test structures for millimeter- wave cmos circuit … okada lab. test structures for millimeter-...

83
2010/03/22 Matsuzawa & Okada Lab. Test Structures for Millimeter- Wave CMOS Circuit Design Kenichi Okada Tokyo Institute of Technology, Japan

Upload: buitruc

Post on 02-Apr-2018

223 views

Category:

Documents


3 download

TRANSCRIPT

2010/03/22Matsuzawa& Okada Lab.

Test Structures for Millimeter- Wave CMOS Circuit Design

Kenichi Okada

Tokyo Institute of Technology, Japan

2010/03/22 K. Okada, Tokyo Tech

1

Matsuzawa& Okada Lab.

Outline

• Motivation• Issues for mmW CMOS Circuits• Device Characterization• De-embedding• Conclusion

2010/03/22 K. Okada, Tokyo Tech

2

Matsuzawa& Okada Lab.

Motivation

1980 1985 1990 1995 2000 2005 2010 2015

101

102

103

104

105

106

WDMOC-192

2λ4λ

8λ32λ

160λCapacity[Mbps]

OC-48OC-24

OC-12OC-3

Wireline

802.11802.11b802.11a

802.11g 802.11nUWB

100 Bluetooth

PHSPDC

10Mbps

Wireless(PAN~WAN)

10Gbps

Contents

2010/03/22 K. Okada, Tokyo Tech

3

Matsuzawa& Okada Lab.

Motivation

1980 1985 1990 1995 2000 2005 2010 2015

101

102

103

104

105

106

WDMOC-192

2λ4λ

8λ32λ

160λ

40Gbps40Gbps

Capacity[Mbps]

OC-48OC-24

OC-12OC-3

Wireline

802.11802.11b802.11a

802.11g 802.11nUWB

100 Bluetooth

PHSPDC

Millimeter-Wave

10Mbps

Wireless(PAN~WAN)

10Gbps

Contents

2010/03/22 K. Okada, Tokyo Tech

4

Matsuzawa& Okada Lab.

Frequency [GHz]10 20 30 60 100 200 300

0.1

1

10

100

0.01

Atte

nuat

ion

[dB

/km

]

Applications24GHz: Automotive radar60GHz: IEEE 802.15.3c, WirelessHD, etc.77-79GHz: Automotive radar94GHz: Imaging

Ultra high speedWireless communicationBy CMOS

O2

*Rec. ITU-R P.676-2, Feb. 1997

2010/03/22 K. Okada, Tokyo Tech

5

Matsuzawa& Okada Lab.

60GHz ISM band60GHz unlicensed band

*http://www.tele.soumu.go.jp

Frequency [GHz]57 58 59 60 61 62 63 64 65 66

America , Canada

Europe

Japan

Australia

Frequency [GHz]57 58 59 60 61 62 63 64 65 66

America , Canada

Europe

Japan

Australia

• 9GHz-BW around 60GHzSeveral-Gbps wireless communication

• Use of CMOS processFab. cost is very important to generalize it.RF&BB mixed chip can be realized.

2010/03/22 K. Okada, Tokyo Tech

6

Matsuzawa& Okada Lab.

60GHz channel plan

57 58 59 60 61 62 63 64 65 66

IEEE802.15.3c

4 channel of 2.16GHz-BW

Channel Number

Low Freq.(GHz)

Center Freq.(GHz)

High Freq.(GHz)

Nyquist BW(GHz)

Roll-OffFactor

A1 57.24 58.32 59.40 1.76 0.227A2 59.40 60.48 61.56 1.76 0.227A3 61.56 62.64 63.72 1.76 0.227A4 63.72 64.80 65.88 1.76 0.227

1 2 4

240 MHz

120 MHz

1.76 GHz2.16 GHz

3

fGHz

Ref: IEEE 802.15-09-192-003c with draft doc.

2010/03/22 K. Okada, Tokyo Tech

7

Matsuzawa& Okada Lab.

Overview on TG3c System Design • One unified MAC• Three PHYs optimized for respective and specific

market segments– Single carrier (SC) PHY

• low complexity, low power consumption and low cost • handheld mobile applications

– High speed interface (HSI) PHY - OFDM• low latency bi-directional data communications• PC peripherals

– AV PHY - OFDM• optimized for high speed uncompressed video transmission• Audio/visual consumer electronics (CE) applications

Ref: IEEE 802.15-09-192-003c

e.g., 3Gbps(QPSK), 6Gbps(16QAM), 9Gbps(64QAM)x4ch

2010/03/22 K. Okada, Tokyo Tech

8

Matsuzawa& Okada Lab.

Outline

• Motivation• Issues for mmW CMOS Circuits• Device Characterization• De-embedding• Conclusion

2010/03/22 K. Okada, Tokyo Tech

9

Matsuzawa& Okada Lab.

Digital Base Band60GHz Q-PLL

LPF ADC

VGA ADCLNA

VGA

LPF

LPF DAC

DACPA

LPF

60GHz Direct-conversion transceiver

60GHz 2.16GHz-full 4ch direct-conversion by CMOS TrQPSK 3Gbps & 16QAM 6Gbps & 64QAM 9GbpsIEEE 802.15.3c conformanceDynamic power management: <300mW for RF front-end

60GHz

2010/03/22 K. Okada, Tokyo Tech

10

Matsuzawa& Okada Lab.

Circuit blocks of 60GHz transceiver

60GHz LNA

60GHz PA

Down-Mixer

Up-Mixer

20GHz PLL

I/Q TriplerFUJITSU(Eshuttle) CMOS 65nm

2010/03/22 K. Okada, Tokyo Tech

11

Matsuzawa& Okada Lab.

mmW CMOS circuit design

Inductor@5GHz Transmission line@60GHz

Matchingblocks

At 60GHz, every interconnects should be dealt with as a distributed component.

The accurate characterization is required.

Layout parasitics become critical for mmW circuit design.1. Interconnects between circuit components become

close to the wave length.2. Dummy metal for CMP3. Tr gain is very small, and TL is lossy.

2010/03/22 K. Okada, Tokyo Tech

12

Matsuzawa& Okada Lab.

Loss of passive devices

GaAs substrate(insulator)

Si substrate(conductive

& lossy)

100μm

300μm

metal

CMOS T-line

No backside metallizationConductor loss + Substrate eddy-current loss50Ω

T-line loss: 0.5 – 1.5dB/mm @60GHz

Si CMOS GaAsWire width 10μm 100μmWire thickness 1 – 2μm 10μmDielectric thickness < 5μm 100μm

2010/03/22 K. Okada, Tokyo Tech

13

Matsuzawa& Okada Lab.

Multi-level interconnects(65nm CMOS)

http://www.tamaru.kuee.kyoto-u.ac.jp/~tsuchiya/LSI-3D-CG.html

• Every tiers have a different cross-sectional structure with different dielectric constant.

• EM simulation becomes considerably difficult.• Cu wire needs high-resistance barrier metal.

2010/03/22 K. Okada, Tokyo Tech

14

Matsuzawa& Okada Lab.

Density rule for CMP

Si Substrate

Dielectric

CMP (Chemical Mechanical Polishing/Planarization)every metal layers are polished.

DishingErosion

• Uneven metal density causes nonuniform metal thickness.

• Dummy metals are required to keep a constant metal thickness.

2010/03/22 K. Okada, Tokyo Tech

15

Matsuzawa& Okada Lab.

Dummy metal

GND PAD

automatically-generated dummy metal

GND tile

manual dummy

Signal PAD

inhibition mask layerfor automatic dummy generation

2010/03/22 K. Okada, Tokyo Tech

16

Matsuzawa& Okada Lab.

Dummy metal in TL

Metal dummy

To avoid random production of dummy metal, it is manuallyplaced to keep good reproducibility.

Ground mesh

Manually-placeddummy metal

Signal line10μm

15μm

40μm

10μm

15μm

2010/03/22 K. Okada, Tokyo Tech

17

Matsuzawa& Okada Lab.

Dummy influence on T-linew/o dummyw/ dummy

0

400

100

300200

500600

0 20 6040Frequency [GHz]

L [p

H/m

m]

0 20 6040

200

50

150

100

250

0

Frequency [GHz]

w/o dummyw/ dummy

C [f

F/m

m]

3

2

1

4

0

G [m

S/m

m]

0 20 6040Frequency [GHz]

w/o dummyw/ dummy

0 20 6040Frequency [GHz]

15

10

5

20

0

w/o dummyw/ dummy

2010/03/22 K. Okada, Tokyo Tech

18

Matsuzawa& Okada Lab.

Dummy influence on T-line

0 20 6040Frequency [GHz]

w/o dummyw/ dummy55

50

45

60

400 20 6040

Frequency [GHz]

20

5

15

10

25

0

Q

w/o dummyw/ dummy

0 20 6040Frequency [GHz]

2.0

0.5

1.5

1.0

2.5

0

w/o dummyw/ dummy

0 20 6040Frequency [GHz]

3

2

1

4

0

w/o dummyw/ dummy

[×103]

diff.

0.7dB

1.2dBβ

[rad

/mm

]

2010/03/22 K. Okada, Tokyo Tech

19

Matsuzawa& Okada Lab.

Summary of dummy issues

• Loss (mainly caused by eddy current)• Too-close dummy causes loss in T-lines.

• Parasitic capacitance• Layout complexity

• The common MS model cannot be used.• EM simulation is also difficult.

Dummy metals are required for CMP.

2010/03/22 K. Okada, Tokyo Tech

20

Matsuzawa& Okada Lab.

Tile-based layout

T-Junction Tr TL C

GND-TileRF PAD

Each component is previously measured and modeled.The same layout is utilized to maintain modeling accuracy.

MIM TL

5μm pitch

curvebend

Bond-based design: Y. Manzawa, et al., APMC 2008

2010/03/22 K. Okada, Tokyo Tech

21

Matsuzawa& Okada Lab.

In-house PDK

Each component isimplemented as an in-housePDK for Agilent ADS.

PVT

RNMOS

MOS cap

VaractorMIM

DC probe

RF PAD

MIM TL

TL with L/T

C

PMOS

2010/03/22 K. Okada, Tokyo Tech

22

Matsuzawa& Okada Lab.

Remaining issues

• Tile-based layout• Layout and circuit model are strictly corresponded,

which contributes to avoid uncertainty caused by dummy metals and interconnections between circuit components.

• Measurement• mmW measurement is still challenging• Accuracy of de-embedding becomes a considerably

sensitive at mmW frequencies.• Characterization

• No fab-provided PDK for mmW circuit design• Measurement is not so accurate• TEG is very important.

2010/03/22 K. Okada, Tokyo Tech

23

Matsuzawa& Okada Lab.

Outline• Motivation• Issues for mmW CMOS Circuits• Device Characterization

– Transmission line – Branch & bend line– Transistor– Decoupling capacitor– 1-stage amplifier– DC probe

• De-embedding• Conclusion

2010/03/22 K. Okada, Tokyo Tech

24

Matsuzawa& Okada Lab.

mmW measurement

• Network analyzer•S-parameter measurement

• RF probe

2010/03/22 K. Okada, Tokyo Tech

25

Matsuzawa& Okada Lab.

mmW device characterization

•Transistors•Transmission line•Branch & bend line•Spiral inductor•Balun•Series capacitor•Decoupling capacitor

Pad T-line Pad

• DC pad• RF pad• Bonding wire

GND

GND

GND

GND

Signal Signal

2010/03/22 K. Okada, Tokyo Tech

26

Matsuzawa& Okada Lab.

Overview of device characterization

Initial T.O.

Second T.O.

Initial T.O. for Modeling• Transistors (CS, CG with various layouts)• Transmission line (various length & Z0)• Branch & bend line• Spiral inductor• Balun• Series capacitor• Decoupling capacitor• De-embedding patterns• 1-stage amplifier for the model evaluation• DC probe

Second T.O.• Circuit building blocks• Whole system

2010/03/22 K. Okada, Tokyo Tech

27

Matsuzawa& Okada Lab.

Outline• Motivation• Issues for mmW CMOS Circuits• Device Characterization

– Transmission line – Branch & bend line– Transistor– Decoupling capacitor– 1-stage amplifier– DC probe

• De-embedding• Conclusion

2010/03/22 K. Okada, Tokyo Tech

28

Matsuzawa& Okada Lab.

On-chip Transmission Line

• Guided Micro-Strip (GMS)• M1-MT ground wall (for density)• Totally shielding the substrate from the signal

line by using M1-M2 grounded-strips

Structure

400 μm

Microphoto

320μm

7.54μm

0.2μm 0.3μmGSG

MT

SubM1M2

15 mμ 10 m 30μmμ30μm 15 mμ

M1-MTM1-MT

2010/03/22 K. Okada, Tokyo Tech

29

Matsuzawa& Okada Lab.

Model of transmission lineCPW model (ADS)

• To meet measured α, β, Q and Z0 , substrate model is individually extracted for each structure.

• RLGC is not good, and S-parameters should also be checked.

configurable

2010/03/22 K. Okada, Tokyo Tech

30

Matsuzawa& Okada Lab.

Calculation of Z, α, β, and Q

2 22 2 11 21

0 ref 2 211 21

(1 )(1 )

S SZ ZS S

+ −=

− −

1

21

221

211

21

⎭⎬⎫

⎩⎨⎧

±+−

= KS

SSe lγ21

221

211

2221

211

)2()2()1(

⎭⎬⎫

⎩⎨⎧ −++

=S

SSSK

2Q β

α=

Z, α, β, and Q can be calculated from S-parameters.

therefore

jγ α β= +

W. R. Eisenstadt and Y. Eo, IEEE T-MTT 1992.

2010/03/22 K. Okada, Tokyo Tech

31

Matsuzawa& Okada Lab.

Model of transmission lineT-Line model (detail)

• DC characteristic is separately characterized.• tanδ

and dielectric thickness are frequency-dependent.

2010/03/22 K. Okada, Tokyo Tech

32

Matsuzawa& Okada Lab.

Transmission line (400μm)

Characteristic impedance

Quality factor

Attenuation constant

Phase constant

2010/03/22 K. Okada, Tokyo Tech

33

Matsuzawa& Okada Lab.

Verification of T-Line model1. PAD model is built by measurement results of 200μm

and 400μm T-lines.2. Measurement results of 100μm, 200μm, 300μm, and

400μm T-lines are de-embedded by using the PAD model.

*different TL from the previous one

0 20 40 60 80 1000

20

40

60

80

100

200μm100μm

300μm400μm

Frequency [GHz]Cha

ract

eris

tic Im

peda

nce

Z0 [W

]

2010/03/22 K. Okada, Tokyo Tech

34

Matsuzawa& Okada Lab.

Outline• Motivation• Issues for mmW CMOS Circuits• Device Characterization

– Transmission line – Branch & bend line– Transistor– Decoupling capacitor– 1-stage amplifier– DC probe

• De-embedding• Conclusion

2010/03/22 K. Okada, Tokyo Tech

35

Matsuzawa& Okada Lab.

Branch & bend modeling

with 4 bending parts

with 200μm shunt TL

Each red-box part is characterized as a combination of optimized transmission lines.

2010/03/22 K. Okada, Tokyo Tech

36

Matsuzawa& Okada Lab.

T-junction modeling

Straightforward modeling

Lower Z0 TLs are utilized, and Z0 isadjusted for the measurement results.

Dummy metal causes unexpected response.

TL model

dummy metal

2010/03/22 K. Okada, Tokyo Tech

37

Matsuzawa& Okada Lab.

-1.0

-0.8

-0.6

-0.4

-0.2

0

0 20 40 60

MeasurementWithout T modelWith T modelModeling

Frequency [GHz]

S21

[dB

]

Extracted results of T-junction

ADS model

Our model

No model

A simple analytical model cannot be used.

T-junction

T-line

2010/03/22 K. Okada, Tokyo Tech

38

Matsuzawa& Okada Lab.

Verification

300μm open-stub

200μm open-stub 200μm short-stubused for modeling

used for verification

used for verification

2010/03/22 K. Okada, Tokyo Tech

39

Matsuzawa& Okada Lab.

Verification with 200μm and 300μm open-stub

-2.0

-1.6

-1.2

-0.8

-0.4

0

0 20 40 60Frequency [GHz]

S21

[dB

]

ModelingMeasurement

200μm 300μm

model from 200μm

meas. 300μm

T-junction

T-line

2010/03/22 K. Okada, Tokyo Tech

40

Matsuzawa& Okada Lab.

Verification with short stub

S11 (1-67GHz) S22 (1-67GHz)

Meas.Model

model meas.

200μm open-stub 200μm short-stub

2010/03/22 K. Okada, Tokyo Tech

41

Matsuzawa& Okada Lab.

L-Curve modeling

4-L-curve 2-L-curve

2010/03/22 K. Okada, Tokyo Tech

42

Matsuzawa& Okada Lab.

Extracted result

S11 (1-67GHz) S21 (1-67GHz)

Meas.Model

L-Curve

T-line

model meas.

normalized by 20Ω

2010/03/22 K. Okada, Tokyo Tech

43

Matsuzawa& Okada Lab.

Verification with 2-bendL-Curve

T-line

model meas.

S11 (1-67GHz) S21 (1-67GHz)

Meas.Model

normalized by 20Ω

2010/03/22 K. Okada, Tokyo Tech

44

Matsuzawa& Okada Lab.

Outline• Motivation• Issues for mmW CMOS Circuits• Device Characterization

– Transmission line – Branch & bend line– Transistor– Decoupling capacitor– 1-stage amplifier– DC probe

• De-embedding• Conclusion

2010/03/22 K. Okada, Tokyo Tech

45

Matsuzawa& Okada Lab.

Transistor model

Cgd

Rd

Rs

Cgs

Rgd

Rgs

Lg Rg

Cdb Rdb

RsbCsb

RbbCgd

Ls

Ld

Transistor model

• Based on BSIM4 model

• Small signal

• With external ind., cap., res.

MicrophotoTest structure

• Tr. is modeled from two-port measured results

2010/03/22 K. Okada, Tokyo Tech

46

Matsuzawa& Okada Lab.

Extracted results of Tr model

0 20 40 60 80 100-1

-0.5

0

0.5

1

Frequency [GHz]

Meas.Model

Re[S11]

Im[S11]

S11

S11

0 20 40 60 80 100-0.1

0.0

0.1

0.2

0.3

S12

Frequency [GHz]

Meas.Model

Im[S12]

Re[S12]

S12

0 20 40 60 80 100-4

-2

0

2

4

Frequency [GHz]

Meas.Model

S21

Re[S21]

Im[S21]

S21

0 20 40 60 80 100-1

-0.5

0

0.5

1

Frequency [GHz]

Meas.Model

Im[S22]

Re[S22]S2

2

S22

2010/03/22 K. Okada, Tokyo Tech

47

Matsuzawa& Okada Lab.

Outline• Motivation• Issues for mmW CMOS Circuits• Device Characterization

– Transmission line – Branch & bend line– Transistor– Decoupling capacitor– 1-stage amplifier– DC probe

• De-embedding• Conclusion

2010/03/22 K. Okada, Tokyo Tech

48

Matsuzawa& Okada Lab.

MIM capacitor for de-coupling

Area efficiency is large, butthe self-resonance freq. is low.

The regular layout of MIM cap.cannot be used at 60GHz.

Cap

acita

nce

[pF]

2010/03/22 K. Okada, Tokyo Tech

49

Matsuzawa& Okada Lab.

TL-shape MIM capacitor

50Ω TLMIM TL

parallel plate MIM cap. TL arranged MIM cap.[1]

TL

MIMMIM

[1] T.Suzuki, et al., ISSCC 2008.[2] Y.Natsukari, et al., VLSI Circuits 2009.

2010/03/22 K. Okada, Tokyo Tech

50

Matsuzawa& Okada Lab.

Layout of MIM-TLine

MIM TLine structure

Extendable for length

Microphoto

TL

CTL

GND

2010/03/22 K. Okada, Tokyo Tech

51

Matsuzawa& Okada Lab.

Extracted result of MIM-TLine

S11 (1-67GHz) Z0

Characterized as atransmission line

2010/03/22 K. Okada, Tokyo Tech

52

Matsuzawa& Okada Lab.

Outline• Motivation• Issues for mmW CMOS Circuits• Device Characterization

– Transmission line – Branch & bend line– Transistor– Decoupling capacitor– 1-stage amplifier– DC probe

• De-embedding• Conclusion

2010/03/22 K. Okada, Tokyo Tech

53

Matsuzawa& Okada Lab.

An evaluation using a 1-stage amplifier

Schematic

210μm100fF

340μm

RFin

De-coupling MIM T-Line

W=40μm

20μm 100fF

90μm10μm

210μm

RFout

150μm

A 1-stage amplifier is also used for a verification.

2010/03/22 K. Okada, Tokyo Tech

54

Matsuzawa& Okada Lab.

Simulation vs Measurement

S11(gate-side reflection) S22(drain-side reflection)

Meas.Model

2010/03/22 K. Okada, Tokyo Tech

55

Matsuzawa& Okada Lab.

Simulation vs Measurement

Meas.Model

50 60 70 80 90-4

-2

0

2

4

6Po

wer

Gai

n[d

B]

Frequency [GHz]

Meas.Sim.

2010/03/22 K. Okada, Tokyo Tech

56

Matsuzawa& Okada Lab.

Outline• Motivation• Issues for mmW CMOS Circuits• Device Characterization

– Transmission line – Branch & bend line– Transistor– Decoupling capacitor– 1-stage amplifier– DC probe

• De-embedding• Conclusion

2010/03/22 K. Okada, Tokyo Tech

57

Matsuzawa& Okada Lab.

DC probe impedance

100MHz 1GHz 10GHz 100GHz

External de-couplingcapacitor works well.e.g., DC probe

On-chip de-coupling capapacitor works well.

Supply impedanceis not stable.Oscillation

Vdd

On-chipde-coupling cap. DC probe’s

parasitics

DC pad

2010/03/22 K. Okada, Tokyo Tech

58

Matsuzawa& Okada Lab.

DC probe characterization

RF Probe

DC Probe(DUT)

ISS Thru

• DC pad/probe is characterized, and it is taken into account in circuit simulation.

• RF pad is also characterized.

2010/03/22 K. Okada, Tokyo Tech

59

Matsuzawa& Okada Lab.

Other modeling issues

• De-embedding• Transistor layout optimization• Spiral inductor• Balun• RF Pad• DC probe / bonding wire / bump / filler / PCB

2010/03/22 K. Okada, Tokyo Tech

60

Matsuzawa& Okada Lab.

Summary

1. Design issue of TL on CMOS chips is different from that of compound semiconductors. e.g., dummy metal, lossy substrate, large conductive

loss, etc2. Branch modeling3. Distributed modeling of de-couple MIM cap.4. Evaluation using a 1-stage amplifier

A modeling approach to design a 60GHz CMOS amplifiers

2010/03/22 K. Okada, Tokyo Tech

61

Matsuzawa& Okada Lab.

Outline

• Motivation• Issues for mmW CMOS Circuits• Device Characterization• De-embedding

– Open-Short, Thru-Only method– L-2L method

• Conclusion

2010/03/22 K. Okada, Tokyo Tech

62

Matsuzawa& Okada Lab.

De-Embedding• On-wafer probing measurement

– Contact pads are needed.– Measurement data includes pad parasitic

components.– At high frequency, parasitic components are not

negligible.• De-Embedding

– Remove parasitic components from measurement data

Measurement Parasitic elements of contact pads

DUT

Contact Pads

2010/03/22 K. Okada, Tokyo Tech

63

Matsuzawa& Okada Lab.

Classification of de-embedding methods

• Lumped-constant approach– Open-Short– Open-Short-Thru– Thru-only

• Distributed-constant approach– L-2L– Mangan’s method– Takayama’s method

2010/03/22 K. Okada, Tokyo Tech

64

Matsuzawa& Okada Lab.

PAD model

ZsZp

ZsZp

DUT

Contact Pads

• Simple Series-and-Shunt model– ZP : Shunt parasitic components of contact pad– ZS : Series parasitic components of contact pad

• T-parameter model– Characterized by 4 or 3 complex parameters

2010/03/22 K. Okada, Tokyo Tech

65

Matsuzawa& Okada Lab.

Open-Short method

Zs ZpZsZp

ZPZS

OPEN

ZPZS

SHORT

= =

2010/03/22 K. Okada, Tokyo Tech

66

Matsuzawa& Okada Lab.

Non-ideality of Open-Short structuresProblem at high frequency

– Ideal short cannot be obtained.

ZPZS

ZPZS

ZPZS

OPEN

ZPZS

SHORT

= =

2010/03/22 K. Okada, Tokyo Tech

67

Matsuzawa& Okada Lab.

Thru-only method

Thru (short line) structure Pad model

• Short-Line-Structure– The measurement result is characterized as a “π”-

PAD model.– Separate in two symmetric parts

• Issue of this method at high frequency– The line length must be short.– The distance between probes is too short.

*H. Ito, et al., IMS 2008

2010/03/22 K. Okada, Tokyo Tech

68

Matsuzawa& Okada Lab.

Outline

• Motivation• Issues for mmW CMOS Circuits• Device Characterization• De-embedding

– Open-Short, Thru-Only method– L-2L method

• Conclusion

2010/03/22 K. Okada, Tokyo Tech

69

Matsuzawa& Okada Lab.

L-2L method• A kind of multi-line de-embedding methods

– The line length are L and 2L.• Not need “Short” or “Thru (Short-Line)”

• De-embed transmission lines from the measurement data– Build a pad model– The pad model is used to de-embed the pad

components from other TEG.

Length = L Length = 2L

Two transmission lines*J. Song, et al., EPEP 2001

2010/03/22 K. Okada, Tokyo Tech

70

Matsuzawa& Okada Lab.

T-parameters

TL T2L

S T

x TL =

=L L 2L

• T-parameters can be calculated from S-parameters.• Series connection of T-parameters can be calculated as

a product of T-parameters.• T-parameters are not reciprocal.

T-Parameters (Scattering transfer parameters)

2010/03/22 K. Okada, Tokyo Tech

71

Matsuzawa& Okada Lab.

De-embedding using T-parameters

TLPAD TRPAD

length = L

TL x

L

x=TL+PAD

If we have TLPAD-1 and TRPAD

-1,TLPAD

-1 TL+PAD TRPAD-1

= TLPAD-1 (TLPAD TL TRPAD ) TRPAD

-1

= TL

arbitrary

2010/03/22 K. Okada, Tokyo Tech

72

Matsuzawa& Okada Lab.

L-2L de-embedding method

TL+PAD = TLPAD TL TRPAD

length = L length = 2L

T2L+PAD = TLPAD T2L TRPAD

(T2L = TL2)

TL+PAD T2L+PAD-1 TL+PAD

= (TLPAD TL TRPAD) (TLPAD TL2 TRPAD )-1 (TLPAD TL TRPAD )

= TLPAD TL TRPAD TRPAD-1 TL

-2 TLPAD-1 TLPAD TL TRPAD

= TLPAD TL TL-2 TL TRPAD

= TLPAD TRPAD *J. Song, et al., EPEP 2001

2010/03/22 K. Okada, Tokyo Tech

73

Matsuzawa& Okada Lab.

Thru-only vs L-2L methodsS

GG G

SGLength

SG

G GS

GLength

Thru-only method L-2L method

Redundant thru-line causes error at mmW frequencies.

Redundant thru-line x2

-

SG

G GS

GS

GG G

SG

=

No redundant thru part

2010/03/22 K. Okada, Tokyo Tech

74

Matsuzawa& Okada Lab.

Comparison between L-2L and Thru-only

Error items vs. thru-line length

PAD model for Thru-only method

Z0 will have more than 2% error.

Redundant thru-line

Thru-only method

@60GHz

2010/03/22 K. Okada, Tokyo Tech

75

Matsuzawa& Okada Lab.

Experimental results• CMOS 65nm process• TL structure

– Guided Micro Strip– W = 10 [μm], H = 8 [μm], G = 15 [μm]– Length of TLs : 200, 400 [μm]

• Pad structure– Signal pad : 40x60 [μm2]

Structure of TLPhoto of TLs

Si

H

G W: Dummy Metals

2010/03/22 K. Okada, Tokyo Tech

76

Matsuzawa& Okada Lab.

Verification

[1] W. R. Eisenstadt, et.al., “S-parameter-Based IC Interconnect Transmission Line Characterization”

0

ref

ZZ :Normalized Impedance

:Characteristic Impedance

• Make pad models by each method• De-embedding of different-length TLs• Calculate Z0 of TL from S-parameter• Compare Z0

– Calculated from 200μm-TL– Calculated from 400μm-TL

2 22 2 11 21

0 ref 2 211 21

(1 )(1 )

S SZ ZS S

+ −=

− −

2010/03/22 K. Okada, Tokyo Tech

77

Matsuzawa& Okada Lab.

Experimental results (Lumped app.)

• Open-short method– Characteristic impedances of 200μm and 400μm

do not agree with each other.• Thru-only method

– The results are unstable.

Open-short method Thru-only method

2010/03/22 K. Okada, Tokyo Tech

78

Matsuzawa& Okada Lab.

Experimental results (L-2L)

• Characteristic impedance of TLs– The impedances of 200μm and 400μm

agree with each other.– The results are stable.

Characteristic impedance

2010/03/22 K. Okada, Tokyo Tech

79

Matsuzawa& Okada Lab.

Summary

• Lumped/Distributed de-embedding methods are reviewed.

• L-2L method performs very high accuracy at mmW frequency.

• The conventional Open-Short fails.

2010/03/22 K. Okada, Tokyo Tech

80

Matsuzawa& Okada Lab.

Outline

• Motivation• Issues for mmW CMOS Circuits• Device Characterization• De-embedding• Conclusion

2010/03/22 K. Okada, Tokyo Tech

81

Matsuzawa& Okada Lab.

Conclusion

• This tutorial reviews mmW-frequency measurement and characterization of CMOS passive and active devices for designing mmW circuits.

• Tile-based design is required due to dummy metal and parasitic caps.

• Branch and bend are individually characterized.

• L-2L de-embedding method is practical at mmW frequency.

2010/03/22 K. Okada, Tokyo Tech

82

Matsuzawa& Okada Lab.

Acknowledgement

This work is partially supported by MIC, STARC, NEDO, and VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd.

Special thanks to Dr.Joshin, Dr.Hirose, Dr.Suzuki, Dr.Sato, and Dr.Kawano of FUJITSU Lab., Ltd. for their fruitful discussion.