the distance geometry of deep rhythms and scales by e. demaine, f. gomez-martin, h. meijer, d....

35
The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

Upload: kira-maslin

Post on 02-Apr-2015

220 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

The Distance Geometry of Deep

Rhythms and Scales

by

E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint,

T. Winograd, D. Wood

Page 2: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

2

Rhythms and Scales

A rhythm is a repeating pattern of beats that is a subset of equally spaced pulses.

Page 3: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

3

Rhythms and Scales

A rhythm is a repeating pattern of beats that is a subset of equally spaced pulses.

0

8

412

Page 4: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

4

Rhythms and Scales

A rhythm is a repeating pattern of beats that is a subset of equally spaced pulses.

0

8

412

clave Son

Page 5: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

5

Rhythms and Scales

A scale is a collection of musical notes sorted by pitch.

Diatonic scale

Page 6: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

6

Rhythms and Scales

Pitch intervals in a scale are not necessarily the same

Similar to a rhythm, a scale is cyclic

Diatonic scale or Bembé

C

D

E

FG

A

B

its geometric representation is similar to that of a rhythm

Page 7: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

7

Erdős Distance Problem (1989)

Find n points in the plane s.t. for every i = 1,…, n-1, there exists a distance determined by these points that occurs exactly i times.

Solved for 2 ≤ n ≤ 8 (0, 2)

(1, 0)(–1, 0)

(0, –1)

Page 8: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

8

Erdős Distance & Rhythms

A rhythm that has the property asked by Erdős is called a Erdős- deep rhythm

0

4

2 7 4 1 6 5

Mu

ltip

licit

y

5

9

10

14

15

Page 9: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

9

Erdős Distance & Rhythms

A rhythm that has the property asked by Erdős is called a Erdős- deep rhythm

0

4

2 7 4 1 6 5

Mu

ltip

licit

y

5

9

10

14

15

4

Page 10: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

10

Erdős Distance & Rhythms

A rhythm that has the property asked by Erdős is called a Erdős- deep rhythm

0

4

2 7 4 1 6 5

Mu

ltip

licit

y

5

9

10

14

15

4

6

Page 11: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

11

Erdős Distance & Rhythms

A rhythm that has the property asked by Erdős is called an Erdős- deep rhythm

0

4

2 7 4 1 6 5

Mu

ltip

licit

y

5

9

10

14

15

77

Page 12: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

12

Erdős Distance & Rhythms

A rhythm that has the property asked by Erdős is called an Erdős- deep rhythm

0

4

2 7 4 1 6 5

Mu

ltip

licit

y

5

9

10

14

15

4

4

4

Page 13: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

13

Winograd: Deep Scales

The term deep was first introduced by Winograd in 1966 in an unpublished class term paper.

He studied a restricted version of the Erdős property in musical scales

He characterized the deep scales with n intervals and k pitches, with k = n/2 or k = n/2 + 1

Page 14: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

14

The Diatonic Scale is Deep

C

D

E

FG

A

B

n = 12k = 7

6 1 4 3 2 5

Mu

ltip

licit

y

Page 15: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

15

Examples of Deep Rhythms

Cuban Tresillo

Page 16: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

16

Examples of Deep Rhythms

Cuban TresilloHelena Paparizou

Eurovision 2005“My Number One”

Page 17: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

17

Examples of Deep Rhythms

Cuban Tresillo Cuban Cinquillo

Page 18: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

18

Examples of Deep Rhythms

Bossa–Nova

Page 19: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

19

Characterization

Erdős-deep rhythms consist of :

1. Dk,n,m = {i.m mod n | i = 0, …, k}

2. F = {0, 1, 2, 4}6

- m and n are relatively prime

- k ≤ n/2 + 1

n = 6k = 4

Page 20: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

20

Characterization

Erdős-deep rhythms consist of :

1. Dk,n,m = {i.m mod n | i = 0, …, k}

2. F = {0, 1, 2, 4}6

- m and n are relatively prime

- k ≤ n/2 + 1

n = 6k = 4

Page 21: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

21

Characterization: Example D7,16,5

n = 16k = 7 ≤ 9m = 5

Page 22: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

22

Characterization: Example D7,16,5

n = 16k = 7 ≤ 9m = 5

0

Page 23: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

23

Characterization: Example D7,16,5

n = 16k = 7 ≤ 9m = 5

0

5

Page 24: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

24

Characterization: Example D7,16,5

n = 16k = 7 ≤ 9m = 5

0

5

10

Page 25: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

25

Characterization: Example D7,16,5

n = 16k = 7 ≤ 9m = 5

0

5

10

15

Page 26: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

26

Characterization: Example D7,16,5

n = 16k = 7 ≤ 9m = 5

0

5

10

15

4

Page 27: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

27

Characterization: Example D7,16,5

n = 16k = 7 ≤ 9m = 5

0

5

10

15

4

9

Page 28: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

28

Characterization: Example D7,16,5

n = 16k = 7 ≤ 9m = 5

0

5

10

15

4

9

14

Page 29: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

29

Main Theorem

A rhythm is Erdős-deep if and only if it is a rotation or scaling of F or the rhythm Dk,n,m for some k, n, m with

• k ≤ n/2 + 1,

• 1 ≤ m ≤ n/2 and

• m and n are relatively prime.

Page 30: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

30

Deep Shellings

A shelling of a Erdős-deep rhythm R is a sequence s1, s2, …, sk of onsets in R such that R – {s1, s2, …, si} is a

Erdős-deep rhythm for i = 0, …, k.0

9

5

10

1415

4

Page 31: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

31

Deep Shellings

A shelling of a Erdős-deep rhythm R is a sequence s1, s2, …, sk of onsets in R such that R – {s1, s2, …, si} is a

Erdős-deep rhythm for i = 0, …, k.0

9

5

10

1415

4

Page 32: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

32

Deep Shellings

A shelling of a Erdős-deep rhythm R is a sequence s1, s2, …, sk of onsets in R such that R – {s1, s2, …, si} is a

Erdős-deep rhythm for i = 0, …, k.0

9

5

10

1415

4

Page 33: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

33

Deep Shellings

A shelling of a Erdős-deep rhythm R is a sequence s1, s2, …, sk of onsets in R such that R – {s1, s2, …, si} is a

Erdős-deep rhythm for i = 0, …, k.0

9

5

10

1415

4

Page 34: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

34

Deep Shellings

A shelling of a Erdős-deep rhythm R is a sequence s1, s2, …, sk of onsets in R such that R – {s1, s2, …, si} is a

Erdős-deep rhythm for i = 0, …, k.0

9

5

10

1415

4

Corollary: Every Erdős-deep rhythm has a shelling

Page 35: The Distance Geometry of Deep Rhythms and Scales by E. Demaine, F. Gomez-Martin, H. Meijer, D. Rappaport, P. Taslakian, G. Toussaint, T. Winograd, D. Wood

36

Thank you