

• Usual heat transfer fluid: Water/Glycol

• Vacuum to reduce convection losses

[4] gef, UNEP, ome; Technical Study report on SHIP, State of the art in the Mediterranean region

[5] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).

[4]

Harita Seatings Systems Limited

India

© @aspirationenergy

[5]

14.11.2017 | Seite 6

Solar Thermal TechnologiesTracking Collectors: Parabolic Trough

• Suitable for medium temperature applications (T < 400 °C) (range 150 °C –

400 °C)

• More demanding in terms of O&M and costs

• Line-focusing / One axis tracking

• Usual heat transfer fluid: Water/Steam or thermal oil

v

Lesa Dairy

Switzerland

© ezw

[7]

[6]

[6] Adapted from SolarPaces.org, 2016), http://www.solarpaces.org/csp-technology/csp-technology-general-information

[7] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).

14.11.2017 | Seite 7

Solar Thermal TechnologiesTracking Collectors: Linear Fresnel

• Suitable for medium temperature applications (T < 400 °C) (range 150 °C –

400 °C)

• More demanding in terms of O&M and costs

• Line-focusing / One axis tracking

• Usual heat transfer fluid: Water/Steam or thermal oil

• Approx. parabolic trough by segmented

mirrors: Principle of Fresnel

[8] Adapted from SolarPaces.org, 2016), http://www.solarpaces.org/csp-technology/csp-technology-general-information

RAM Pharmaceuticals

Jordan

© Industrial Solar

[8]

14.11.2017 | Seite 8

Solar Thermal TechnologiesTracking Collectors: Parabolic Dish

• Suitable for medium temperature applications (T < 400 °C) (range 250 °C –

400 °C)

• More demanding in terms of O&M and costs

• Point-focusing system / 2-axis tracking

• Moving (modular) receiver

[9] Adapted from SolarPaces.org, 2016), http://www.solarpaces.org/csp-technology/csp-technology-general-information

[9]

Tirumala Tirupati Devasthanams

India

© Gadhia Solar Energy Systems

14.11.2017 | Seite 9

Solar Thermal TechnologiesEfficiency and Temperature

• Efficiency depends on:

• Optical losses depending on incidence angle

• Thermal losses depending on operating temperature

h

T

Low temperature / Stationary collectors:• Higher optical efficiency• Higher thermal losses

Medium temperature / Tracking collectors:• Lower optical efficiency• Lower thermal losses

14.11.2017 | Seite 10

Technologies and Applications of Solar Process Heat

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

14.11.2017 | Seite 11

Solar ResourcePotential for Stationary Technologies in Mexico

• Very favourable solar resource conditions, depending on location

• Stationary technologies (T < 100 °C)

➢ Global Horizontal Irradiation (GHI)

• 1800 – 2300 kWh/m2

[10] solargis. http://solargis.com/

[10]

14.11.2017 | Seite 12

Solar ResourcePotential for Tracking Technologies in Mexico

• Favourable solar resource conditions, especially in North-West

• Tracking technologies (100 °C < T < 250 °C)

➢ Direct Normal Irradiation (DNI)

• 1500 – 3000 kWh/m2

[10]

[10] solargis. http://solargis.com/

14.11.2017 | Seite 13

Technologies and Applications of Solar Process Heat

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

14.11.2017 | Seite 14

Heat for Industrial ProcessesSectors and Temperature Levels

• Temperature levels in different sectors [12]: ~ 50% HT; ~ 50% MT + LT

[12] International Renewable Energy Agency (IRENA), calculations by Deger Saygin based on IEA source [2] (2014)

EI sectorsHT (>400°C)

42,5 EJ

MT (150°c-400°C)

18,1 EJ

LT (<150°C)

24,5 EJ

EI

Non-EI

14.11.2017 | Seite 15

Heat for Industrial Processes

Suitable Processes

• Suitable industrial processes

• Drying and dehydration

• Preheating (input or raw material)

• Pasteurization and Sterilization

• Washing and cleaning

• Chemical reactions

• Surface treatment

• Space heating

• Supply of hot water or steam

• Main industrial sectors

• Chemicals

• Textiles

• Food & Beverages

• Paper

• Fabricated metal

• Rubber & Plastic

• Machinery & Equipment

• Wood

14.11.2017 | Seite 16

Heat for Industrial ProcessesCollector Technology vs. Process Temperature

14.11.2017 | Seite 17

Heat for Industrial ProcessesEnergy consumption in Mexico

• Energy consumption in Mexico [13]:

• Industrial sector: 1601 PJ

• Solar thermal technologies:

• Share: < 1 %

• Flat plate collectors dominating technology

• Mostly residential / commerical sector

• Fuels used in the Mexican industrial sector [1]:

[13] SENER, CONUEE, GIZ “Energía solar térmica para procesos industriales en México - Estudio base de mercado”, not yet published

14.11.2017 | Seite 18

Heat for Industrial ProcessesSuitable processes in Mexico

• Energy consumption in Mexican industry [13]:

• 14 % Iron and Steel industry

• 11 % Cement indusrty

• 6 % Chemical industry

• 6 % Petrochemical industry

• 6 % Mining industry

• 47 % Others…

➢ Textile, food and chemical industry (low temperature)

➢ Manufacuring of chemical processes (medium temperature)

[13] SENER, CONUEE, GIZ “Energía solar térmica para procesos industriales en México - Estudio base de mercado”, not yet published

High temperature thermal power

→ not very suitable for solar thermal

technologies

14.11.2017 | Seite 19

Technologies and Applications of Solar Process Heat

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

14.11.2017 | Seite 20

Design Procedures

14.11.2017 | Seite 21

Solar Thermal

System

storage

Solar

Buffer

Storage

Tank

Process Hot Water

Network

Hot Water

Boiler

Process

Water 160 °C

Return flow 100 °C

Integration

point

Process return 110 °C

Exhaust

160 °C - 200 °C

Conden-

sate

Solar thermal

System

Steam

Boiler

Feed Water

Feed Water

Tank 103°C

Make-up-

Water 30°C

Condensate

TankConcentrating-Collector

Circulation Pump

Process Steam 250 °C 36 barProcess Steam

Network

Integration

point

Evaporator

Water

preheating

Steam

generation

Design ProceduresSolar Integration of Stationary Technologies

• Dilemma: Less resistance to integration at supply level vs. lower

temperatures in integration at process level

80°C-120°C

15°C-30°C

P1

160°C

P2

80°C

P3

50°C

50°C-90°C

160°C-180°C

11

C-1

30°

C

14.11.2017 | Seite 22

Design ProceduresSolar Integration of Tracking Technologies

• Dilemma: Less resistance to integration at supply level vs. lower

temperatures in integration at process level

80°C-120°C

15°C-30°C

P1

160°C

P2

80°C

P3

50°C

50°C-90°C

160°C-180°C

11

C-1

30°

C

14.11.2017 | Seite 23

Design ProceduresPotential to Increase Energy Efficiency in Industry

• Energy efficiency significantly reduces energy intensity:

• Implementing best practice technologies (BPT) could reduce total final industrial energy demand by more than 25% [14]

• Pinch analysis [15]

• Cross-process heat exchange possibilities

• Optimizing heat recovery and effective heating and cooling processes

[14] Saygin, D., Patel, M.K. and Gielen, D.J. (2010). Global Industrial Energy Efficiency Benchmarking: An Energy Policy Tool, Working

Paper, November 2010. United Nations Industrial Development Organization (UNIDO), Vienna.

[15] Muster, Bettina et al., 2015. Guideline for solar planners, energy consultants and process engineers giving a general procedure to

integrate solar heat into industrial processes by identifying and ranking suitable integration points and solar thermal system concepts.

IEA/SHC Task 49/IV, Subtask B, Deliverable B2

14.11.2017 | Seite 24

Design ProceduresPre- and feasibility studies

• Pre-analysis: Boundary conditions

• Basic technical plant description

• Motivation

• Analysis of process characteristics

• Site visit to get information on:

• Temperature levels, heat network, operation details, energy costs

• Process optimization and energy efficiency

measures [17]

• Heat exchanger optimization (pinch analysis)

• Processes state-of-the-art?

• Future plans?

[16]

[16] www.solar-process-heat.eu/checklist

[17] C. Brunner et al. 2010: IEE-Project Einstein: www.iee-einstein.org

14.11.2017 | Seite 25

Technologies and Applications of Solar Process Heat

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

14.11.2017 | Seite 26

Technologies and Applications of Solar Process Heat

14.11.2017 | Seite 27

• Annuity factor with interest rate 𝑖 and lifetime T:

ANF =1 + 𝑖 𝑇 ⋅ 𝑖

1 + 𝑖 𝑇 − 1−

• Levelized Cost of Heat (LCoH) with :

LCoH =𝐶capex ⋅ ANF + 𝐶opex

𝐴𝑛𝑛𝑢𝑎𝑙 𝑌𝑖𝑒𝑙𝑑• Investment costs: 𝐶capex €

• Operation and maintenance costs:

𝐶opex €/𝑎

• Annual yield: AY [𝑀𝑊ℎ/𝑎]

Technology vs. Energy CostsPotential for Mexico

• Current technology costs:

• 220 – 620 €/m2

• For average system cost

450 €/m2 (10.000 MXN/m²)

• Critical LCOH (Levelized Cost of Heat) → 0,03 €/kWh (0,67 MXN/kWh)

[18]

[18] adapted from Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).[19] Muster, Bettina et al., 2015. Guideline for solar planners, energy consultants and process engineers giving a general procedure to integrate solar heat into industrial processes by identifying and ranking suitable integration points and solar thermal system concepts. IEA/SHC Task 49/IV, Subtask B, Deliverable B2

[19]

h = 50%

GHI, DNI = 2000 kWh/m2

14.11.2017 | Seite 28

Technologies and Applications of Solar Process Heat

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

14.11.2017 | Seite 29

Existing Projects Market Penetration

• SHIP systems database [20]:

• 213 projects listed

• 129 MWth installed capacity (0.18 million m2)

• Recent survey points out [21]:

• > 500 SHIP systems with

• > 280 MWth total installed capacity (0.4 million m²)

[20] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).

Accessed February 2017

[21] SOLRICO, Bärbel Epp, 2017. Solar Process Heat: Surprisingly popular. Sun&Wind Energy. http://www.sunwindenergy.com/topic-of-the-

month/solar-process-heat-surprisingly-popular (online 14.02.2017)

[20]

14.11.2017 | Seite 30

Existing Projects Mexico

• SHIP systems database [20]:

• 59 projects listed

• Most solar fields 50 to 300 m²

[20] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).

Accessed November 2017

[20]

[20]

14.11.2017 | Seite 31

Existing Projects Common Technologies

• Mostly small/medium size systems (<500 m2)

• Largest capacity in large systems (>1000 m2)

• Stationary technologies are dominating technology

[20] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016). Accessed February 2017

[20]

14.11.2017 | Seite 32

Existing Projects Examples of Stationary Technologies

[22] Arcon-Sunmark, 2015. http://arcon-sunmark.com/cases/codelco-minera-gaby-chile

[23] http://ship-plants.info/solar-thermal-plants/140-jiangsu-printing-and-dyeing-china?collector_type=4&country=China

Textile Jiangsu Yitong, ChinaEvacuated TubeAperture: 9,000 m2

Application: process pre-heatingOper. Temp.: 50 °CCommissioning : 2011

© Sunrain Co. Ltd [23]

Copper mine “Gabriela Mistral”, ChileFlat PlateAperture: 43,920 m2

Application/End Use: Process water and electrolyte heatingOper. Temp.: 50 °CCommissioning: 2015

© Arcon-Sunmark [22]

[5]

Currently largest plant in the world

14.11.2017 | Seite 33

Existing Projects Examples of Tracking Technologies

[24] http://www.industrial-solar.de/content/en/referenzen/fresnel-kollektor/

[25] http://ship-plants.info/solar-thermal-plants/155-dairy-plant-el-indio-mexico?collector_type=5

Dairy El Indio, MexicoParabolic TroughAperture: 132 m2

Application: Make-up water pre-heatingOper. Temp.: 95 °CCommissioning : 2012

© Inventive Power S.A. de C.V. [25]

Services MTN Johannesburg, South AfricaLinear FresnelAperture: 396 m2

Application/End Use: Air conditioningOper. Temp.: 180 °CCommissioning : 2014

© Industrial Solar [24]

14.11.2017 | Seite 34

Existing Projects

La Parrena copper mine, Mexico [25]Flat Plate CollectorSolar Field: 6270 m²Thermal Power: 4.4 MWthSolar Field covers 58% of annual heat demand

[25] http://ship-plants.info/solar-thermal-plants/155-dairy-plant-el-indio-mexico?collector_type=5

[26] http://arcon-sunmark.com

[27]

[26]

14.11.2017 | Seite 35

Upcoming Projects Examples

Amal Solar EOR Pilot Project, OmanParabolic Trough in greenhouseThermal Power: 1 GWthProduction (pilot): 6 ton steam / day

[26] MIT, 2016. Technology Review, Arab Edition. http://technologyreview.me/en/energy/oman-explores-solar-powered-oil-recovery/

© Petroleum Development Oman. [26]

14.11.2017 | Seite 36

Technologies and Applications of Solar Process HeatSummary

• Available technologies

• Stationary technologies (T<100°C), Global Horizontal Irradiation (GHI)

• Tracking technologies (100°C<T<400°C), Direct Normal Irradiation (DNI)

• Suitable sectors

• Food and beverage, textile and chemical industry… etc.

• Potential for Mexico

• Very favourable solar resource of GHI 1800 – 2300 and DNI 1500– 3000 kWh/m2

• Great potential for industry sectors that require heat at low and medium temperature level

• LCOH of < 0,03 €/kWh (0,67 MXN/kWh) can be reached

14.11.2017 | Seite 37

Thank you for your attention!

Theda Zoschke

Dr. Pedro Horta

Annie Zirkel-Hofer

Fraunhofer ISE

[email protected]