the kink picture of dislocation mobility and dislocation … › 5f46 › 66475185f3... · in terms...

29
THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION-POINT-DEFECT INTERACTIONS A. Seeger To cite this version: A. Seeger. THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION- POINT-DEFECT INTERACTIONS. Journal de Physique Colloques, 1981, 42 (C5), pp.C5- 201-C5-228. <10.1051/jphyscol:1981531>. <jpa-00221073> HAL Id: jpa-00221073 https://hal.archives-ouvertes.fr/jpa-00221073 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destin´ ee au d´ epˆ ot et ` a la diffusion de documents scientifiques de niveau recherche, publi´ es ou non, ´ emanant des ´ etablissements d’enseignement et de recherche fran¸cais ou ´ etrangers, des laboratoires publics ou priv´ es.

Upload: others

Post on 30-Jun-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

THE KINK PICTURE OF DISLOCATION MOBILITY

AND DISLOCATION-POINT-DEFECT

INTERACTIONS

A. Seeger

To cite this version:

A. Seeger. THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION-POINT-DEFECT INTERACTIONS. Journal de Physique Colloques, 1981, 42 (C5), pp.C5-201-C5-228. <10.1051/jphyscol:1981531>. <jpa-00221073>

HAL Id: jpa-00221073

https://hal.archives-ouvertes.fr/jpa-00221073

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinee au depot et a la diffusion de documentsscientifiques de niveau recherche, publies ou non,emanant des etablissements d’enseignement et derecherche francais ou etrangers, des laboratoirespublics ou prives.

Page 2: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

JOURNAL DE PHYSIQUE

CoZZoque CS, suppZ6ment au nolO, Tome 42, octobre 1981 page C5-201

THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION-POINT-DEFECT

INTERACTIONS

A. Seeger

Mm-PZanck-Institut fur MetaZlforschung, Ins t i tu t fur Physik, m d Universittit Stuttgart, Ins t i tu t fur theoretische und angewandte Physik, Postfach 800665, 0-7000 Stuttgart 80, Germany

Abstract.- The paper gives a coherent account of the theory of d i s loca t ion mobil i ty i n terms of kink-pair formation and kink migration. Three leve l s of descr ip t ion a r i s e i n a n a t u r a l way, namely those of the motion of s t r a i g h t d i s loca t ions , of kink-pair formation on d i s loca t ions , and of kink migration. The i n t e r r e l a t i o n s h i p s between these leve l s ("hierarchies") a r e discussed. The i n t e r a c t i o n with phonons and foreign atoms ("impurities") i s t rea ted on the t h i r d l e v e l , t h a t of the kink mobility.

Experimental information on the proper t i es of kinks may be obtained from measurements of d i s loca t ion v e l o c i t i e s , of flow s t r e s s , and of i n t e r n a l f r i c t i o n and modulus e f f e c t . The comparison between theory and experiment i s i l l u s t r a t e d by examples from valence c r y s t a l s (d i s loca t ion ve loc i ty i n Ge) and from body-centred cubic t r a n s i t i o n metals (y re laxa t ion = kink-pair for- mation on screw d is loca t ions ; dislocation-enhanced Snoek e f f e c t ; Snoek- K6ster re laxa t ion i n Nb and Ta).

1 . Introduct ion and General Background.- The "discovery" of d i s loca t ions during the

period 1929-34 provided the explanat ion f o r the observation t h a t i n many c r y s t a l l i n e

mate r ia l s the c r i t i c a l shear s t r e s s a. f o r p l a s t i c deformation by g l i d e i s several

orders of magnitude lower than the t h e o r e t i c a l shear s t reng th oth as calculated from

the model of per fec t c r y s t a l s . Already i n some of t h e e a r l y work i t was recognized

t h a t the resis tance-to-gl ide due t o the d i s c r e t e nature of c r y s t a l s was not complete-

l y removed by the movement of s t r a i g h t d i s loca t ions running p a r a l l e l t o one of the

major c rys ta l lographic d i rec t ions ( t h i s was the model used throughout i n the e a r l y

days of d i s loca t ion theory) . Based on what i s now ca l led the PRANDTL-DEHLINGER-

FRENKEL-KONTOROVA model [1,6,7] an attempt t o est imate the s t r e s s required to move a

s t r a i g h t "dis locat ion" i n a c r y s t a l i s already contained i n u.DEHLINGER'~ "Verhakungen"

paper of 1929 [ l ] . (A b r i e f h i s t o r i c a l account of e a r l y d i s loca t ion models and t h e i r

re la t ionsh ips t o the problem of d i s s i p a t i o n of mechanical energy ( = i n t e r n a l f r i c t i o n )

i n c r y s t a l s has appeared elsewhere [81.)

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981531

Page 3: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-202 JOURNAL DE PHYSIQUE

A t the suggestion of E.OROWAN, i n 1939 R.PEIERLS [g] performed the f i r s t de-

t a i l e d ca lcu la t ion of the resolved shear s t r e s s required t o move a s t r a i g h t d i s -

loca t ion through a c r y s t a l i n the absence of thermal f luc tua t ions . This s t r e s s is

now ca l led the P e i e r l s s t r e s s op. The l i n e energy Ed of a s t r a i g h t d i s loca t ion on a

given g l i d e plane i s a minimum i n the so-called "Peier ls va l leys" and a maximum on

the "Peier ls h i l l s " (comp. Fig.1). The o r i g i n a l est imate of P e i e r l s ( f o r a h i s t o r i -

c a l descr ip t ion see [10]) was corrected and improved by var ious authors; f o r the

methods used and the r e s u l t s obtained the reader i s re fe r red t o the review l i t e r a t u r e

[]l-141. The bes t ca lcu la t ions ava i lab le ind ica te t h a t i n many instances the ob-

served c r i t i c a l shear s t r e s s e s , a t l e a s t a t not too low temperatures, a r e sub-

s t a n t i a l l y lower than the calculated P e i e r l s s t r e s s e s .

I n the post-war development of d i s loca t ion theory i t became soon c l e a r t h a t

d i s loca t ion l i n e s must be considered f l e x i b l e . W.SHOCKLEY [l51 pointed out t h a t to-

gether with the exis tence of the P e i e r l s p o t e n t i a l t h i s may lead t o the formation

of *, i . e . , shor t segments of d i s loca t ion l i n e s i n which these cross over from

one P e i e r l s va l ley t o a neighbouring one (comp. Fig. l ) , and estimated t h a t kinks

may form i n thermal equilibrium. A.SEEGER [12,16] recognized t h a t the thermally

ac t iva ted formation of p a i r s of kinks of opposite s ign ( o r i g i n a l name "double kinks",

i n the following b r i e f l y ca l led kink p a i r s ) under the ac t ion of an o s c i l l a t i n g

applied s t r e s s might lead t o a re laxa t ion e f f e c t i n i n t e r n a l f r i c t i o n . He proposed

t h a t the re laxa t ion process observed by P.G.BORDON1 [17,18] i n various deformed

f c c metals below room temperature might be due t o t h i s process. This suggestion was

developed f u r t h e r i n numerous theore t ica l and experimental papers (see, e .g . , [19,20])

and appears now to be general ly accepted as the cor rec t explanat ion of the Bordoni

re laxa t ion . From a h i s t o r i c a l point of view i t i s i n t e r e s t i n g t o note t h a t q u i t e

a l a rge number of a l t e r n a t i v e explanations involving d i s loca t ions have been proposed

during the l a s t twenty-five years (see, e . g . , [20,211) but t h a t the f i r s t explanation

i n terms of disLocation theory proved t o be c o r r e c t (BORDONI himself [l81 suggested

an explanat ion not involving d i s loca t ions) .

According t o the kink-pair formation model the Bordoni re laxa t ion i s an i n t r i n s i c

d i s loca t ion property d i r e c t l y r e l a t e d to the exis tence of the P e i e r l s p o t e n t i a l . I n

most c r y s t a l s i t s t i l l provides the bes t information f o r est imating the numerical

value of the P e i e r l s s t r e s s 0 or the height of the P e i e r l s b a r r i e r s of d i s loca t ions P lying p a r a l l e l t o c rys ta l lographic d i r e c t i o n s . Recently, the modification of the

thermally ac t iva ted kink-pair formation process by atomic defects ( i n p a r t i c u l a r

by foreign i n t e r s t i t i a l atoms) has become the subject of much i n t e r e s t , a s i s w i t -

nessed by t h e present conference.

In add i t ion t o kinks t h a t a r e formed by thermal a c t i v a t i o n we have to consider

geometrical kinks 1221. These a re kinks t h a t a r e present even a t the lowest tempera-

tu res i n d i s loca t ion l i n e s t h a t a r e approximately p a r a l l e l t o low-index c rys ta l lo -

graphic d i rec t ions and f ixed by anchoring points not lying i n the same P e i e r l s

Page 4: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

Peierls hill valley hill

anchor point g 1

geometri- cal kink

I anchoring

point kink double kink pair

kink pair under applied stress G

Fig . ] : Top: The la t t i ce -per iod ic P e i e r l s p o t e n t i a l U(u) of a s t r a i g h t d i s loca t ion as a funct ion of i t s displacement U. The mean value of U(u) i s the d i s - loca t ion l i n e en- ergy Ed. The d i s - placement uo of a s t r a i g h t dis- loca t ion under an appl ied s t r e s s U < up i s indicated (b = dis loca t ion s t reng th = modu- l u s of Burgers vec tor ) . Bottom: Various d i s loca t ion con- f igura t ions on an g l ide plane with P e i e r l s va l leys ( f u l l l i n e s ) and P e i e r l s h i l l s (dashed l i n e s ) .

Table I. The th ree h ie ra rch ies of models and energy b a r r i e r s

l

hierarchy (model)

I

I1

111

defec t o r process considered

motion of s t r a i g h t

d i s loca t ions

kink-pair formation

kink migration

overcoming

t h e o r e t i c a l

shear s t reng th

a t h

P e i e r l s p o t e n t i a l

(of 1st kind)

kink p o t e n t i a l

( P e i e r l s p o t e n t i a l

of 2nd kind)

remaining la t t i ce -per iod ic energy b a r r i e r

P e i e r l s p o t e n t i a l

(of 1st kind)

kink p o t e n t i a l ( P e i e r l s

p o t e n t i a l of 2nd kind)

-

Page 5: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-204 JOURNAL DE PHYSIQUE

va l ley (comp.Fig.1). They account f o r the f a c t t h a t d i s loca t ions approximately

p a r a l l e l t o one of the major c rys ta l lographic d i rec t ions may contr ibute t o the modu-

l u s defec t even a t temperatures well below t h a t of t h e i r Bordoni re laxa t ion . Theoret ical reasoninganalogous t o t h a t leading t o the exis tence of the P e i e r l s

p o t e n t i a l of s t r a i g h t d i s loca t ions demonstrates t h a t the p o t e n t i a l energy of a kink

i n a d i s loca t ion must be a per iod ic funct ion of the kink pos i t ion along the dis-

loca t ion l i n e with a period equal to t h a t of the c r y s t a l l a t t i c e i n t h a t d i r e c t i o n .

This per iod ic p o t e n t i a l i s ca l led "kink po ten t ia l " o r , i n order to emphasize the

close analogy t o the P e i e r l s p o t e n t i a l of s t r a i g h t d i s loca t ion l i n e s , "Peier ls po-

t e n t i a l of t h e second kind".

We see t h a t a s i n t h e c l a s s i c a l system of t h e h ie ra rch ies of angels of

Dionysius the Areopagite we have a d iv i s ion of our models i n t o three orders , namely

t h a t of p e r f e c t c r y s t a l s , t h a t of s t r a i g h t d i s loca t ion l i n e s , and t h a t of E. To

these th ree orders of models correspond three orders of b a r r i e r s to be overcome (by

the motion of the defec t s of the next lower o rder ) , namely the t h e o r e t i c a l shear

s t reng th of a p e r f e c t c r y s t a l %, the P e i e r l s p o t e n t i a l (of the f i r s t kind) , and the

kink p o t e n t i a l . These re la t ionsh ips a r e summarized i n Table I.

The subdivis ion i n t o the models and the la t t i ce -per iod ic b a r r i e r s l i s t e d i n

Table I has considerable advantages f o r the discussion of physical phenomena

associated with d i s loca t ions , s ince t h e i r bas ic f e a t u r e s may of ten be understood by

r e f e r r i n g to one of t h e three hierarchies of Table I only. E.g., many bas ic fea tures

of the deformation of c r y s t a l s by g l i d e may be explained i n terms of d i s loca t ions

without paying a t t e n t i o n to the exis tence of the P e i e r l s b a r r i e r s . Most observations

on the Bordoni re laxa t ion a r e accounted f o r , a t l e a s t q u a l i t a t i v e l y , i n terms of

kink-pair formation. I f the kink p o t e n t i a l is la rge enough, geometrical kinks may

give r i s e t o a d i s t i n c t re laxa t ion phenomenon associated with kink migration

[19,23-251.

Notwithstanding the impressive successes of the s i m p l i s t i c approach j u s t out-

l ined , a deeper understanding of the observed phenomenon can o f t e n only be achieved

i f i t i s reca l led t h a t each of the t h r e e h i e r a r c h i e s o f Table I can a t bes t give a

p a r t i a l represen ta t ion of a complex physical s i t u a t i o n .

The present paper aims a t developing, i n a coherent fashion, the theory of

kink-pair formation and kink migration, and attempts to apply it to the in te rpre -

t a t i o n of measurement of d i s loca t ion v e l o c i t i e s and of i n t e r n a l - f r i c t i o n phenomena.

We s h a l l ca re fu l ly d i s t inguish between phenomena t h a t may be understood be reference

t o only one of the models of Table 1,with the aspects represented by the o ther

models coming i n t o play only through phenomenological parameters, and those re-

qu i r ing a more general (" inter-hierarchic") approach.

2. The In te rac t ion between Kinks.- We consider here kinks on the same dis loca t ion

l i n e . The s implest physical p ic tu re we may use i s the descr ip t ion of the d i s loca t ion

l i n e a s a s t r i n g , character ized by the d i s loca t ion l i n e tension Sd and the d i s loca t ion

Page 6: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

mass per u n i t length, yd. For a d d i t i o n a l s impl ic i ty we consider only de-

v ia t ions from s t r a i g h t l i n e s , measured by the displacement U of the d i s loca t ion

from a P e i e r l s va l ley . The motion of a d i s loca t ion l i n e i s then governed by the

p a r t i a l d i f f e r e n t i a l equation

In ( 1 ) z denotes the s p a t i a l coordinate i n the d i r e c t i o n of the P e i e r l s va l ley , t

the time, b the d i s loca t ion s t reng th , 0 the appl ied resolved shear s t r e s s , and U(u)

the l i n e energy of a s t r a i g h t d i s l o c a t i o n l i n e a s a funct ion of i t s displacement.

For the purpose of ca lcu la t ing the l i n e tension Sd i t s u f f i c e s t o replace U(u) by

i t s average value Ed, the l i n e energy of the d i s loca t ions (Fig. 1). We then have L261

where 8 i s the angle between the Burgers vector of the d i s loca t ion l i n e and the

d i r e c t i o n of the P e i e r l s va l leys .

For s t a t i c so lu t ions u(z) Eq . ( l ) s impl i f i es t o

Eq.(3) possesses the s o l u t i o n uo = constant corresponding t o a r i g i d displacement

of a s t r a i g h t d i s loca t ion l i n e , where

The maximum value of a a t which ( 4 ) s t i l l has a r e a l so lu t ion defines the P e i e r l s

s t r e s s Op (comp. Fig. l ) .

Among the so lu t ions of (3) f o r a = 0 i s t h a t f o r a s i n g l e kink centred a t

z = z I n i m p l i c i t form i t i s given by 0'

U

where the s igns correspond t o p o s i t i v e o r negat ive kinks, respec t ive ly . For "smooth"

p o t e n t i a l s f o r which the maximum value Umax coincides with U(a/2), where a i s the

d i s tance between neighbouring P e i e r l s va l leys and the height of a s i n g l e kink, we

may define the kink width a s

Within t h e presen t t h e o r e t i c a l framework ( b r i e f l y c a l l e d the "line-tension

model") the energy of a s ing le kink is given by u=a

Page 7: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-206 JOURNAL DE PHYSIQUE

Under an app l i ed shear s t r e s s U(O<]Ul<a ) Eq.(3) possesses a s o l u t i o n which P

corresponds t o a p a i r of kinks i n uns tab le equilibrium.The f o r c e s exer ted on the

kinks by the app l i ed s t r e s s , f abo, tend t o move the kinks a p a r t . A conf igura t ion

of unstable equilibrium e x i s t s i n which these f o r c e s j u s t balance t h e a t t r a c t i o n bet-

ween the kinks of opposi te s igns . The enthalpy d i f f e r e n c e between a kink p a i r i n

t h i s conf igura t ion and t h a t of a s t r a i g h t d i s l o c a t i o n l i n e a t u=uo c o n s t i t u t e s the

saddle-point enthalpy f o r the formation of a kink p a i r , HkD. Within the p resen t

framework we have u=umax

H = 2(2sd)112 1 kp

[u(u) - U(uo) - (U - U ~ ) ~ C J ] " ~ du ,

where the upper l i m i t of the i n t e g r a t i o n fol lows from

U(umax) - U(uo) - (umax - uo)bb = 0 . ( 9 )

I n i n t e r n a l f r i c t i o n experiments we a r e p a r t i c u l a r l y i n t e r e s t e d i n low s t r e s s e s .

For 5/op << l Eq. ( 7 ) may be w r i t t e n a s

c l U H = 2Hk { l - - kp

[ l - ~ n ( c ~ o / ~ ~ ) l + . . . . . l , (10)

where c l and c2 a r e numerical f a c t o r s t h a t depend on the choice of the p o t e n t i a l

U(u) . For t h e so-cal led Eshelby p o t e n t i a l l ) [27]

these f a c t o r s a r e given by L281

C , = 2c2 = 3-'12/2 , the enthalpy of format ion of a s i n g l e kink by

-1 14 Hk = 3 a ( a b 0 ~ ~ ~ / 2 ) " ~ ,

and t h e kink width by

wk = 2a2 Sd/ 3Hk

c o n t r a s t t o t h e s inuso ida l p o t e n t i a l

U(u) = U(o) + abop [ l - cos(2'rru/a)l /2'rr (11)

the Eshelby p o t e n t i a l (12) does n o t desc r ibe i n an a n a l y t i c a l way t h e ~ e r i o d i c i t y of

U(u) bu t i s wel l s u i t e d f o r t r e a t i n g the e f f e c t of an app l i ed shear s t r e s s on the

i n t e r a c t i o n of a air of c l o s e kinks. For l a t e r use (Sect. 3) we record f o r the

s inuso ida l p o t e n t i a l ( 1 1)

Page 8: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

Eq. ( l ) may be used t o determine the v i b r a t i o n a l spectrum associated with a

s ing le kink o r with the saddle-point configurat ion of a kink p a i r and t o ca lcu la te

the entropy of kink formation. For d e t a i l s and r e s u l t s the reader i s re fe r red to the

l i t e r a t u r e [13,221. The r e s u l t s f o r i s o l a t e d kinks w i l l be used l a t e r . From ( 1 ) we

may f u r t h e r deduce t h a t the "veloci ty of sound" of small perturbations propagating

along a d i s loca t ion l i n e is

Since (1) is Lorentz-invariant, we may define the r e s t mass % of an i s o l a t e d kink

according t o

% = H ~ I C ; = Y ~ H ~ / s ~ (17)

The preceding t h e o r e t i c a l descr ip t ion corresponds t o l i n e I1 of Table I. We

have disregarded the a tomis t ic s t r u c t u r e of the c r y s t a l i n the d i r e c t i o n of the

P e i e r l s val leys(1ine 111 of Table I ) . This has t h e consequence t h a t the energy of a

kink i s independent of i t s pos i t ion z along the d i s loca t ion . The f a c t t h a t kinks

a r e shor t segments of an otherwise s t r a i g h t d i s loca t ion embedded i n a three-dimen-

s iona l e l a s t i c continuum ( l i n e I of Table I) i s taken i n t o account only through the

d i s loca t ion l i n e tension Sd and t h e e f f e c t i v e mass ydper u n i t d i s loca t ion length.

For some purposes, i n p a r t i c u l a r f o r the ca lcu la t ion of the kink--kink i n t e r a c t i o n

a t large separa t ions , t h i s i s not s u f f i c i e n t , s ince i t does not adequately describe

the e l a s t i c i n t e r a c t i o n between kinks.

It i s easy to show t h a t f o r l a rge separat ions the e l a s t i c i n t e r a c t i o n energy

must vary a s the inverse dis tance between kinks on the same d i s loca t ion [13,22,27,

29,301. For e l a s t i c a l l y i s o t r o p i c media with shear modulus G and Poisson 's

r a t i o v the force between kinks of height a a t separat ions X >> a reads [13,22,27,

29,301

=& 2 -[(l+v)cos2 a 2 0 + (l-2v)sin2 01 (18) 4~ 1-v 2x2

where 8 denotes the angle between the d i s loca t ion l i n e and the C signs r e f e r t o kinks

of equal o r opposite s igns , respec t ive ly . The genera l iza t ion of (12) t o an i so t rop ic

e l a s t i c i t y i s [31, 321 a2 F = sel ( 18a)

O 2 2 Here SE1 is t h e prelogarithmic f a c t o r of the e l a s t i c p a r t of the d i s l o c a t i o n l ine-

tension. I t may be w r i t t e n i n the form

where f i s independent of the d i s loca t ion s t reng th b. For a given g l ide plane

f=f(Cijkl,@) depends only on the 2nd-order e l a s t i c constants Cijkl of the c r y s t a l

and on the characterof the d i s loca t ion l i n e .

Page 9: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-208 JOURNAL DE PHYSIQUE

abcx abcx

Fig.2: The t o t a l enthalpy of two kinks of opposi te s i g n ( f u l l l i n e ) and the i n t e r a c t i o n enthalpy H i n t (X) a s a func t ion of the kink separa t ion X. The en- thalpy of kink-pair fo r - mation Hkp is ind ica ted ; the kink separa t ion X I corresponds t o unstable equi l ibr ium.

0 l l XI kink separatio" X

i s given by -abos. The superpos i t ion of these two p o t e n t i a l ene rg ies ( f u l l l i n e )

leads t o a maximum a t X l

x1 = (asE1/2b upr2 9 (20)

corresponding t o a kink-pair format ion enthalpy

Eq.(21) corresponds t o t h e f i r s t term of a "multipole expansion". At smal l

separa t ions and l a r g e o i t ceases t o be v a l i d . Then the e l a s t i c i n t e r a c t i o n between

the kinks depends n o t on ly on a and b but i n a d d i t i o n on the shape of t h e kinks

( c f . [221). I n th$ p resen t context , however, i t is no t worthwhile t o work t h i s o u t

i n d e t a i l s i n c e f o r sllall kink separa t ions the e l a s t i c i n t e r a c t i o n i s small compared

with t h a t given by Eq.(8) of the l ine - t ens ion model.

The stress 3 which separa tes t h e range of v a l i d i t y of (8) and (21) may be

found by equa t ing (10) and (21). The Eshelby p o t e n t i a l (12) gives us [28]

I f we choose, e .g . , sd/SZ1 = 4.1, Eq. (22) has t h e s o l u t i o n ;/c$ = 0.14, ln(3*4-+/;)

= 5. Fig. 3 shows t h e r e l a t i o n s h i p between a/% and H /2Hk f o r t h i s p a r t i c u l a r case . kp

A d i f f e r e n t choice of sd/SZ1 o r U(u) does n o t change t h e func t iona l form of t h i s re-

l a t i o n s h i p appreciably. For o + u p Eq.8 e x h i b i t s a "quasi-universal" behaviour i n the

Page 10: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

Fig.3: The re la t ionsh ip between the resolved shear s t r e s s a ( i n u n i t s of the P e i e r l s s t r e s s op) and the en- thalpy of formation of a kink p a i r H ( i n u n i t s of the formation enthalpy kp of a s ing le kink, Hk) according t o Eq.(lO) ( l ine- tension model) and Eq. (21) (long-range e l a s t i c i n t e r a c t i o n ) . The s t r e s s 3 a t which the predicted re la t ionsh ip ( f u l l l i n e ) changes over

0 1 from Eq.(lO) t o Eq.(21) i s indicated. '-',p"%

where the choice of U(u) a f f e c t s only the numerical value of c3 ( f o r (12): 2) c3 = (6 /5) (2/3) 5j ' = 0.73).

For small kink separat ions i t i s not possible t o define the kink separat ion i n

a unique manner. In Fig.2 t h i s i s indicated by the dashed curve. Fortunately, the

physical conclusions t o be drawn from the H (0) re la t ionsh ip a r e unaffected by kp

t h i s uncertainty.

2. The Kink-Pair Formation Rate.- The ca lcu la t ion of the r a t e of formation of kink

p a i r s on an otherwise s t r a i g h t d i s loca t ion l i n e of u n i t length, F, i n the following

b r i e f l y ca l led the kink-pair formation r a t e , i s beset by the problems of r a t e theory

i n general . A theore t ica l framework capable of giving p r a c t i c a l r e s u l t s and being

appl icable under a l l physical condit ions does not e x i s t . The two most successful

approaches a r e ( i ) an adaption of the t r a n s i t i o n s t a t e theory, o r i g i n a l l y developed

f o r the ca lcu la t ion of chemical reac t ion r a t e s and going back t o the work of

H.PELZER and E.WIGNER [34], and ( i i ) the d i f fus ion theory based on the work of

H.A.KRAMERS [ 3 5 ] . For a general discussion of the theory of kink-pair formation

r a t e s t h e reader i s re fe r red to A.SEEGER and P.SCHILLER [13 ] .

The common idea behind both approaches i s t h a t the degrees of freedom of the

e n t i r e c r y s t a l a r e t rea ted by the usual s t a t i s t i c a l mechanics of harmonic o s c i l l a t o r s

with two exceptions: The mode describing tke change i n the kink-kink separat ion X

and the mode associated with the t r a n s l a t i o n of a kink p a i r of fixed separa t ion X

along the d i s loca t ion l i n e . By well-known arguments the maximum i n the energy-

dis tance diagram of the f i r s t of these modes ( F i g . 2 ) corresponds t o the saddle-point

i n the many-dimensional configurat ional space separat ing a kink-free d i s loca t ion

from the region containing a p a i r of kinks of opposite s ign. The two theore t ica l

approaches mentioned above d i f f e r i n the assumptions made concerning the way i n

which the system crosses the above-mentioned saddle-point.

2 ) ~ e take the opportunity t o c o r r e c t an e r r o r i n r e f . [28]: As pointed out by E.MANN,

i n Eq.(ba) t h e term -3fi2 must be replaced by -3fi4. This e r r o r has no o ther conse-

quence f o r t h e main p a r t of [28] but a f f e c t s the Appendix of [28], i n p a r t i c u l a r

the exponent i n t h e re la t ionsh ip (23) of the present paper. The exponent 5/4 given

above i s i n agreement with t h a t recen t ly obtained by MORI and KATO i331.

Page 11: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-210 JOURNAL DE PHYSIQUE

(i) The t r a n s i t i o n s t a t e theory makes the assumption t h a t once the system has

reached the saddle po in t with a v e l o c i t y po in t ing from the "no-kink" region t o the

"kink-pair" region, kink-pair formation takes p lace . The p r o b a b i l i t y t h a t the system

"back-crosses" t h e saddle po in t i s neglected. The kink-pair formation r a t e i s then

given

exp [-H (O)/kT] h2 kP

denote the energy eigen-values of t h e harmonic o s c i l l a t o r s of c i r c u l a r frequency mm

assoc ia ted with an unkinked d i s l o c a t i o n ,

those assoc ia ted with d i s l o c a t i o n s con ta in ing a kink p a i r i n t h e saddle-point con-

f i g u r a t i o n (3'1 = Planck ' s constant h divided by 2n). As a compensation f o r t h e two

non-vibrat ional modes mentioned above, the sum ( o r product) over m con ta ins two more

terms than t h a t over m".

As mentioned i n Sect .2 , wi th in the framework of t h e l ine - t ens ion model the

f requencies w and w;h,,, which depend on U, may be ca lcu la ted from (1 ) . For the in- m t e r n a l - f r i c t i o n phenomena t o be discussed i n t h e p resen t paper i t i s an admissable

s i m p l i f i c a t i o n t o d i s regard the stress-dependence of w and wuand hence t h a t of the

kink-pair formation entropy. The m'' sums and products may then be r e l a t e d t o the

equ i l ib r ium ( l i n e a r ) dens i ty

( ~ n r n ~ k ~ ) ~ " IISinh(.hwm/2kT) = exp(-Hk/kT) 2 "

h m II: Sinh(*w;. /2kT)

of non-interact ing kinks of a given s i g n , s i n c e the products i n (24) a r e the

squares of those i n (27) . Here U;, r e f e r s t o an i s o l a t e d kink, the product over m'

containing one term l e s s than t h a t over m. For high temperatures (charac te r i zed by

5wm/kT << 1 , hw:/k~ << 1 f o r those w and W" t h a t d i f f e r appreciably from each o t h e r )

t h e e v a l u a t i o n of t h e products l eads t o

Page 12: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

f o r t h e s i n u s o i d a l p o t e n t i a l ( I I ) , and t o

f o r the Eshelby p o t e n t i a l (12) . I n (28b) ad denotes the in te ra tomic d i s t a n c e a long

t h e d i s l o c a t i o n l i n e .

I n s e r t i o n of (27,28) i n t o (24) g ives us f o r t h e kink-pair format ion r a t e i n the

t r a n s i t i o n s t a t e theory

Here Hint r e f e r s t o the saddle-point s e p a r a t i o n o f the kinks , (29a) t o t h e s inus-

o i d a l p o t e n t i a l , (29b) t o the Eshelby p o t e n t i a l .

( i i ) The s t a r t i n g equa t ion of t h e d i f f u s i o n theory i s a p a r t i a l d i f f e r e n t i a l

equat ion f o r the p a r t i c l e d e n s i t y p (px ,x , t ) i n t h e phase space of t h e s p a t i a l co-

o r d i n a t e x d e s c r i b i n g t h e kink-kink s e p a r a t i o n and the momentum px a s s o c i a t e d wi th

i t [35]. The theory is based on t h e phys ica l pictume t h a t , i n a d d i t i o n t o the f o r c e s

g iv ing r i s e t o Hint(x)(Fig.2), t he k i n k a r e s u b j e c t t o Brownian f o r c e s due t o t h e i r

i n t e r a c t i o n wi th l a t t i c e v i b r a t i o n s . The e f f e c t s o f the Brownian f o r c e s may be des-

c r ibed i n terms of a k ink mobi l i ty pk o r a kink v i s c o s i t y ]/vk. By the ~ i n s t e i r r

Nernst r e l a t i o n s h i p the kink mobi l i ty may be expressed i n terms of t h e k ink d i f f u -

s i v i t y D k = k T v k . (30)

There a r e two l i ~ i t i n g cases i n which t h e number of independent v a r i a b l e s i n

KRAML?RS7 b a s i c p a r t i a l d i f f e r e n t i a l equa t ion may be reduced by one.

( a ) I f t he kink mobi l i ty i s so high t h a t t h e o s c i l l a t i o n s of t h e kinks i n t h e

a t t r a c t i v e p o t e n t i a l formed by the i n t e r a c t i o n of k inks of oppos i t e s i g n a r e only

l i t t l e inf luenced by the Brownian f o r c e s , o r px and X may be r ep laced by t h e a c t i o n

v a r i a b l e I (E) = pXdx . (31)

where t h e i n t e g r a l has t o be taken a long t h e c losed curve i n phase space correspon-

ding t o a f i x e d energy E . As independent v a r i a b l e one may choose energy and time,

and t h e phys ica l problem may be looked upon a s "d i f fus ion and d r i f t of energy". This

i s the view-point adopted by H.DONTH [36] i n h i s theory o f k ink-pair format ion, a l -

though a s h i s s t a r t i n g p o i n t he d id not use KRAMERS' paper [35] b u t e a r l i e r work by

KOLMOGOROFF [37] and GEBELEIN [38] .

Page 13: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

CS-2 12 JOURNAL DE PHYSIQUE

E.MANN [391 has r e c e n t l y shown t h a t under the c o n d i t i o n H >> kT t h e kink- kp

p a i r format ion r a t e f o r h igh k ink m o b i l i t i e s is given by

8Hkwk r =- ( S ) ' " (p:q)? exp ( l l i n t / k ~ ) ,

Dk"k

Here and l a t e r i n (34) the same assumptions f o r t h e c a l c u l a t i o n of the ent ropy terms

have been made a s i n the t r ea tmen t ( i ) .

For temperature-independent k ink d i f f u s i v i t i e s Dk t h e temperature dependence

of (29) and (32) a r e the same. The r e s u l t s of t h e t r a n s i t i o n s t a t e theo ry and t h e

high-mobi l i ty d i f f u s i o n theory ag ree wi th each o t h e r i f we make t h e i d e n t i f i c a t i o n

Dk = ~ w ~ ( B ~ / % ) ' : ' = 8wkco (33)

( b ) I f t h e e f f e c t of t h e Brownian f o r c e s on t h e k ink v e l o c i t y exceeds those of

t h e "ex te rna l " f o r c e s ( i . e . , i f t h e k ink m o b i l i t y i s s m a l l ) , Kramers' equa t ion

s i m p l i f i e s t o a so-calledSmolukowskiequation ( d i f f u s i o n equa t ion wi th d r i f t term)

wi th the s p a t i a l coord ina te X a s an independent v a r i a b l e . For t h e p h y s i c a l s i t u a t i o n s

t r e a t e d i n t h i s paper , t h i s is the most important case . I t has been d i scussed i n de-

t a i l by SEEGER and SCHILLER [13], STENZEL [40], ENGELKE [441, and MANN [391. I f t h e

assumption H >> kT i s made t h e kink-pai r format ion r a t e may be expressed i n terms kp

of quadra tu res . The f u r t h e r assumption t h a t t he sadd le p o i n t occur s i n t h e regime of

v a l i d i t y of (21) l e a d s t o the closed-form express ion 1391

where

and Kn(y) denotes t h e MacDonald (modified Hankel) f u n c t i o n of o r d e r n. Important

s p e c i a l ca ses a r e y >> 1, KI (y) " ( ~ r / 2 ~ ) ~ ' ~ e x ~ ( - ~ ) , l ead ing t o [13,401

and y << 1, K1(y) y-l, l ead ing t o [42, 431

-'3/ 2 We no te t h a t i n (36) t h e pre-exponent ia l f a c t o r depends on temperature a s (kT) , whereas i n (37) i t depends on T a s (kT)-'.

3.) The Dis loca t ion Veloci ty . - The v e l o c i t y vd o f a d i s l o c a t i o n proceeding perpen-

d i c u l a r t o the d i r e c t i o n o f i t s P e i e r l s v a l l e y s by success ive format ion o f k ink

p a i r s depends on t h e h e i g h t a of t h e k inks , t h e k ink-pai r format ion r a t e r , and the

Page 14: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

distance by which the two members of a kink p a i r separate before they cease t o move.

This may e i t h e r be the case when they meet obs tac les along the d i s loca t ion l i n e s t h a t

a r e impenetrable t o kinks, o r when they annih i la te with o ther kinks on the same d i s -

locat ion l i n e . The d i s loca t ion ve loc i ty w i l l be determined by the shor te r of the two

d i s tances , the separa t ion L of the obstacles o r the separat ion $ of the two kinks

i n a p a i r before t h e i r ann ih i la t ion with o ther kinks, so t h a t we expect X L

The separa t ion % equals the d i s tance t h a t two kinks of opposite s ign d r i f t towards

each o ther during the mean l i fe t ime tk of the kinks. I t i s thus given by 3)

xk = 2uk a b U tk (39)

I n a s t a t i o n a r y s i t u a t i o n the mean l i f e t i m e tk of the kinks must be equal t o the

average time f o r the nucleat ion of a f resh kink p a i r on a d i s loca t ion segment of

Length %, i . e . 4)

Hence the f i n a l r e s u l t f o r xk reads

I n s e r t i o n of (41) i n t o (38) gives us

with the l imi t ing cases (xk << L)

vd = a(2pkab0r)

and (% >> L)

v d = a L T

In mate r ia l s on which measurements of d i s loca t ion v e l o c i t i e s under the a c t i o n

of a known resolved applied shear s t r e s s U a re ava i lab le (e.g., Ge and S i , see

Sect.5) Eq.(42) may be compared d i r e c t l y with experiment.

3 ) ~ o r s impl ic i ty we disregard the f a c t t h a t d i s loca t ions anchored i n d i f f e r e n t

P e i e r l s va l leys contain a l s o geometrical kinks. Geometrical kinks w i l l be t rea ted

separa te ly a t the end of Sect. 4.

4 ) ~ s was pointed out t o the author by E.MANN, the corresponding expression i n

r e f . [42] i s i n e r r o r by a f a c t o r of two.

Page 15: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-2 14 JOURNAL DE PHYSIQUE

I n i n t e r n a l f r i c t i o n experiments the a c t i n g s t r e s s i s o f t e n s o low t h a t t he

equ i l ib r ium d e n s i t y of t he k inks i s mainta ined. We then have

~ ~ ~ ~ ~ t i ~ ~ o f (43) i n t o (41) ~ i v e s us (37) , a s we expect from the assumptionsmade.

4 . ) Re laxa t ion S t r eng th and Relaxat ion Time.- The c a l c u l a t i o n of the i n t e r n a l f r i c -

t i o n and the modulus d e f e c t on the b a s i s of t he model developed s o f a r i s a formi-

dable t a s k . Under c e r t a i n s impl i fy ing assumption a s o l u t i o n was given by H.ENGELKE

[41,44,45] and reviewed elsewhere P92. For t h e p r e s e n t purposes i t s u f f i c e s t o de-

r i v e some s imple e s t i m a t e s capable of b r ing ing o u t t h e dependence of t h e r e l a x a t i o n

s t r e n g t h and r e l a x a t i o n t ime on temperature T and on the o b s t a c l e s e p a r a t i o n L.

The r e l a x a t i o n s t r e n g t h i s p r o p o r t i o n a l t o the a r e a A swept ou t by t h e d i s -

l o c a t i o n segments. Following A.SEEGER, H.DONTH and F.PFAFF [46] the e s t i m a t e (which

i n f a c t c o n s t i t u t e s a n upper l i m i t f o r t h e a r e a t h a t a d i s l o c a t i o n segment wi th

l i n e t ens ion Sd may sweep o u t under t h e app l i ed s h e a r s t r e s s )

may be ob ta ined . I f A denotes the t o t a l l eng th p e r u n i t volume of those d i s l o c a t i o n s

t h a t p a r t i c i p a t e i n t h e r e l a x a t i o n p rocess and i f ?I denotes the e l a s t i c modulus

a p p r o p r i a t e f o r the mode of deformat ion employed, we have f o r t h e r e l a x a t i o n s t r e n g t h

A = A2 b2 ~ 1 1 2 5 ~ (45)

We e s t i m a t e the r e l a x a t i o n time T by c a l c u l a t i n g t h e time r equ i red by a d i s l o c a t i o n

moving wi th the v e l o c i t y v ( L ' ) and sweeping o u t t h e a r e a A i n the manner i n d i c a t e d d i n F ig . 4 . This g ives us w i t h t h e h e l p of (38 )

----- 7------ anchortng anchor~ng

polnt point

Fig.4: A s imple model f o r e s t i m a t i n g t h e r e l a x a t i o n time. F u l l l i n e : D i s loca t ion f u l l y bowed o u t under a p p l i e d s t r e s s U. Dashed l i n e s : In t e rmed ia t e c o n f i g u r a t i o n s corresponding t o d isplacements U of the c e n t r e of t he d i s l o c a t i o n segment. The d i s - l o c a t i o n v e l o c i t y i s assumed t o be given by vd(LT) , wi th L ' (u) i n d i c a t e d i n the f i g u r e .

Page 16: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

Among the i n t e r e s t i n g fea tures of (45) is t h a t the re laxa t ion s t reng th i s pre-

d ic ted t o be independent of temperature and ( f o r a given t o t a l Length of d i s loca t ions)

proport ional t o L2. Eq. (46) exh ib i t s a t r a n s i t i o n from a l i n e a r dependence of the

re laxa t ion time f o r small L t o a quadrat ic one f o r l a r g e L . This t r a n s i t i o n i s accom-

panied by a change i n the temperature dependence of -c.

I n a c r y s t a l there w i l l be i n general a f a i r l y wide d i s t r i b u t i o n of L values.

Following G.SCHOECK 1471 we may est imate the i n t e r n a l f r i c t i o n Q-' and the modulus

defect by making the assumption (which i s not q u i t e c o r r e c t ) t h a t f o r a f ixed length

L we have a Debye re laxa t ion process and i n t e g r a t i n g over the L-dis tr ibut ion. We de-

noteby p ( L ) ~ L the number of d i s loca t ion segments p e r u n i t volume with obs tac le L

separat ion between L and L + dL cont r ibu t ing t o the re laxa t ion process , so t h a t the

d i s loca t ion length per u n i t volume i s

n = j pL(L)LdL . 0

The i n t e r n a l f r i c t i o n measured a t a c i r c u l a r frequency W is then given by

and the corresponding e l a s t i c modulus by

where T(L) i s t o be taken from (46) and where MU denotes the unrelaxed e l a s t i c modu-

l u s . The i n t e g r a l m

which a r i s e s i f pL(L) CC e x p ( - ~ / i ) and T a L2, has been evaluated n u m r i c a l l y [47]. - 2

I t gives a maximum value I = 2.2 a t (W?) = 7 . 10 , where 5 = ; (L). max A s remarked above, i n i n t e r n a l f r i c t i o n experiments we o f t e n encounter s i tua-

t ions where the s impl i f i ca t ions (37) and (43) a r e appl icable . Then (46) takes the

form

Eq.(50) shows t h a t a s l imi t ing cases the re laxa t ion time T may e x h i b i t two d i f f e r e n t

dependences on temperature and obs tac le dis tance, namely i n the case p E q ~ << 1

( i . e . , low temperatures)

't .c L ( k ~ ) ' exp(2Hk/kT)/% ,

i n the case ~ T L >> 1 ( i . e . , high temperatures)

Page 17: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-2 16 JOURNAL DE PHYSIQUE

The apparent a c t i v a t i o n en tha lp ies

a r e given by

d ln T Heff "

d( l/kT)

i n the case of p E q ~ c < 1 , and by

dlnDk Heff = Hk - - - -

d(l/kT) 2 kT

i n the case p E q ~ > > 1 .

I n those cases i n which Hk i s not small compared with the o ther terms, (51a)

and (52a) show the remarkable fea ture t h a t the a c t i v a t i o n enthalpy is higher a t lower

temperatures. The reason f o r t h i s i s t h a t a t low temperature the d i s tance a newly gene-

ra ted kink has t o t r a v e l u n t i l i t i s stopped a t an obstacle i s independent of tempera-

t u r e , whereas a t high temperatures the kink may recombine with kinks of opposite s ign,

the dens i ty of which increases with increasing temperature.

Another important spec ia l case is t h a t i n which kink-pair formation may be d i s -

regarded a l toge ther (e.g., because of low temperatures) and we have t o consider only

a temperature-independent dens i ty pk of geometrical kinks. This case has been t rea ted

by A.D.BRAILSFORD [23] , C.kTiiTHRICH [25], and A.SEEGER and C.WUTHRICH [ 4 8 ] . I f these

r e s u l t s a r e expressed i n terms of the kink d i f f u s i v i t y , an approximate expression f o r

the re laxa t ion time is

where L denotes again the d i s tance between the obs tac les . The re laxa t ion s t reng th i s

given by

8 ~~b~ A =--F - a 2 ~ 2 p k ~ c o s 2 @ . (55) kT

In (55) $ denotes the angle between the d i r e c t i o n of the P e i e r l s va l ley and the aver-

age d i r e c t i o n of the d i s loca t ion l i n e , which i s determined by the ~ o s i t i o n s of the ob-

s t a c l e s .

An L d i s t r i b u t i o n may be handled a s above and leads t o the i n t e g r a l ( 4 9 ) . In

add i t ion one has t o average over the angle @, taking i n t o account t h a t the densi ty of

geometrical kinks i s given by

pk = s i n $/a (56)

5.)The Kink D i f f u s i v i t y Dk.- The most important parameter i n the general descr ip t ion

of Sect.4 of re laxa t ion processes involving kink-pair formation i s the kink d i f f u s i v i t y

Dk. I t contains the "physics" of the re laxa t ion process. Its ca lcu la t ion requ i res us

t o leave leve l I1 of the h ie ra rch ies of Table I. E.g., Dk may be control led by the

kink p o t e n t i a l c h a r a c t e r i s t i c of l eve l 111, o r i t may be determined by the i n t e r a c t i o n

Page 18: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

of k inks wi th f o r e i g n atoms o r l a t t i c e v i b r a t i o n s . Such i n t e r a c t i o n s can on ly be un-

ders tood q u a n t i t a t i v e l y i f we t ake i n t o account t h a t a k ink i s a p e r t u r b a t i o n on an

otherwise s t r a i g h t d i s l o c a t i o n l i n e t h a t i s endowed wi th a long-range s t r a i n f i e l d

dec reas ing w i t h the i n v e r s e second power of t h e d i s t a n c e from t h e kink. This means

t h a t we have t o go back t o l e v e l I of Table I .

An exhaus t ive t h e o r e t i c a l t r ea tmen t of D would be beyond the scope of the pre- k

s e n t paper . We s h a l l cover only some examples of ( i ) pure c r y s t a l s and ( i i ) i n t e r -

a c t i o n s wi th f o r e i g n i n t e r s t i t i a l atoms.

( i ) Pure Crys t a l s . - I n pure c r y s t a l s t h e d i f f u s i v i t y Dk ( o r mob i l i t y uk = Dk/kT) of

k inks on d i s l o c a t i o n l i n e s wi th a l a r g e kink p o t e n t i a l is determined by t h e r a t e by

which k inks w i l l overcome t h e kink p o t e n t i a l . A complete t h e o r e t i c a l t r ea tmen t of

t h i s r a t e has n o t y e t been given, b u t we have good reasons t o b e l i e v e t h a t t he ana-

logy w i t h the jumps of atomic d e f e c t s i n c r y s t a l s i s q u i t e c l o s e . I n the s p i r i t of

t h e t r a n s i t i o n s t a t e theo ry we may in t roduce t h e f r e e en tha lpy of k ink mig ra t ion

a s the d i f f e r e n c e between the f r e e e n t h a l p i e s when the k inks i s i n t h e saddle-point

c o n f i g u r a t i o n and when i t i s i n the p o s i t i o n of s t a b l e e q u i l i b r i u m (excluding the de-

g ree of freedoms l ead ing ove r the sadd le -po in t s i n the second c a s e ) . I f V: denotes

t h e a t t empt f requency wi th which t h e k ink v i b r a t e s i n i t s s t a b l e p o s i t i o n towards t h e

saddle-point and ad t h e pe r iod of t h e k ink p o t e n t i a l , t h e t r a n s i t i o n s t a t e theory

g ives us under the assumption >> kT k

A s i m i l a r expres s ion wi th the same temperature dependence may be ob ta ined from the

d i f f u s i o n theory under t h e assumption t h a t t he mob i l i t y of a k ink i n i t s p o t e n t i a l

w e l l between two neighbour ing saddle-points i s h igh .

Simple p h y s i c a l arguments i n d i c a t e t h a t t he h e i g h t of the k ink p o t e n t i a l , t he M k ink mig ra t ion en tha lpy Hk, should depend ve ry s t r o n g l y on t h e n a t u r e of t h e chemical

bond. H; i s s t r o n g l y r e l a t e d t o the width of the k inks . I f t h e k ink width wk i s M much l a r g e r than t h e p e r i o d i c i t y of t he k ink p o t e n t i a l , Hk w i l l be sma l l , s i n c e t h e

c o n t r i b u t i o n s of t h e v a r i o u s atoms n e a r t h e k ink c e n t r e average o u t t o a l a r g e e x t e n t .

The k ink p o t e n t i a l can only be l a r g e i f the k ink width i f comparable w i t h o r sma l l e r

than t h e pe r iod of the k ink p o t e n t i a l ("abrupt k inks" [23,30]). The kink width , i n

t u r n , i s r e l a t e d t o the p e r i o d i c p a r t of t h e P e i e r l s p o t e n t i a l (comp. Eq . (6 ) ) . This

means t h a t we expec t a l a r g e kink p o t e n t i a l only i n d i s l o c a t i o n s and c r y s t a l s t r u c -

Cures wi th h igh P e i e r l s b a r r i e r . For t h i s r eason the a t t empt [23] t o a t t r i b u t e t h e

BORDONI r e l a x a t i o n i n f c c me ta l s t o the motion of ab rup t geomet r i ca l k inks had t o be

r e f u t e d 1131. Es t ima tes by G.SCHOTTKY [49] indicated t h a t i n f c c me ta l s and i n f a c t i n

most d i s l o c a t i o n s i n meta ls the k ink p o t e n t i a l i s s o smal l t h a t an obse rvab le r e l axa -

t i oh due t o the motion of geomet r i ca l k inks cannot be expected a t temperatures above 1K

Page 19: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-2 18 JOURNAL DE PHYSIQUE

As p o i n t e d o u t by A.SEEGER and B.~ESTAK [24] t h e r e i s one excep t iona l ca se

where one might e x p e c t , f o r t h e o r e t i c a l r ea sons , a f a i r l y h igh k ink mig ra t ion en tha lpy M .

Hk 1n me ta l s . Th i s excep t ion concerns k i n k s i n screw d i s l o c a t i o n s w i t h Burgers v e c t o r s

b = a <l 11 >/2 i n bcc me ta l s . P .B.HIRSCH [ 5 0 1 recognized t h e p o s s i b i l i t y t h a t because

o f t h e t h r e e f o l d symmetry o f < l 11> axes i n c u b i c c r y s t a l s t hese d i s l o ~ a t i o ~ might

n o t have a wel l -def ined g l i d e p l ane and t h a t t hey may hence be s e s s i l e . For t h e pur-

pose o f t he p r e s e n t d i scuqs ion t h i s i s e q u i v a l e n t t o a h igh P e i e r l s s t r e s s ap. With

c e r t a i n mod i f i ca t ions ( s e e , e . g . , [481) t he view-point of HIRSCH has proved c o r r e c t .

Computer s imu la t ion s t u d i e s by CH.WuTHRICH l511 on an a t o m i s t i c model f o r &Fe suppor t

t h e s u g g e s t i o n of SEEGER and SESTAK 1241 on t h e k ink mig ra t ion en tha lpy i n ao<111>/2

screw d i s l o c a t i o n s i n g e n e r a l terms wi thou t be ing a b l e t o make q u a n t i t a t i v e p red ic -

t i o n s .

I n t he ca se of screw d i s l o c a t i o n s i n bcc me ta l s t h e h igh P e i e r l s b a r r i e r i s due

t o s p e c i a l c i rcumstances r e l a t e d t o symmetry and n o t t o chemical bonding. (Non-screw

d i s l o c a t i o n s i n bcc me ta l s o r screw d i s l o c a t i o n s w i th o t h e r Burgers v e c t o r s posses s

"normal" P e i e r l s s t r e s s e s . ) The s i t u a t i o n i s d i f f e r e n t i n c r y s t a l s w i th d i r e c t i o n a l

bonds, i . e . , va l ence c r y s t a l s such a s germanium and s i l i c o n .

There i s cons ide rab le expe r imen ta l evidence , s t a r t i n g wi th t h e work of DASH[52]

on d i s l o c a t i o n l i n e s i n S i deco ra t ed wi th Cu and l a t e r s u b s t a n t i a t e d by t r ansmis s ion

e l e c t r o n microscopy t h a t d i s l o c a t i o n s i n Ge and S i l y i n g a long <110;. d i r e c t i o n ~ p o s s e s s

h igh P e i e r l s b a r r i e r s [531. The o r i g i n of t h i s i s thought t o l i e i n t h e cova len t na-

t u r e o f bonding i n Ge and S i [54,55]. It is t h e r e f o r e r ea sonab le t o assume t h a t Ge

and S i p o s s e s s n o t on ly h igh k ink format ion e n e r g i e s bu t t h a t t h e r e may a l s o be a sub-

s t a n t i a l energy b a r r i e r f o r t h e mig ra t ion o f k inks a long d i s l o c a t i o n l i n e s . M

I f t he k ink m i g r a t i o n en tha lpy Hk i s l a r g e enough f o r t he k ink mig ra t ion b a r r i e r

t o show up expe r imen ta l ly , t h e k ink d i f f u s i v i t y (58) w i l l i n gene ra l be sma l l enough

f o r t h e d i f f u s i o n theo ry of k ink -pa i r format ion t o be a p p l i c a b l e . I n S i and Ge the

k ink format ion energy is s o h igh t h a t a t t h e tempera tures a t which d i s l o c a t i o n velo-

c i t i e s a r e measured the c o n d i t i o n

is u s u a l l y f ~ l f i l l e d . ~ ) Th i s means t h a t a t s u f f i c i e n t l y low s t r e s s e s ( 3 7 ) and (42b)

5 ) ~ a k i n g t h e work of H.SCHAUMBURG [561 on 60' d i s l o c a t i o n s i n Ge a s an example, t h e

h i g h e s t tempera ture used i s about 800 K. With Hk 1 .3 e V (28a ) g i v e s a n e q u i l i b r i u m

d i s t a n c e between k inks of the o r d e r o f magnitude of 1 cm, i . e . , of t h e specimen di -

mensions.

Page 20: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

hold, leading t o

rd = 2 Dk a2 b L (pzqf a/kT (60)

The experimental r e s u l t s reported on Ge and S i approach indeed a l i n e a r dependence

of the d i s loca t ion v e l o c i t i e s on s t r e s s a t low s t r e s s e s and high temperatures. From

(60) follows the e f f e c t i v e a c t i v a t i o n enthalpy of d i s loca t ion motion

A t s u f f i c i e n t l y high s t r e s s e s t h e r a t e of kink-pair formation may become so l a r g e t h a t

the kink l i fe t ime i s l imited by the ann ih i la t ion of kinks of opposite s ign. We then

have t o use (42a). Together with (34) and (35) t h i s gives us

- 11 2

vd = 2 s b a u k P? [Y K ~ ( Y ) I (62)

I f y > 0 the s t r e s s dependence predicted by (62) i s s tronger than l i n e a r . The effec-

t i v e a c t i v a t i o n energy i s given by

For y >> 1 Eq.(63) becomes

M Solving (61) and (64) f o r % and Hk gives us

For a given type of d i s loca t ion se' may be calculated from the e l a s t i c constants , so (1) t h a t from measurements of Heff an: H::; we may determine both the formation enthalpy

Hk and the migration enthalpy H: of kinks. For 60°-dislocations on <I l I > gl ide planes

i n germanium we have sel = 6 ' 10-l0 N (A.KORNER, H.O.K.KIRCHNER, Univers i t l t Wien,

personal communication). From SCHAUMBURG1s L561 observations on such d i s loca t ions

[H!:: = (3.00 k 0 . 2 0 ) e ~ ~ ) , H::: = (1.55 i O.OS)eY] we f i n d f o r Ce Hk=(1.39 i O.25)eY

and Hf: = (0.33 i 0.3)eV. M I n c r y s t a l s i n which Hk i s neg l ig ib ly small the kink d i f f u s i v i t y must be e s t i -

mated by considering the i n t e r a c t i o n between kinks and phonons e x p l i c i t l y [13,57,58].

A t low temperatures one expects pk t o decrease with increasing temperature roughly - 1

a s Eph , where E denotes the phonon energy densi ty. ph

6 ) ~ x t r a p o l a t e d t o o = 0 with the help of Eq. ( 2 1).

Page 21: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-220 JOURNAL DE PHYSIQUE

A t s u f f i c i e n t l y high temperatures the theory pred ic t s T- l , i . e . , a tempera-

ture-independent kink d i f f u s i v i t y Dk. The same temperature dependence follows from

(58) f o r kT >> H: . Calculat ions of the absolute magnitude of vk a r e q u i t e d i f f i c u l t . The est imates

of SEEGER and ENGELKE [ 5 7 ] ind ica te t h a t the condit ions f o r the a p p l i c a b i l i t y of the

d i f fus ion theory of kink-pair formation (see Sect . 2) a r e s a t i s f i e d below about one

f i f t h t o one tenth of the Debye temperature.

( i i ) So l id Solutions.- Foreign atoms i n s o l i d so lu t ion may i n t e r a c t with kinks i n

severa l ways.There may be an a t t r a c t i v e i n t e r a c t i o n between kinks and immobile foreign

atoms, and the l a t t e r may a c t as pinning po in t s for the kinks (see, e.g. ( 5 9 ) ) . Here

we consider the case t h a t on t h e time s c a l e of the i n t e r n a l f r i c t i o n o r re laxa t ion

experiments the fo re ign atoms a r e mobile, i . e . t h a t they can perform a t l e a s t one

d i f f u s i o n a l andlor r o t a t i o n a l jump during a time comparablewith T. We a r e particularly

i n t e r e s t e d i n s o l i d so lu t ions of fo re ign atoms occupying s i t e s with lower symmetry

than the host l a t t i c e , so t h a t the kink-foreign-atom i n t e r a c t i o n may lead t o a re-

d i s t r i b u t i o n of the symrcetry axes of the foreign atoms. I n o rder t o f i x the ideas,

we s h a l l r e f e r s p e c i f i c a l l y t o the "heavy" i n t e r s t i t i a l s oxygen, ni t rogen, and carbon

i n bcc t r a n s i t i o n metals . I n severa l t r a n s i t i o n metals with bcc s t r u c t u r e , i n p a r t i -

c u l a r i n a-Fe and t h e Group-V metals V , Nb, and Ta, these foreign atoms have been

demonstrated t o occupy i n t e r s t i c e s of te t ragonal symmetry. The r e d i s t r i b u t i o n between

in te r ' s t i ces with d i f f e r e n t i y o r ien ted te tragonal axes lead t o the well known

re laxa t ion e f f e c t [60]. I n t h i s p a r t i c u l a r example the elementary atomic jumps involved

i n the Snoek e f f e c t and i n the long-range d i f fus ion a r e the same; hence the a c t i v a t i o n

enthalpy of the Snoek e f f e c t , HS, equals t h a t of long-range migration, HM, of the

i n t e r s t i t i a l atoms.

The i n t e r a c t i o n of the s t r a i n - f i e l d surrounding a kink on a d i s loca t ion with

the mobile i n t e r s t i t i a l atoms i n i t s neighbourhood may give an important contr ibut ion

t o the kink v i s c o s i t y Since the s i t u a t i o n i s p a r t i c u l a r l y simple f o r kinks on

a <111>/2 screw d is loca t ions i n bcc metals we develop the following q u a l i t a t i v e argu-

ments [61] f o r t h i s p a r t i c u l a r case. A q u a n t i t a t i v e , more general treatment w i l l be

given i n a s e r i e s of papers by T.o.OGURTAN1, Z.Q.SUN, and the present w r i t e r .

A t a given d i s tance from a s t r a i g h t screw d is loca t ion along < i l l > the three

possible <loo> axes of the i n t e r s t i c e s with t e t ragona l symmetry a re energe t ica l ly de-

generate. The presence of a kink on the d i s loca t ion destroys t h i s degeneracy and Leads

t o the development of a "Snoek atmosphere1' [62] , i . e . , the three possible <loo> axes

of the i n t e r s t i c e s a r e no longer equal ly populated. When a kink moves along the d i s -

loca t ion l i n e t h i s Snoek cloud exer t s on the kink a res to r ing force which may be re-

presented i n terms of a complex compliance [63]. For a slowly moving kink t h i s leads

t o a dragging force which i s proport ional to the kink ve loc i ty , t o the inverse concen- - 1

t r a t i o n of the i n t e r s t i t i a l s near the d i s loca t ion , Cd , t o DIkT, where D i s the

d i f f u s i v i t y of the i n t e r s t i t i a l atoms, and t o (XI - 12f, where X I and l2 are the

Page 22: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

p r i n c i p a l components of t h e s t r a i n t e n s o r ( e l a s t i c d i p o l e t e n s o r ) of t he i n t e r s t i t i a l s .

I n terms of the k ink d i f f u s i v i t y Dk t h i s means t h a t

S ince the d i f f u s i v i t y of t h e i n t e r s t i t i a l atoms i s w e l l r ep resen ted by

S D = Do exp(- H /kT) (68)

wi th temperature-independent H' and Do, the temperature dependence of k ink d i f f u s i v i t y

i s desc r ibed by an Arrhenius law with apparent a c t i v a t i o n en tha lpy H M k + H . S

- 1 The appearance of the f a c t o r (Cd) r e q u i r e s some comments. Eq.(67) c l e a r l y be-

comes i n v a l i d when Cd t ends towards zero . Then o t h e r mechanisms l i m i t D k , e . g . those

d i scussed f o r pure c r y s t a l s . As a f i r s t approximation we may superimpose t h e k ink

v i scos i t i - e s due t o d i f f e r e n t mechanisms, s o t h a t i n the r eg ion where one mechanism

r e p l a c e s ano the r r e c i p r o c a l d i f f u s i v i t i e s should be added.

We t r e a t t h e temperature dependence o f Cd by means of a s imple model used i n a

s i m i l a r con tex t by R.deBAT1ST [64]. The model assumes t h a t we may d i v i d e t h e s i t e s

a v a i l a b l e t o the fo re ign .a toms i n t o bulk s i t e s and d i s l o c a t i o n s i t e s w i t h a f r e e B

en tha lpy of b inding Gd. We denote the number of a v a i l a b l e o r occupied bulk s i t e by

nb o r Nb, and the number of a v a i l a b l e o r occupied d i s l o c a t i o n s i t e s by nd o r Nd

( say, p e r u n i t volume). S t r a i g h t forward s t a t i s t i c a l thermodynamics g i v e s us 1641

o r , s i n c e f o r d i l u t e s o l u t i o n s n b << Nb,

Here Cb 5 nb/Nb denotes t h e bulk concen t ra t ion , Cd = nd/Nd t h e c o n c e n t r a t i o n of d i s lo -

c a t i o n s . Eq.(70) i s p a r t i c u l a r l y u s e f u l i f t h e foreign-atom c o n c e n t r a t i o n i s s o h igh B

t h a t Cb may be considered a s c o n s t a n t . Important l i m i t i n g c a s e s a r e Cbexp(G /kT)>, l , B

corresponding t o a h igh binding en tha lpy and h igh concen t ra t ions , and Cbexp(G /kT)

<< 1 , corresponding t o smal l b ind ing e n t h a l p i e s and smal l concen t ra t ions . I n t h e f i r s t

case Cd reaches i t s s a t u r a t i o n va lue and i s independent of temperature , i n the second

case Cd shows a temperature dependence according t o

There may be s i t u a t i o n s (h igh d i s l o c a t i o n d e n s i t y , h igh b ind ing en tha lpy , low

concen t ra t ion of f o r e i g n atoms) where it i s n o t allowed t o t r e a t Cb a s a cons tan t . We

then have t o so lve

Page 23: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

JOURNAL DE PHYSIQUE

under the a u x i l i a r y c o n d i t i o n

wi th the s o l u t i o n

6. App l i ca t ion t o Relaxat ion P rocesses and Comparison wi th Experiments.

( i ) The Bordoni Relaxat ion. - The c l a s s i c a l f i e l d of a p p l i c a t i o n of the theory of kink-

p a i r format ion i s t he Bordoni r e l a x a t i o n i n f c c me ta l s (comp. S e c t . l ) . Here H: i s

n e g l i g i b l y sma l l . According t o the d i s c u s s i o n of S e c t . 5 ( i ) the k ink d i f f u s i v i t y i s

e i t h e r temperature independent o r dec reases wi th i n c r e a s i n g temperature . This means

t h a t , depending on t h e l eng th of t h e d i s l o c a t i o n segments, t h e r e l a t i o n s h i p between

the e f f e c t i v e a c t i v a t i o n energy de r ived from Arrhenius p l o t s of t he r e l a x a t i o n time

a r e given by e i t h e r (51a) o r (52a)7) w i t h a n e g l i g i b l e o r smal l p o s i t i v e va lue of

d I n Dk/d( l /kT) . A d e t a i l e d comparison wi th exper iments i s beyond the scope of t h i s

paper . The r e a d e r i s r e f e r r e d t o t h e work of ENGELKE [44,45] and of FANTOZZI e t a l .

[ 201 . ( i t ) The y - re l axa t ion i n p u r e bcc m e t a l s , - Following R.G.CHAMBERS [65] t h e y-relaxa-

t i o n i s de f ined a s be ing r e l a t e d t o the long-range motion of d i s l o c a t i o n s i n p l a s t i c

deformat ion. According t o SEEGER and BESTAK [ 2 4 ] the y - re l axa t ion i n bcc me ta l s i s

due t o the format ion of k ink p a i r s on a <111>/2 screw d i s l o c a t i o n s . This i n t e r p r e -

t a t i o n has r e c e n t l y been confirmed i n cons ide rab le d e t a i l .

There i s a l a r g e body of evidence t h a t a t low and in t e rmed ia t e temperatures the

f low-s t r e s s of bcc me ta l s i s c o n t r o l l e d by the motion of the above-mentioned screw

d i s l o c a t i o n s [66]. Recent measurements by ACKERmNN L671 on the temperature and

s t r a i n - r a t e dependence of t h e flow s t r e s s of h igh-pur i ty niobium have confirmed the

kink-pai r format ion theory of the flow s t r e s s L681 i n g r e a t d e t a i l . E.g. , the tempera-

t u r e and s t r a i n - r a t e dependence fo l lowing from t h e expres s ions de r ived of Sec t .2 in -

c l u d i n g t h e t r a n s i t i o n between t h e d i f f e r e n t H (U) laws a t a = : could be v e r i f i e d kp

and t h e q u a n t i t i e s 2 Hk + H: = (0.6 7 + 0.02)eV and a3 bsE1 could be der ived from the

d a t a .

The y - re l axa t ion i n h igh-pur i ty Nb was s t u d i e d by deLIMA and BENOIT [69] by

means of i n t e r n a l f r i c t i o n exper iments . A f t e r p l a s t i c deformation they found a maxi-

mum a t about 250 K wi th an e f f e c t i v e a c t i v a t i o n en tha lpy of H e f f = (0.61 + 0.02)eV,

which they i d e n t i f i e d a s a d i s l o c a t i o n r e l a x a t i o n . App l i ca t ion of (51a) g ives us

2Hk + H: = (0.65 t 0.02)eV, i n e x c e l l e n t agreement wi th the value obta ined from

"Since t h e Bordoni r e l a x a t i o n i s r a t h e r s t a b l e a g a i n s t annea l ing i n t e r n a l f r i c t i o n

measurements may be c a r r i e d o u t a t h igh f r equenc ie s ( i n t h e MH range) and h igh

temperatures . I n gene ra l such measurement w i l l p e r t a i n t o t h e regime p E q ~ > > 1 .

Page 24: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

ACKERMANN's f low s t r e s s measurements;h7] and thus p rov id ing s t r o n g exper imenta l ev i -

dence t h a t t h e two exper iments p e r t a i n indeed t o the same b a s i c p rocess .

Since t h e q u a n t i t y S:' may be c a l c u l a t e d from the e l a s t i c c o n s t a n t s , the

assignment of t he y - re l axa t ion t o k ink p a i r s on screw d i s l o c a t i o n s may be t e s t e d

f u r t h e r by comparing exper imenta l and t h e o r e t i c a l va lues of a3 b S E ~ . I t t u r n s ou t

t h a t t h e exper imenta l va lue is e i g h t t imes t h a t c a l c u l a t e d f o r k inks of h e i g h t

a = (2/3)'ILao. This i n t u r n i s surmised to be a consequence of the p a r t i c u l a r a to -

m i s t i c s t r u c t u r e of screw d i s l o c a t i o n s i n bcc me ta l s , which may e x h i b i t a symmetry-

breaking e f f e c t and acqu i re a new p rope r ty named "po la r i ty" [ 481 . The occurrence of

"double kinks", i . e . k inks of lowest energy wi th twice the h e i g h t expected from t h e

p e r i o d i c i t y of t he p e r f e c t c r y s t a l s t r u c t u r e , i s thought t o be d i r e c t l y r e l a t e d t o

the "polar i ty1 ' of ao<l11>/2 screw d i s l o c a t i o n s i n bcc me ta l s and t o be wi thout ana- 6 ) logue i n o t h e r d i s l o c a t i o n s .

( i i i ) The Snoek-48ster r e l axa t ion . - Following A.S.NOWICK and B.S .BERRY [ 7 11 we denote

by "Snoek-XOster r e l a x a t i o n " a r e l a x a t i o n p rocess f i r s t d iscovered by SYOEK [60] on

cold-worked i r o n con ta in ing n i t r o g e n a t a temperature above t h a t of t h e Snoek e f f e c t .

I t was s t u d i e d i n d e t a i l by W.KoSTER, L-BANGERT, and R.HAHN [72], who showed t h a t

t he p rocess invo lves an i n t e r a c t i o n between d i s l o c a t i o n s and f o r e i g n i n t e r s t i t i a l

atoms ( n i t r o g e n and carbon i n t h e case of cl-Fe). More s p e c i f i c a l l y , according t o

SCHOECK [47] the r e l a x a t i o n e f f e c t i s due t o the motion of d i s l o c a t i o n s t h a t a r e

dragging the i n t e r s t i t i a l atoms. However, t he a c t i v a t i o n en tha lpy of the SnoekbK8ster

r e l a x a t i o n , H ' ~ , exceeds s u b s t a n t i a l l y t h e mig ra t ion en tha lpy of t h e f o r e i g n in-

t e r s t i t i a l atoms involved. One of the key q u e s t i o n s i n t h e i n t e r p r e t a t i o n of t h e M

Snoek-KGster r e l a x a t i o n i s the o r i g i n of t he d i f f e r e n c e between and H . A.SEEGER [73] has r e c e n t l y proposed t h a t t h e b a s i c p rocess of t h e Snoek-X6ster

r e l a x a t i o n is the format ion of k ink p a i r s i n the presence of mobile i n t e r s t i t i a l

atoms. This theory provides us wi th a c l a s s i f i c a t i o n o f the Snoek-KSster r e l a x a t i o n

according t o the d i s l o c a t i o n s on which the kink p a i r s a r e formed and according t o the

f o r e i g n i n t e r s t i t i a l atoms involved. The " c l a s s i c a l " Snoek-XOster r e l a x a t i o n i s a t t r i -

buted by SEEGER 1731 t o a <111>/2 screw d i s l o c a t i o n s i n t e r a c t i n g wi th t h e "heavy"

i n t e r s t i t i a l s (C,N,O) b u t t h e r e may be analogous r e l a x a t i o n p rocesses involving non-

screw d i s l o c a t i o n s (wi th a lower k ink-pai r format ion en tha lpy) and hydrogen atoms

(wi th a lower mig ra t ion en tha lpy) .

The main d i f f e r e n c e between t h e t h e o r i e s of SCHOECK [47] and SEEGER [73], which

give e s s e n t i a l l y t h e same expres s ions f o r t h e r e l a x a t i o n s t r e n g t h [ comp. (45) l , i s t h a t

i n the l a t t e r theory the expres s ion f o r t he r e l a x a t i o n time con ta ins the k ink

he use of the expres s ion "double kink" f o r t h e k ink c o n f i g u r a t i o n desc r ibed above

r e q u i r e s t o drop "double-kink generation': o r i g i n a l l y coined by t h e p r e s e n t w r i t e r

[ 161, a s a synonym f o r "kink-pair formation".

Page 25: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-224 JOURNAL DE PHYSIQUE

format ionenthalpyon s p e c i f i c d i s l o c a t i o n s . The kink-foreign-atom i n t e r a c t i o n i s usual-

l y s t r o n g enough f o r the cond i t ions f o r t he a p p l i c a t i o n o f the d i f f u s i o n theory of

k ink-pai r format ion t o be f u l f i l l e d , s o t h a t the temperature dependence of the Snoek-

K6ster r e l a x a t i o n may be ob ta ined by i n s e r t i n g (34) and (67) i n t o (36). Since the

gene ra l expres s ion f o r ?(T) is r a t h e r complicated we t r e a t a number of s p e c i a l ca ses .

( a ) I f t h e kink-formation en tha lpy i s ve ry smal l compared t o t h e mig ra t ion

en tha lpy of t h e i n t e r s t i t i a l s involved, the c o n d i t i o n p E q ~ >> l w i l l be f u l f i l l e d .

The temperature dependence of the r e l a x a t i o n time i s then given by (52) . Since f o r

Hk z kT the f a c t o r ( k ~ ) ~ ' ~ exp(Hk/kT) i s only weakly temperature dependent, t he tempe-

r a t u r e dependence of t h e r e l a x a t i o n time of the Snoek-Kijster e f f e c t becomes v i r t u a l -

l y the same a s t h a t of t h e d is locat ion-enhanced Snoek e f f e c t [62,74]. This i s reason-

a b l e , s i n c e the lower t h e k ink format ion en tha lpy and the h ighe r t h e temperature , t he

l e s s these two mechanisms a r e d i s t i n g u i s h a b l e . A p o s s i b l e example f o r t h i s s i t u a t i o n

may be a r e l a x a t i o n e f f e c t r e c e n t l y s t u d i e d by U.RODRIAN and H.SCHULTZ [75] on

p l a s t i c a l l y deformed h igh-pur i ty Ta con ta in ing f a i r l y low concen t ra t ions of oxygen.

When the r e l a x a t i o n t imes a s s o c i a t e d wi th t h i s p rocess were r ep resen ted i n an

Arrhenius p l o t T = L exp(Heff/kT) (73)

H e f f = ( l . 12 2 0.04)eV and a pre-exponent ia l f a c t o r TW= 8 ' 1 0 - ' ~ s were ob ta ined . Com-

pa r i son wi th the corresponding q u a n t i t i e s of t he Snoek e f f e c t of oxygen i n Ta,

H' = l . 105 ".01 eV, T = 8 . 6 . 1 0 - ' ~ s L761 shows t h a t du r ing t h e r e l a x a t i o n p rocess

the 0 atoms perform on ly abou t one jump. Thus Cd may indeed be considered a s tempera-

ture-independent and t h e above d e s c r i p t i o n appears a p p r o p r i a t e .

(b) Another s imple case i s t h a t of d i s l o c a t i o n s s a t u r a t e d wi th f o r e i g n atoms,

r e a l i z e d a t h igh i n t e r s t i t i a l c o n c e n t r a t i o n s and h igh f r e e e n t h a l p i e s o f b ind ing t o

the d i s l o c a t i o n s , G:. Then C i s temperature independent even under e q u i l i b r i u m con- d d i t i o n s . The temperature dependence of the r e l a x a t i o n time of t h e Snoek-XEster e f f e c t

i s g iven by e i t h e r

T a T~ exp [ (2Hk + H ~ ) / ~ T I , (74)

( i f p E q ~ << 1 ) o r

T a T~~~ exp [ ( Hk + H ~ ) / ~ T I

( i f pZqL >> I ) . A noteworthy f e a t u r e of (74) and (75) i s t h a t t h e expres s ion (75)

v a l i d a t h ighe r temperatures shows t h e lower a c t i v a t i o n enthalpy.

For a g iven kink-formation en tha lpy and a g iven l eng th d i s t r i b u t i o n of t h e d i s -

l o c a t i o n segments the temperature of which the r e l a x a t i o n p rocess i s observed w i l l be

the lower the sma l l e r t he mig ra t ion en tha lpy fIM of t h e i n t e r s t i t i a l s . I n the bcc

t r a n s i t i o n me ta l s the mig ra t ion en tha lpy of hydrogen i s very much sma l l e r t han t h a t

of t he "heavyv i n t e r s t i t i a l atoms. This means t h a t i n torsion-pendulum o r a f t e r -

e f f e c t measurements the Snoek-Kijster r e l a x a t i o n a s s o c i a t e d wi th hydrogen i s l i k e l y

t o occur i n t h e regime of v a l i d i t y of (74) ( s e e , e .g . , [ 771 ) .

Page 26: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

Eq.(74) r e p r e s e n t s the case t r e a t e d by SEEGER C731 and found t o be i n reason-

a b l e agreement wi th t h e exper iments on t h e Snoek-Kiister r e l a x a t i o n of N and C i n a-

Fe. Another example which might be covered by (74) i s t h a t of 0 i n Ta. Here RODRIAN

and SCHULTZ 1751, working a t f r equenc ie s of about 1 Hz, observed a Snoek-Xdster re-

l a x a t i o n wi th an e f f e c t i v e a c t i v a t i o n en tha lpy H e f f = (2.25 + 0.16)eV. The y-re laxa-

t ion,which they f i n d i n pure Ta a t about 390 K, posses ses an e f f e c t i v e a c t i v a t i o n

en tha lpy H e f f = 1.24 rt 0.05 eV. I f we a l low f o r a k ink-migrat ion en tha lpy of

H: = (0.08 P 0.04)eV, we f i n d from t h i s 2Hk = (1 .23 ? 0.09)eV. Together wi th t h e

above-mentioned value f o r t h e mig ra t ion en tha lpy of oxygen i n Ta t h i s g ives us

2H + IIM = ( 2 . 3 3 2 0 . IO)eV, i n good agreement wi th the va lue of (2.35 c O.16)eV k fo l lowing from the H of RODRJAN and SCHULTZ [75]. A c o r o l l a r y of t h i s i n t e r p r e - e f f t a t i o n is t h a t t he f r e e en tha lpy of b ind ing oxygen t o d i s l o c a t i o n s i n Ta i s a t l e a s t

0.6 eV, i n agreement wi th the conc lus ions of RODRIAN and SCHULTZ [75]. A t t h e tempera-

t u r e of the Snoek-4i5ster r e l a x a t i o n the preceding a n a l y s i s g i v e s exp(Hk/kT)=l.5 '10 5

e l so t h a t i t i s indeed p l a u s i b l e t h a t t h e exper iments p e r t a i n t o the regime pk L>>I

a s assumed. B

(C) F i n a l l y we t r e a t t he case Cd.exp(GdlkT) c< 1 and assume, fo l lowing deBATIST

[64], t h a t du r ing t h e de te rmina t ion of the e f f e c t i v e a c t i v a t i o n en tha lpy thermal

e q u i l i b r i u m between d i s l o c a t i o n s and bulk i s mainta ined. We then have

T OC T~ exp [ (2Hk + + H ; ) / ~ T ] (76)

i n the case of p E q ~ << 1 or

B i f p z q ~ >> 1 . (Hd denotes the foreign-atom-dislocation b ind ing en tha lpy . )

Let us compare (76) and (77) wi th the Snoek-Kiister r e l a x a t i o n of oxygen i n

niobium. Here we have accura t e exper imenta l va lues 2Hk + H: = (0.66 f 0.02)eV [comp.

subsec t ion ( i i ) ] and HM = ( 1 . 154 + 0.009)eV 1751. J.DIEHL, T.S.KE, Z.L.PAN, M.WELLER,

J.X.ZHANG, and t h e p r e s e n t w r i t e r have r e c e n t l y s tud ied i n cons ide rab le d e t a i l t h e

Snoek-Kiister r e l a x a t i o n i n t h i s system and compared i t wi th the r e s u l t s r e p o r t e d i n

the l i t e r a t u r e ( f o r t hese s e e 1731).

Two d i s t i n c t r e l a x a t i o n p rocesses wi th the a t t r i b u t e s of the Snoek-Kdster re-

l a x a t i o n a r e observed, v i z . a r a t h e r s t a b l e p rocess a t about 725 K (measuring frequen-

cy f = 1 Hz) wi th a n e f f e c t i v e a c t i v a t i o n en tha lpy Hef f = (1.69 P 0.04)eV and one a t

about 545 K with H e f f = (1.99 + 0.2)eV, which, however, i s l e s s s t a b l e a g a i n s t an-

nea l ing . The sma l l e r of t hese two e f f e c t i v e a c t i v a t i o n e n t h a l p i e s would be i n ex-

c e l l e n t agreement wi th (74 ) , bu t n o t the l a r g e r one. An i n t e r p r e t a t i o n which e x p l a i n s

q u a n t i t a t i v e l y the occurrence of two d i s t i n c t "Snoek-Kiister r e l a x a t i o n s " n o t only i n

t h i s work bu t a l s o i n the l i t e r a t u r e can be given by assuming t h a t t h e s t a b l e (and

more p r e c i s e l y s t u d i e d ) Snoek-Kiister r e l a x a t i o n i s desc r ibed by (77). From t h i s B

fo l lows a b inding en tha lpy Hd 0.35 eV. This b inding en tha lpy accounts then f o r t he

h ighe r a c t i v a t i o n en tha lpy i n terms of (76) . The i n t e r p r e t a t i o n impl i e s t h a t a f t e r

Page 27: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-226 JOURNAL DE PHYSIQUE

cold-work there are dislocations anchored so that p E q ~ << l holds, and that sub-

sequent annealing changes the anchoring points in such a way that at the temperature

of the stable Snoek-Kiister peak the condition p E q ~ >> 1 is fulfilled. This hypothesis

is clearly an interesting subject for further investigation.

(iv) Relaxation by migration of geometrical kinks.- The relaxation time is given by

(54), the relaxation strengthby (55). If (58) is obeyed one expects the frequency v:

to be of the order of magnitude of the Debye frequency.This means that if there is

an observable relaxation strength (i.e., the L values are sufficiently large) the

pre-exponential factor will be several powers of ten larger than the reciprocal

Debye frequency. This feature allows one to distinguish the kink-migration relaxation

fairly easily from the other relaxation processes discussed in this paper, since

these give comparable with or smaller than the reciprocal Debye frequency.

Acknowledgement

The author is indebted to a large number of collaborators for discussions and help.

He should like in particular to acknowledge the support by Dr. E. Mann and Dr. M.

Weller.

References

[ l] U. Dehlinger, Ann. Physik (5) 2, 749 (1929) [ 21 M. Polanyi, 2 . Physik 2, 660 (1934) [ 31 E. Orowan, 2 . Physik 89, 634 (1934) [ 41 G.I. Taylor, Proc.Roy.Soc.Lond. A 145, 362 (1934) [ 51 E. Schmid and W. Boas, Kri~tall~lastizitat unter besonderer Beriicksichtigung

der Metalle, Springer, Berlin 1935

[ 6J L. Prandtl, Z.angew.Math.Mech. - 8, 85 (1928)

[ 71 J. Frenkel and T. Kontorova, J.Phys.Acad.Sci. USSR 1, 137 (1939) [ 81 A. Seeger, Proc.Roy.Soc.Lond. A 371, 173 (1980) [ 91 R. Peierls, Proc.Phys.Soc.(London) 52, 34 (1940) [l01 R. Peierls, Dislocation Dynamics (ed.by A.R. Rosenfield, G.T.Hahn, A.L.Bement,

jr.,R.I.Jaffee) p. XIII, McGraw-Hill, New York etc. 1968

[l]] A.H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University

Press, Oxford 1953

[12J A. Seeger, Theorie der Gitterfehlstellen, Encyclopedia of Physics, VO~.VII/I

(ed. by S.Fliigge), p. 603, Springer, Berlin-C.ijttinge11-Heidelberg(1955)

[l31 A. Seeger and P. Schiller, Physical Acoustics, Vol. I11 A (ed. by W.~.Mason)

p. 361, Academic Press, New York and London 1966

1141 J.W. Christian and V. ~itek, Reports Progr. Physics 2, 307 (1970)

Page 28: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

[ I51 W. Shockley, Trans.Americ.Inst.Min.Metal1urg.Engrs. 194, 829 (1952)

[ l61 A. Seeger, Phil. Eag. 1, 651 (1956)

[ l 71 P.G. Bordoni, Ric.Sci. 2, 851 (1949)

[ l 8 1 P.G. Bordoni, J.Acoust.Soc.Am. 2, 495 (1954)

[ l 91 A. Seeger, J. physique 2, C2-193 (1972)

1201 G. Fantozzi, W. Benoit, C. Esnouf and J. Perez, Ann.Physique 4, 7 (1979)

[21] Discussions on the Problems Relating to the Bordoni Peak, Phys.Soc.Japan 18, Suppl. 1 , 163-199 (1963)

[22] A. Seeger and P. Schiller, Acta metall. 2, 348 (1962)

[23] A.D. Brailsford, Phys.Rev. 122, 778 (1961)

[24] A. Seeger and B. Sest&k, Scripta metall. 5, 875 (1971)

[25] Ch. Wiithrich, Scripta metall. 2, 641 (1975)

[26] G. de Wit and J.S. Koehler, Phys. Rev. 116, 1113 (1959)

[27] J.D. Eshelby, Proc.Roy.Soc.Land. A, 222 (1962)

[28] A. Seeger, Z. Metallkde. 72, 369 (1981)

[29] F. Kroupa and L.M. Brown, Phil.Mag. 2, 1267 (1961)

[30] A.D. Brailsford, Phys.Rev. 128, 1033 (1962)

131 1 L.M. Brown, Can.J.Physics 5, 893 (1967)

[321 H.O.K. Kirchner, Acta Physica Austriaca 48, 1 1 1 (1978)

[33] T . Mori and M. Kato, Phil.Mag. A 43, 1315 (1981)

[341 H. Pelzer and E. Wigner, Z.Physik.Chenie B, 445 (1932)

[35] H.A. Kramers, Physica 2, 284 (1940)

[36] H. Donth, Z.Physik 149, 1 1 (1957)

[37] A.N. Kolmogoroff, Mat-Ann. 104, 425 (1931) ; 108, 149 (1933)

l381 H. Gebelein, Ann.Physik ( 5 ) 2, 533 (1934)

[391 E . Mann, to be submitted to phys.stat.so1.

[40] G-Stenzel, BeitrHge zur Theorie der Kinken, Diplomarbeit,'l'echnische Hochschule

Stuttgart, Stuttgart 1965

[4 l ] H. Engelke, Fundamental Aspects of Dislocation Theory (Nat.Bur.Stand.Spec.Pub1.

317, Vol.II)(ed. by J.A. Simmons, R.de Wit, and R. Bullough) p. 1137, U.S.

Governm.Print.Of fice,Washington 1970

[42] J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York 1968

l431 M. Riittiker and R. Landauer, Phys.Rev.Letters 43, 1452 (1979)

[441 H. Engelke, phys.stat.so1. 2, 231 (1969)

[45] H. Engelke, phys.stat.so1. 2, 245 (1969)

[46] A. Seeger, H. Donth, and F. Pfaff, Farad.Soc.Disc. 3, 19 (1957)

[47] G . Sehoeck, Acta rnstall. 4, 617 (1963)

[48] A. Seeger and Ch.WKthrich, I1 Nuovo Cimento 33, 38 (1976)

[49] G. Schottky, phys.stat.so1. 5 697 (1964)

l501 P.B. Hirsch, unpublished discussion at Vth International Congress of Crystallo-

graphy, Cambridge 1960

Page 29: THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION … › 5f46 › 66475185f3... · in terms of disLocation theory proved to be correct (BORDONI himself [l81 suggested an explanation

C5-228 JOURNAL DE PHYSIQUE

[51] Ch. Wsthrich, Phil.Mag. 2, 337 (1977)

[52] W.C. Dash, J.Appl.Rhys..z, 1193 (1956)

[53] H. Alexander and P. Haasen, Solid State Physics Vol. 22 (ed. by F. Seitz and

W. urn bull) p. 27, Academic Press, New York and London 1968

[54] R. Labusch, phys. stat .sol. E, 645 ( 1965)

[55] H. Teichler, phys.stat.so1. 3, 341 (1968)

[56] H. Schaumburg, Phil.Mag. 5, 1429 (1972)

[57] A. Seeger and H. Engelke, Dislocation Dynamics (ed. by A.R. Rosenfield, G.T.

Hahn, A.L.Bement, jr. R.1.Jaffee) p. 623, McGraw- ill, New York etc. 1968

[58] P.P. Gruner, Fundamental Aspects of Dislocation Theory (Nat.~ureau Stand,Spec.

Publ. 317, Vol. I) (ed. by J.A. Simons, R.deWit, and R.Bullough) p. 363,

U.S.Governm.Print.Office, Washington 1970

L591 R.R. Hasiguti, Ann.Rev. Materials Science, Vol. 2, p. 69, Annual Reviews, Palo

Alto 1972

[60] D.L. Snoek, Physica (Utrecht) 8, 711 (19417

[61] A. Seeger, phys.stat.so1. 3, 457 (1979)

[62] G. Schoeck and A. Seeger, Acta. metall. 7, 469 (1959)

[63] A. Seeger and W. Hornung, Internal Friction and Ultrasonic Attenuation in

Crystalline Solids, Vol.1, p. 222 (ed.by D.Lenz and K.Liicke) Springer,

Berlin-Heidelberg+ew York 1975

C641 R. de Batist, Internal Friction of Structural Defects in Crystalline Solids,

North-Holland, Amsterdam-London 1972

[65] R.G. Chambers, Physical Acoustics Vol. I11 B (ed. by W.P. Mason)p. 123

Academic Press, New York and London 1966

[66] B.Sesthk and A. Seeger, Z.~etallkde. g, ,195, 355, 425 (1978)

[67 ] F. Ackermann, Dr.rer.nat.thesis, UniversitPt Stuttgart, 1981

[68] A. Seeger, Z. Metallkde. 72, 369 (1981)

L691 F. de Lima and W. Benoit, phys.stat.soi., to be published

[70] A. Seeger, submitted to Scripts metall.

[71] A.S..Nowick and B.S.Berry, Anelastic Relaxation in Crystalline Solids, Academic

Press, New York and London 1972

[72] W. Koster, L. Bangert, and R. Hahn, Arch. ~isenhiittenw. 2, 569 (1954)

[73] A. Seeger, phys.stat.sol.(a) 55, 457 (1979)

[74] A. Seeger and F.J. Wagner, phys.stat.so1. 9, 583 (1965)

[75] U. Rodrian and H. Schultz, Z.Metallkde, to be ~ublished

C761 M. Weller, G.Y. Li, J.X. Zhang, T.S. KC, and J. Diehl, Acta metall. 2, 1047

(1981)

C771 T.S. K;, H. Kronmiiller, A. Seeger, and Z.Q. Sun, Third Intern. Conf. on Effect

of Hydrogen on Behaviour of Metals, Jackson Lake Lodge 1980, in print