testing booklet.pdf

Upload: jvazq1956

Post on 01-Jun-2018

396 views

Category:

Documents


8 download

TRANSCRIPT

  • 8/9/2019 TESTING BOOKLET.pdf

    1/52

    testing 2/04 PRINTED IN USA 2005 MILLER Electric Mfg. Co.

    September 2005 FORM: 150 853G

    TESTING BOOKLET

    TechnicalManual

  • 8/9/2019 TESTING BOOKLET.pdf

    2/52

    TABLE OF CONTENTS

    SECTION 1 − SAFETY PRECAUTIONS FOR SERVICING 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1-1. Symbol Usage 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1-2. Servicing Hazards 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1-3. Engine Hazards 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1-4. EMF Information 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    SECTION 2 − EXPLANATION OF ELECTRICAL PARTS 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    SECTION 3 − INTRODUCTION 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    3-1. Needed Test Equipment And Description 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    SECTION 4 − PARTS TESTING PROCEDURES 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-1. Diode Testing Procedure 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-2. Integrated Rectifier (Three-Phase) Testing Procedure 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-3. Integrated Rectifier (Single-Phase) Testing Procedure 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-4. Style 1 Dual Diode Testing Procedure 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-5. Style 2 Dual Diode Testing Procedure 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-6. Straight And Reverse Polarity Diode Testing Procedure 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-7. Hockey-Puk Diode Testing Procedure 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-8. Stud-Mount SCR Testing Procedure 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-9. Hockey-Puk SCR Testing Procedure 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-10. Single SCR Testing Procedure 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-11. NPN Power Transistor Testing Procedure 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-12. SCR/Integrated Rectifier (Single-Phase) Testing Procedure 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-13. SCR/Integrated Rectifier (Three-Phase) Testing Procedure 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-14. SCR Power Module Testing Procedure 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-15. IGBT Power Module Testing Procedure 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    IGBT/MOSFET Tester Information 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    IGBT Power Module Testing Procedure 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    IGBT Power Module Testing Procedure (212 106) 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4-16. MOSFET Power Transistor Testing Procedure 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    IGBT/MOSFET Tester Information 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    MOSFET Power Transistor Testing Procedure 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-17. Modular Main Rectifier Testing Procedure 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    SECTION 5 − TOOLS AND PLUGS 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5-1. Using Tool Part Number 121 481 To Remove Lead 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5-2. Using Tool Part Number 048 471 To Remove Lead 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5-3. Using Tool Part Number 099 720 To Remove Lead 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5-4. Using Tool Part Number 099 719 To Remove Lead 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5-5. Using Tool Part Number 095 952 To Remove Lead 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5-6. Using Tool Part Number 121 694 To Remove Lead 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5-7. Using Tool Part Number 121 482 To Remove Lead 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5-8. Using Tool Part Number 141 761 To Remove Lead 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5-9. Using Tool Part Number 133 357 To Remove DIP Integrated Circuit 41. . . . . . . . . . . . . . . . . . . . . . . . . . .

    SECTION 6 − TORQUE SPECIFICATIONS FOR PARTS 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    150 853 2/04

    CALL:

    Miller Customer Service

    Department at

    920-735-4505

    WHO DO I CONTACT FOR HELP? FAX:

    920-735-4136

    WRITE:

    Miller Electric Mfg. Co.

    1635 West Spencer St.

    P.O. Box 1079

     Appleton, WI 54912-1079 USA

    Always provide Model Name and Serial or Style Number

  • 8/9/2019 TESTING BOOKLET.pdf

    3/52150 853 Page 1

    SECTION 1 − SAFETY PRECAUTIONS FOR SERVICINGsafety_testing 1/00

    1-1. Symbol Usage

    Means Warning! Watch Out! There are possible hazards with thisprocedure! The possible hazards are shown in the adjoining symbols.

    This group of symbols means Warning! Watch Out! possible ELECTRIC SHOCK, MOVING PARTS,and HOT PARTS hazards. Consult symbols and related instructions below for necessary actions to

    avoid the hazards.

    Marks a special safety message.

    Means NOTE; not safety related.

    1-2. Servicing Hazards

    ELECTRIC SHOCK can kill.

    1. Do not touch live electrical parts.

    2. Stop engine or turn OFF power source and wirefeeder and disconnect and lockout input powerusing line disconnect switch, circuit breakers, or byremoving plug from receptacle before servicingunless the procedure specifically requires anenergized unit.

    3. Insulate yourself from ground by standing orworking on dry insulating mats big enough toprevent contact with the ground.

    4. Do not leave live unit unattended.

    5. When testing a live unit, use the one-hand method.Do not put both hands inside unit. Keep one handfree.

    6. Disconnect input power conductors fromdeenergized supply line BEFORE moving a

    welding power source.SIGNIFICANT DC VOLTAGE exists afterremoval of input power on inverters.

    7. Turn Off inverter, disconnect input power, anddischarge input capacitors according toMaintenance Section of Technical Manual orOwner’s Manual before touching any parts.

    STATIC ELECTRICITY can damageparts on circuit boards.

    1. Put on grounded wrist strap BEFORE handlingboards or parts.

    2. Use proper static-proof bags to store, move, or shipPC boards.

    FIRE OR EXPLOSION can result fromplacing unit on, over, or nearcombustible surfaces.

    1. Do not place unit on, over, or near combustiblesurfaces.

    2. Do not service unit near flammables.

    FLYING PIECES OF METAL or DIRT caninjure eyes.

    1. Wear safety glasses with side shields or face shieldduring servicing.

    2. Be careful not to short metal tools, parts, or wirestogether during testing and servicing.

    HOT PARTS can cause severe burns.

    1. Do not touch hot parts bare handed.

    2. Wear protective gloves and clothing when workingon a hot engine.

    3. Allow cooling period before servicing gun or torch.

    EXPLODING PARTS can cause injury.

    1. Failed parts can explode or cause other parts toexplode when power is applied to inverters.

    2. Always wear a face shield and long sleeves whenservicing inverters.

    ELECTRIC SHOCK HAZARD fromincorrect use of test equipment.

    1. Turn Off power source and wire feeder or stopengine before making or changing meter leadconnections.

    2. At least one meter lead should be a self-retainingspring clip such as an alligator clamp.

    3. Read instructions for test equipment.

    HIGH-FREQUENCY RADIATION caninterfere with radio navigation, safetyservices, computers, andcommunications equipment.

    1. Have only qualified persons familiar with electronicequipment perform this installation.

    2. The user is responsible for having a qualifiedelectrician promptly correct any interferenceproblem resulting from the installation.

    3. If notified by the FCC about interference, stop using

    the equipment at once.4. Have the installation regularly checked and

    maintained.

    5. Keep high-frequency source doors and panelstightly shut, keep spark gaps at correct setting, anduse grounding and shielding to minimize thepossibility of interference.

    FALLING EQUIPMENT can causeserious personal injury and equipmentdamage.

    1. Use equipment of adequate capacity to lift unit.

    2. Use lifting eye to lift unit only, NOT running gear,gas cylinders, trailer, or any other accessories.

    The symbols shown below are used throughout this manual to call attention to and identify possiblehazards. When you see the symbol, watch out, and follow the related instructions to avoid the hazard.

    Only qualified persons should service, test, maintain, and repair this unit.

    During servicing, keep everybody, especially children, away.

    WARNING

  • 8/9/2019 TESTING BOOKLET.pdf

    4/52150 853 Page 2

    MAGNETIC FIELDS FROM HIGHCURRENTS can affect pacemakeroperation.

    1. Pacemaker wearers keep away from servicingareas until consulting your doctor.

    MOVING PARTS can cause injury.

    1. Keep away from moving parts such as fans.

    2. Keep all doors, panels, covers, and guards closedand securely in place.

    MOVING PARTS can cause injury.

    1. Keep away from moving parts.

    2. Keep away from pinch points such as drive rolls.

    OVERUSE can cause OVERHEATEDEQUIPMENT.

    1. Allow cooling period.

    2. Reduce current or reduce duty cycle beforestarting to weld again.

    3. Follow rated duty cycle.

    READ INSTRUCTIONS.

    1. Use this information along with the Technical

    Manual.

    2. Consult the Owner’s Manual for welding safetyprecautions.

    3. Use only genuine MILLER replacement parts.

    1-3. Engine Hazards

    MOVING PARTS can cause injury.

    1. Keep away from moving parts such as fans, belts,and rotors.

    2. Have only qualified people remove guards orcovers for maintenance and troubleshooting asnecessary.

    3. Keep hands, hair, loose clothing, and tools awayfrom moving parts.

    4. Reinstall panels or guards and close doors whenservicing is finished and before starting engine.

    ENGINE EXHAUST GASES can kill.

    1. Do not breathe exhaust fumes.

    2. Use in open, well-ventilated areas, or vent exhaustoutside and away from any building air intakes.

    ENGINE FUEL can cause fire or explo-sion.

    1. Stop engine before fueling.

    2. Do not fuel while smoking or near sparks or flames.

    3. Do not overfill tank; clean up any spilled fuel.

    UNCONTROLLED TILTING OR TIPPINGOF UNIT can result in personal injuryand equipment damage.

    1. Do not put any body part under unit while lifting.

    2. Use adequate blocks to support components asneeded during job.

    PINCH POINTS can injure.

    1. Be careful when working on stator and rotor.

    BATTERY EXPLOSION can BLIND andINJURE.1. Always wear a face shield when working on a

    battery.

    2. Stop engine before disconnecting or connectingbattery cables.

    3. Do not allow tools to cause sparks when workingon a battery.

    4. Do not use welder to charge batteries or jump startvehicles.

    5. Observe correct polarity (+ and −) on batteries.

    BATTERY ACID can BURN SKIN.1. Do not tip.

    2. Replace damaged battery.

    3. Flush eyes and skin immediately with water.

    STEAM AND PRESSURIZED HOTCOOLANT can burn face, eyes, andskin.1. Check coolant level when engine is cold to avoid

    scalding.

    2. If the engine is warm and checking is needed,follow steps 3 and 4.

    3. Wear safety glasses and gloves and put a rag overcap.

    4. Turn cap slightly and let pressure escape slowlybefore completely removing cap.

    1-4. EMF Information

    Considerations About Welding And The Effects Of Low FrequencyElectric And Magnetic Fields

    Welding current, as it flows through welding cables, will causeelectromagnetic fields. There has been and still is some concernabout such fields. However, after examining more than 500 studiesspanning 17 years of research, a special blue ribbon committee of theNational Research Council concluded that: “The body of evidence,in the committee’s judgment, has not demonstrated that exposure topower-frequency electric and magnetic fields is a human-healthhazard.” However, studies are still going forth and evidencecontinues to be examined. Until the final conclusions of the researchare reached, you may wish to minimize your exposure toelectromagnetic fields when welding or cutting.

    To reduce magnetic fields in the workplace, use the followingprocedures:

    1. Keep cables close together by twisting or taping them.

    2. Arrange cables to one side and away from the operator.

    3. Do not coil or drape cables around your body.

    4. Keep welding power source and cables as far away fromoperator as practical.

    5. Connect work clamp to workpiece as close to the weld aspossible.

    About Pacemakers:

    Pacemaker wearers consult your doctor first. If cleared by yourdoctor, then following the above procedures is recommended.

  • 8/9/2019 TESTING BOOKLET.pdf

    5/52

    150 853 Page 3

    SECTION 2 − EXPLANATION OF ELECTRICAL PARTSelect_parts 2/04

    2-1. Safety Precautions − Read Before Using This Guide

    WARNING: ELECTRIC SHOCK can kill.

    Disconnect input power or stop engine before servicing. Do not touch live electrical parts.

    Do not operate machines with covers removed.

    Have only qualified persons install, use, or service equipment.

    PART NAME FUNCTION PICTURE CIRCUIT SYMBOL

    BATTERY A source of DC voltage. Typically used inEngine Driven equipment.

    +

    BRUSHES/SLIPRINGS Components that allow electrical connectionsbetween stationary and rotating contacts.SLIP

    RINGS

    BRUSHES

    CAPACITOR A device that stores electrical energy. Largecapacitors or a “bank” of capacitors can beused to “smooth out” the DC welding arc in aMIG welding power source. Smaller “disk”

    capacitors can be used for HF protection.

    C1 C1

    POLARIZED NON-POL.

    +

    CHASSIS The green ground wire of a primary cord isconnected to the machine frame (chassis) forsafety. Also, you may find many “HF bypass”capacitors connected to chassis to reduceHigh Frequency interference. Expect to seethis symbol used numerous times in circuitdiagrams. The picture shown here is from anEngine Drive where several wires includingthe battery are connected to the chassis.

    CIRCUIT BREAKER A protection device that breaks a circuit whencurrent levels exceed its rating. Unlike a fuse

    that needs to be replaced when blown, acircuit breaker can be reset.

    CB1

    CIRCUIT COMMON When many wires are connected together,rather than showing all the “lines” and “dots”,this symbol may appear on the circuit. Lookfor other Circuit Common symbols on acircuit diagram. For instance, say 10 symbolsare found on a circuit, this means all tenpoints are electrically tied together.

  • 8/9/2019 TESTING BOOKLET.pdf

    6/52

    150 853 Page 4

    PART NAME CIRCUIT SYMBOLPICTUREFUNCTION

    CLAMP A spring-loaded connection device. A goodexample would be the “work clamp” used toconnect the weld cable from a power sourceto the workpiece that will be welded.

    CONTACTOR A heavy duty relay. Usually used to makeand break the welding arc or primary power. W COIL

    NRM OPENPOINTS

    W

    CURRENTTRANSFORMER

     A transformer that produces an AC voltageused for measuring purposes. The primarywinding is in series with the circuit carryingthe current to be measured. Its main use inengine-driven equipment is to activate the“Automatic Idle” circuit by sensing weldingcurrent or auxiliary power current.

    CT1

    OR

    CT1

    DASHED LINE A dashed line between parts means there isa mechanical connection between theseparts. When a dashed line boxes in parts,this means the parts make up an option orare combined into one part. In all cases,dashed lines do not conduct electricity. Thepicture shown is a combination fan motor andtransformer in one part.

    FM

    DIODE A device that allows current to flow in onedirection only. Most common use is tochange AC to DC.

    D1

    FAN MOTOR This device provides cooling of the internalparts of a welding power source.

    FM

    FUSE A protection device, usually an enclosedpiece of wire that melts and breaks the circuitwhen the current exceeds the fuse rating.

    F1

    GAS OR WATERSOLENOID(VALVE)

    These are electromechanical devices used tostart or stop the flow of shielding gas orwater. GS1

    ORWS1

    HALL DEVICE Produces a small DC voltage proportional tothe current it is sensing (usually weldingcurrent). This feedback signal can be used toregulate the welding output (line voltagecompensation). It may even be used to drivean ammeter.

    HD1

  • 8/9/2019 TESTING BOOKLET.pdf

    7/52

    150 853 Page 5

    PART NAME CIRCUIT SYMBOLPICTUREFUNCTION

    IGBT A device that is used as an “electronicswitch”. When a signal is applied to the gate(G), current is allowed to flow from the emitter(E) to the collector (C). This device is typicallyused in “Inverter” designed welding machinesto control the welding output.

    C1

    G1 (B1)

    E1

    INTEGRATED

    BRIDGERECTIFIER

     An arrangement of four diodes used to

    change AC to DC.  AC

     AC−

    + AC  AC

    +

     _ 

    INTEGRATEDCIRCUIT

    IC’s often called “chips” provide a completecircuit function with inputs and outputs. Agood example would be the “Pulse WidthModulation” chip used in many wire feederdesigns.

    U1

    JUMPER LINK Usually, the jumper link is a piece of brassthat connects two terminals together. Dashed

    lines indicate possible locations for other jumper links.

    TE1

    LIGHT EMITTINGDIODE

    This device usually referred to by its initialsLED is used to tell you when a particularcircuit is activated. This function is veryhelpful for troubleshooting.

    D1

    MAGNETIC AMPLIFIER

    This device usually referred to as a“Mag-Amp” is made up of coil windings andan iron core similar to a transformer. Itcontrols a large welding current by varying asmall “control current”.

    MA1

    METER A measuring device. A “voltmeter” is a goodexample.

    VV = voltmeter

     A = ammeter

    HM = hourmeter

    MOSFET A device that is used as an “electronicswitch”. When a signal is applied to the gate(G), current is allowed to flow from the source(S) to the drain (D). This device can be used

    to control a relay, the speed of a motor, oreven the output of a welding machine.

    D

    G

     ASS

  • 8/9/2019 TESTING BOOKLET.pdf

    8/52

    150 853 Page 6

    PART NAME CIRCUIT SYMBOLPICTUREFUNCTION

    MOTOR A device that converts electrical energy intomechanical energy. Typically used to feedwire in a MIG welding system, or pumpcoolant in a recirculating liquid-coolingsystem.

    M1

    M1 = DC

    = AC

    OPERATIONAL AMPLIFIER

    Usually referred to as an “Op-Amp”, this ICchip is very versatile and widely used on PC

    boards. A typical use might be as a“comparator”, comparing the commandsignal to the feedback signal allowing thewelding output to be kept constant.

     A1+

     _ 

    OPTICALCOUPLER

     A device that uses “light” to get electricalseparation (isolation). This eliminates noisethat might be in one circuit from affectinganother circuit.

    OC1

    PILOT LIGHT A light located on the front panel whichindicates if the machine is on or off.

    PL1

    POTENTIOMETERORRHEOSTAT

    Both devices have a moveable brush thatmakes contact along a resistor, allowing youto easily change the resistance measured atthe brush (sometimes referred to as a wiper).Their primary purpose is to give the operatora way to adjust welding parameters such aswire speed, preflow time, voltage,inductance, etc.

    CW = CLOCKWISER1

    CCW =COUNTER-CLOCKWISE

    PLUG A connection device that hangs loose withwires coming out the back of it. Please notethat the plug terminals can be either male orfemale.

    PLG1PLG =

    LOOSE

    MALE

    FEMALE

    RECEPTACLE A connection device that is mounted or f ixed.Just like a plug, the terminals can be eithermale or female.

    RC1RC =

    MOUNTED

    MALE

    FEMALE

    RELAY−−COIL ANDCONTACTS,NORMALLY OPEN

     AND NORMALLYCLOSED

    This is an electromechanical device whosecontacts change state (the normally openpoints close and the normally closed pointsopen) when proper voltage is applied to thecoil. These contact points in turn may controla fan motor, gas solenoid, contactor, etc.Circuit diagrams (schematics) always showthe contact points in the power off state.

    CR1 CR1

    IL

    NRM OPENPOINTS

    NRM CLOSEDPOINTS

    CR1

    RESISTOR A device which resists the flow of electriccurrent. Uses include limiting the current for a

    motor brake circuit in a wire feeder and fordischarging a capacitor.

    FIXED

    FIXED TAPPED

    R1

    R1

  • 8/9/2019 TESTING BOOKLET.pdf

    9/52

    150 853 Page 7

    PART NAME CIRCUIT SYMBOLPICTUREFUNCTION

    RIBBON CABLE A connection device where the wires are laidout flat. Usually to connect circuits from onePC board to another PC board.

    26-CONDUCTORCABLE

    RC54 RC44

    SCR A Silicon Controlled Rectifier (SCR) is anelectrical device with three connections,anode, cathode, and gate. It will allow currentto flow in only one direction and will only doso after receiving a signal on the gate lead.SCR’s are used to change AC to DC and tocontrol the output to a load such as a weldingarc.

     A

    G

    SHUNT A precision low-value resistor typically usedto supply a small voltage to drive anammeter. SHUNT

    SNUBBER A device used to absorb voltage spikes,sometimes found connected across thepoints of a relay. SN1

    SPARK GAP The arrangement of two electrodes betweenwhich a discharge of electricity will occur.Typically used to produce “ high frequency”which can be used for arc starting when TIGwelding.

    G

    STABILIZER/ REACTOR

    When placed in a DC circuit, the inductor orstabilizer as it is usually called, will opposeany change in existing current. It is thereforewidely used to “stabilize” the welding arc.

    When the inductor is placed in an AC circuit itis referred to as a reactor where it now actsto restrict the flow of current. A “tappedreactor” is used to create current ranges forwelding.

    Z1

    L1

    SWITCH  A mechanical device that completes orbreaks the path of the current or sends it overa different path.

    SPDTSPST

     A multi-pole switch will use dashed lines toconnect poles.

    SPST = Single Pole Single ThrowSPDT = Single Pole Double Throw

    DPST = Double Pole Single ThrowDPDT = Double Pole Double Throw

    DPDTDPST

    MOMENTARYSWITCH

     A switch that “springs back” to its originalposition. S1

    LIMIT SWITCH A switch mounted in the path of a movingobject and actuated by its passage. NRM OPEN NRM

    CLOSEDS1S1

  • 8/9/2019 TESTING BOOKLET.pdf

    10/52

    150 853 Page 8

    PART NAME CIRCUIT SYMBOLPICTUREFUNCTION

    PUSH BUTTONSWITCH

     A switch in which a button must bedepressed each time the contacts are to beopened or closed.

    NRMOPEN

    NRMCLOSED

    PB1 PB1

    ROTARY SWITCH A switch in which its shaft must be rotated toactuate the contacts.

    S1 S1

    PRESSURESWITCH

     A change in the pressure of a gas or liquidwill actuate this switch.

    OPENSON

    INCREASE

    CLOSESON

    INCREASE

    S1 S1

    TEMPERATURESWITCH

    Typically used to protect engines, this switchis actuated by heat.

    OPENSON

    INCREASE

    S1

    CLOSESON

    INCREASE

    S1

    WATER FLOWSWITCH

     A switch that is actuated by the flow of aliquid. Typically used to protect“water-cooled” torches.

    OPENSON

    INCREASE

    S1

    CLOSESON

    INCREASE

    S1

    TERMINAL ASSEMBLY  A connection point for primary power and the jumper links that are used to match the inputvoltage to the machine. Usually, the terminalassembly is marked with the letters “TE”, butthe electrical symbol looks identical to astandard terminal strip.

    TE1

    TE1

    TERMINAL STRIP An insulated connection point for wires. Theyare used for the ease of making multipleconnections and can be a convenient point

    for making electrical checks whentroubleshooting. (Notice the “jumper link”connecting terminals A and B together.)

     A B C D E1T

    42 42 104 105 74

    104 105

    THERMISTOR A thermally sensitive resistor. There are twotypes of thermistor, PTC (PositiveTemperature Coefficient) and NTC (NegativeTemperature Coefficient). A PTC thermistor’sresistance will increase as the temperaturegoes up, where as an NTC thermistor’sresistance will decrease as the temperaturegoes up. Primarily used for “Fan on Demand”and “Thermal Shutdown” circuits.

    RT1

    TH1

    OR

  • 8/9/2019 TESTING BOOKLET.pdf

    11/52

    150 853 Page 9

    PART NAME CIRCUIT SYMBOLPICTUREFUNCTION

    THERMOSTAT,NORMALLY OPEN

     AND NORMALLYCLOSED

    This is a switch that closes its normally opencontacts (or opens its normally closedcontacts) when a preset temperature isreached. When the temperature goes backdown, it will reset itself. Uses of thesedevices include turning on a fan motor whenneeded and shutting off the output of awelding power source if it is overheating.

    NRM OPEN NRM CLOSED

    TP1TP1

    TRANSISTOR Most commonly used as an electronic switch.There are two basic types, PNP and NPN.This refers to their internal design, whichdetermines current flow direction.

    Q1 Q1

    B

    C

    E

    B

    C

    ENPN PNP

    TRANSFORMER A device that changes AC voltage from onemagnitude to another. Typically used toreduce high primary voltages to lowerwelding voltages.

    T1

    T1

    T1

    IRONCORE

     AIRCORE

    FERRITECORE

    TRIAC An electronic AC switch. It is turned on by agate signal similar to an SCR. Q1

    TWISTED WIRE Wires are twisted to prevent “electrical noise”from interfering with the circuit. A goodexample is the red and white gate leadsgoing to an SCR. Typically, these wires aretwisted together to help prevent the SCR

    from misfiring.

    RED

    WHT

    VARISTOR A protection device whose resistance isdependent on the voltage applied to it. Innormal operation it has a high resistance;however, a surge of voltage (voltage spike)will cause its resistance to go way down andabsorb the spike. These devices are mostoften found in rectifying circuits, where theyare used to protect the diodes.

    VR1

    WIRES WITHCONNECTION

    When lines (wires) cross on a circuit diagramand there is a “black dot”, this means that thetwo wires are electrically connected together.The method of connection (bolted, frictionlugs, etc.) is not indicated with this symbol.

    However, a “white dot” indicates that themethod of connection is a terminal strip. Of course, no dot means no connection.

  • 8/9/2019 TESTING BOOKLET.pdf

    12/52

    150 853 Page 10

    SECTION 3 − INTRODUCTION

    3-1. Needed Test Equipment And Description

    1 Continuity TesterGrainger Supply Co.Part #2V544 Or Equivalent

    With two D size batteries, minimum3 volts.

    2 FLUKE Digital Multimeter(DMM) Or Equivalent

    One megohm input impedance orgreater and diode test function.

    3 One Insulated Jumper Lead

     Approximately 6 to 10 in (152 to 254mm) long.

    4 IGBT/MOSFET TesterMiller Part #043 553

    Before use, install 9 volt batteries.

    To check battery, connect Red andBlack leads together; test light(LED) = On; battery okay.

    5 Test Button

    6 Test Light (LED)

    1 2

    3

    4 5 6Yellow 

    Black 

    Red 

  • 8/9/2019 TESTING BOOKLET.pdf

    13/52

    150 853 Page 11

    SECTION 4 − PARTS TESTING PROCEDURES

    4-1. Diode Testing Procedure

    See Parts List for location of parts inunit.

    1 Diode

    Mark and disconnect one lead of diode.

    2 Cathode (K)

    3 Anode (A)

    Replace part if it fails any test.

    Ref. 048 894-K / Ref. 803 772-A / S-0149

    Circuit Diagram Symbol

     Actual Part

    1

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    2 3

    = .200 to .900

    .OL=

    Set meter for Diode testing.

    K A

    1

     A

     A

    2

    209 464185 775

    179 630

    12

    32

    31

    13

    2

  • 8/9/2019 TESTING BOOKLET.pdf

    14/52

    150 853 Page 12

    Forward Bias Testing(Conducting)

     Actual Part

    Circuit Diagram Symbol

     AC+

     Actual Part

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    1

    +

     AC

     AC

     AC

    +

    1

     AC

     AC

     AC

     AC

     AC

    = .200 to .900

    .OL=

     AC

    +

     AC

    +

    Reverse Bias Testing(Blocking)

    .OL= AC +

    = AC +

    .200 to .900

    See Parts List for location of parts inunit.

    1 Integrated Rectifier (Three-Phase)

    Mark and disconnect leads fromnegative (−) and positive (+) termi-nals.

    Replace part if it fails any test.

    1Set meter for Diode testing.

    2

    3 4

    4-2. Integrated Rectifier (Three-Phase) Testing Procedure

    179 542

    + AC

     AC AC

    1

  • 8/9/2019 TESTING BOOKLET.pdf

    15/52

    150 853 Page 13

    Forward Bias Testing(Conducting)

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    S-0672 / S-0474

    .OL=

     AC

    Reverse Bias Testing(Blocking)

    .OL=

     AC

    =

     AC

    .200 to .900

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    .OL=

    =

    .200 to .900

    =

     AC

    .200 to .900

     AC AC

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    .OL= AC+

    = AC+

    .200 to .900

    5

    7

    9

    11

    6

    8

    10

    12

  • 8/9/2019 TESTING BOOKLET.pdf

    16/52

    150 853 Page 14

    .200 to .900

    Forward Bias Testing(Conducting)

    See Parts List for location of parts inunit.

    1 Integrated Rectifier (Single-Phase)

    Mark and disconnect all leads fromintegrated rectifier.

    2 Anode (A)

    3 Cathode (K)

    Replace part if it fails any test.

     AC

     AC

    +

     _ 

     AC

     AC

     Actual Part

    Circuit Diagram Symbol

    1

     AC

     AC

     Actual Part

     AC

     AC

     Actual Part

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    1 1

    2

     Ref. S-0454 / S-0328-A / S-0665-A

    = .200 to .900

    .OL=

      −

    +

    3

     AC

    +

     AC

    +

    Reverse Bias Testing(Blocking)

    .OL=

     AC

    +=

     AC

    +

    .200 to .900

    Forward Bias Testing

    (Conducting)

    Reverse Bias Testing

    (Blocking)

    .OL==

     AC

    .200 to .900

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    .OL==

     AC

     AC

     AC

    ++

    Set meter for Diode testing.

    1 2

    3 4

    5 6

    7 8

    4-3. Integrated Rectifier (Single-Phase) Testing Procedure

    201 530

     AC

     AC

     AC+

    1

  • 8/9/2019 TESTING BOOKLET.pdf

    17/52

    150 853 Page 15

    .200 to .900

    Forward Bias Testing(Conducting)

    See Parts List for location of parts inunit.

    1 Dual Diode

    Mark and disconnect leads fromanodes (A1, A2).

    2 Cathode 1 (K1)

    3 Anode 1 (A1)

    4 Anode 2 (A2)

    5 Cathode 2 (K2)

    Replace part if it fails any test.

    S-0473

    1

    Style 1

     A2K1, K2

     A1

    Circuit Diagram Symbol

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    = .200 to .900

    .OL=

    K1

    2

    3

    4

    5

     A1

    K1

     A1

    Reverse Bias Testing(Blocking)

    .OL=

     A2

    K2

    =

     A2

    K2

    1

    Set meter for Diode testing.

     Actual Part

    2

    3 4

    4-4. Style 1 Dual Diode Testing Procedure

    198 148

    179 869

    204 820

    3

    4

    2, 5

    11

    3

    4

    2, 5

     AC

    +

    1

    Circuit DiagramSymbol

     AC

     A1 K1 K2 A2

    2

    4

    3, 5

  • 8/9/2019 TESTING BOOKLET.pdf

    18/52

    150 853 Page 16

    Forward Bias Testing(Conducting)

    See Parts List for location of parts inunit.

    1 Dual Diode

    Mark and disconnect leads fromcathode K1 and anode A2.

    2 Cathode 1 (K1)

    3 Anode 1 (A1)

    4 Cathode 2 (K2)

    5 Anode 2 (A2)

    Replace part if it fails any test.

    S-0472

    Circuit Diagram Symbol

    K1 A2

     A1, K2

    JumperBar

     Actual Part

    1

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    = .200 to .900

    .OL=

     A2

    K2

    2

    3

    5

    4

     A2

    K2

    Reverse Bias Testing(Blocking)

    .OL==

    K1

     A1

    .200 to .900

    K1

     A1

    1

    Set meter for Diode testing.

    Style 2

    2

    3 4

    4-5. Style 2 Dual Diode Testing Procedure

    168 413

    2

    4

    3

    5

    1

    190 531

    3

    4

    5

    2

    1

    212 037206 987

    3

    5

    1

     A2

    K1 A1

    Circuit Diagram Symbol

    K2

     A2

    K1 A1

    Circuit Diagram Symbol

    K2 A2

    K1, K2

     A1

    Circuit Diagram Symbol

    2, 4

  • 8/9/2019 TESTING BOOKLET.pdf

    19/52

    150 853 Page 17

    See Parts List for location of parts inunit.

    1 Straight Polarity Diode

    2 Reverse Polarity Diode

    3 Cathode (K)

    4 Anode (A)

    Replace part if it fails any test.

    Ref. S-0488

     Actual Part Circuit Diagram Symbol Actual Part

    4

    Forward Bias Testing(Conducting) Reverse Bias Testing(Blocking)

    = .200 to .900

    .OL=

    Straight Polarity Diode

    Reverse Polarity Diode

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    = .200 to .900

    .OL=

    1

    3

    3

    2

    4K A

    1

    Set meter for Diode testing.

    Set meter for Diode testing.

     A

     A

     A

     A

    2

    1 2

    4-6. Straight And Reverse Polarity Diode Testing Procedure

  • 8/9/2019 TESTING BOOKLET.pdf

    20/52

    150 853 Page 18

    4

    See Parts List for location of parts inunit.

    1 Hockey-Puk Diode

    2 Cathode (K)

    3 Anode (A)

    4 Heat Sink

    Replace part if it fails any test.

    S-0675

    1

    2

    3

     Actual Part Circuit Diagram Symbol

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    = .200 to .900

    .OL=

    Clamp diode at proper pressure (see Section 6 ) BEFORE testing.

     A

     A

     A

    1

    Set meter for Diode testing.

    2

    4-7. Hockey-Puk Diode Testing Procedure

  • 8/9/2019 TESTING BOOKLET.pdf

    21/52

    150 853 Page 19

    See Parts List for location of parts inunit.

    1 Stud-Mount Silicon-ControlledRectifier (SCR)

    2 Anode (A)

    3 Cathode (K)

    4 Auxiliary Cathode (Red Lead)− Not Tested

    5 Gate (G) (White Lead)Replace part if it fails any test.

    S-0674

     Actual Part Circuit Diagram Symbol

    3

    1

    2

    Cathode-To-Anode TestingGate Testing

    Holding Current Test

    Light OFF

    Light ON

    Cathode to anode OK 

    Cathode to anode shorted

    Light OFF

    Light ON

    SCR not working properly

    SCR is conducting

    Light OFF

    Light ON

    Replace tester batteries

    Light should remain ON

    (Blocking)

    (Conducting)

    (Conducting)

    or SCR not workingproperly

    4

    5

    1

    K A

    G

    G

    G

     A

     A

     A

    3

    2

    4-8. Stud-Mount SCR Testing Procedure

  • 8/9/2019 TESTING BOOKLET.pdf

    22/52

    150 853 Page 20

    See Parts List for location of parts inunit.

    1 Hockey-Puk Type Silicon-Controlled Rectifier (SCR)

    2 Cathode (K)

    3 Auxiliary Cathode (Red Lead)− Not Tested

    4 Gate (G) (White Lead)

    5 Anode (A)6 Heat Sink

    Replace part if it fails any test.

    S-0654

     Actual Part Circuit Diagram Symbol

    Cathode-To-Anode Testing Gate Testing

    Holding Current Test

    Light OFFLight ON

    Cathode to anode OK Cathode to anode shorted

    Light OFFLight ON

    SCR not working properlySCR is conducting

    (Blocking) (Conducting)

    (Conducting)

    Light OFF

    Light ON

    Replace tester batteries

    Light should remain ON

    or SCR not workingproperly

    1

    23

    4

    5

    6

    Clamp SCR at proper pressure (see Section 6 ) BEFORE testing.

     A

    G

    1

    K K 

     A A

    G

    G

    3

    2

    4-9. Hockey-Puk SCR Testing Procedure

     A

  • 8/9/2019 TESTING BOOKLET.pdf

    23/52

    150 853 Page 21

    See Parts List for location of parts inunit.

    1 Single Silicon-Controlled Rec-tifier (SCR)

    2 Cathode (K)

    3 Gate (G) (White Lead)

    4 Anode (A)

    Replace part if it fails any test.

    Circuit Diagram Symbol

    Cathode-To-Anode Testing Gate Testing

    Holding Current Test

    Light OFFLight ON

    Cathode to anode OK Cathode to anode shorted

    Light OFFLight ON

    SCR not working properlySCR is conducting

    (Blocking) (Conducting)

    (Conducting)

    Light OFF

    Light ON

    Replace tester batteries

    Light should remain ON

    or SCR not workingproperly

    2

    1

    3

    4

    Clamp SCR at proper pressure (see Section 6 ) BEFORE testing.

     A

    G

    1

     A

    3

    2

    4-10. Single SCR Testing Procedure

    199 988

    G

     A

    G

     A

    G

  • 8/9/2019 TESTING BOOKLET.pdf

    24/52

    150 853 Page 22

    See Parts List for location of parts inunit.

    1 NPN Power Transistor

    Mark and disconnect all leads fromtransistor.

    2 Collector (C)

    3 Base (B)

    4 Emitter (E)

    Replace part if it fails any test.

    S-0475

    12

    4

    3

     Actual Part Circuit Diagram Symbol

    Emitter-To-Base Testing(Conducting)

    Emitter-To-Base Testing(Blocking)

    = .200 to .900

    .OL=

    E

    B

    E

    B

    Collector-To-Base Testing(Blocking)

    .OL=

    C

    B

    Collector-To-Base Testing(Conducting)

    =

    C

    B

    .200 to .900

    Collector-To-Emitter Testing(Blocking)

    .OL=

    C

    E

    Collector-To-Emitter Testing(Blocking)

    =

    C

    E.OL

    C

    B

    E

    Set meter for Diode testing.

    1 2

    3 4

    5 6

    4-11. NPN Power Transistor Testing Procedure

  • 8/9/2019 TESTING BOOKLET.pdf

    25/52

    150 853 Page 23

    Notes

    Work like a Pro!Pros weld and cut

    safely. Read the

    safety rules at

    the beginning

    of this manual.

  • 8/9/2019 TESTING BOOKLET.pdf

    26/52

    150 853 Page 24

    Diode − Forward Bias Testing(Conducting)

     Actual Part

    Circuit Diagram Symbol

    1

     AC1

     AC2

    +

    G1 G2

    2

    3

    4

    76

    5

    8

     Actual Part

    2

    3

    4

    7

    6

    5

    8

    1

    Diode − Forward Bias Testing(Conducting)

    Diode − Reverse Bias Testing(Blocking)

    = .200 to .900

    .OL= AC1

     AC1

    Diode − Reverse Bias Testing(Blocking)

    .OL==

     AC2

    .200 to .900

     AC2

    See Parts List for location of parts inunit.

    1 SCR/Integrated Rectifier(Single-Phase)

    Mark and disconnect all leads fromintegrated rectifier.

    2 AC Input 1 (AC1)

    3 Gate 1 (G1)

    4 Negative DC Output (−

    )

    5 Positive DC Output (+)

    6 Gate 2 (G2)

    7 AC Input 2 (AC2)

    8 Varistor − Not Tested

    Replace part if it fails any test.

    1Set meter for Diode testing.

    2

    3 4

    4-12. SCR/Integrated Rectifier (Single-Phase) Testing Procedure

  • 8/9/2019 TESTING BOOKLET.pdf

    27/52

    150 853 Page 25

    S-0676 / S-0686

    Light OFF

    Light ON

    Cathode to anode OK 

    Cathode to anode shorted

    Light OFF

    Light ON

    SCR not working properly

    SCR is conducting

    Light OFF

    Light ON

    Replace tester batteries

    Light should remain ON

     AC1

    SCR − Cathode-To-Anode Testing SCR − Gate Testing SCR − Holding Current Test(Blocking) (Conducting) (Conducting)

    +

    or SCR not workingproperly

     AC1

    +

     AC1

    +

     AC2

    SCR − Cathode-To-Anode Testing SCR − Gate Testing SCR − Holding Current Test(Blocking) (Conducting) (Conducting)

    + + +

     AC2  AC2

    Diode − Forward Bias Testing(Conducting)

    Diode − Reverse Bias Testing(Blocking)

    .OL==

    .200 to .900

    + +

    5

    7

    6

    Light OFF

    Light ON

    Cathode to anode OK 

    Cathode to anode shorted

    Light OFF

    Light ON

    SCR not working properly

    SCR is conducting

    Light OFF

    Light ON

    Replace tester batteries

    Light should remain ON

    or SCR not workingproperly

    8 9

    10 11 12

  • 8/9/2019 TESTING BOOKLET.pdf

    28/52

    150 853 Page 26

    Forward Bias Testing(Conducting)

    Circuit Diagram Symbol

     Actual Part

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    1

    +

    R

    S

    T

    = .200 to .900

    .OL=

    R

    R2

    R

    Reverse Bias Testing(Blocking)

    .OL== .200 to .900

    See Parts List for location of parts inunit.

    1 SCR/Integrated Rectifier(Three-Phase)

    Mark and disconnect leads fromnegative (−), positive (+), R2, and Gterminals.

    2 AC Input (R, S, T)

    3 SCR Anode (R2)4 Gate (G)

    5 Positive DC Output (+)

    6 Negative DC Output (−)

    Replace part if it fails any test.

    1 Set meter for Diode testing.

    2

    3 4

    3

    4

    5

    6

    2

    R2

    SR2

    SR2

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    .OL== .200 to .900

    5 6

    T

    R2

    T

    R2

    R2 G

    4-13. SCR/Integrated Rectifier (Three-Phase) Testing Procedure

  • 8/9/2019 TESTING BOOKLET.pdf

    29/52

    150 853 Page 27

    Forward Bias Testing(Conducting)

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    S-0881

    .OL=

    Reverse Bias Testing(Blocking)

    .OL== .200 to .900

    Forward Bias Testing(Conducting)

    Reverse Bias Testing(Blocking)

    .OL== .200 to .900

    = .200 to .900

    7

    9

    11

    8

    10

    12

    R R

    S S

    T T

    SCR − Cathode-To-Anode Testing SCR − Gate Testing SCR − Holding Current Test(Blocking) (Conducting) (Conducting)

    Light OFF

    Light ON

    Cathode to anode OK 

    Cathode to anode shorted

    Light OFF

    Light ON

    SCR not working properly

    SCR is conducting

    Light OFF

    Light ON

    Replace tester batteries

    Light should remain ON

    or SCR not working properly

    13 14 15

    R2 R2 R2

    GG

  • 8/9/2019 TESTING BOOKLET.pdf

    30/52

    150 853 Page 28

    See Parts List for location of parts inunit.

    1 SCR Power Module

    Mark and disconnect all leads frommodule.

    2 AC Input

    3 Positive DC Output (+)

    4 Negative DC Output (−)

    5 Gate 1 (G1)

    6 Cathode 1 (K1)

    7 Cathode 2 (K2)

    8 Gate 2 (G2)

    Replace part if it fails any test.

    +

    G1 K1 G2K2

    1

    2

    3

    4

    5

    6

    7 8

     Actual Part Circuit Diagram

     AC

    4-14. SCR Power Module Testing Procedure

    Symbol

     Actual Part Circuit DiagramSymbol

    1

    2

    3

    4

    6

    57

    8

     AC

    197 698

    196 754

    218 292

    1

    33

    2

    6 5

    78

    Circuit DiagramSymbol

     ACBASE

    1

    2

    33

    56

    7 8

    Circuit Diagram

    Symbol

     AC

    1

    23

    65

    Circuit DiagramSymbol

     AC

    G1

    K1

    G2

    K2

    218 296

  • 8/9/2019 TESTING BOOKLET.pdf

    31/52

    150 853 Page 29

    Light OFF

    Light ON

    SCR not working

    SCR is conducting

    Light OFF

    Light ON

    Replace tester batteries

    Light should remain ON

    or SCR not workingproperly

    properly

    SCR − Gate Testing(Conducting)

    SCR − Holding Current Test(Conducting)

      −

    +

    ++

    +

    5 6

      −

    G2

     AC

    G2

     AC

    Ref. ST-129 611-A / ST-802 534 / Ref. S-0426

    SCR − Cathode-To-Anode Testing(Blocking)

    SCR − Gate Testing(Conducting)

    ++−

    Light OFF

    Light ON

    Cathode to anode OK 

    Cathode to anode

    Light OFF

    Light ON

    SCR not working

    SCR is conducting

    +

    shorted

    properly

    1

    K1 K2

    K1

    K2G1

     AC2

    SCR − Holding Current Test(Conducting)

    − +

    Light OFF

    Light ON

    Replace tester batteries

    Light should remain ON

    or SCR not workingproperly

    +

    K1

    K2G1

     AC3

    Light OFF

    Light ON

    Cathode to anode OK 

    Cathode to anodeshorted

    SCR − Cathode-To-Anode Testing(Blocking)

    +−

    4

     AC

  • 8/9/2019 TESTING BOOKLET.pdf

    32/52

    150 853 Page 30

    12

    3

    8

    76

    5

    4

    Circuit Diagram SymbolTypical Part

    C1

    C2, E1

    E2

    G1 (B1)

    E1

    G2 (B2)

    E2

    See Parts List for location of parts inunit.

    1 IGBT Power Module

    Check plastic case for cracks inside of case or a separation of casefrom its base plate. Replace anydamaged part.

    Mark and disconnect all leads frompower module.

    2 Emitter (E1)

    3 Gate 1 (G1) or Base 1 (B1)

    4 Collector 2, Emitter 1(C2, E1)

    5 Emitter 2 (E2)

    6 Collector 1 (C1)

    7 Emitter 2 (E2)

    8 Gate 2 (G2) or Base 2 (B2)

    Replace part if it fails any test.

    4-15. IGBT Power Module Testing Procedure

    212 106

    1

    4

    56

    58

    Circuit Diagram Symbol

     C 2  /    E 1 

    E 2 

    E 2 

     C 1 

     G2 

    200 392

    1

    6

    2

    3

    8

    2

    Circuit Diagram Symbol

    A 1 

     C 2 

    E 2 

    E 2 

    K 1 

     G2 

    The preferred test is found in the product Technical Manual which also accountsfor any uniquenesses in the actual product procedures.

    NOTE

    A. Best Test For IGBT’s

    IGBT/MOSFET Tester Information

    S-0880-A

    1 IGBT/MOSFET Tester

    Before use, install 9 volt batteries.

    To check battery, connect Red andBlack leads together; test light(LED) = On; battery okay.

    2 Test Button

    3 Test Light (LED)

    1 2 3Yellow 

    Black 

    Red 

  • 8/9/2019 TESTING BOOKLET.pdf

    33/52

    150 853 Page 31

    IGBT Power Module Testing Procedure

    Step 1. Hook up ALL testerleads to perform Test 1.

    LED On = Shorted; replace part

    Step 2. Press button.

    LED Off = Fails test; replace part

    LED On = Passes test

    Step 3. Repeat Steps 1 and 2 forTest 2.

    G1 (B1) Gate 1 or Base 1

    G2 (B2) Gate 2 or Base 2

    C1 Collector 1

    C2/E1 Collector 2/Emitter 1

    E2 Emitter 2

    ST-801 132 / S-0880-A / S-0664

    Static Hazard.Put on grounded wrist strap.

    Test 1

    Test 2

    Yellow 

    Red 

    Black 

    Yellow Black 

    Red 

    C1

    E1

    E2

    C2

    G1 (B1)

    G2 (B2)

  • 8/9/2019 TESTING BOOKLET.pdf

    34/52

    150 853 Page 32

    Diode − Forward Bias Testing(Conducting)

    Diode − Forward Bias Testing(Conducting)

    Diode − Reverse Bias Testing(Blocking)

    = .200 to .900

    .OL=

    Static Hazard. Put on grounded wrist strap.

    C1

    C2, E1

    Diode − Reverse Bias Testing(Blocking)

    .OL=

    E2

    C2, E1

    = .200 to .900

    C1

    C2, E1

    E2

    C2, E1

    1 Set meter for Diode testing.

    2

    3 4

    B. Alternative Test For IGBT’s

    Gate-To-Emitter Resistance Testing(Open)

    Gate-To-Emitter Resistance Testing(Open)

    =

    E1

    G1 (B1)

    E1

    G1 (B1)= O.L

    O.L

    5

    Set meter for Resistance(Ohms) testing.

    6

  • 8/9/2019 TESTING BOOKLET.pdf

    35/52

    150 853 Page 33

    E2

    G2 (B2)

    S-0664 / Ref. S-0398

    Gate-To-Emitter Resistance Testing(Open)

    Gate-To-Emitter Resistance Testing(Open)

    ==

    E2

    G2 (B2)

    O.LO.L

    7 8

  • 8/9/2019 TESTING BOOKLET.pdf

    36/52

    150 853 Page 34

    IGBT Power Module Testing Procedure (212 106)

    Step 1. Hook up ALL testerleads to perform test.

    For MOD1, connect yellow meterlead to lead 27 (PLG5-1)

    For MOD2, connect yellow meterlead to lead 29 (PLG5-4)

    LED On = Shorted; replace part

    Step 2. Press button.

    LED Off = Fails test; replace part

    LED On = Passes test

    G2 (E2) Gate 2/Emmiter 2

    C1 Collector 1

    C2/E1 Collector 2/Emitter 1

    E2 Emitter 2

    Finish IGBT Power Module Test-ing Procedure On Next Page.

    If IGBT’s power modules test okay,reconnect bus bars to capacitorbank C1, and between MOD1 andMOD2.

    Clean surfaces and apply a smallamount of EJC (electrical joint com-pound) to connections. Torquemounting hardware to 40 in-lb (4.5N⋅m).

    Connect gate lead plug PLG5 to re-ceptacle RC5 on control boardPC1.

    If either power module fails, bothIGBT modules and PC1 must be re-placed. If a failure accurs, alsocheck diode D7, capacitors C3 andC4. If D7 must be replaced, heatsink compound (Miller #604414)

    should be applied. Torque D7mounting hardware to 12 in-lb (1.4N⋅m).

    804 015-A

    Static Hazard.Put on grounded wrist strap.

    C1

    E2

    G2(E2)

    C2/E1

    Yellow Black 

    Red 

  • 8/9/2019 TESTING BOOKLET.pdf

    37/52

    150 853 Page 35

    B. Alternative Test For IGBT’s (212 106)

    804 015-A

    Diode − Forward Bias Testing(Conducting)

    = .200 to .900

    C1

    C2, E1

    Set meter for Diode testing.

    C1

    C2, E1

    Diode − Reverse Bias Testing(Blocking)

    .OL=

    2

    Diode − Reverse Bias Testing(Blocking)

    .OL=

    E2

    C2, E1

    43

    1

    Diode − Forward Bias Testing(Conducting)

    = .200 to .900

    E2

    C2, E1

    G2(E2)

    = O.L

    5Set meter for Resistance

    (Ohms) testing.

    Gate-To-Emitter Resistance Testing(Open)

    Gate-To-Emitter Resistance Testing(Open)

    =

    G2(E2)

    O.L

    6

    Static Hazard. Put on grounded wrist strap.

  • 8/9/2019 TESTING BOOKLET.pdf

    38/52

    150 853 Page 36

    See Parts List for location of parts inunit.

    1 MOSFET Power Transistor

    Remove transistor from circuitboard.

    2 Drain (D)

    3 Gate (G)

    4 Source (S)

    5 Alternate Source (AS) − NotTested

    Replace part if it fails any test.

    1

    Circuit Diagram Symbol Actual Part

    4

    3 2

    D

    G

     AS

    S

    5

    4-16. MOSFET Power Transistor Testing Procedure

    The preferred test is found in the product Technical Manual which also accounts

    for any uniquenesses in the actual product procedures.NOTE

    A. Best Test For MOSFET

    IGBT/MOSFET Tester Information

    S-0880-A

    1 IGBT/MOSFET Tester

    Before use, install 9 volt batteries.

    To check battery, connect Red andBlack leads together; test light(LED) = On; battery okay.

    2 Test Button3 Test Light (LED)

    1 2 3Yellow 

    Black 

    Red 

    MOSFET Power Transistor Testing Procedure

    S-0880-A / S-0663

    Step 1. Hook up ALL testerleads.

    LED On = Shorted; replace part

    Step 2. Press button.

    LED Off = Fails test; replace part

    LED On = Passes testSG

    D

    Yellow 

    Black 

    Red 

    Static Hazard.Put on grounded wrist strap.

    G Gate

    D Drain

    S Source

  • 8/9/2019 TESTING BOOKLET.pdf

    39/52

    150 853 Page 37

    Gate-To-Source Resistance Testing(Open)

    S-0663

    Diode − Forward Bias Testing(Conducting)

    Diode − Reverse Bias Testing(Blocking)

    = .200 to .900

    .OL=

    S

    D

    Static Hazard. Put on grounded wrist strap.

    S

    D

    Gate-To-Source Resistance Testing(Open)

    =

    S

    GS

    G

    = O.L

    O.L

    1

    Set meter for Diode testing.

    Set meter for Resistance(Ohms) testing.

    2

    3 4

    B. Alternative Test For MOSFET

  • 8/9/2019 TESTING BOOKLET.pdf

    40/52

    150 853 Page 38

    See Parts List for location of parts inunit.

    1 Small Single-Phase ModularMain Rectifier

    2 Large Single-Phase ModularMain Rectifier

    3 Three-Phase Modular MainRectifier

    4 Rectifier Section5 Diode

    6 Fusible Link

    Look at each rectifier section forany open fusible links on thediodes. No diode test is required.

    If any fusible link is open, replaceentire modular rectifier.

    Ref. SC-121 845-A / ST-152 789 / S-0689

     Actual Part

    2

    Circuit Diagram Symbol

     AC AC

    +

    Circuit Diagram Symbol

     AC

     AC

    +

     Actual Part

     AC

    3

    4

    4

    Circuit Diagram Symbol Actual Part

     AC

    +

     AC

    1

    4

    Portion Of Side View

    4

    5

    5

    5

    5

    6

    6

    4-17. Modular Main Rectifier Testing Procedure

  • 8/9/2019 TESTING BOOKLET.pdf

    41/52

    150 853 Page 39

    SECTION 5 − TOOLS AND PLUGS

    The following extraction tools are available individually through the MILLER PartsDepartment. All nine tools can be purchased as a kit (155 809). Contact the PartsDepartment at 920-735-4500 for information on the kit.

    NOTE

    5-1. Using Tool Part Number 121 481 To Remove Lead

    ST-147 971-C

    1 Typical Plug

    2 Contact

    3 Tool

    Insert prongs into plug hole soprongs are between contact andwall of plug.

    Remove lead.

    2

    3

    1

    5-2. Using Tool Part Number 048 471 To Remove Lead

    ST-152 068

    1 Typical Plug

    2 Contact

    3 Tool

    4 Push Rod Button

    5 Handle

    6 Sleeve

    Holding handle, insert sleeve intoplug hole, allowing push rod buttonto back out of handle.

    Turn handle to free contact.

    Press in push rod button to removelead.

    1

    2

    4

    5

    6

    3

    5-3. Using Tool Part Number 099 720 To Remove Lead

    ST-115 689-B

    1 Typical Plug

    2 Contact

    3 Locking Clip

    4 Clip Area

    5 Tool

    Insert tool into clip area as shown.

    Press down locking clip to removelead.

    1

    2

    34

    5

  • 8/9/2019 TESTING BOOKLET.pdf

    42/52

    150 853 Page 40

    5-4. Using Tool Part Number 099 719 To Remove Lead

    ST-147 699

    1 Typical Plug

    2 Contact

    3 Tool

    4 Handle

    Insert tool into plug hole as shown.

    Press handle in to remove lead.

    1

    2

    3

    4

    5-5. Using Tool Part Number 095 952 To Remove Lead

    ST-152 066

    1 Typical Plug

    2 Contact

    3 Tool

    4 Push Rod Ball

    5 Sleeve

    Insert sleeve into plug hole asshown.

    Press push rod ball in to removelead.

    1

    2

    4

    5

    3

    5-6. Using Tool Part Number 121 694 To Remove Lead

    ST-152 067

    1 Typical Plug

    2 Contact

    3 Tool

    Insert prongs into plug hole soprongs are between contact andwall of plug as shown.

    Remove lead.

    1

    2

    3

  • 8/9/2019 TESTING BOOKLET.pdf

    43/52

    150 853 Page 41

    5-7. Using Tool Part Number 121 482 To Remove Lead

    ST-152 587

    1 Typical Metal Amphenol Plug

    2 Tool

    3 Handle

    4 Tip

    5 Lead

    6 Contact

    Squeeze handle, place tip around

    lead, and release handle. Slide tipinto plug hole over contact until con-tact and lead unlock from plug. Pullout lead with contact.

    1

    Rear

    23

    45

    6

    5-8. Using Tool Part Number 141 761 To Remove Lead

    Ref ST-801 706

    1 Typical Plug

    2 Contact

    3 Tool

    4 Push Rod Button

    5 Handle

    6 Sleeve

    Holding handle, insert sleeve intoplug hole, allowing push rod buttonto back out of handle.

    Turn handle to free contact.

    Press in push rod button to removelead.

    1

    2

    3

    4

    5

    6

    5-9. Using Tool Part Number 133 357 To Remove DIP Integrated Circuit

    ST-155 564

    1 Typical DIP Integrated Circuit(IC)

    2 Tool

    3 Handle

    4 Trigger5 Jaws

    Holding handle, place tool onto IC.Pull back trigger allowing jaws togrip IC.

    Remove IC.

    1

    2

    4

    5

    3

  • 8/9/2019 TESTING BOOKLET.pdf

    44/52

    150 853 Page 42

    SECTION 6 − TORQUE SPECIFICATIONS FOR PARTS

    Table 6-1. Torque Specifications For Diodes

    Part Number Diode Type Torque Value

    023 178 Stud 300 in-lb (33.9 N·m)

    037 157 Stud 300 in-lb (33.9 N·m)

    037 305 Stud 125 in-lb (14.1 N·m)

    037 306 Stud 125 in-lb (14.1 N·m)

    037 956 Stud 300 in-lb (33.9 N·m)

    037 957 Stud 300 in-lb (33.9 N·m)

    086 353 Puk *80 in-lb (9.0 N·m)

    087 998 Stud 30 in-lb (3.4 N·m)

    087 999 Stud 30 in-lb (3.4 N·m)

    093 056 Stud 30 in-lb (3.4 N·m)

    093 057 Stud 30 in-lb (3.4 N·m)

    095 141 Stud 50 in-lb (5.6 N·m)

    095 142 Stud 50 in-lb (5.6 N·m)

    095 251 Stud 30 in-lb (3.4 N·m)

    117 451 Stud 50 in-lb (5.6 N·m)

    117 452 Stud 50 in-lb (5.6 N·m)

    144 216 Stud 30 in-lb (3.4 N·m)

    155 778 Stud 27 in-lb (3.1 N·m)

    185 831 Puk 80 in-lb (9.0 N·m)

    155 351 Stud 22 in-lb (2.5 N·m)

     *Indicator clamping pressure is 1000 lb.

    Table 6-2. Torque Specifications For SCR’s

    Part Number SCR Type Minimum Torque Value Maximum Torque Value

    000 251 Stud 425 in-lb (48 N·m) 450 in-lb (50.8 N·m)

    004 216 Stud 425 in-lb (48 N·m) 450 in-lb (50.8 N·m)

    022 260 Stud 125 in-lb (14.1 N·m) 150 in-lb (16.9 N·m)

    034 976 Stud 250 in-lb (28.2 N·m) 300 in-lb (33.9 N·m)

    037 571 Stud 250 in-lb (28.2 N·m) 300 in-lb (33.9 N·m)

    039 526 Stud 425 in-lb (48 N·m) 450 in-lb (50.8 N·m)

    044 823 Stud 250 in-lb (28.2 N·m) 300 in-lb (33.9 N·m)

    046 020 Stud 250 in-lb (28.2 N·m) 300 in-lb (33.9 N·m)

    047 074 Stud 250 in-lb (28.2 N·m) 300 in-lb (33.9 N·m)

    052 249 Stud 425 in-lb (48 N·m) 450 in-lb (50.8 N·m)

    072 131 Stud 125 in-lb (14.1 N·m) 150 in-lb (16.9 N·m)

    074 250 Stud   −−−− 130 in-lb (14.7 N·m)

    082 717 Stud 275 in-lb (31 N·m) 325 in-lb (36.7 N·m)

    083 422 Stud 250 in-lb (28.2 N·m) 300 in-lb (33.9 N·m)

    083 936 Stud 425 in-lb (48 N·m) 450 in-lb (50.8 N·m)

    084 182 Stud 250 in-lb (28.2 N·m) 300 in-lb (33.9 N·m)

    091 078 Stud 425 in-lb (48 N·m) 450 in-lb (50.8 N·m)

    141 388 Stud 240 in-lb (27.1 N·m) 300 in-lb (33.9 N·m)

    180 456 Stud 240 in-lb (27.1 N·m) 300 in-lb (33.9 N·m)

  • 8/9/2019 TESTING BOOKLET.pdf

    45/52

    150 853 Page 43

    Table 6-3. SCR Clamping Pressures

    Part Number SCR TypeIndicator Clamping

    Pressure ValueClamping Torque

     Value (Nut)

    044 231 Puk 1000 lb 80 in-lb (9.0 N·m)

    046 995 Puk 1000 lb 80 in-lb (9.0 N·m)

    048 736 Puk 1000 lb 80 in-lb (9.0 N·m)

    070 160 Puk 5000 lb NA

    070 161 Puk 1000 lb 80 in-lb (9.0 N·m)

    071 984 Puk 5000 lb NA

    083 937 Puk 1000 lb 80 in-lb (9.0 N·m)

    086 926 Puk 1000 lb 80 in-lb (9.0 N·m)

    094 387 Puk 1000 lb 80 in-lb (9.0 N·m)

    097 397 Puk 1000 lb 80 in-lb (9.0 N·m)

    097 959 Puk 2000 lb 140 in-lb (15.8 N·m)

    107 588 Puk 1000 lb 80 in-lb (9.0 N·m)

    109 091 Puk 2000 lb 140 in-lb (15.8 N·m)

    109 270 Puk 1000 lb 80 in-lb (9.0 N·m)

    112 940 Puk 2000 lb 140 in-lb (15.8 N·m)

    112 941 Puk 2000 lb 140 in-lb (15.8 N·m)

    112 942 Puk 2000 lb 140 in-lb (15.8 N·m)

    113 010 Puk 2000 lb 140 in-lb (15.8 N·m)

    115 114 Puk 1000 lb 50 in-lb (5.6 N·m)

    116 661 Puk 2000 lb 140 in-lb (15.8 N·m)

    117 720 Puk 1000 lb 80 in-lb (9.0 N·m)

    119 371 Puk 1000 lb 50 in-lb (5.6 N·m)

    121 430 Puk 2000 lb 140 in-lb (15.8 N·m)

    132 147 Puk 2000 lb 80 in-lb (9.0 N·m)

    143 818 Puk 1000 lb 50 in-lb (5.6 N·m)

    148 091 Puk 2000 lb 90 in-lb (10.2 N·m)

    161 668 Puk 1000 lb 55 in-lb (6.1 N·m)

    162 516 Puk 800 lb NA

    185 830 Puk 80 in-lb (9.0 N·m)

    Table 6-4. Torque Specifications For IGBT And MOSFET Transistor Modules

    Transistor Replacement Kit

    Part Number Mounting Screw Torque Value Screw Terminal Torque Value

    149 202 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m) 17 in-lb, ±2 in-lb (1.9 N·m, ±0.2 N·m)

    149 204 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m) 17 in-lb, ±2 in-lb (1.9 N·m, ±0.2 N·m)

    149 207 16 in-lb, ±1 in-lb (1.8 N·m, ±0.1 N·m) 16 in-lb, ±1 in-lb (1.8 N·m, ±0.1 N·m)

    149 238 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m) 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m)

    150 912 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m) 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m)

    150 913 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m) 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m)

    151 489 25 in-lb, ±2 in-lb (2.8 N·m, ±0.3 N·m) 12 in-lb, ±1 in-lb (1.4 N·m, ±0.1 N·m)

  • 8/9/2019 TESTING BOOKLET.pdf

    46/52

    150 853 Page 44

    Transistor Replacement KitPart Number

    Screw Terminal Torque ValueMounting Screw Torque Value

    157 566 33 in-lb, ±3 in-lb (3.7 N·m, ±0.3 N·m) 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m)

    179 628 33 in-lb, ±3 in-lb (3.7 N·m, ±0.3 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    180 110 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    184 258 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    185 776 33 in-lb, ±3 in-lb (3.7 N·m, ±0.3 N·m) 50 in-lb, ±4 in-lb (5.6 N·m, ±0.5 N·m)

    185 946 13 in-lb, ±1 in-lb (1.4 N·m, ±0.1 N·m) 16 in-lb, ±1 in-lb (1.8 N·m, ±0.1 N·m)

    185 947 26 in-lb, ±3 in-lb (2.9 N·m, ±0.3 N·m) 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m)

    191 590 35 in-lb, ±2 in-lb (4.0 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    191 591 35 in-lb, ±2 in-lb (4.0 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    200 392 35 in-lb, ±2 in-lb (4.0 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    206 477 40 in-lb, ±4 in-lb (4.5 N·m, ±0.4 N·m) 40 in-lb, ±4 in-lb (4.5 N·m, ±0.4 N·m)

    206 478 40 in-lb, ±4 in-lb (4.5 N·m, ±0.4 N·m) 40 in-lb, ±4 in-lb (4.5 N·m, ±0.4 N·m)

    197 470 26 in-lb, ±3 in-lb (2.9 N·m, ±0.3 N·m) 26 in-lb, ±3 in-lb (2.9 N·m, ±0.3 N·m)

    208 173 25 in-lb, ±2in-lb (2.8 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    186 656 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    171 883 13 in-lb, ±1 in-lb (1.4 N·m, ±0.1 N·m) 16 in-lb, ±1 in-lb (1.8 N·m, ±0.1 N·m)

    163 472 26 in-lb, ±3 in-lb (2.9 N·m, ±0.3 N·m) 17 in-lb, ±2 in-lb (1.9 N·m, ±0.2 N·m)

    176 421 26 in-lb, ±3 in-lb (2.9 N·m, ±0.3 N·m) 17 in-lb, ±2 in-lb (1.9 N·m, ±0.2 N·m)

    188 190 26 in-lb, ±3 in-lb (2.9 N·m, ±0.3 N·m) 17 in-lb, ±2 in-lb (1.9 N·m, ±0.2 N·m)

    212 106 40 in-lb, ±4 in-lb (4.5 N·m, ±0.4 N·m) 50 in-lb, ±4 in-lb (5.6 N·m, ±0.5 N·m)

    213 179 40 in-lb, ±4 in-lb (4.5 N·m, ±0.4 N·m) 40 in-lb, ±4 in-lb (4.5 N·m, ±0.4 N·m)

    212 936 *25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

     *First tighten both screws to 7 in-lb, then torque both screws to final value. Allow ten minutes relax time and re-torque both screws to final value.

    Table 6-5. Torque Specifications For Rectifiers

    Rectifier Replacement KitPart Number

    Mounting Screw Torque Value Screw Terminal Torque Value

    109 373 22 in-lb, ±2 in-lb (2.5 N·m, ±0.2 N·m) NA

    149 217 20 in-lb, ±2 in-lb (2.3 N·m, ±0.2 N·m) 30 in-lb, ±3 in-lb (3.4 N·m, ±0.3 N·m)

    149 218 20 in-lb, ±2 in-lb (2.3 N·m, ±0.2 N·m) 30 in-lb, ±3 in-lb (3.4 N·m, ±0.3 N·m)

    149 219 22 in-lb, ±2 in-lb (2.5 N·m, ±0.2 N·m) NA

    179 629 33 in-lb, ±3 in-lb (3.7 N·m, ±0.3 N·m)25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    Gate: 15 in-lb, ±1 in-lb (1.7 N·m, ±0.1 N·m)

    184 260 35 in-lb, ±2 in-lb (4.0 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    192 105 20 in-lb, ±2 in-lb (2.3 N·m, ±0.2 N·m) 30 in-lb, ±3 in-lb (3.4 N·m, ±0.3 N·m)

    131 828 20 in-lb, ±2 in-lb (2.3 N·m, ±0.2 N·m) 30 in-lb, ±3 in-lb (3.4 N·m, ±0.3 N·m)

    179 542 37 in-lb, ±4 in-lb (4.2 N·m, ±0.2 N·m) NA

    199 034 NA NA

    173 630 20 in-lb, ±2 in-lb (2.3 N·m, ±0.2 N·m)28 in-lb, ±2 in-lb (3.1 N·m, ±0.3 N·m)

    Gate: 14 in-lb, ±1 in-lb (1.6 N·m, ±0.1 N·m)

    141 317 21 in-lb, ±2 in-lb (2.4 N·m, ±0.2 N·m) 21 in-lb, ±2 in-lb (2.4 N·m, ±0.2 N·m)

    212 937 *25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

     *First tighten both screws to 7 in-lb, then torque both screws to final value. Allow ten minutes relax time and re-torque both screws to final value.

  • 8/9/2019 TESTING BOOKLET.pdf

    47/52

    150 853 Page 45

    Table 6-6. Torque Specifications For Diode Modules

    Diode Replacement KitPart Number

    Mounting Screw Torque Value Screw Terminal Torque Value

    149 208 37 in-lb, ±4 in-lb (4.2 N·m, ±0.5 N·m) 22 in-lb, ±3 in-lb (2.5 N·m, ±0.3 N·m)

    149 209 33 in-lb, ±3 in-lb (3.7 N·m, ±0.3 N·m) NA

    149 210 33 in-lb, ±3 in-lb (3.7 N·m, ±0.3 N·m) NA

    149 211 20 in-lb, ±2 in-lb (2.3 N·m, ±0.2 N·m) NA

    149 212 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m) NA

    149 213 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m) NA

    149 215 16 in-lb, ±1 in-lb (1.8 N·m, ±0.1 N·m) 16 in-lb, ±1 in-lb (1.8 N·m, ±0.1 N·m)

    149 216 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m) NA

    151 229 **35 in-lb, ±5 in-lb (4.0 N·m, ±0.6 N·m)

    Center Screw: *22 in-lb, ±2 in-lb (2.5 N·m, ±0.2 N·m)30 in-lb, ±3 in-lb (3.4 N·m, ±0.3 N·m)

    151 431 **35 in-lb, ±5 in-lb (4.0 N·m, ±0.6 N·m)

    Center Screw: *22 in-lb, ±2 in-lb (2.5 N·m, ±0.2 N·m)30 in-lb, ±3 in-lb (3.4 N·m, ±0.3 N·m)

    155 634 27 in-lb, ±3 in-lb (3.1 N·m, ±0.3 N·m) NA

    156 367 20 in-lb, ±2 in-lb (2.3 N·m, ±0.2 N·m) 30 in-lb, ±3 in-lb (3.4 N·m, ±0.3 N·m)

    179 630 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    185 775 33 in-lb, ±3 in-lb (3.7 N·m, ±0.3 N·m) 17 in-lb, ±2 in-lb (1.9 N·m, ±0.2 N·m)

    185 940 13 in-lb, ±1 in-lb (1.4 N·m, ±0.1 N·m) 16 in-lb, ±1 in-lb (1.8 N·m, ±0.1 N·m)

    189 965 26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m) 20 in-lb, ±2 in-lb (2.3 N·m, ±0.2 N·m)

    191 503 35 in-lb, ±2 in-lb (4.0 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    192 116 44 in-lb, ±4 in-lb (5.0 N·m, ±0.5 N·m) 26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m)

    153 099 14 in-lb, ±1 in-lb (1.6 N·m, ±0.1 N·m) 12 in-lb, ±1 in-lb (1.3 N·m, ±0.1 N·m)

    199 952 14 in-lb, ±1 in-lb (1.6 N·m, ±0.1 N·m) 12 in-lb, ±1 in-lb (1.3 N·m, ±0.1 N·m)

    206 987 13 in-lb, ±1 in-lb (1.4 N·m, ±0.1 N·m) 13 in-lb, ±1 in-lb (1.4 N·m, ±0.1 N·m)

    201 530 12 in-lb, ±1 in-lb (1.3 N·m, ±0.1 N·m) 12 in-lb, ±1 in-lb (1.3 N·m, ±0.1 N·m)

    168 167 26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m) 26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m)

    198 148 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m) 25 in-lb, ±2 in-lb (2.8 N·m, ±0.2 N·m)

    168 413 13 in-lb, ±1 in-lb (1.4 N·m, ±0.1 N·m) 16 in-lb, ±1 in-lb (1.8 N·m, ±0.1 N·m)

    190 531 13 in-lb, ±1 in-lb (1.4 N·m, ±0.1 N·m) 16 in-lb, ±1 in-lb (1.8 N·m, ±0.1 N·m)

    170 565 13 in-lb, ±1 in-lb (1.4 N·m, ±0.1 N·m) 16 in-lb, ±1 in-lb (1.8 N·m, ±0.1 N·m)

    179 869 21 in-lb, ±2 in-lb (2.4 N·m, ±0.2 N·m) 15 in-lb, ±2 in-lb (1.7 N·m, ±0.1 N·m)

    204 820 26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m) 26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m)

    212 446 12 in-lb, ±1 in-lb (1.3 N·m, ±0.1 N·m) 12 in-lb, ±1 in-lb (1.3 N·m, ±0.1 N·m)

    212 037 14 in-lb, ±1 in-lb (1.6 N·m, ±0.1 N·m) 12 in-lb, ±1 in-lb (1.3 N·m, ±0.1 N·m)

    201 531 **26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m)

    Center Screw: *15 in-lb, ±2 in-lb (1.7 N·m, ±0.2 N·m) ***26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m)

     *Tighten the center screw first to this value, followed by the two outside screws to this value.

     **Final torque the outside screws to this value.

     ***Tighten each terminal to one-half this value, then final torque to this value.

  • 8/9/2019 TESTING BOOKLET.pdf

    48/52

    150 853 Page 46

    Table 6-7. Torque Specifications For Primary/Secondary Modules

    Module Replacement KitPart Number

    Mounting Screw Torque Value Screw Terminal Torque Value

    204 821 *26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m) NA

    201 533 *22 in-lb, ±2 in-lb (2.5 N·m, ±0.2 N·m) NA

    201 534 *22 in-lb, ±2 in-lb (2.5 N·m, ±0.2 N·m) NA

    217 625 *22 in-lb, ±2 in-lb (2.5 N·m, ±0.2 N·m) NA

     *Tighten to one-half this value first, then final torque to this value.

    Table 6-8. Torque Specifications For SCR Modules

    SCR Replacement KitPart Number

    Mounting Screw Torque Value Screw Terminal Torque Value

    168 065 45 in-lb, ±4 in-lb (5.1 N·m, ±0.5 N·m) 26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m)

    196 754 44 in-lb, ±4 in-lb (5.0 N·m, ±0.5 N·m) 26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m)

    196 760 48 in-lb, ±4 in-lb (5.4 N·m, ±0.5 N·m) 48 in-lb, ±4 in-lb (5.4 N·m, ±0.5 N·m)

    197 698 35−

    50 in-lb (4.0−

    5.6 N·m) 35−

    50 in-lb (4.0−

    5.6 N·m)

    208 384 48 in-lb, ±4 in-lb (5.4 N·m, ±0.5 N·m) 48 in-lb, ±4 in-lb (5.4 N·m, ±0.5 N·m)

    218 296 45 in-lb, ±5 in-lb (5.1 N·m, ±0.5 N·m) ** 45 in-lb, ±5 in-lb (5.1 N·m, ±0.5 N·m) **

    218 292 45 in-lb, ±5 in-lb (5.1 N·m, ±0.5 N·m) ** 45 in-lb, ±5 in-lb (5.1 N·m, ±0.5 N·m) **

    199 988 26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m) 26 in-lb, ±2 in-lb (2.9 N·m, ±0.2 N·m)

     ** = Re-torque after 4 hours.

  • 8/9/2019 TESTING BOOKLET.pdf

    49/52

    Notes

  • 8/9/2019 TESTING BOOKLET.pdf

    50/52

    Notes

  • 8/9/2019 TESTING BOOKLET.pdf

    51/52

  • 8/9/2019 TESTING BOOKLET.pdf

    52/52

    Miller Electric Mfg. Co.1635 West Spencer St.

     An Illinois Tool Works Company

    P.O. Box 1079 Appleton, WI 54912-1079 USA

    Hobart Welding ProductsA Illi i T l W k C