telecommunications dr. hugh blanton entc 4307/entc 5307

71
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Upload: adela-manning

Post on 29-Dec-2015

227 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

TELECOMMUNICATIONS

Dr. Hugh Blanton

ENTC 4307/ENTC 5307

Page 2: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

POWER SPECTRAL DENSITY

Page 3: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 3

Summary of Random VariablesSummary of Random Variables

• Random variables can be used to form models of a communication system

• Discrete random variables can be described using probability mass functions

• Gaussian random variables play an important role in communications• Distribution of Gaussian random variables is well

tabulated using the Q-function• Central limit theorem implies that many types of noise

can be modeled as Gaussian

Page 4: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 4

Random ProcessesRandom Processes

• A random variable has a single value. However, actual signals change with time.

• Random variables model unknown events.• A random process is just a collection of random

variables.• If X(t) is a random process then X(1), X(1.5),

and X(37.5) are random variables for any specific time t.

Page 5: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 5

TerminologyTerminology

• A stationary random process has statistical properties which do not change at all with time.

• A wide sense stationary (WSS) process has a mean and autocorrelation function which do not change with time.

• Unless specified, we will assume that all random processes are WSS and ergodic.

Page 6: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 6

Spectral DensitySpectral Density

Although Fourier transforms do not exist for random processes (infinite energy), but does exist for the autocorrelation and cross correlation functions which are non-periodic energy signals. The Fourier transforms of the correlation is called power spectrum or spectral density function (SDF).

Page 7: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 7

Review of Fourier TransformsReview of Fourier Transforms

Definition: A deterministic, non-periodic signal x(t) is said to be an energy signal if and only if

dttxE )(2

Page 8: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 8

The Fourier transform of a non-periodic energy signal x(t) is

The original signal can be recovered by taking the inverse Fourier transform

dtetxXtx tj )()()}({

deXtxX tj)()()}({1

)()( Xtx

Page 9: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 9

Remarks and PropertiesRemarks and Properties

The Fourier transform is a complex function in having amplitude and phase, i.e.

jeXX )()(

Page 10: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 10

Example 1Example 1

Let x(t) = eat u(t), then

jae

ja

dtedteetx

tja

tjatjat

11

)(

0

00

Page 11: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 11

AutocorrelationAutocorrelation

• Autocorrelation measures how a random process changes with time.

• Intuitively, X(1) and X(1.1) will be more strongly related than X(1) and X(100000).

• Definition (for WSS random processes):

• Note that Power = RX(0)

)()()( tXtXERX

Page 12: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 12

Power Spectral DensityPower Spectral Density

• P() tells us how much power is at each frequency

• Wiener-Klinchine Theorem:

• Power spectral density and autocorrelation are a Fourier Transform pair!

)()( RP

Page 13: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 13

Properties of Power Spectral DensityProperties of Power Spectral Density

• P() 0

• P() = P(-)

dPPower )(

Page 14: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 14

Gaussian Random ProcessesGaussian Random Processes

• Gaussian Random Processes have several special properties:• If a Gaussian random process is wide-sense

stationary, then it is also stationary.• Any sample point from a Gaussian random process

is a Gaussian random variable• If the input to a linear system is a Gaussian random

process, then the output is also a Gaussian process

Page 15: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 15

Linear SystemLinear System

• Input: x(t)• Impulse Response: h(t)• Output: y(t)

x(t) h(t) y(t)

Page 16: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 16

Computing the Output of Linear SystemsComputing the Output of Linear Systems

• Deterministic Signals:

• Time Domain: y(t) = h(t)* x(t)• Frequency Domain: Y(f)=F{y(t)}=X(f)H(f)

• For a random process, we still relate the statistical properties of the input and output signal

• Time Domain: RY()= RX()*h() *h(-)

• Frequency Domain: PY()= PX()|H(f)|2

Page 17: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 17

Power Spectrum or Spectral Density Function (PSD)Power Spectrum or Spectral Density Function (PSD)

• For deterministic signals, there are two ways to calculate power spectrum.• Find the Fourier Transform of the signal, find

magnitude squared and this gives the power spectrum, or

• Find the autocorrelation and take its Fourier transform

• The results should be the same.• For random signals, however, the first

approach can not be used.

Page 18: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 18

Let X(t) be a random with an autocorrelation of Rxx() (stationary), then

and

deRS jXXXX

)()(

deSR jXXXX

)(

2

1)(

Page 19: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 19

Properties:

(1)SXX() is real, and SXX(0) 0.

(2)Since RXX(t) is real, SXX(-) = SXX(), i.e., symmetrical.

(3)Sxx(0) =

(4)

dSR XXXXX )(2

1)0(2

dRXX

)(

)()( XXXX StR

Page 20: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 20

Special CaseSpecial Case

For white noise,

Thus,

)()( 2XXXR

22 )()( Xtj

XXX dteS

RXX()

X

SXX()

X

Page 21: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 21

Example 1Example 1

Random process X(t) is wide sense stationary and has a autocorrelation function given by:

Find SXX.

eR XXX2)(

Page 22: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 22

Example 1Example 1

eR XXX2)(

RXX()

X

deedee

deedeRS

jX

jX

jjXXXX

0

2

0

2

)()(

Page 23: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 23

2

2

2

0

202

0

202

0

0

2

0

0

2

1

2

1

1

1

1

11

11

11

X

XjXjX

jXjX

jjX

jjX

jje

je

j

djej

djej

dededeedee

Page 24: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 24

Example 2Example 2

Let Y(t) = X(t) + N(t) be a stationary random process, where X(t) is the actual signal and N(t) is a zero mean, white gaussian noise with variance N

2 independent of the signal.

Find SYY.

2

2

)()(

)()()(

NXXYY

NXXYY

SS

RR

Page 25: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 25

Correlation in the Continuous DomainCorrelation in the Continuous Domain

• In the continuous time domain

dttxtx

TR )()(

1)( 21

012

Page 26: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 26

• Obtain the cross-correlation R12 () between the waveform v1 (t) and v2 (t) for the following figure.

T 2T 3T

v1(t)

t

1.0

v2(t)

tT 2T 3T

1.0

-1.0

Page 27: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 27

• The definitions of the waveforms are:

and

TtforTttv 0/)(1

TtTfor

Ttfortv

2/1

2/01)(2

Page 28: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 28

• We will look at the waveforms in sections.• The requirement is to obtain an expression

for R12 ()

• That is, v2 (t), the rectangular waveform, is to be shifted right with respect to v1 (t) .

Page 29: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 29

t

The situation for

is shown in the figure. The figure show that there are three regions in the section for which v2(t) has the consecutive values of -1, 1, and -1, respectively. The boundaries of the figure are:

20 Tt

Tt

Tt

t

2

v(t)

T

1.0

-1.0

Page 30: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 30

T

T

T

T

T

T

tdtT

tdtT

tdtT

dtT

t

Tdt

T

t

Tdt

T

t

TR

22

2

20

2

2

2

012

111

11

11

11

)(

Page 31: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 31

42

2

42

2

2

1

2

2

222

2

2

1

2

1

2

1

2

1)(

2222

222

2

22222

2

2

2

2

22

2

0

2

212

TTT

TT

T

TTT

T

t

T

t

T

t

TR

T

T

T

Page 32: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 32

20

4

1

4

2

2

4

2

1

42

2

42

2

2

1

42

2

42

2

2

1)(

22

2

22

2

2

2222

222

212

Tfor

TT

TT

T

TTT

TT

T

TTT

TT

Tr

Page 33: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 33

t

v(t)

T

1.0

-1.0

The situation for

is shown in the figure. The figure show that there are three regions in the section for which v2(t) has the consecutive values of 1, -1, and 1, respectively. The boundaries of the figure are:

TtT 2

Tt

t

Tt

2

Page 34: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 34

T

T

T

T

T

T

tdtT

tdtT

tdtT

dtT

t

Tdt

T

t

Tdt

T

t

Tr

22

2

2

02

2

2

012

111

11

11

11

)(

Page 35: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 35

222

222

22

22222

2

2

2

2

2

2

2

0

2

212

42

2

42

2

2

1

2022

1

2

1

2

1

2

1)(

TTTTT

T

TTTT

t

T

t

T

t

Tr

T

T

T

Page 36: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 36

TT

forT

TTT

Tr

24

3

4

2

2

4

2

1)( 2

2

212

Page 37: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 37

t

T/2 T

0.25

-0.25

Page 38: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 38

• Let X(t) denote a random process. The autocorrelation of X is defined as

Page 39: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 39

Properties of Autocorrelation Functions for Real-Valued, WSS Random Processes

Properties of Autocorrelation Functions for Real-Valued, WSS Random Processes

• 1. Rx(0) = E[X(t)X(t)] = Average Power

• 2. Rx() = Rx(-). The autocorrelation function of a real-valued, WSS process is even.

• 3. |Rx()| Rx(0). The autocorrelation is maximum at the origin.

Page 40: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 40

Autocorrelation ExampleAutocorrelation Example

t 2

2-t

y(

t

Page 41: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 41

t 2

2-t

y(

t

0

dt

Rx 22)(

dtRt

x

2

0

2

4

1)(

dtdRt t

x

2

0

2

0

2

4

1

4

1)(

t

x

tR

2

0

23

234

1)(

2

2

3

2

4

1)(

23 tttRx

Page 42: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 42

2

44

3

6128

4

1)(

2332 ttttttRx

tt

ttttRx 22

2324

3

8

4

1)( 2

332

3

82

64

1)(

3

tt

Rx

12

8

224)(

3

tt

Rx 3

2

224)(

3

tt

Rx

Page 43: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 43

Correlation ExampleCorrelation Example

t

y(t

0 1 2 3 4 5 6 7

1

-1

Page 44: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 44

t=0:.01:2;y=(t.^3./24.-t./2.+2/3);plot(t,y)

Page 45: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 45

Page 46: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 46

t=0:.01:2;y=(-t.^3./24.+t./2.+2/3);plot(t,y)

Page 47: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 47

Page 48: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 48

Page 49: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 49

tint=0; tfinal=10; tstep=.01; t=tint:tstep:tfinal; x=5*((t>=0)&(t<=4));subplot(3,1,1), plot(t,x)axis([0 10 0 10])h=3*((t>=0)&(t<=2));subplot(3,1,2),plot(t,h)

axis([0 10 0 10])axis([0 10 0 5])t2=2*tint:tstep:2*tfinal;y=conv(x,h)*tstep;subplot(3,1,3),plot(t2,y)axis([0 10 0 40])

Page 50: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 50

Matched FilterMatched Filter

Page 51: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 51

Matched FilterMatched Filter

• A matched filter is a linear filter designed to provide the maximum signal-to-noise power ratio at its output for a given transmitted symbol waveform.• Consider that a known signal s(t) plus a

AWGN n(t) is the input to a linear time-invariant (receiving) filter followed by a sampler.

Page 52: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 52

• At time t = T, the sampler output z(t) consists of a signal component ai and

noise component n0. The variance of the

output noise (average noise power) is denoted by 0

2, so that the ratio of the

instantaneous signal power to average noise power, (S/N)T, at time t = T is

20

2

i

T

a

N

S

Page 53: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 53

Random Processes and Linear SystemsRandom Processes and Linear Systems

• If a random process forms the input to a time-invariant linear system, the output will also be a random process.

• The input power spectral density GX(f)

and the output spectral density GY(f) are

related as follows:

2)()()( fHfGfG XY

Page 54: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 54

• We wish to find the filter transfer function H0(f) that maximizes

• We can express the signal ai(t) at the filter output in terms of the filter transfer function H(f) and the Fourier transform of the input signal, as

20

2

i

T

a

N

S

dfefSfHa ftj

i2)()(

Page 55: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 55

• If the two-sided power spectral density of the input noise is N0/2 watts/hertz, then we can express the output noise power as

• Thus, (S/N)T is

dffH

N 2020 )(

2

dffHN

dfefSfH

N

Sftj

T 20

2

2

)(2

)()(

Page 56: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 56

• Using Schwarz’s inequality,

• and

dffSdffHdfefSfH ftj 22

2

2 )()()()(

0

2)(2

N

dffS

N

S

T

Page 57: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 57

• Or

• where0

2max

N

E

N

S

T

dffSE

2

)(

Page 58: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 58

• The maximum output signal-to-noise ratio depends on the input signal energy and the power spectral density of the noise.

• The maximum output signal-to-noise ratio only holds if the optimum filter transfer function H0(f) is employed, such that

tfj

tfj

efkSth

or

efkSfHfH

21

20

)(*)(

)(*)()(

Page 59: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 59

tfj

tfj

efkSth

or

efkSfHfH

21

20

)(*)(

)(*)()(

Page 60: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 60

• Since s(t) is a real-valued signal, we can use the fact that

• and

)(*)( fXfX

tfjefXttx 20 )()(

Page 61: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 61

• to show that

• Thus, the impulse response of a filter that produces the maximum output signal-to-noise ratio is the mirror image of the message signal s(t), delayed by the symbol time duration T.

elsewhere

TttTksth

0

0)()(

Page 62: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 62

Tt

s(t)

-Tt

s(-t) h(t)=s(T-t)

tT

Signal waveform Mirror image of signal waveform

Impulse response of matched filter

Page 63: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 63

• The impulse response of the filter is a delayed version of the mirror image (rotated on the t = 0 axis) of the signal waveform.• If the signal waveform is s(t), its mirror

image is s(-t), and the mirror image delayed by T seconds is s(T-t).

Page 64: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 64

• The output of the matched filter z(t) can be described in the time domain as the convolution of a received input wavefrom r(t) with the impulse response of the filter.

t

dthrthtrtz0

)()()()()(

Page 65: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 65

t

t

dtTsr

dtTsrtz

0

0

)()(

)(()()(

Substituting ks(T-t) with k chosen to be unity for h(t) yields.

When T = t

T

dsrtz0

)()()(

Page 66: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 66

• The integration of the product of the received signal r(t) with a replica of the transmitted signal s(t) over one symbol interval is known as the correlation of r(t) with s(t).

Page 67: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 67

• The mathematical operation of a matched filter (MF) is convolution; a signal is convolved with the impulse response of a filter.

• The mathematical operation of a correlator is correlation; a signal is correlated with a replica of itself.

Page 68: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 68

• The term matched filter is often used synonymously with correlator.

• How is that possible when their mathematical operations are different?

Page 69: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 69

s0(t) s1(t)

Tb

Tb

A A

-A

Page 70: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 70

h0=s0(Tb -t) h0=s1(Tb -t)

TbTb

A A

-A

Page 71: TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Dr. Blanton - ENTC 4307 - Correlation 71

y0(t)

Tb

A2Tb

2Tb

y0(t)

Tb 2Tb