the edelweiss-ii experiment

29
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT Grenoble (FRANCE), CNRS/IN2P3/CSNSM Orsay (FRANCE), CNRS/IN2P3/IPN Lyon (FRANCE), CNRS/INSU/IAP Paris (FRANCE), CNRS-CEA/Laboratoire Souterrain de Modane (FRANCE), JINR Dubna (RUSSIA), FZK/Universtat Karlsruhe (GERMANY)

Upload: aaron

Post on 07-Feb-2016

61 views

Category:

Documents


0 download

DESCRIPTION

The EDELWEISS-II experiment. Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT Grenoble (FRANCE), CNRS/IN2P3/CSNSM Orsay (FRANCE), CNRS/IN2P3/IPN Lyon (FRANCE), - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The EDELWEISS-II experiment

The EDELWEISS-II experiment

Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon

CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT Grenoble (FRANCE),CNRS/IN2P3/CSNSM Orsay (FRANCE), CNRS/IN2P3/IPN Lyon (FRANCE), CNRS/INSU/IAP Paris (FRANCE), CNRS-CEA/Laboratoire Souterrain de Modane (FRANCE), JINR Dubna (RUSSIA), FZK/Universtat Karlsruhe (GERMANY)

Page 2: The EDELWEISS-II experiment

2

Direct Search PrincipleDetection of the

energy deposited due to elastic scattering off target nuclei

• Event Rate : < 1 ev /kg/week• Recoil Energy : 1 – 100 keV

• Low energy threshold• Large detector mass• Low background Radio – purity Active/passive shielding Deep underground sites

Page 3: The EDELWEISS-II experiment

3

EDELWEISS @ LSM

Page 4: The EDELWEISS-II experiment

4

EDW–II set-up Radiopurity

dedicated HPGe detectors for systematic checks of all materials

Strict control of bkg: material selection/cleaning procedure/Environment

Shielding 20 cm Pb shielding 50 cm PE and better coverage active μ veto (> 98% coverage)

Up to 110 detectors -> 40kg Ge detector

Ge/NTD Develop new ID detectors

Goal: EDW-I × 100 σW-n ≤ 10-8 pb<0.003 evts/kg/day (Er>10keV)

Page 5: The EDELWEISS-II experiment

5

µ-veto

Candidates for coincident veto-bolometer events

Accidental coincidences

Expected from Geant4 simulation:

~0.03 events/kg.dMeasured:

0.04 events/kg.d

Pb

Polyethylene

Veto

roc

k

p,π,α

´

n Cu(Cryostat)

Ge

<300GeV>

nVeto

Pb

Gd-loaded scintillator

Page 6: The EDELWEISS-II experiment

6

Ge Heat-Ionization Detectors

• Simultaneous measurements:• Ionization @ few V/cm with

Al electrodes• Heat @ 20 mK with Ge/NTD

sensor

• Different Ionization/Heat energy ratio for nuclear and electronic recoils (dominate bkg)

Page 7: The EDELWEISS-II experiment

7

Event by event background rejection

Page 8: The EDELWEISS-II experiment

8

Edw-I limiting backgroundPRD71, 122002 (2005)

Problem:Surface electron recoils

Interpretation: Bad charge collection

(trapping and recombination) Indications of 210Pb

contamination (exposition to Radon):

α rate ~ e rate ~ 4 /kg.day

Page 9: The EDELWEISS-II experiment

9

206Pbβ

210Pb

210Po

210Po

210Pb

210Pb source

Page 10: The EDELWEISS-II experiment

10

GeNTD data: improved bkg Gamma background:

reduction of x3 relative to EDELWEISS-I

210Pb-chain background: reduction of x2 relative to EDELWEISS-I

EDW-I~4 /kgd

EDW-II~2 /kgd

5 kgd

95 kgd

preliminary

Full volume

Further bkg reductions after fiducial+ coincidence cuts

Conclusion: Reduction of background from EDW-I to EDW-II

Page 11: The EDELWEISS-II experiment

11

Physics run: GeNTD• 11 detectors with <30 keV

threshold• Threshold chosen before

start of run(EDW-I results expected

bkg)• 93.5 kg.day• 3 events observed in nuclear

recoil band• 31, 31 and 42 keV

• Evidence for events with deficient charge collection from 210Pb

Preliminary

EDELWEISS93.5 kgd

Question:How to reach < 10-8 pb ?

NEED >1000 kgd at 15 keV threshold

>105 rejection for gammas to reject expected >4000 from 210Pb

IDea:Develop detectors with surface event rejection

using interleaved electrode design (ID)

Page 12: The EDELWEISS-II experiment

12

A A A A AB B B B

C C C C CD D D D

G

H

GuardFiducial volume

→E

→E

→E

→E

‘A’ electrodes: +2V

ID detector

Radius (cm)

Z (c

m)

guard ‘G’: + 1V

guard ‘H’: - 1V

‘C’ electrodes:-2V ‘D’ electrodes: -1V

Electron trajectoriesholetrajectories

‘A&C’ bulk event

‘A&B’ near- surface event

‘A,B&C’ event in low-field area

NTD heat sensor• E-field modified near surface with interleaved electrodes• B+D signals -> vetos % surface• 1x200g + 3x400g tested in2008• 10x400g running‘B’ electrodes:

+1V

Page 13: The EDELWEISS-II experiment

13

ID detector rejection Gamma rejection of 400g

~1 month calibrations Beta rejection of 200g

-equivalentto 3x104 kgd

6x104

6x104210Bi

6x104210Po

0 events

-equivalentto ~103 kgd

Page 14: The EDELWEISS-II experiment

14

Physics run: ID detectors 1 x 400g + 1 x 350g

detectors, 86 live days

<15 keV threshold achieved for exposure of 18.6 kg.days

50% efficiency at 10 keV

No events in (or around) nuclear

recoil band

Conclusion: This is the good technology for 10-8 pb and beyond

Page 15: The EDELWEISS-II experiment

15

Limits 93.5 kgd GeNTD

• 11 detectors x 4 months• 30 keV threshold• 3 events observed in

nuclear recoil band 18.3 kgd ID

• 2 detectors x 4 months• 15 keV threshold• No nuclear recoils• No evts outside band

2009: 10 ID detectors• improvement in

sensitivity: 4x10-8 pb• More detectors build in

2009

Preliminary

Page 16: The EDELWEISS-II experiment

16

Conclusions/Outlook• Significant reduction in , β and γ backgrounds relative to

EDELWEISS-I• Improved understanding of backgrounds and of response of

detectors to backgrounds• Improved limit relative to EDELWEISS-I• Passive background reduction alone not sufficient to reach

< 10-8 pb• ID detectors have the surface rejection needed to reach this

goal Running in 2009 with 10 x 400g detectors Prototype of ID detectors with larger fiducial volumes currently in test EURECA = 1 ton scale experiment (CRESST, EDELWEISS, CERN, …) @ LSM extension

Page 17: The EDELWEISS-II experiment

This is the end…

Page 18: The EDELWEISS-II experiment

1818

Decay Chain

210Po

206Pb

5.3 MeV100 keV

Al 70nm

amGe 70nm

Ge 2cm

206Pb

e-

10keV - 100keV - 1MeV

Cu few mm

5 mm

~50 nm

350 nm

20 m

700 m

210Bie- 1.16 MeV max

210Pbe- 61 keV max

46.5 keV (4%)

46 keV

3 mm

NO ionisation

22 yr

Page 19: The EDELWEISS-II experiment

1919

EDELWEISS-II 210Pb source calibration

Confirms interpretation of EDW-I bkg as 210Pb surface . Response of detectors to this important background

210Pb

206Pb

β 210Po

E=5.3 MeVQ~0.3

Edw-Idata

EDELWEISS-II210Pb source

210Pb

210Po

206Pb recoilscoincident with 210Po

210Bi

210Bi

Edw-II

Edw-II

Edw-II

Implantation depth of 210Pb

Page 20: The EDELWEISS-II experiment

2020

EURECA - II

Page 21: The EDELWEISS-II experiment

2121

EURECA-I

Page 22: The EDELWEISS-II experiment

2222

Page 23: The EDELWEISS-II experiment

2323

France-Italy Fréjus tunnel :new safety gallery planned

Existing road tunnel

Existing lab

s ?

2 projectsLimited extensionVery large cavity

Page 24: The EDELWEISS-II experiment

2424G Gerbier EURECA ULISSE meeting- Lyon july 2008

24

Implantation of new lab

First drawings nov 2006 (Lombardi eng company)

Page 25: The EDELWEISS-II experiment

2525

Compatibility DAMA other experiments SI

Page 26: The EDELWEISS-II experiment

2626

Compatibility DAMA other experiments SD

Page 27: The EDELWEISS-II experiment

2727

Present limits

Page 28: The EDELWEISS-II experiment

2828

Number of events in WIMP region: q< 0.5, 25 < E < 60 кэВregistered23 events

Experimental data

Alpha rate 2.5 events

Page 29: The EDELWEISS-II experiment

2929

N alphas in calibration spectrum = 3040 eventsNumber of events in WIMP region: q< 0.5, 25 < E < 60 кэВregistered = 460 events

460 events

Expected number events from calibration with 210Pb =37 events

Estimation of background from 210Pb